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Let G be a connected semisimple real algebraic group, and I' < G a Zariski dense
Anosov subgroup with respect to a minimal parabolic subgroup. We describe the
asymptotic behavior of matrix coefficients {(exp tv). f1, f2) in L>(I'\G) as t — oo
forany f1, f2 € C.(I'\G) and any vector v in the interior of the limit cone of I". These
asymptotics involve higher-rank analogues of Burger—Roblin measures, which are
introduced in this paper. As an application, for any affine symmetric subgroup H of G,
we obtain a bisector counting result for I'—orbits with respect to the corresponding
generalized Cartan decomposition of G. Moreover, we obtain analogues of the results
of Duke, Rudnick and Sarnak as well as Eskin and McMullen for counting discrete
I'-orbits in affine symmetric spaces H\G.
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514 Samuel Edwards, Minju Lee and Hee Oh

1 Introduction

Let G be a connected semisimple real algebraic group. We fix a Cartan decomposition
G = K(expat)K, where K is a maximal compact subgroup and exp a™ is a positive
Weyl chamber of a maximal real split torus of G. Let I' < G be a Zariski dense discrete
subgroup. Consider a matrix coefficient of L2(I'\G) given by

(1L.1) {exp(tu) f1. f2) = /l"\G Ji(x exp(tu)) f2(x) dx,

where u € a* — {0} and dx denotes the G—invariant measure on I'\G. Understanding
its asymptotic behavior as t — oo is of basic importance in the study of dynamics of
flows in I'\ G, and has many applications, including to equidistribution and counting
problems. A classical result due to Howe and Moore [20] implies that

1
t , = — d dx.
(expu i f2) = gy | i [ fad
In particular, if I' has infinite covolume in G, then
(1.3) lim (exp(tu) /1, f2) = 0.
+

This leads us to the following local mixing type question: for a given unit vector u € a™,

(1.2)

lim
—>00

do there exist a normalizing function Wr ,: (0, 00) — (0, co) and locally finite Borel
measures /iy, i on T\ G such that for any fi, f> € C¢(T'\G),!

(1.4) Tlim W (Olexp(tu) f1, f2) = )i (f2)?

When G has rank one, this was completely answered by Roblin [42] and Winter [51]
for geometrically finite subgroups and by Oh and Pan [31] for coabelian subgroups of
convex cocompact subgroups.

When G has rank at least two, the location of the vector u relative to the limit cone
of I" turns out to play an important role. The limit cone of I", which we denote by Lr,
is defined as the smallest closed cone in at containing the Jordan projection of T.
Benoist [1] showed that Lr is convex and has nonempty interior. Indeed, it is not hard
to show that if u & L, then for any f7, f> € C.(T'\G),

(exp(tu) f1, f) =0 for all ¢ large enough;
see Proposition 2.19.

!For a topological space X, the notation C,(X) means the space of all continuous functions on X with
compact support, and if M is a compact group acting continuously on X, the notation C¢ (X )M means
the subspace of C¢(X) consisting of M —invariant functions.
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Anosov groups: local mixing, counting and equidistribution 515

The main goal of this paper is to prove the local mixing result, giving a positive answer
to question (1.4) for all directions u in the interior of L, and to describe applications to
counting and equidistribution results associated to a symmetric subgroup H of G for a
large class of discrete subgroups, called Anosov subgroups. Anosov subgroups of G are
defined with respect to any parabolic subgroup. In this paper, we focus on Zariski dense
Anosov groups with respect to a minimal parabolic subgroup P of G. Let F:= G/ P be
the Furstenberg boundary. We denote by F @ the unique open G—orbit in F x F via the
diagonal action. A Zariski dense discrete subgroup I' < G is called Anosov with respect
to P if there exists a finitely generated word hyperbolic group X such that I' = (%),
where ®: ¥ — G is a P—Anosov representation, ie ® induces a continuous equivariant
map ¢ from the Gromov boundary 0% to F such that for all x # y € %, ({(x), (1))
belongs to F ) The definition of a P—Anosov representation for a general discrete
subgroup requires a certain contraction property, which is automatic for Zariski dense
subgroups; see Guichard and Wienhard [17, Theorem 1.5]. The notion of Anosov
representations was first introduced by Labourie for surface groups [24], and then
extended by Guichard and Wienhard [17] to general word hyperbolic groups.

If G has rank one, the class of Zariski dense Anosov groups coincides with the class of
Zariski dense convex cocompact subgroups of G; see [17, Theorem 5.15]. Guichard
and Wienhard [17, Theorem 1.2] showed that P—Anosov representations form an open
subset of the space Hom(X, G); this abundance of Anosov subgroups contrasts with
the fact that there are only countably many lattices in any simple algebraic group not
locally isomorphic to PSL;(R). The class of Anosov subgroups includes subgroups of
a real-split simple algebraic group which arise as the Zariski dense image of a Hitchin
representation (see Hitchin [19]) of a surface subgroup studied by Labourie [24] and
Fock and Goncharov [12], as well as Schottky groups (cf Lemma 7.2). We refer to
Kapovich, Leeb and Porti [21], Guéritaud, Guichard, Kassel and Wienhard [16] and
Bochi, Potrie and Sambarino [3] for other equivalent definitions of Anosov subgroups,
and to Kassel [22] and Wienhard [50] for excellent survey articles.

In the whole paper, by an Anosov subgroup we mean a Zariski dense Anosov subgroup
with respect to a minimal parabolic subgroup. In the rest of the introduction, we let
I' < G be an Anosov subgroup.

We recall the definition of the growth indicator function ¥ : a™ — R U {—o0o} given

by Quint [36]: for any vector u € a™,
(1.5) yr) =llu|  inf .
open cones CCa™T
uec
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516 Samuel Edwards, Minju Lee and Hee Oh

where 1¢ is the abscissa of convergence of the series Zyel",u(y)ec eI Here
w: G — a™ is the Cartan projection and || - || is the norm on a induced from a left-
invariant Riemannian metric on G/K. Observe that in the rank one case, Y is
simply the critical exponent of I". Quint [36] showed that {1 is a concave and upper
semicontinuous function, which is positive on int Lr; here int L denotes the interior
of L. If 2p € a* denotes the sum of all positive roots with respect to the choice of a™,
then Y <2p. When I is a lattice, it follows from Gorodnik and Oh [13] that Y = 2p.
On the other hand, when I" is of infinite covolume in a simple Lie group of rank at
least 2, Quint [39] deduced from Oh [30] that Y+ < 2(p — ng), where 25 is the sum
of the maximal strongly orthogonal subset of the root system of G.

Local mixing Let N and N~ denote the maximal expanding and contracting horo-
spherical subgroups, respectively, associated with at (see (2.1) and (2.2)), and M the
centralizer of exp a in K. For each u € int L1, Quint [37] constructed a higher-rank
analogue of the Patterson—Sullivan density supported on the limit set A, which is the
minimal [—invariant subset of . Using this, we define the N * M —invariant Burger—
Roblin measures mER and mBR*, respectively, on I'\G (see (3.8) and (3.10)), which
can be considered as the higher-rank generalizations of the Burger—Roblin measures in
the rank one case; see Burger [5], Roblin [42] and Oh and Shah [32]. We denote by i
the opposition involution of a (Definition 3.1), and set r := rank(G) = dima > 1.

Theorem 1.6 For any u € int L, there exists a k,, > 0 such that for all f1, f, €
Ce(M\G)M,

lim (0= 1D/2t o=V /F o SO0 (0) d = i O ()

t—>—+o00

This theorem is not expected to hold for # € dLr in view of [9, Theorem 1.1]. See
Theorem 7.12 for a more refined version of this theorem; in fact, it is this refined version
which is needed in the application to counting problems as stated in Theorems 1.8
and 1.10.

Equidistribution of maximal horospheres We also obtain the following equidistri-
bution result for translates of maximal horospheres:

Theorem 1.7 Foranyu € intLr, f € Cc(T\G)M, ¢ € C.(N 1) and x = [g] e T'\G,

lim ¢~ D/2ptQo—¥r)(@) /N+ f(xnexp(tu))p(n)dn = ky -M?(};)(f) Mg%ﬂr,u(ﬁb),

t—>00
where dn and /Lgﬁv +, are, respectively, the Lebesgue and Patterson—Sullivan measures
on gN ™, as defined in (4.7) and (4.1).
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Bisector counting for a generalized Cartan decomposition Let H be a symmetric
subgroup of G, ie H is the identity component of the set of fixed points for an
involution o of G. Up to a conjugation, we may assume that ¢ commutes with the
Cartan involution 6, which fixes K. We then have a generalized Cartan decomposition
G = HW(expbT)K, where b™ C a™ and W is a subgroup of the Weyl group; see
Section 8 for details. Set ro := rank H\G = dimb. Note that 1 <rg <r.

Theorem 1.8 For any v € b™ Nint L, there exist ¢ > 0 and a norm | - | on b such that
for any right H N M —invariant bounded subset Qg C H with /%3 (0Q2p) = 0 and

any left M —invariant bounded subset Q g C K with ul;(sﬁ’;v)(E)Q}l) = 0, we have
. #ITNQp(expby)Qk) P PSk o1
A T T~ P Q) (k)

where b"T' ={webt:|w <T}and ,u%;”v and MPKS”;EU) are measures on H and K
defined in Definition 8.7 and Lemma 9.20, respectively.

When I' is a cocompact lattice in a rank one Lie group and H is compact, this goes back
to Margulis’ thesis from 1970; see [27] for an English translation published in 2004.
In the case when I' is a geometrically finite subgroup of a rank one Lie group, this was
shown in Roblin [42] for H compact, and in Oh and Shah [32] and Mohammadi and
Oh [29] for general symmetric subgroups. For lattices of higher-rank Lie groups, the
bisector counting problem was studied in Gorodnik and Oh [13] and Gorodnik, Oh
and Shah [14; 15]. For nonlattices of higher-rank Lie groups, it was studied for H
compact, by Quint [40] and Thirion [48] for Schottky groups2 and by Sambarino [45]
for Anosov subgroups; see also Carvajales [7]. Hence the main novelty of this paper
lies in our treatment of noncompact symmetric subgroups H in a general higher-rank
case. It is interesting to note the presence of the decaying polynomial term T (ro—r)/2
when a # b, as the results in loc. cit. have all purely exponential terms. We mention
that a related counting result was obtained for SO(p, g — 1)\ SO(p, ¢) in a recent paper
of Carvajales [6]; in this case, b lies in the wall of a and hence Theorem 1.8 does not
apply, and the asymptotic is again purely exponential.

By the concavity and upper semicontinuity of Y, there exists a unique unit vector
ur € at (called the maximal growth direction) such that

Yr(ur) = max  Yr(v).

veat, |vl|=1

2Thirion’s work applies to the so-called ping-pong groups, which are slightly more general than Schottky
groups.

Geometry € Topology, Volume 27 (2023)



518 Samuel Edwards, Minju Lee and Hee Oh

It is known that up € int L [40; 45]. When ur € b, the norm |- | in Theorem 1.8
associated to ur may simply be taken as the Euclidean norm || - || as above, ie the one
obtained from the inner product (-, -) on a induced by the Killing form. For a general
vector v € b Nint L1, one may take any norm that arises from an inner product for
which v and (Vyr(v))+ = {w € b : (VY (v), w) =0} are orthogonal.

Example When a = b, we automatically have ur € b™ Nint £r; so Theorem 1.8
applies. For groups G of rank one, this is always the case for any symmetric subgroup H.
In general, this case arises as follows: let ¢ be any involution of G' that commutes
with the Cartan involution 6 and fixes a pointwise. Then defining o := ¢ 0 6, we have
o|q = —1, and hence a = b. For example, for any element m € K of order two which
commutes with exp a, ((g) := mgm satisfies the above conditions. More specifically,
the pair G = PGL,(R) and H = PO(p,n — p) may be realized this way by taking
m = diag(Idp, —Id,—p).

Counting in affine symmetric spaces Around 1993, Duke, Rudnick and Sarnak [10]
and Eskin and McMullen [11] showed the following; see also Benoist and Oh [2],
Gorodnik and Oh [13] and Gorodnik, Oh and Shah [14; 15].

Theorem 1.9 (Duke—Rudnick—Sarnak, Eskin—-McMullen) LetI" < G be a lattice
such that voI' C H\G is closed for vo = [H]. Suppose that (H N T")\ H has finite
volume. We have, as T — oo,
#(voI' Nvo(expbF)K)  VoI(I'N H)\H)
1m = ,
T—oo  m(vo(exp b7 )K) Vol(I'\G)

where bJTr ={web™ :||w|| < T} and m is a suitably normalized G —invariant measure
on H\G.

In order to state an analogue of Theorem 1.9 for I' Anosov, we introduce the following
condition on an H—orbit: a closed orbit [e]H C ['\G is said to be uniformly proper if
there exists a right K—invariant neighborhood O of [e] in '\ G such that

{[h] € (0 N H)\H :[h]exp(bT™ N Lr)NO # @}

is bounded.? We show in Lemma 9.35 that [¢] H is uniformly proper whenever r = rq
and the limit set A is contained in the open set HP /P C F; cf [46, Proposition 7.1.8].

3As [e]H is closed, the inclusion (H N T)\H — I'\G is a proper map, and hence the set S :=
{[h e @ N H)\H :[h]expb N O # @} is bounded for each b € b™ N L. Now the uniform properness
of [e] H means that the union (Jpep+n 2, Sp is also bounded.
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When vy I is closed, the measure /L%S , in Theorem 1.8 induces a locally finite Borel mea-
sure on (I'N H)\ H, whose total measure will be called the skinning constant skr ,, (/)
of H with respect to " and v; this constant is positive if and only if A N HP/ P # &;
see (8.8).

Theorem 1.10 Let I' < G be an Anosov subgroup such that voI" C H\G is closed for
vo = [H]. Suppose thatur € b™ and [e]H is uniformly proper. Then skr . (H) < 0o
and there exists a constant ¢ > 0 such that

_ #(vol Nvo(expb;)K)
Th—I>noo erT . T(ro—r)/2 =¢ Skr,ur (H),

where bJTr ={web™:|w| <T}and 8r = Yr(ur).

See Theorem 9.28 for a more refined version, where ur is replaced by a more general
vebT Nint Lr.

Remark 1.11 (1) When G has rank one, this is proved in Oh and Shah [32]
and Mohammadi and Oh [29] for any geometrically finite group I" under the
finite skinning constant hypothesis, based on the fact that the Bowen—Margulis—
Sullivan measure is finite. In the higher-rank case, the corresponding Bowen—
Margulis—Sullivan measure is infinite; see Sambarino [45, Proposition 3.5] and
also Lee and Oh [25, Corollary 4.9]. For this reason, the finite skinning constant
hypothesis seems insufficient for our approach to work.

(2) We mention a recent work of Carvajales [7, Theorem B] for a counting result on
the orbit voI" where G = PSL,(R) and H = SO(p, n — p) under the assumption
that ' N A is finite. In this case, a = b and the uniform properness of [e] H
easily follows, and hence Theorem 1.10 applies.

On the proofs The following mixing result for the Bowen—Margulis—Sullivan mea-
sures was proved by Thirion [48] for Schottky groups and by Sambarino [45] for
Anosov groups which arise from representations of the fundamental group of a closed
negatively curved Riemannian manifold, using thermodynamic formalism. The general
case was recently proved by Chow and Sarkar [8], based on the fundamental work of
Bridgeman, Canary, Labourie and Sambarino [4]:

Theorem 1.12 For any u € int L1 and any f;, f> € C.(T\G)M,

lim ¢("=1/2 / F1(x) fo(x exp(tu)) dmBMS (x) = i, - mEMS (1) mBMS (1),
\G

t—>00

where mEMS is the BMS—measure associated to u; see (3.5) and (7.11).
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This theorem is known only for Zariski dense Anosov subgroups with respect to a
minimal parabolic subgroup, and this is the main reason we restrict our attention to
this class of groups in this paper.

Remark 1.13 In fact, Chow and Sarkar proved in [8] that a version of this theorem
holds for general fi, f> € C.(I'\G) which are not necessarily M —invariant, provided
the right-hand side is replaced by the sum «;, Yy mEMS|}, (f1) mEMS|, (f2), where
the sum is taken over all P°~minimal subsets Y of I'\G. Given this result, the M—
invariance condition in Theorems 1.6, 1.7 and 1.8 should not be necessary with an
appropriate modification of the main terms.

Using the product structures of the Haar measure dx and d mEMS (x), one can deduce
mixing for one measure from that of the other via the study of transversal intersections.
This observation is originally due to Roblin [42] in the case of the unit tangent bundle
of a rank one locally symmetric manifold, and has been extended and utilized in
Mohammadi and Oh [29] and Oh and Shah [32] to the frame bundle. This study leads
us to generalize the definition of the family of Burger-Roblin measures m5R and ng*
for u € int L, which turn out to control the asymptotic behavior of matrix coefficients

as in Theorem 1.6 in a quite similar way as in the rank one case.

As in Duke, Rudnick and Sarnak [10] and Eskin and McMullen [11] (also as in
[32] and [29]), passing from Theorem 1.6 to Theorems 1.8 and 1.10 requires the
following equidistribution statement for translates of H—orbits; more precisely, we
need Proposition 8.11. The idea of using mixing in the equidistribution and counting
problem goes back to Margulis [27]:

Proposition 1.14 For any v € b™ Nint L, there exists k, > 0 such that for any
feCT\G)M and ¢ € C.(H)H"M
lim ¢=1/2,(20=0)(tv) [ S[lexp(tv)g(h) dh = iy - w3 L (G)mER (/).
t—>00 H >

where dh denotes the Haar measure on H, and © € a* is given by ®(w) = (Vyrr(v), w)
as in (8.3).

When I is a lattice or when G is of rank one, the equidistribution for the translates
(1L15) | r@espbgihy dn

is known for a general sequence b; — co in bT; see [11, Theorem 1.2] and [32].
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In our setting of a general Anosov subgroup, Proposition 1.14 (or Proposition 8.11)
applies only for those sequences b; from the same fixed direction. Such lack of
uniformity in (1.15) makes it difficult to obtain the main terms of the counting functions
in Theorems 1.8 and 1.10 directly from Proposition 1.14. A similar issue as this was
treated in [45]. This difficulty in our setting is overcome by introducing a norm | - | on a
induced by an inner product with respect to which v and ker ® are orthogonal to each
other, where © is a linear form on a tangent to the growth indicator function at v. With
respect to such a norm, the set of elements in the cone £r N b of norm at most T’
can be expressed as the union |, ¢y.r@ R7(w), where R7(w) is an interval of the
form [Zw, %(—|w|2 + V]wl*+ 4T2)] for some #,, > 0. By analyzing an appropriate
integral over the interval Ry (w) (Lemma 9.4), we then get the desired main term as in
Proposition 9.10.

Organization We start by reviewing some basic notions in Section 2, including higher-
rank analogues of Patterson—Sullivan measures as defined by Quint [37]. Section 3
introduces generalized BMS—measures; in particular, higher-rank versions of Burger—
Roblin measures are defined. The product structure of these measures is discussed in
Section 4. We then deduce equidistribution of translates of PS measures on horospheres
from local mixing in Section 5. This is then used in Section 6 to show mixing for the
Haar measure and equidistribution of translates of Lebesgue measures on maximal
horospheres. Properties of the main types of discrete subgroups we study are discussed
in Section 7. The remainder of the paper is mainly devoted to proving the claimed
counting statements. As a first step towards this, we prove equidistribution of translates
of orbits of symmetric subgroups in I'\ G in Section 8. These equidistribution statements
are combined with the strong wavefront property in Section 9 to give the various
counting results.

Acknowledgements We would like to thank Andrés Sambarino for helpful discussions.
We would also like to thank the anonymous referee and Anna Wienhard for many
helpful comments.

Edwards was supported by postdoctoral scholarship 2017.0391 from the Knut and
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2 (I, y)-Patterson—Sullivan measures

Let G be a connected, semisimple real algebraic group, and I' < G a Zariski dense
discrete subgroup. In this section, we review the notion of (I, ¥ )—Patterson—Sullivan
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measures associated to a certain class of linear forms vy on a, as constructed by Quint
in [37]. We present these measures as analogously as possible to the Patterson—Sullivan
measures on the limit set of I in the rank one case.

We fix, once and for all, a Cartan involution 6 of the Lie algebra g of G, and decompose
gas g =Et®p, where £ and p are the +1 and —1 eigenspaces of 6, respectively.
We denote by K the maximal compact subgroup of G with Lie algebra £. We also
choose a maximal abelian subalgebra a of p. Fixing a left G—invariant and right
K—invariant Riemannian metric on G induces a Weyl-group invariant inner product
and corresponding norm on a, which we denote by (-,-) and | - ||, respectively. The
choice of this Riemannian metric induces a G—invariant metric d(-,-) on G/ K. The
identity coset [e] in G/ K is denoted by o.

Let A := exp a. Choosing a closed positive Weyl chamber a™t of a, let AT =expa™.
The centralizer of A in K is denoted by M, and we set

N=N"
to be the maximal contracting horospherical subgroup for A: for an element a in the
interior of A7,
2.1) N ={geG:a"gd" — e asn— +oo}.

Note that log( V) is the sum of all positive root subspaces for our choice of a™. Similarly,
we will also need to consider the maximal expanding horospherical subgroup

2.2) NT:={geG:d"ga™™ —easn— +oo}.

We set
Pt =MANT and P= MAN:

they are minimal parabolic subgroups of G. The quotient
F=G/P
is known as the Furstenberg boundary of G, and is isomorphic to K/M .

Definition 2.3 (Busemann function) The Iwasawa cocycle o : G X F — a is defined
as follows: for (g,£&) € G x F, expo(g, &) is the A—component of gk in the KAN
decomposition, where § = [k] € K/ M :

gk € Kexp(o(g,&))N.
The Busemann function 8: F x G/ K x G/ K — a is now defined as follows: for & € F
and [¢].[7] € G/ K,

Be((gl. () :=0(g™". &) —a(h™",8).
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Observe that the Busemann function is continuous in all three variables. To ease
notation, we will write Bg(g, /) = B¢ ([g]. [1]). The following identities will be used
throughout the article:

Be(g. h) + Be(h,q) = B:(g.9),
2.4) Bge(gh, gq) = Be(h, q),
Be(e.g) =—o(g " £).
_l’_

Geometrically, if £ = [k] € K/ M, then for any unit vector u € a™,

(Be(g.h).u) = lim_d((g).&)—d([h).&0).

where &; = kexp(tu)o € G/K.

Definition 2.5 (conformal measures and densities) Given ¢ € a* and a closed
subgroup A < G, a Borel probability measure vy, on F is called a (A, ¥ )—conformal
measure if, for any y € A and £ € F,

(2.6) DVeVy o) Beer,
dvv,

where yxvy (Q) = vy, (y~1 Q) for any Borel subset O C F.

Definition 2.7 (Lebesgue measure) Let m, denote the K—invariant probability mea-
sure on F, and p denote the half sum of all positive roots with respect to a*. Then,
using the decomposition of the Haar measure in the KA N coordinates, one can check
the following (cf [41, Proposition 3.3]): if m, is a (G, 2p)—conformal measure, ie for
any g€ Gand £ € F,

2.8) dgmo o _ ,20(Bele.0),
dm,

Limit set and limit cone

Definition 2.9 (limit set) The limit set At of I is defined to be the set of all points
X € F such that the Dirac measure §y is a limit point (in the space of Borel probability
measures on F) of {y«m, 1y € I'}.

We refer to [25, Lemma 2.13] for an alternative definition. Benoist showed that Ar
is the minimal I'-invariant closed subset of F. Moreover, Ar is Zariski dense in F
[1, Section 3.6].
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An element of G is called elliptic if it is contained in a compact subgroup, and hyperbolic
if it is conjugate to an element of AT. Any g € G can be written as the commuting
product

(2.10) g = 8h&e8u-

where gj, is hyperbolic, g, is elliptic and g, is unipotent. An element g € G is called
loxodromic if gy, is conjugate to an element of int A™.

Lemma 2.11 For any open subset U C F with U N Ar # &, U N Ar is not contained
in any smooth submanifold of F of smaller dimension.

Proof This is proved in [51] when G has rank one, and our proof is similar. Suppose
that there exists an open subset U C F such that U N Ar # & is contained in a
smooth submanifold S of F of smaller dimension. Since I" is Zariski dense, the set of
attracting fixed points of loxodromic elements of I' is dense in Ar. Hence there exists
a loxodromic element y € I" whose attracting fixed point is contained in U N Ar. We
may assume without loss of generality that y = am, where m € M anda €int AT, and
hence [¢] = P € F is the attracting fixed point of y. Since n™ := Lie N * is nilpotent,
the map n™ — G/ P given by x > exp(x)[e] is algebraic and its image N *[e] is Zariski
open and dense in G/ P for [e] = P. Therefore N T[e]N Ar is Zariski dense in N *[e].
On the other hand, since U is a neighborhood of [e], we may assume without loss of
generality that U C N t[e] by replacing U by a smaller open neighborhood of [e] if
necessary. We now claim that the hypothesis that U N A C S implies that N t[e]N A
cannot be Zariski dense in N *[e], which then yields a desired contradiction.

Choose a basis of n™ consisting of eigenvectors of Adg,, and for x € nt, we write

x = (xy,...,xq) for the coordinates with respect to this basis. It follows that there
exist 0 <¢; <1,i =1,...,d such that
(2.12) Adg x = (c1X1,...,¢cqx4).

Choose £ € N such that ¢; > max|<;<4 cf *1 By the implicit function theorem, after
shrinking U and rearranging the indices if necessary, we may assume that U N § =
{lexp(x)] e U : x1 = f(x2,...,xq)} for some smooth function f. Let p be the Taylor
polynomial of f of degree £. Then, by shrinking U further, there exists C > 0 such
that for all x € U,

(2.13) |f(xas o xg) = p(xas s x@)| < Cll(xa, .. xg) ST
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(Here || - || denotes the Euclidean norm on n™.) Since the action of Ad, on the polyno-
mial ring R[n*] is diagonalizable, we can write

k
(2.14) X1 —p(x2.....xq) =Y _ pi(x),
i=1
where p; € R[n™] are nonzero polynomials such that p;(Ad, x) = B; - pi(x), where
1> By >---> B >0.Note that 8; > ¢y, due to the presence of x; in (2.14). Since
U NAr C S, combining (2.13) and (2.14), we conclude

k
> pi(x)

i=1
Now let x € n™ be such that [exp x] € Ar. Since [e] € U N Ar and Adyn x — 0 as
n — oo, we have [exp Ady» x] € U N Ar for all sufficiently large n. Applying (2.12)
and (2.15), we obtain

(2.15) <C|(xa,... ,xd)||e+1 whenever [expx] € U N Ar.

k
> B pi(Admn x)

i=1

k
> pi(Adyn x)
i=1

Therefore, by dividing by 8",

< C( max cf+1)n||Admn x||£+1.
1<i<d

{+1\n

max i C:

sc(—lf;gfd ’ )||Admnx||“1.
1

Since M is a compact subgroup, it follows that m"i — e for some sequence n; — oo.

k o\
P1(Adpn x) + Z(%) Pi(Adpn x)
i=2 \P1

Taking the limit along this subsequence yields p;(x) = 0. This shows that

{xent :[expx]e Ar} C{x ent : p;(x) =0},

implying that N *[e] N Ar is not Zariski dense in N T[e]. This finishes the proof. O

We remark that a weaker version of this lemma was proved for G = SL,(C) by Cantat;
see [18, Section 6].

Definition 2.16 (Cartan projection) The Cartan projection p: G — a™ is defined as
follows: for each g € G, there exists a unique element 1(g) € a™ such that

g € Kexp(u(g)K.

The Jordan projection of g is defined as A(g) € a™, where expA(g) is the element
of A" conjugate to g, where g, is as in (2.10).

Definition 2.17 (limit cone) The limit cone L C a™ of T is defined as the smallest
closed cone containing the Jordan projection of T'.
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Quint showed the following.

Theorem 2.18 [36, Theorem IV.2.2] The growth indicator function Y1, defined
in (1.5), is concave, upper semicontinuous, and satisfies

Lr={ueca  yr(u)>—oo}.
Moreover, Y1 (1) is nonnegative on Lt and positive on int L.
Proposition 2.19 Let m be a locally finite Borel measure on I'\G and C C a™ a closed

cone with Lr C intC. For any f1, f> € C.(I'\G), there exists ty > 0 such that for all
v € at —C with ||v| > ¢,

/ Ji(x exp(v)) /() dm(x) = 0.
G

In particular, ifu € at — Ly, then fF\G fi(xexp(tu)) f2(x)dm(x) =0 forall t > 1
large enough.

Proof It suffices to check that for any given compact subset L C G such that L = L™1,
we have

Lexp(—v)NT'L=9
for all sufficiently large v € a* —C.
Suppose that there exist a compact subset L C G, sequences {5, £, € L, y, € I', and
vy € a—C with ||v,|| = t, — oo such that

Ly exp(—vp) = yul,.
We may assume that v, /f, converges to some unit vector v € (a* —intC); hence v & L.
By [1, Lemma 4.6], there exists a compact subset M = M (L) of a such that for all
geaq,

pn(LgL) C pn(g)+ M.
Note that Lr is equal to the asymptotic cone of u(I') by [1, Theorem 1.2]. Since
v ¢ L, we can find an open cone D containing v such that D N u(T") is finite. Then

1 ) = 1l exp(ua)ly ') € pe(exp(vn)) + M.
As D is open, there exists nq such that (1/t,)(v, + M) C D forall n > ngy. Since

pn(exp(vy)) + M = ty(vn/ta + (1/ts) M), we conclude pu(y, ') € D for all n > ny.
This yields a contradiction.

The second claim follows from the first one as we can find a closed cone C such that
ue&Cand Lr CintC. O
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Set
Dr:={yeca*:y>yronat},

which is a nonempty set [38, Section 4.1]. An element ¥ € Dr is said to be tangent to
Yr atu € aif ¥(u) = Yr(u). The following collection of linear forms is of particular
importance:

(2.20) Dr :={y € Dr :  is tangent to Y at some u € Lr Nint aty.

Definition 2.21 (Patterson—Sullivan measures) For ¥ € a*, a (', ¥)—conformal
measure supported on Ar will be called a (I", ¥)-PS measure.

Generalizing the work of Patterson [34] and Sullivan [47], Quint [37] constructed a
(T, ¥)-PS measure for every ¥ € Df.

Maximal growth direction Since i is concave, upper semicontinuous, and the unit
norm ball in a is strictly convex, there exists a unique unit vector ur € Lr (called the
maximal growth direction) such that

(2.22) dp:= max  Yr(u)=1yr(ur).

ucat,|ul|l=1

Note that ur must be stabilized by the opposition involution; see Definition 3.1.

Example 2.23 If G = PSL3(R), then up = diag(1/+/2,0, —1/+/2) for any Zariski
dense subgroup T'.

Uniqueness of tangent forms.

The claims (2) and (3) of the following lemma follow from [38, Section 4.1]; see also
[43, Lemma 4.8].

Lemma 2.24 (1) Forany u € int Lr, there exists a linear form ¥, € DI*, tangent to
Yr atu.

(2) For any u € int Lt at which Y is differentiable, there exists a unique linear
form v, € D}, tangent to Y at u, and it is given by

Yu(-) =((Vyr)W). ) = Duyr(-).

(3) If ur €int Lr and Y is differentiable at ur, then ¥, is given by

VYur(+) =dr{ur.-).
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Proof Let P C a be an affine hyperplane such that P N a™ is an (r—1)—simplex
and P N Lr is a bounded convex subset of P ~ R"~!. Since P N L is convex and
Yr:a— R is concave, the set

S:={(x.y) e(PNLp)xR:0=y=9yr(x);

is convex. Since R(P Nint Lr) D int L, it suffices to prove (1) for u € P Nint L.
Since (u, ¥r(u)) € S, the supporting hyperplane theorem implies that there exists
a hyperplane C C P x R passing through (u, ¥ («)) such that the interior of S is
contained in a connected component of P xR —C. As u € int L, such a hyperplane C
must be the graph of a function. We may therefore write C = {(x, ¢(x)) € P xR} for
some affine map ¢: P — R satisfying ¢(x) > ¥ (x) for all x € P N Lr. Consider
the unique linear form in a* which extends ¢, which we also denote by ¢ by abuse
of notation. Since ¢(x) > Y (x) for all x € P N Lr and Lr has nonempty interior, it
follows that ¢ > Y. Since ¢(u) = ¥ (u), this proves (1).

To prove (2), define v, (-) := ((Vyr)(u),-). By differentiating Y (tu) = tyr(u)
with respect to ¢, we get by the chain rule that

(2:25) (Vyr@u), u) = yru).

Hence ¥, (1) = ¢r(u) by plugging ¢ = 1. Let b be a vector space such that a = Ru @b,
and let v € b be arbitrary. Consider the closed interval / = {s e R: u + sv € Lr} and
let f(s) := vr(u+ sv). Note that f: I — R is concave, differentiable at s = 0, and
f7(0) = (Vyr(u), v). Hence, using (2.25),

J(s) =yr @) +s(Vyr @), v) = (VYr @), u + 5v) = Yy (u + sv).
As v € b is arbitrary, this implies ¥, > ¥r. Hence ¥, € Dy.

To show the uniqueness, suppose that ¥ € Dy, is tangent to Y at u. Let v € b be
arbitrary. Define g: I — R by g(s) := ¥ (u 4+ sv). Then g > f and g(0) = f(0).
Since f is a concave function on an interval / and differentiable at 0 € S, it follows

that g(s) = f(0) +s/7(0). Since f(0) = ¥r(u) and f'(0) = (Vyrr(u),v), it follows
that

¥ (u+sv) =vr) +s(Vyr ), v) = (Vyr @), u + sv).
This proves the uniqueness.

Next we claim that Vir(ur) = cur for some ¢ # 0. Consider a curve « : (—¢,¢) —
S*™~! N at such that «(0) = ur. By definition of ur, s — Yr(a(s)) achieves its
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maximum at s = 0. Hence, its derivative at s = 0 vanishes, and (VY- (ur), ’(0)) = 0.
Since ’(0) € TS"~! can be arbitrary, Vyr(ur) is parallel to up. Combining this
with (2.25), the claim follows. Since ¥ (ur) = dr, we have ¢ = §r. This completes
the proof of the lemma. O

3 Generalized BMS—measures

Using the notation introduced in Section 2, given a pair of I'—conformal measures
on F, we now define an M A—invariant locally finite Borel measure on I'\ G, which we
call a generalized BMS—measure. Haar measures, BR—measures, and BMS—measures
are all constructed in this way.

Definition 3.1 (opposition involution) Denote by wy € K a representative of the
unique element of the Weyl group N (A)/M such that Ady, at = —a™. The oppo-
sition involution i: a — a is defined by

i(u) = —Ady, (u).
Note that for all g € G, we have
MeThH=i(g), me ) =iu@), i) =a", yroi=yr.

In particular, i preserves int L.
Note that for all rank one groups, i is the identity map.

Example When G =PSL;(R), with the Riemannian metric given by the inner product
(X,Y)=tr(XY?"), we have

a = {diag(ty,...,t7) :t1 +---+1t7 =0},

3.2
(3.2) at ={diag(t;,....ty) €a:t; > > 15},

and (-,-):a— Ris given by (X, Y) = tr(XY). The opposition involution is given by

i(diag(tq,...,t7)) = diag(—t4,...,—t1).
For each g € G, we define

gt:=gPeG/P and g :=gwyP cG/P.
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Observe that (gm)* = g* forall g € G, m € M ; we may thus also view the above as
maps from G/ M to F. Hence, for the identity element ¢ € G, et =[P], e~ = [wq P]
and gt = g(e*) forany g € G. Let F @) denote the unique open G-orbit in F x F:

FO =G.(eT,e7)={(gP.gwoP) € G/PxG/P:g €G}.

Example If G = PGL;(R), 7 may be identified with the space of complete flags
(Vi C--CVy_y}:dimV; =i} in R?; 7@ is then identified with the set of pairs of
flags {V1 C---C Vy_1},{W; C--- C Wy_1}) in general position, ie V; @ Wy_; = R4
forall1 <i <d-—1.

Definition 3.3 (Hopf parametrization) The homeomorphism G/ M — F® x a given
by gM > (g7,g7,b = Bg—(e, g)) is called the Hopf parametrization of G/ M .

Example Using the linear fractional transformation action of G = PSL, (R) on H? UR,
we have P~ = Stab(oco) and P = Stab(0), where P = P~ and P are the upper

and lower triangular subgroups of G, respectively. Hence
gt =gP=g(c0) and g~ =gwoP =g(0) € IH? = G/P,
where wg = (_01 (1))
We will make use of the following identities, which are all straightforward:
3.4) Be—(e,g) = —o(g7 kwoP) = —i(loga) ifg=kane KANT,
Bg+(e,g) = —o(g ' kP) =loga ifg=kahe KAN™.

In particular, for a € A4,
Be+(e,a) +i(Be—(e,a)) = 0.

The generalized BMS-measure m,, ,, Fix a pair of linear forms ¥, ¥, € a*. Let
V1 = vy, and vy = vy, be, respectively, (I, ¥1)— and (I, ¥2)—conformal measures
on F. Using the Hopf parametrization, define a locally finite Borel measure 7, ,, on
G/ M as follows: for g = (g1, g7, b) € F® xq,

(3.5) Aty v, (g) = V1 (Bg+(e.8)+¥2(Bg—(e.8)) dvy(g7) dvy(g7) db,
where db = d{(b) is the Lebesgue measure on a.
Lemma 3.6 The measure i, v, is left I'—invariant and right A—quasi-invariant: for

alla € A,
~ — D ~
Aty py = "Vt ¥20i)(loga) -
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Proof Lety €I and g € G be arbitrary. Note

ﬁygi(e’ yg) = ﬁyg:t(e’ y) + ﬁyg:t(y’ yg) = ﬂyg:t(e’ y) +ﬂgi(e’ g)

Recall the conformality of the measures v and v;:
dv; ()/g"') — V1 B+ (e’y_l))dvl (g+) and dvy(yg") = eiﬁz(ﬂg—(e:yfl))dvz(g—).
Combining these, we have
dﬁ;lvl,vz (ve)

— e‘/fl(ﬂngr(e,yg))'i'lﬁz(ﬂyg_(e,yg)) dV]()/g+) dvz()/g_) dﬁ(b +,3yg—(€, )/))

— V1Bt (e.8)+¥2(Bg—(e.8)) dvi(gT) dva(g™) de(b)

= dﬁ;lvl,vz(g)'
Let a € A. By the identities (2.4) and (3.4),

Pox(e.ga) =Pyr(e.8) + PBox(g.8a) = Pyx(e, g) + B+ (e, a),
ga* =g=,
Be+(e,a) = —ife-(e,a) =loga.

Combining with definition (3.5), we have
dﬁ;lvl,vz (ga)

— elﬁl(ﬁg+ (e,ga))+¥2(Bg—(e,ga)) dvl(g+) dl)z(g_) dﬁ(b +,Be— (e’a))
— V1 (Bg+(e.8)+B, 4 (€.a)+¥2(Bg—(e.8)+ e (e.,a)) dvi(gT) dvy(g7) de(b)

— e('/”_v’zm)(loga)dﬁflvl,,,Z(g).

This proves the claim. a

The measure 71, , gives rise to a left '-invariant and right M —invariant measure on G,
by integrating along the fibers of G — G/ M with respect to the Haar measure on M.
By abuse of notation, we will also denote this measure by /71, ,,. We denote by m,,, »,
the measure on I'\G induced by 71, ,,, and call it the generalized BMS-measure
associated to the pair (vq, v;).

BMS-measure m',fy’s,,mi Let ¢ € a* and let vy, and vy,o; be (I, ¥)—and (T, ¥ 0i)-PS

measures, respectively. We set

BMS —
(3'7) vaj,UWOi T mv'([/:vllroi
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and call it the Bowen—Margulis—Sullivan measure associated to (Vy, Vy.oi). Then by

BMS

Lemma 3.6, m, /5,

is an A—invariant measure, whose support is given by

supp(mpS, ) ={x e T\G :x* € Ar};

since Ar is [—invariant, the condition x* € Ar is a well-defined condition.

BR-measures m]‘?g We set
(3.8 Mo = Mg,
and call it the Burger-Roblin measure associated to vy,. The support of my) is given by

supp(m],i];) ={xel\G:x" €Ar}.
Lemma 3.9 The Burger—Roblin measure mlg‘}; is right Nt —invariant.

Proof Let g € G and n € N ™. By the identities (2.4) and (3.4), we have gn™ = g~,
Bn—(e,n) =0 and
Bgn—(e,gn) = Bgn—(e,8) + Bgn—(g,gn) = Bgn—(e,8) + Pu—(e,n) = Bg—(e, g).
On the other hand, by the conformality (2.6),
dmo(gn+) — €2p('3g”+(gng_l’e))dmo(g+)
_ eZP(ﬂg,,+(gng“,gn)+ﬂgn+(gn,e))dmo(g+)

— 2Byt (e,g)—ﬁgn+(e,gn))dma(gnt)‘
Combining these, we have

d”’amo,vv, (gn) = ezp(ﬂgn—i- (e.gn))+v¥ (Bg—(e,gn)) dmo(gn"')dv,/,(g_)dﬂ(b)
— eZP(Bg-i-(eag))'i‘lﬁ(ﬂg*(e,g)) dmg(g+)dv¢(g_)dﬁ(b)

= d’%mo,vw (g) a

Similarly, but with a different parametrization g = (g*, g, b=p g+(€,g)), we define
the N ~—invariant locally finite measure

(3.10) dﬁ;l]\?vl}* (g) = oV (Be+(e.8)+20(Bs—(e.8)) dvy, (gt)dmo(g™) db.
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Haar

Haar measure m Recall that the K—invariant probability measure m, is a con-

formal density for the linear form 2p. We denote by dx = dm'3(x) the generalized
BMS—measure associated to the pair (1., m,):

(3.11) dx = dm™™ .= dmy,, m,.

Haar :

Since m, is a (G, 2 p)—conformal measure, dm"™**" is G—invariant; the proofs of Lemmas

3.6 and 3.9 show that m, is invariant under AM and N*. As these subgroups
generate G, the G—invariance follows.

4 Disintegration of BMS- and BR-measures along N-orbits

In this section, we fix a linear form v € Df., a (", ¥)-PS measure vy, and a (", 1 0i)-PS
measure Vy,o; on . To simplify the notation, we write

o .— . . 7BMS._ ~BMS ~BR ._ ~BR 57BRx . =BRs
VI=Vy, V= Vyoi, M =y e U=, e =y,

4.1 PS measures on gN *

We start by defining measures on N *. Firstly, for g € G, define u” N 4= Mg N+

and '“gN— —/LgN _on N* forne Nt andhe N~ , by the formulas

@l gN+ (n) := eV PBam+ (€M) gy ((gn) ™),
) gN* (h) := eV Bem=(eeM) g, ((gh)7).

These are left I'—invariant; forany y € I and g € G,

PS _ ,,PS
MygNi - lugN:t‘

When x N ¥ is closed in T'\G for x = [g] € T'\G, MP S+ induces a locally finite Borel
measure on Stab 4 (x)\ N + ~ xN*, which we w111 denote by d,ux N

Recalling that A normalizes N+, we will use the following lemma:

Lemma4.2 Foranyg e G,ac A andny,n € N, we have

dugN+(an0na H=e¢~ (loga)duganoNJr(”)-
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Proof By (2.4) and (3.4), we have (ganona™ )" = ganon™, and
lgganon+ (e, ganona_l) = :BganonJr (e, ganon) + IBganonJr (ganon, ganona_l)
= :Bganon"‘ (e, ganon) + :Be+ (e, a_l)-
Also note that 8,+ (e,a~') = —log a. Consequently,
Y Bgangn+ (¢:8anona +)

—1
dugﬁ\ﬁ (angna™ ') =e ))dv(ganon

— e—]jr(loga)eW(ﬂganOn+ (E,ganon))dv(ganon—i-)

= e VDS (). O

The measures /L??Vi allow us to decompose the BMS—measure as follows: the product
map Nt x P~ — G is a diffeomorphism onto a Zariski open neighborhood of e.

4.2 Product structure of BMS—measures

BM

Given g € G, the BMS—measure /7%MS can be disintegrated in g N+ P~ as follows.

Lemmad4.3 Forge G, f € C.(gNtP™) andnhame NTN™AM,

= [ ([ renham) dmda dufh- )ty o0,

Proof By the identities (2.4) and (3.4), we have gnha™ = gnh™, gnha™ = gn™ and
Byt (€. gnha) = By i (e gnh) + By s (gnh, gnha)
= Bgnnt(e.gnh) + B +(e.a).
Note that ,—(e,a) = —iloga and B,+ (e, a) = loga. Hence
din®MS(gnha)
— oV (Bgnn—(e.gnha)+B,,,+(e.gnha))) dvi(gnh™) dv(gn+) dL(Bgnn- (e, gnha))
_ oV Bonn—(e.gnh)—loga+B,,,+ (e.gnh)+loga)
x dvi(gnh™)dv(gn™) dl(Bgnn—(e.gnh) +loga)
= dadpgy n—(h) dpgy  (n).
Hence for nham e NTN~™AM,

dm®™ (gnham) = dm din®S (gnha) = dm da dpSs, - (Wdply . (n),

proving the claim. O
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In a similar manner, one can decompose the BMS—measure according to gP~ N *:

Lemmad4.4 ForgeG, f €C.(gP~N7T),and hamne N"AMN ™,

A=) ( /N+ S(ghamn) dity . n+ (n))e—‘“bg D dm da iy (h).

Proof For each m € M, consider the change of variable ng = mnm™~!. Then for
hamn € N"AMN™, we have

din®™MS(ghamn) = dit®™S (ghanom)

= dm din®™S (ghany).

By the identity (3.4), we have B4, (e, ghang) = Bgp—(e, gh) —iloga and

i(Bgn—(e, ghany)) + ,Bg;,a,,(;r (e, ghany)
=i(Bgn—(e,gh) —iloga) + 'than(')" (e, ghany).

It follows that

dini®™S (ghany)
— ew(ﬂghan(—)i_ (e’ghan()))dv(ghang‘) e—W(IOga) da ewoi(ﬁgh_(&gh))dvi(gh_)
= A1 i+ () e VWD da duPS,(h).

Hence

d}%BMS(ghamn) — dugizamNJr (l’l) e—llf(loga) dm da dugiv_ (h),

finishing the proof. |

Define, for ham e N~ AM ,
dulS(ham) = e V02D dm da dpty,—(h).

This also allows us to succinctly rewrite the decomposition in Lemma 4.4 as follows:
forany f € C.(gP~N™),

45 A = [ [ e a0 (),
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Lebesgue measures on gN * For g € G, we note that the Haar measure on gN *
can be given as follows: forn € N*,

(4.6) dugeb (n) = e2PBem=(€2mM) gy ((gn)7),
@7 duy . (n) = e Piamt @ dm, (gn)™).

Using (2.6), it can be checked that these are N~ and N * invariant measures respectively.

Leb

Moreover, d,u . does not depend on g € G, so we simply write dn.

4.3 Decomposition of m5®R

Similarly to Lemma 4.4, the BR— and BR,—measures can be decomposed in terms of
the gP~ N decomposition of G:

Forall f € C.(gP™N™),

~BR, /N __ PS
wy 0" [ [, repmananfy-o.

)= [ [ S ehamn) Al e di da .

We also have the following description of the BR—measures m vy R and mBR* on G/M.

Lemma4.9 Forg =kexp(b)ync KAN™T and [g] = gM, we have
dinbR ((g]) = e~V dn de(b) dvy (k),
where Vy, is given by
(4.10) dvy (k) :=dvy (k™) dm.
Forg =kexp(b)n € KAN™ and [g] = gM , we have
dingy(g]) = e dn dt(b) dvy (k).
where vy, is given by

dvy (k) = de(kJr) dm.

Proof For g = kexp(b)n € KAN™, we have Bg—(e, g) = —i(b). Since my, is a
(G, 2p)—conformal measure, we have

diiBR ([g]) = > Preowmt (L 2O =D gy (k exp(bynt)db dvy (k™) dm
= e~ WD) gy db dv,, (k).

The second statement can be proved similarly. O
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5 BMS—-mixing and translates of PS—measures

In this section, we fix

(1) anelementu € Lr Ninta™,

(2) alinear form ¥ € Dy, tangent to Y at u,

(3) a (I, ¥)-PS measure v = vy, on F, and

(4) a (I, ¢ 01)-PS measure v; = vy,.; on F.
As before, we set

BMS BMS

— PS _ PS
m =m,,"> and Rgn+ = H

gN+,v°
For all t > 0 and v € ker ¥, define

a(t,v) :=exp(tu + /1v) € A.

Definition 5.1 We say that m®MS satisfies the local mixing property if there exist
functions W: (0, 00) — (0, 00) and J : ker ¢y — (0, 00) such that:

(1) Forallvekery and fi, f>» € Co(T\G)M,
(5.2) lim W(@) / fi(xa(t.v)) f2(x) dm®™3 (x) = J(0) m®MS (1) m*NMS(£2).
—0 '\G

(2) There exists a C = C(f1, f2) > 0 such that for all (¢, v) € (0, c0) x ker  with
a(t,v)e AT,

‘\P(r) /F ) £ )| <

The main goal of this section is to establish the following result.

Proposition 5.3 Suppose that m®M® satisfies the local mixing property for the pair

(W, J). Then for any x =[g] e T\G, v ekery, f € C.(I'\G)M and ¢ € C.(N 1),
) Jim W) [ oma o)) duS ) = J0)m™S ) - @),
and there exists a C' = C'(f, ¢) > 0 such that

‘\If(t) fN+ S Genalt, v)@ ) dpgy (0| < €’

for all (t,v) € (0, 00) x ker y witha(t,v) € A™.
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For € > 0, let G denote the open ball of radius € around e in G. For a subgroup S < G,
we define S := S N Gy. The choices S = P, NT and A are the only subgroups we
will require. We will carry out a thickening argument using PS measures as in [33]; the
following lemma is needed.

Lemma 5.5 Forany g € G,
v(gNT(eT)>0 and vi(gN (e7))>0.
Proof The Zariski density of Ar in F is proved in [1]. This also follows from

Lemma 2.11. Since each gN *(e™) is a Zariski open subset of F and the support of v
is equal to Ar, the conclusion follows. O

We will also need the following result on a continuity property of the PS measures
[32, Proposition 2.15]:

Lemma 5.6 For any fixed p € C.(N*) and g € G, the map NT — R given by
h> uP hNi (p) is continuous.

Proof We will only prove the case when p € C.(N ); the other case can be proved
similarly. Define a function pg: N~ x G/P — R by

{p(n)e‘”(ﬂghﬁ(e’gh”)) if§ =ghnt forsomene N T,
otherwise.

pg(h, &) =

Since N N P = {e}, pg is well-defined. By the continuity of the Busemann function,
Pg is continuous in 7 € N ™. This gives

W) = [ pne? Pt € gty = [ T dvie),

Hence [P, v+ (D)= 1%, v+ ()| Smaxeegy p | (h1, €)= Py (ha, £)]. The continuity
of pg then implies the claimed statement. |

A function on N ¥ is said to be radial if it is invariant under conjugation by elements
of M,ie f(mnm™') = f(n)forallme M,andn e N*.

Corollary 5.7 Given e > 0 and g € G, there exist R > 1 and a nonnegative radial
function pg e € Cc(Ng) such that for all n € NG,

Mg~ (0g,e) > 0.
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Proof Foreach j € N, let ¢; € C.(N j_+1) be a nonnegative radial function such that
ojl NS = 1. By Lemma 5.5, for each n € Nt there exists some j, € N such that
,ugSnN_ (Nj;) > 0. By Lemma 5.6, for each n € N there exists r, > 0 such that

MgiON_(Nj;) >0 forall ng € B(n):={nge N7 :dist(n, ng) < rp}.

Using the relative compactness of V, 8"', we choose ny,...,np € N * such that NS"' C
Uf-‘zl B(n;). Choosing R := max(jn,,..., ju,)+ 1 and pg s := ¢pr—1 completes the
proof. |

Proof of Proposition 5.3 Fixing v € ker(y), for simplicity, we write a; = a(t, v). Let
x =[g] and g¢ > 0 be such that ¢ € C, (N;(;). By Corollary 5.7, there exist R > 0 and
a nonnegative pg ¢, € Cc(Ng) such that

WES N (Dgisg) >0 forall ne N,

Given an arbitrary ¢ > 0, choose a nonnegative function g, € C.(A4;) satisfying
[44qs(@)da = 1. Then

(5.8) /N+ Fenagg ) dutS, , (n)
= [, rtnansm
N+

1
X(W/ _ Peea(Ngel@) dadpg, - (h))dugﬁv+(n)

600 (1)06(a)
iy S e o G )y ),

We now define a right M —invariant function . € C, (gN;g NgAeM) C Ce(G) by

@ (n)pg.eo(h)qe(a) if on —
~ 55 if go = gnham,
CDS(gO) = /’LgnN*(pg,E())

0 otherwise.

Note that the continuity of d, is a consequence of Lemma 5.6. Also observe that o,
depends on our choice of representative for x = [g].

We now assume without loss of generality that f > 0 and define, for all & > 0, functions
f;t as follows: for all z € '\ G,

f;“(z) = sup f(zb) and f; (2):= inf f(zb).

b€N5+N8_AE bEN:"N; Ae
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Since u € inta™, for every & > 0 there exists #o(R, &) > 0 such that
a;'Nga, C NI forall £ >14(R,e).
Then, as supp(CT)g) C gNjO'NEAgM, we have
5.9) f(xna,)ae(gnha) < f;g(xnhaat)&)g(gnha)
forall nha e NTN~™A and t > to(R, €). Similarly,
fzz(xnhaa,)cfe(gnha) < f(xnat)ag(gnha).

We now use f;‘s‘ to give an upper bound on the limit we are interested in; f;_ is used
in an analogous way to provide a lower bound. Entering the definition of ®, and the
above inequality (5.9) into (5.8) gives

lim sup ‘If(t) | Jxnadn) digy+ (n)

—>o0

< lim sup \IJ(I)

t—>00

. @ PS PS
x /N+ (/N—AM Jag(xnhaas)Pe(gnha)dmdadpg, - (h))d,ugNJr (n)

—timsup W(e) [ 5 golan) (o) dii™ (o)
t—>00 G

—>00

= limsup W(7) e S5 (golan) ®e((go)) dm™™3 (o).

where

Dc([go]) 1= Y Pe(yg0).

yel

and Lemma 4.3 was used in the second-to-last line of the above calculation. By the
standing assumption (5.2), we then have

limsup W(e) [ f(xnang ) dufly, (n) < J@m™S(fHmPNS(@,)
t—>00 N—

= J)mBMS(£,0)mBMS (@,).

Using Lemma 4.3 and the M —invariance of ®,, we have

BV (@) = /N+(/N ®s(gnha) da dugnN (h))dugNJr(n)

Z/N #(/_ Pgso(h)%(a)dad,ugnN (h))dﬂziw(n)

+ /"l’gnN_(pg,g())

= /’L N* ().
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Since ¢ > 0 was arbitrary, taking ¢ — 0 gives

limsup W(z) . f(xnaz)(n) dugﬁw (n) < J(v) mBMS( f) Mﬁv ().

t—>0o0

The lower bound given by replacing fz’; with /7 in the above calculations proves the
first statement.

For the second claim of the proposition, observe that if fu 4+ /fv € a™, then

f(xnat)a;g(gnha) < f;_i_s(xnhaat)(hf)g(gnha),

as in (5.9). Hence
v() /N+ S(xnag)¢(n) dﬂﬁw (1) < C(fgyer Pe).

Choosing C'(f, ¢) := C(f;re, ®,) finishes the proof. ad

6 Translates of Lebesgue measures and Haar mixing

We continue with the setup of Section 5: recall that we have fixed ¥ € L1 N int at,
a linear form v € Dy such that ¥ (u) = ¥rr(u), a (I, )-PS measure v = vy, and a
(T, ¥ 01)-PS measure v; = vy,; on F. We set

mBMS — m]jl\ﬁS’ mBR — Wllg,R, mBR* — m]SR*
s M1 1

PS _ ,,PS

and Sy = 1By,

The main goal in this section is to prove a local mixing statement for the Haar measure
on I'\G. In order to do this, we first convert equidistribution of translates of ”‘1;3\7 i
(Proposition 5.3) into equidistribution of translates of the Lebesgue measure on x N *:

Proposition 6.1 Suppose that m®M® satisfies the local mixing property for the pair

(U, J). Then for any x = [g] e T\G, v ekeryr, f € C.(T\G)M and ¢ € C.(N 1),
lim W(n)e®P VAN [ f(xna(e, v)g(n) dn = J @) mPR(f) i+ (@),
t—00 N+ gN
and there exists C” = C"( f, ¢) > 0 such that
'xp(z)e@p—‘/f)(%ﬁ v) f f(xna(t,v)gn)dn| <C"
N+

for all (t,v) € (0, 00) x ker y with a(t,v) € A™.
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Proof For g9 > 0, set Bg, = N, Aeg M N5, Note that MN; = N M by the
choice of the invariant metric on G. Given xg € I'\G, let £¢(xo) denote the maximum
number r such that the map G — I'\G given by h > xoh for h € G is injective on B;.
Note that ¥ (u) = ¥r(u) = Yr(i(u)). Fixing v € ker ¢ we set, for all ¢ € R,

a; :==a(t,v).

By using a partition of unity if necessary, it suffices to prove that for any xo € I'\G and
&9 = €o(xp), the claims of the proposition hold for any nonnegative f € C (xoBgo)M ,
nonnegative ¢ € C(Ne‘(’)') and x = [g] € x¢Bs,; that is,

(6.2) lim W(r)erm¥)loear) [ fxnang()dn = J(©) m*(f) pb5+ (@),
1—>00 N+ 4
and for loga, € a™, we have
W(r)e o) logar) / f(xnag)¢(n)dn < C” forsome C" = C"(f, ).
N+

Moreover, we may assume that f is given for all g € G as

fagh=>" fve)

yell

for some nonnegative fe Ce(g0Bs,) C Cc(G). Note that for x = [g] € [g0]Bs,»

63) [N+ F(lghan$(n) dn = yZF /N+ Tyananen)dn.

Note that f(ygna,) = 0 unless ygna; € goBg,. Taken together with the fact that
supp(¢) C N:(;, it follows that the summands in (6.3) are nonzero for only finitely
many elements y € I' N goBsoat_lN;O'g_l.

Suppose )/gN;O'a, N goBs, # 2. Then
ygdaz € gONgT)AS()MNJFa
and there are unique elements p;, € N; AgyM and ns, € N * such that

v8ar = goPryNty € g0P8_oN+'

Let I';, denote the subset I' N go(Ne_OASOMN"‘)at_lg_l. Note that although Iy,
may possibly be infinite, only finitely many of the terms in the sums we consider
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will be nonzero. This gives

/N+ F(lghan$(n) dn = yX; [N+ Flvgnandn) dn

= % [, Frsaar nans dn

VEFLv

— p—2p(logar) Z /N+ f(yga,n)gb(atnat_l)dn

VEFLU

_ ,—2p(logay) ~ _
=¢ ny,n)p(arna; ) dn
) [N+ S (&optyniyn)plana; )

vel iy

— p—2p(logar) Z /N+ f(gopt,yn)¢>(atn,_’},n at—l)dn.

vely

Since supp( f ) C goBsg,, we have

Z /N+ f(gopt,yn)¢(at n,_,)l,n Clt_l)dl’l

Vernv

= 3 (s ptniy o @nai ) [ Fopimdn

yely., “neN

and

Z /N+ f(gopt,yn)(,b(at nt_},n at_l) dn

IIVRY
=) ( inf¢(arny )} a:‘<atna:1>>) : / F(gopeyn) dn.
neng ’ N+
y€lt v €0
Since u belongs to int L, there exist 7o(v) > 0 and & > 0 such that
ctthat_1 - Nrt_a, forall r >0 and t > f9(v).
Therefore, for all n € N, 8"0' and 7 > f9(v), we have
64) G p-ailarnzyar’) = plarnyyay amar)) <¢F ailarngy ayt),

where, foralln € N7 and ¢ > 0,

¢;"(n):: sup ¢(nb) and ¢, (n):= inf ¢(nb).
beNg beN;"
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We now have the chain of inequalities (for ¢ > #y(v))

65 Y 6o, wl@nla) / F(gopeyn)dn

velty

< o20lozar) / F(lglnar)g () dn

< Y 6 wlanbar) / F(gopeyn)dn.

vel

By Lemmas 5.5 and 5.6, there exist R > 0 and a radial function p € C.(N I—; ) such
that p(n) > 0 for alln € N7, and ug N+('0) > 0 for all p € N; Ag, M. Define
F € Ce(goNy Aeg MN ) by
p(n)
(6.6) F(g):= ugop v+ () INE
0 otherwise.

f(gopv)dv if g = gopn € goNy Aey MNR,

Since p is radial, Fis right M —invariant. The key property of F we will use is the
following: for all p € P,

I PS _ I PS _ 7
/N+ F(gopn) dpg, ,n+ (1) = /N+ F(gopn) dpg, ,n+ 1) = /N;) f(gopn)dn.

R

Returning to (6.5), we now give an upper bound for [, f([glna;)¢(n) dn; the lower
bound can be dealt with in a similar fashion. We observe

¢2plozar) [ F(lgiandn) dn
N+
= Y o, wlanrah / F(gopepm) dn

vel iy

Z ¢eoe—m(al ny, y a, )/ F(gopt yh) d/j“gopt N+ (@)
vel:y

-y / FGopeym gy uilarnyh a7y dul ().
vel v

Similarly as before, we have, for all # > #y(v) and n € N +.

(6.7) Pope-ai @iryar ) = ¢ ilarnzyn(m)~la; )

+ —1, 1
= b(Rteg)e—et @iltyyna; ).
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Hence (6.5) is bounded above by

=2 / F(g0pt.ym(ieqyeen @iy ar ) dige, e (1)

veliy R

Z / F(gopt yleyd; nat)¢(R+€0)e—at(n)dﬂg0pt N+(7’lt yas nat)

v€l v
By Lemma 4.2,
PS _ —¥(oga; ") ; PS
dMgoPt,VN+ (nt Vat nat) e dugopt YRty —1 N+ (}’l)

Since gopr.yneya; ! = yg, it follows that for all ¢ > #9(v),
Coesad [ flglnagon) dn
N+
= X [ a8 0 i)

v€ltw

< /N+ ( Z F(Vgnat))¢(R+80)e_a,( ) d/’LgN'f‘ (n).

yel
Define a function F on I'\G by

F(g):=>_ F(re).

yel
Then for any & > 0 and for all 7 > 7y(v) such that (R + gg)e™*' <e¢,

V) [ Fehnans; () duf 0 < w0 [ f(enangn dn

=) [ Felnang; () dufh o).

Since F is right M —invariant, by Proposition 5.3, letting ¢ — 0 gives

lim W(r)eem¥)(0ee) / S (glnanypn)dn = J()m™S(F) 1+ (@).

—>o0

From the definition of F, together with Lemma 4.4 in the form (4.5), and (4.8), we
have

Sy = iSF) = [ ([ Flgorm dil )t )

-/ ( [, f(gopn)dn)dugop )

= iR () = m"R()).
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This finishes the proof of the first statement. For the second statement, note that the
following inequalities corresponding to (6.4), and (6.7) hold with the weaker assumption
tu + /tv € at, rather than ¢ > 1y(v): for all n € N=

€0’
-1 _—1 —1 -1 _—1
planyay (ama;h)) < ¢f (amya;t),
andforallneNIJ{,
-1 -1 -1 -1 -1 -1, -1
¢:(_)(atnt,y ay ):d’:()(at”t,yn(”) a; )S¢;+g()(atnt,ynat )-

Now proceeding similarly as in the proof of the first statement, we have

/N+ S ((glnar)g(n) dn < t=20)00za) fN+( ) f(ygna»)qntm () dptgy+ (),

yel

and hence

W) [ f(lnangn dn
<0 [ Felnani,,, o0 i o
< CU(F 0 0)

provided loga, € a™. By setting C"( f,¢) := C'(F, qb;ﬂo), this finishes the proof of
the proposition. a

With the help of Proposition 5.3, we are now ready to prove:

Proposition 6.8 Suppose that mBMS satisfies the local mixing property for the pair
(W, J). Then for any fi, f> € C.(I'\G)M and v € ker ¥, we have

lim W(r)eGryIutiv f fi(xa(t,v) fo(x) dx = T @) mPR (/1) mPR (f2),
t—00 I'\G
and there exists a Co = Cy( f1, f>) > 0 such that ifa(t,v) € at,

‘\p(z)e(zﬂ’—W’HWv) /F . fi(xa(t,v)) fr(x) dx| < C.

Proof The hypotheses above coincide with those of Propositions 5.3 and 6.1; this
allows us to apply Proposition 6.1 in the following argument.

By compactness, we can find g9 > 0 and x; € '\G fori = 1,..., £ such that the map
G — I'\G given by g — x; g is injective on Ry, = NSGASONE‘SM, and Uf=1 XiRgy/2

contains both supp f; and supp f>. As before, set a, = exp(tu + /1v). We use
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continuous partitions of unity to write f; and f, as finite sums f; = Zf=1 i

and f, = Zf=1 f2,j with supp f1; C x;Rg,/2 and supp f ; C xjRg,/>. Writing
p =ham € N~ AM and using the decomposition of the Haar measure on G given by

d(hamn) = e~ 2P02D gy dm da dh,

cf [23, Proposition 8.45], we have
69 [ fitxan i ds
\G

=Z/ fr.i(xi pnay) foj (xi pn)e 21D dn dm da dh

Xl

S1,i(xipnay) f2,;(xi pn) dn)e_z'o(log“) dmdadh.
€0
Applying Proposition 6.1, it follows (cf also (4.8)) that

0

tlim \Il(t)e(z'o_””)(log”’)/ fi1(xay) f>(x) dx

= J(v) ZWBR(fl i) Z/ Mo, pN+(f2,j(x,-p e 2002 gy da dh

FO 5()

= J(v) ZmBR(fl,i) ZMBR*(fz,j)
i J

= J()mBR(f1) mBR (1),

where the second-last equality is valid by (4.8). This justifies the first statement. For
the second statement, note that if 1u + +/7v € a™, (6.9) together with Proposition 6.1
gives

‘W(Oem—*”)“"g“” [F . fi(xay) f2(x) dx| < Co(f1. f2).
where
Colfir 12 1= Y C"(fiir f.)) / ¢~2000E@) gy dq g,
i,j 50 FO
This completes the proof. O

We make the following observation, which will be used in the proof of Theorem 7.9.
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Corollary 6.10 Fix u € Lr Ninta™, and let ¥ € Dy, be tangent to Y at u. For

k =1,2, let vi and vy, be (', ¥)— and (T, ¥ o 1)—PS measures on Ar, respectively.

Setting mBMS mljiw‘s) , suppose that there exist functions Wy : R~ o — R~ such that

for all fl, fre CC(F\G)M
Jim W (2) /F G S1(x exp(tu)) fo(x) dm™ (x) = mM (f)mPM (f2).

Then v{ = v, and v, = ;.

Proof By an argument similar to the proof of Proposition 6.8,
lim Wy (1)e! 2P7VTW / Si(xexp(tu) f2(x) dx = mgd(f1) My (1),
f—00

Fix f; e Cc (T\G)M with m2(f1)>0foreach k =1,2. Considering f3 € Ce (r\GM
with m,,, *(f2)>0,it follows from the hypothesis that ¢ :=lim;_ 0 W1 (¢)/ W, (¢) > 0.
Set ¢y := ¢ -mpX(f1)/m3(f1). Then for any f3 € C.(I'\G)M | we have

(6.11) myR (f2) = e -mox*(f).

Recall from Lemma 3.6 that for all ¢ € A4, a*mBR* — (=¥ +20)(loga) mBR* We
claim that vy = v,. Let g¢ € G be arbitrary. Fix ¢ > 0 and consider F € C(G/ P)
supported in (goN;") ™. Choose g1 € Cc(A), and a radial function ¢, € C.(N) such
that [, g1 da = [y - g2 dn = 1. Define /> € Ce(G) by

F(goh)q1(a)ga(n)e V18D if ¢ = gohman € goN*+ P~
{ otherwise.

fa(g) =

Note that f2 is M —invariant, as ¢, is radial. Defining f; € C.(I'\G) by
gD =) falve)

yel
a direct computation shows that

PR (fy) = / / s (gohman) e¥ 29 dm da dn dvy (goh™)

-/ F(goh+)( / ql(a)qz(mdmdadn) dv(goh™)
N+ P

= v (F).
Hence for any g, € G/P, it holds that v{(F) = ¢ - va(F) for all F € C(G/P)
supported in (goO,)~. By using a partition of unity, we get v{(F) = ¢y - v (F) for all
F € C(G/P). Since |v;| = |v2| =1, we have ¢; = | and hence v; = v,. Repeating
the same argument for i(v), we also get v; = v, (this implies ¢y = 1). O
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7 Anosov groups

7.1 Anosov subgroups

Let X be a finitely generated word hyperbolic group and let % denote the Gromov
boundary of X. We call a Zariski dense discrete subgroup I' < G Anosov with respect
to P if it arises as the image of a P—Anosov representation of ¥. A representation
®: ¥ — G is P-Anosov if ® induces a continuous equivariant map {: 0¥ — F such
that (£(x),Z(y)) € F@® for all x # y € 9%, following Labourie [24] and Guichard
and Wienhard [17].

Let t7: PSL;(R) — PSL;(R) be the d—dimensional irreducible representation of
PSL; (R). For any torsion-free uniform lattice ¥ in PSL; (R), the connected component
of 74|y, in the space Hom(X, PSLy(R)) is called the Hitchin component. Representa-
tions X — PSL;(R) in the Hitchin component are known to be P—Anosov [24]. In
fact, Hitchin components are defined for representations of X into any split real simple
Lie group G, and all representations ¥ — G in the Hitchin component are known to
be P—Anosov [12; 17].

We mention that if p;: ¥ — G; are P;—Anosov, where P; is a minimal parabolic
subgroup of Gj, then p; X p2: ¥ — G1 X G, is Py X P,—Anosov whenever its image is
Zariski dense. Indeed, if {;: 0¥ — G;/ P; denotes the limit map of p;, the map {(x) =

(¢1(x), ¢2(x)) provides the desired limit map for p; x p5; hence {(p1(g), p2(g)):g € X}
is an Anosov subgroup of G| x G.

One subclass of Anosov groups consists of Schottky groups, which generalize the
Schottky subgroups of rank one Lie groups.

For a loxodromic element g € G, we denote by yg € F the unique attracting fixed point
of g. Let y1,..., yp be loxodromic elements of G, where p > 2. Foreach 1 <i < p,

+1 _ -1 _
set§;" =y, and & = Yyt

Definition 7.1 The subgroup I" generated by {y1, ..., ¥,} is called Schottky if there
exist open subsets bii, BijE CFforl<i=<p,anda0 <e <1 such that:
(1) Foralli # j and w, @ € {—1, 1}, we have that b C B}”.
2) b?’ Xb? C F® wheneveri # j or w # w.
(3) Foralli and w € {—1, 1}, we have that £* € inth{’, y* B C b® C B{ and the
restriction of y; to B{® is e-Lipschitz.

(4) The intersection ();<;<, we1,—13 Bf’ is nonempty.
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This is the same definition as given in [40, Section 4.2], except for the extra condition (2),
which we added to ensure the following lemma:

Lemma 7.2 Any Zariski dense Schottky subgroup I' < G is Anosov.

Proof The Gromov boundary dI" can be identified with the set of infinite words of the
form a = (agajay - -+ ), where a; € {ylil, e, ypil} and a; # ai_;l. Fix an element
§o € N B,
1<i<p,we{l,—1}

which exists by (3). Under the above definition of a Schottky group, the proof
of [38, Proposition 3.3] gives that the map ¢ + lim,_ oo (aoay - - an)&y induces a
I'—equivariant homeomorphism ¢: dI" — Ar; see also [40, Proposition 4.5]. Let
& # n € Ar, and write them as

§= lim (aoay---an)fo and 1= nli)ﬂgo(ai)a,] - ay)éo
for some infinite words a and @’. Let k be the smallest integer such that aj # a;c, and
set y :=ag---ag_y € I'. It follows from (1) and (2) that y~1£ € l? and y~lne b,

where i # j or w # w. Hence (y'&, y~1n) € F® by (2); consequently, we get that
(£.n) € F®_ This shows that T is Anosov. m|

Schottky groups are found everywhere, in the following sense:

Lemma 7.3 Any Zariski dense discrete subgroup 1" contains a Zariski dense Schottky
subgroup.

Proof This follows from the proof of a more general theorem [1, Proposition 4.3]. We
give a sketch of the proof for the sake of completeness. Since the set of loxodromic ele-
ments of I is Zariski dense, we may choose a loxodromic element y; € I". There exists
a proper Zariski closed subset F,, C G which contains all Zariski connected and Zariski
closed proper subgroups of G containing y; [49, Proposition 4.4]. We may choose a
second loxodromic element y, € I'— Fy, such that {(yy£1, yy,), (VyF!, yy1)} C F@),
Moreover, we can assume that yzk generates a Zariski connected subgroup, and
hence that )/é‘ ¢ F,, for any k € N. Let ¢; € G be such that y; € ¢; (intA"')gol._l.
Then y,#1 = pie*. For e > 0, let bl.il(s) be the e—neighborhood of gieT and set
Bl.jEl (6) = piNEi1e®, where N, denotes the s~!—neighborhood of e in N*. For
any £1,&, > 0, we get that yl.ikBiil(ez) C bl.il(sl) for all sufficiently large k. It
follows that we can find k, ¢; > 0 and ¢, > 0 so that )/lk and yzk satisfy the conditions
in Definition 7.1 with biil = biil(sl) and BilLl = Bl.il(sz). O
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7.2 BMS-mixing

The following theorem was first proved by Sambarino [45], when X is the fundamental
group of a compact negatively curved manifold, using the work of Thirion [48]. Using
the reparametrization theorem of [4] for a general case, Chow and Sarkar [8] proved the
following theorem; their proof uses a different symbolic coding than [45] and works
for functions which are not necessarily M —invariant.

Theorem 7.4 Letu € intLr. Lety € Dli be tangent to Y at u, and let v and vj
be respectively (I', ¥) and (T, ¥ oi)—PS measures on At. Set mBMS := m%}\ﬁis. Then

there exists k, > 0 such that for any v € ker  and any fi, f> € C.(I'\G)M,

lim (¢ —D/2 / . F1(x) fo(x exp(tu 4+ v/1v)) dm®MS (x)
r

t—>00

= ke T mIMS (f)mPVS(fy),

where I : ker(y) — R is given by
olZ s = (v, u)3
[edF
for some inner product ( - , - }« and some ¢ > 0. Moreover, the left-hand side is uniformly
bounded over all (t,v) € (0, c0) x ker ¥ with tu + «/tv € a™.

(7.5) I(v):=c

Although the second statement of Theorem 7.4 is not stated in [45, Theorem 3.8], its
proof uses the same technique as [48, Theorem 1.1], where the corresponding statement
can be found.

Remark 7.6 Theorem 7.4 is the main reason for the assumption that I" is a Anosov
subgroup. In fact, all our results stated in the introduction hold whenever I" satisfies
Theorems 7.4 and 7.7.

In the rest of the paper, let I' be an Anosov subgroup of G. The following theo-
rem was proved by Sambarino [43] for a special case and by Potrie and Sambarino
[35, Propositions 4.6 and 4.11] in general.

Theorem 7.7 (1) Lr —{0} Cinta™.

(2) wr is strictly concave and analytic on {v € int Lr : ||v]| = 1}.

By Lemma 2.24 and Theorem 7.7, we get the following corollary:
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Corollary 7.8 For each unit vector u € int Lr, there exists a unique ¥, € D[ tangent
to Y at u, which is given by

Yu(-) =(Vyr(u),-).
Theorem 7.9 For any y € Df., there exists a unique (I", 1 )—PS measure on Ar.
Proof When T’ is the fundamental group of a closed negatively curved Riemannian

manifold, this follows by combining [44, Theorem 3.1] and [44, Proposition 7.8]. The
general case follows from Theorem 7.4 by Corollary 6.10. a

Note that this theorem implies the ['—ergodicity of every (I', ¥/ )-PS measure.

Remark 7.10 The I'-ergodicity of a (I, )-PS measure for y € D also follows

from [7, Theorem A.2] together with the reparametrization theorem [8, Theorem 4.10].

By Sullivan’s well-known argument, it implies the uniqueness of (I", 1)—PS measure.

For each u € int L, let v, denote the unique (T, ¥, )—PS measure on Ar. We now set
S. S . % . *

(7.11) mEM = mlfiv,[vi(u), mP(l;) = mgfu), mER = mBR .

We mention that all three measures are infinite measures when G has rank at least two;

cf [25, Corollary 4.9]. We also refer to [25] and [26], where ergodic properties of these

measures are discussed.

We deduce the following from Propositions 5.3 and 6.8, and Theorem 7.4.
Theorem 7.12 Letu € int Lr.
(1) Forany fi, f» € Co(T\G)M and v € ker ¥/,,,

lim ¢~ D/2oQ@o—¥u)tut/1v) / f1(x exp(tu + /1v)) f>(x) dx
r\G

t—>+o00

= e O 2mf (OmE (/).
(2) Forany f € Co(T\G)M,¢p € C.(NT), x =[g] € T\G, and v € ker

lim ¢~ D/2@o=vu)(tu+/tv) / f(xnexp(tu + v1v))p(n) dn
N+

—>00
=t e TO2mE (f) 15k, (9).

Moreover, the left-hand sides of the above equalities are uniformly bounded for all
(t,v) € (0, 00) x ker Y, with tu + «/tv e a™.

Recalling that v, (#) = Y (u), the special case of Theorem 7.12 when v = 0 now
implies Theorems 1.6 and 1.7.
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8 Equidistribution of translates of I' \I' H

Symmetric subgroups of G

Let H < G be a symmetric subgroup; that is to say, H is the identity component of
the set of fixed points of an involution o of G. We start by reviewing some general
structure theory regarding symmetric subgroups; see [46, Chapter 6] for more details
on this. The involution ¢ induces a Lie algebra involution on g, which (using a slight
abuse of notation) we also denote by o. There exists a Cartan involution of G that
commutes with o; without loss of generality, we may assume that 6 from Section 2
commutes with o. These involutions give rise to the decompositions g = £ & p and
g = b @ q into the +1 and —1 eigenspace decompositions of 6 and o, respectively.
Let a be a maximal abelian subalgebra of p such that b := a N q is a maximal abelian
subalgebra of p N q. Denote the dimension of a by r and the dimension of b by rg.

Let X, C b* be the root system of b, ie
Yo ={Aeb*—{0}:3X € g— {0} such that ady X = A(Y)X forall Y € b}.

From now on, we fix a closed positive Weyl chamber b™ C b for £, which has been
chosen compatibly with a™ as follows [14, Section 3]: denoting the positive roots of a
by =T, we assume that there exists a collection of positive roots 1 of b such that the
elements of X are all obtained by restricting elements of £ to b, hence b™ C a™.
We will write B = exp(b) and B+ = exp(b™).

Let Wy := Nk (b)/Zk (b) and Wy 9 := Ngknu (0)/ Zgn g (b). There then exists a
finite set of representatives W C N (a) N Ng (b) for W, g\Ws, and we have the
generalized Cartan decomposition

8.1) G = Hexp(b)K = HWexp(b")K,
in the sense that for any g € G, there exist unique elements » € B and w € W such that

g€ HobK.

Directions in b* Nint £t

Let I' be an Anosov subgroup of G. In the rest of this section, we assume that
b Nint(Lr) # 2.

Since L1 C int(a™) by Theorem 7.7, it follows that b™ Nint(a™) # @.
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We now fix a unit vector (with respect to the norm || - || on a)

vebt Nint Lp

and set

8.2) 6:=vyr(v)>0.
By Corollary 7.8, the linear form ® € a* defined as
(8.3) O(w) = (Vyr(), w)

gives the unique linear form in Dy such that ®(v) = Y (v) = 4.
Lemma 8.4 We have L1 Nker ® = {0}.

Proof We use the fact that v is strictly concave (Theorem 7.7). Since ® > Y1 on a,
and ®(v) = ¥ (v), it follows that ©(w) > Y (w) for all vectors w € a™ —Rw. Since
Yr > 0on Lr, we have ® > 0 on L — {0}, ie L Nker ® = {0}. ad

We use the following notation: for # > 0 and w € ker ©,

a(t,w) :=exp(tv+tw) and a(t,w):=tv+ V1w.

BRx«

BR “and mBR+ = my, "

We set mBR = mB
i(v)

Patterson—Sullivan measures on H

Let P = M AN be the minimal parabolic subgroup. Since b™ Nint(a™) # @, it follows
that M = Z g (b), and the unipotent subgroup whose Lie algebra is the sum of positive
root spaces corresponding to X, coincides with N.

Lemma 8.5 We have H N N = {e}.

Proof Fix a € X,. Since v € b Ninta™, we have a(v) > 0. Letting X € n be
such that [v, X]=a(v) X, we have 0 (X) = a(v) " lo(v, X]) = a(v) " [o(v),0(X)] =
a(v)"—v, o(X)], ie [v,0(X)] = —a(v)o (X). Therefore o (X) € nt. Since o fixes
H pointwise and swaps N and N, we get H N N = {e}. |
By [28, Theorem 3(iii)],

(8.6) HNP=HNM)YHNA)HNN)=(HNM)HNA).

Together with the fact HN B = HN N = {e}, it then follows that HNMBN = HNM.
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Definition 8.7 Define a measure H = ub H , on H as follows: for ¢ € C.(H), let

1S () = / [ $ (ho p)e®@Bi ©hoP) gy ().
hoeH/(HNP) JpeHNP

where dp is a right Haar measure on H N P; for hg € H/(H N P), haL is well-defined
and independent of the choice of representative The measure defined above is I' N H—
invariant: forany y € I' N H, y*,uH [,LH Therefore, if I'\I'H is closed in '\ G,
d'“H,v induces a locally finite Borel measure on '\I'H ~ (I' N H)\ H, which we

denote by /,LFeS] = /’LFeS] Hov

Note that supp ,uFeS]H ={[h]e "\T'H : h* € Ar}, and hence
(8.8) |/’L[e]H| =0 ifandonlyif ArNHP/P=02.

For a subset S C G and ¢ > 0, set Sg:={s € S :d(e,s) <&}. Let M C M be a Borel
section for the map m +— (H N M)m, and P’ = M’'BN the subset of the minimal
parabolic subgroup P = M AN . The map H x P’ — G given by (h, p') — hp’ is injec-
tive, which is an open map in a neighborhood of e; see [46, Proposition 7.1.8(ii)] and
[11, Proposition 4.3]. For ¢ > 0, let p; € C((NB),) be a nonnegative function such that

/ pe(nb)dndb = 1
NB

and pg(mnbm™) = pg(nb) for all m € M and nb € NB. Fixing ¢ € C.(H)H"M
and ¢ > 0 smaller than the injectivity radius of supp(¢), define d, € C, (G) by

~ h)p.(nb) if g =hm'nb e HP',
otherwise.

Observe that @, is right M —invariant. Define now ®, € C.(I'\G) by
Pe(g) = > De(yg).

yel

Since 5158 is right M —invariant, so is ®;.

Lemma 8.10 For ¢ € C.(H)"™M and ®, as above, we have

mPR (D) = 1 (@) (1 + O(e)).

Proof Note that supp(&U)g) C HM(NB);. The proof of the lemma now relies on the
following three observations.
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Firstly, for each him € HM' and n € N,
d(hmn) = P Bamm=(€mm) gy (hmn™) = dn
is a Lebesgue measure on hmN .
Secondly, for g = hm’nb € HP’, the decomposition
Be+(e.8) = By+(e.h) + Bo+(e.nb) = By+(e. 1) +i(logb)
induces an isomorphism A = (A N H) x B. This implies that
d(Bg+(e.g)) = d(Bp+(e.h) d(Be+(e. p)) = d(By+(e. 1)) d(b),
and for all hm’ € HM' and nb € (NB),,
@B+ (e.hm'nb)) _ e@(ﬂh+(esh))(1 + 0(¢))
by continuity of the Busemann function.
Finally, we also have
Bnmnby— (€. hm'nb) = Bumny- (e, hm'n) + Bpmrny— (hm'n, hm'nb)
= Bhmny— (e, hm'n) + Be—(e. b)
= Bhmn)- (e, hm'n) —i(logb).

Consequently7 eZp(ﬂ(hm/nb)—(e,hm’nb)) = eZD(ﬂ(hm/n)—(e,hm’n))(l + 0(8)) USlng the

definition of mBR* (®,) and the second and third observations above gives
mPR () = / (1) pe (1) © Bt (i mEN +20B = (e-himnb)
HxM’'x(NB),
xdmo,((hm'n)") d(By+ (e, hm'nb)) dv(h™)
= (14+0(¢)) ¢ (h)e®(’3h+ (e,h)) De (nb)eZP(ﬁ(hm’nr (e,hm’n))
HxM’'x(NB),

xdmy((hm'n)™) db d(By+ (e, h)) dv(h™).
We now choose a section Hy C H for the map i +— h(H N P), and write h = homay, €
Ho(M N H)(AN H) = Hy(H N P). Using the first observation above, we then have

mPRs (0,) = (1 + O(e)) o(homay)e. i (e’h))( [ pe(nb)dn db)
(NB)¢

Hy(HNP)
x d(ap) dv(hi)

OB, Chor) 1ty
0

— (14 0()) [ o (hop)e
hoeH/(HNP) JpeHNP

= (1+ 0 (9). O
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Equidistribution of translates of I' \I' H

Proposition 8.11 Forany f € C.(T\G)™, ¢ € C.(H)HA™ and w € b Nker O,

lim 120D 20~ alw) [ S (latt, w)g (h) dh = pe 2 OmPR(£)3 ),
00 H

and there exists C' = C'( f, ¢) > 0 such that for all (t, w) witha(t,w) € b™,

(8.12)

A=) ,2p-0)@(t.w)) / F(ha(e, w)(h) dh| < C".
H

Proof Fore >0, let Ry := N AN M and define f* € C.(T'\G) by

(8.13) fF ()= sup f(yg) and f7(») = nf F(g).

gER,

Since R is right M —invariant, it follows that fsjE € C.(I'\G)M. Let Cy C H denote
the support of ¢; we may assume that Cy injects to its image under the map G — I'\G.
Choosing pe € C.((NB),) and defining ®, as above, we let dA(m’) denote the density
on M’ of total mass one such that

(8.14) d(hm'nb) = dh dA(m') dn db
is a Haar measure on G, where h€e H,m' e M/, n € N and b € B.

‘We then obtain

/ F(latt. w))g (h) dh = / f([h]a(z,w»d»(h)( / ps<nb>dndb)dh
H Co (NB)¢

= f f([ha(t, w))®.([hlnb) dh dn db.
Co(NB)s
Using the M —invariance of f and the definitions of ®, and dA gives

S([(h]a(t, w)) @ ([hnd) = /M, f(m'a(t, w)) e ((hlm'nb) dr(m’),
and so

/ F(ate. w))p(h) dh
H

L (m’a(t, w)) @, ((hm'nb) dh dA(m') dn db.

/COM/(NB)S
Since v € int b, for all (z, w) such that a(¢, w) € b and for all nb € (NB),, we have
(8.15) fxhm'a(t,w)) = f(xhm'nba(t, w) - (a(t,w)"  (nb) " La(t, w)))

< fF(xhm'nba(t, w)).
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Consequently,
/C S ([(Ma(t, w))¢(h) dh

<

/ fX ((hlm'nba(t, w)) @ ((h)m'nb) dh dX(m") dn db
CoM'(NB)e

= [ #Fatunen) dy.
'\G
A similar computation shows that
S ([hla(t, w)p(h) dh = / Je (va(t, w))®g(y) dy.
Co I\G
On the other hand, we have

lim 20— Cr—O)@(t,w) /F - fE(ya(t, w))@e(y) dy

—>00
— K.ve—%l(w)mBR(f;l:)mBR* (@8)
~lrmw
= ke 2T mBR(LEYV LB (9) (1 + O(e)).

Taking ¢ — 0 in the last equality proves the first statement. The second statement is
clear with the choice of C’ = C(fF, ®,), finishing the proof. ad

9 Counting in affine symmetric spaces

Let I" be an Anosov subgroup of G, and let H be a symmetric subgroup of G. We
continue to use the notation v, v, 8, r, ro, ®, G = HWexp(b™)K, etc from Section 8;
hence v € b Nint Ly is a unit vector (with respect to the norm || - | on a). We denote
by |- | the norm on a induced by an inner product (-, -) with respect to which v and
ker ® are orthogonal to each other and for which |v| = 1.

In the following we fix a convex cone C C b* N (int(a™) U {0}) such that
9.1 veint,C and CNker® = {0},

where int, C means the interior of C in the relative topology of b. Note that there
are convex cones which contain £r N b™ and satisfy (9.1) by Theorem 7.7(1) and
Lemma 8.4.

Remark 9.2 If v = ur € b, then by Lemma 2.24, ©(w) = §r(ur, w), hence the
cone b™ N (int(a™) U {0}) satisfies the conditions placed on C above.
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By the condition (9.1), we have
9.3) CcC{tv+iw:t>0,w € ker O}.

Write
Cr:={welC:|lw|<T} for T >1.

For w € ker ©, set
Rr(w):={teR:tv+VtweCr}.
For all sufficiently large 7', R7(w) is an interval of the form
Rr(w) = [tw. 2 (—|w|* + V|w|* +4T?)].
Lemma 9.4 (1) There exists ac > 0 such that for allw € bNker® and T > 1,

e—srT;(r—ro)/ (0= 8t gy < 51 —cHlwl?.
Rt (w)

(2) We have
9.5) lim e_‘STTé(r_’O)/ 1208t gy — 5713812
T—o0 Rr(w)
Proof Note that (v, x) > 0 for any nonzero vector x € C. Since C is a convex cone
with C Nker ® = {0}, it follows that there exists 0 < 0y < % such that the angle between

any vector in C and v is at most 8y. Now, as v is perpendicular to ker ® with respect
to (-,-), we have that for any ¢ such that a(¢, w) € C,

Viw]

g

<tanfy, or, equivalently, |w|2 < tan? Oy -t.

In particular, for t € Ry (w), we have

1 1
TZZIZ—I—szZ( + )w4.
vl tan2 0y tan* 6, [l

This gives the upper bound

2 4 2 2 4
—|wl|* 4+ V|w|* +4T w w
i+ Viwl B S U P U WY
2(VI|w|* +4T%+2T)

with

(9.6) 1(1 (1 +4( L ))_5) >0
. ci==|1- )
2 tan2 0y  tan* 0,
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Now, by changing variables,
3 (-lwP+|w*+472)
/ AGro=n) 8t g,

tw

/%(—|w|2+«/|w|4+4T2)—T
t

w—T

(t + T)%(r()—r)e(S(t-i-T) dt,

and hence

t%(ro—r)eSt dt

. 3 (lwlP+/wl*+4T2)
9.7) eﬁTTz“—m{[

tw

L(ro—r)
(L + 1)2 T e

L(~lwP++/|w|*+4T2)-T
_ /t !

w—T

—clw|?
< / St dr = %e—CSIwIZ’

B —0o0
which proves (1).
The second claim (2) follows as well, because by the dominated convergence theorem,
(9.7) converges to
—5lwl
/ g = Lol m
oo )

We fix a left (H N M )—invariant function tgg € C.(H) with its support injecting to I'\ G,
and a right M —invariant function 7gx € C(K). Define a function Z7: G — R by
tg(h)1c,(logh)tg (k) if g =hbk € Hexp(C)K,
0 if g g Hexp(C)K.
Since C C int(a™) U {0}, M and Mk are uniquely determined and hence Z7 is
well-defined.

Zr(g) = {

Definition 9.8 (bisector counting function) Define F7 = Fr ¢ 1 : I'\G — R for
T >0 by

9.9) Fr(g) =Y Zr(yg).

yel

For ® € C.(I'\G) and a left M —invariant Borel function f on K, we define the
following M —invariant function on I'\G: for x € T\ G,

¢*fuy=/' ®(xk) (k) dk.

kekK
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In the definition (9.11) below, the integral over the trivial subspace {0} should be
interpreted as [, f(w)dw = £(0). In particular, if b Nker ® = {0}, then ¢, = syky /8.

Proposition 9.10 Let ® € C.(I'\G). As T — oo, we have
(Fr,®) ~ ¢y T T20070 1B (1) mPR(® x 1),

where ¢y is given by

(9.11) ¢y = W S+ g,
) bNker ©

Here ky and I(w) are as in Theorem 7.4 and in (7.5) respectively, and s, = 1/|det Sy],
where Sy, a — a is any linear map such that Sy|.;@ = Id and S,v is a unit vector
orthogonal to ker ® with respect to the inner product on a induced by the Killing form.

Proof In view of the decomposition (8.1), we will need the following formula for the
Haar measure dg on G; for all ¢ € C.(G),

9.12) /G p(g)dg= > /H /K ( /b | DU (exph)k)E (D) db)dk dh,

wew

where £: b — R is given by
9.13) )= 1] (sinh (b))% (cosh (b))t .

aeE;

Here Efxt = dim(gi), where each gfxt is the =1 eigenspace of the root space g with
respect to the involution 6o; cf [46] and [14, page 18].

Substituting b = a(t, w) for ¢t > 0 and w € b Nker ® gives db = svt%(’o_l) dt dw.
Now,

(9.14) (Fr,®) = fK w) | ( /[ . d)([h](epr)k)rH(h)d[h])g(b) db dk.

Hence

(Fr, ®)

_ / / A (s, w))( / (® % 2 (Hla(t. w)) Tz () d[h])
bNker® JteRT (w) [e]lH

X 8§y dt dw

= sve‘sTT%(rO_r)/ pr(w)dw,
bNker ®
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where we define pr(w) to be
9.15) ST T20=r0)
x/ ti(’o_l)g(g(t,w))(/ (D xtg)([hla(t,w)) gy (h) d[h]) dt.
Rt (w) le]H

We next look for an integrable function on b Nker ® that bounds the family of functions
pr(w) from above, in order to apply the dominated convergence theorem. By (9.13),
there exists a constant ¢; > 0 such that for all (¢, w) with a(z, w) € C,

(9.16) e 2P@EWD g (1, w)) < cy.

By Proposition 8.11, we may assume that

130D g20laltw)—51 / (@ * ) ((ha(t, w)) e (h) d[h]| < ¢

[e]lH
as well. Hence
pr(w) < ety (w),

where V¥ (w) = §—leedlwl® ig ag given in Lemma 9.4. Since v is integrable over
b Nker ®, we may apply Proposition 8.11 and the dominated convergence theorem to
deduce that

[ ( / <I>([h](eXpb)k)fH(h)d[h])é(b)dbdk
K beCr [e]lH

Lo 1 —lsiw? —1L
~ Sykye®T T 200 r)-Ml;_IS(‘L’H) §71em 281wl e =2 (W) 1 BR (@ 4 1) dw
webNker ®

- cveSTT%(ro—r)Ml;;(fH) mBR(® % 1),

with ¢, as given in the statement of the proposition. O

We now fix a left (H N M )—invariant compact subset 2 C H and a right M —invariant
compact subset Qx C K. Let ¢ > 0 be a number smaller than the injectivity radius
at [e] in I'\G. There exists a symmetric neighborhood O, of e in G such that for all
T=1,
Qp . exp(Cr )Rk  C ﬂ Qpexp(Cr)Rk g,
9.17) gE€0;
Qpexp(Cr)Rg O, C Qj{l,g exp(C;f,s)QIJ;,s,

where Cf, = Cr + be, 7, = Npes, (Cr +b), Qf , = Qx Ke, Q¢ , = Ngek, ik
and Qfl . are defined similarly; see [14; 15]. We will additionally fix convex cones
¢, c* c bt N (int(a™) U {0}) such that C* C int, C, C C int, C*, and which satisfy the
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condition (9.1). Note that C;f . 1 no longer contained in C, but there exists a 7o > 0
(independent of 0 < & < 1) such that

(9.18) et —cf  cch

b b _
To.e CCrqe and Cr_,—Cp CCr,.

Let ¢ € C.(G) be a nonnegative function such that fG ¢:(g)dg =1 and supp(¢.) C O,.
Define ®.: I'\G — R by

(9.19) Dc([g) =D pelye).

yel
Lemma 9.20 Let t € C(K) be left M —invariant. Then

lim mBR(®g % 1) = /K T(k_l)/‘;s,’i?v)(k)’

e—0

where /L;S”;Ev) = V@go; IS given in (4.10).

Proof SetV:=Vgo;. We use Lemma 4.9 and write

BR(G 1) — ~BR
PR (@, 1) [K /G $e(gh) (k) AR (g) dk

= / / de (k" exp(q)nk)t(k) e ®D dndq dv (k') dk.
KJG
Substituting g = exp(q)nk € AN K, the density of the Haar measure is given by
dg = e *Ddndg dk.

For g € G, let k(g) denote the K—component of g, and let a, denote the logarithm of
the A—component of g in the decomposition G = AN+ K. Then

mPR(®, 1) = /K /G 65 (K'9)7(1c(g)) €PP~O@) dg g5 (k')

- / / $e(g)Tlic(k™" ) 20~ Wte) dg T (k).
K JG
By shrinking O, if necessary, we can assume that for all k € K,
k(k710g) c k71K,

By the uniform continuity of z, there exist positive = n, — 0 as &€ — 0 such that for
allg e O, and k € K,

tk™) ==t ) Stk + .
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It follows from the fact that the multiplication map Ax N T x K — G is a diffeomorphism
that for some C > 1, we have that for all g € O, and k € K,

1—Ce<e®O@—1) <1 4 Ce.
Since [ ¢pe dg =1, we get
(1 —Ce)/ (t(k=") =) dP(k) < mPR(®, % 7) < (1 +C8)/ (c(k™1) + 1) dF (k).
K K

The claim now follows from letting ¢ — 0. m|

Corollary 9.21 LetC C bt N (inta™ U {0}) be a convex cone satisfying (9.1). If

Ml;(s,,itv)(ag}l) = M?(BQH) =0, then
. #ITNQyexp(Cr)Lk)  ps PS »
Th—I>noo e$T T (ro—r)/2 =Gy (QH)MK,l(U) (QK )

If v=ur € b™, then we may take C to be b™.

Proof Write v := ,u};(s’i’zv). For g € H(BT Nint AT)K, let g = hg(exp bg)kg denote
the HB' K decomposition of g € G; note that hg(H N M), bg and Mk, are uniquely
defined.

Since Qgp(HN M) = Qg and MQg = Qg, we may define X7: G — R by

1o, (hg)ler (bg)lqe(kg) for g e HexpC*K,
0 otherwise.

Xr(g) = {

Let ¢pg . € C (K¢)M and ¢ C (Hg)® ™M be nonnegative functions with integral
equal to one. Set

+ .

+

T =1+ = s T =154 * ,

ke =lgt *Pk. He=lgx *PHs
Ff =F , Fr_,=F, _— __ .
T+e Ch e e Th e T—e¢ CT—e'TH 367K 3¢

By definition,
J’_ —

< < - < <1lo-

(9.22) 19;?,8 ST = 19}38 and IQK'SS STge = IQK’S.

By (9.17), (9.18) and (9.22) there exists a uniform constant C > 0 such that for all
g €O,

Fr_(g)—-C <> Xr(y) < Ff (g +C.
yel
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Integrating this against ®, as given in (9.19), we get

(Fr_o ®)—C <Y Xr(y) < (Ff,, ®)+C.
yel

For simplicity, we set x7 := Zyel" Xr(y) = #I' N Qg exp(Cr)Qk. Hence by
Proposition 9.10, fixing ¢ > 0, for all 0 < & < gy we have

. XT
(9.23) 117{11 sup m < Cv/LFIS(T;JS)mBR(q)s * T[—i{-’?’g)
—>00

PS BR
< o (e s mPR (e T, ).

On the other hand, since V(92 = [L S(0Qg) =0, we get from (9.22) that

(9.24) hm Wiy (tf 3p) = 15 (Qpr)  and hm / T (k™) dV(k) = D(Qg").
Now letting ¢ — 0 first using Lemma 9.20 and (9.24), and then letting ¢g — 0, we get

. XT
lim sup

sl m = CuMH(QH)V(QK ).

Similarly, we can show that

XT
liminf 7 Gomya = ol Q)T ().

which proves the corollary. O

Remark 9.25 This corollary implies that the asymptotic of #(I' N Qg exp(C1)2k)
is independent of C.

Proof of Theorem 1.8 The theorem now follows directly from applying Corollary 9.21
and the following observation to a convex cone C such that b N Lr C int, C; by
Lemma 8.4, such a cone always exists. O
Lemma 9.26 Suppose that b* N L C int, C. Then

#T NQyexp(bt —C)Qg) < c0.
Proof We can find a smaller closed convex cone C’ C int, C such that b™ N Ly Cint, C'.
Set Q:=bt—-C, @ :=b" -/, and QY = Qg H,, where H; means the unit

neighborhood of e in H. We can find a bi- K—invariant neighborhood O C G of e such
that for all g € O,

Qpexp(Qr)K C QY exp(Q/T_'_l)Kg_1
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Define G7([g]) = X_,er 11, exp(e;) k (¥8)- Now,
#T N Qg exp(by —CO)Rk) = Y Loy expiark V) < (Gr41. D),
yel

where @ is a nonnegative K—invariant continuous function supported in [e]© and
fF\G ® dg = 1. Now note that

(Gr.o) = | eg;( /[em;, <I>([h](exr>b))d[h])§(b) db.

Recalling Q' is H N M—invariant, let 0 < ¥ < I be an element of C.(H yHOM

which is one on Q';. For g9 > 0 smaller than the injectivity radius of supp(y), let
_ . + _ .

V=1 @ pg, be given as (8.9). Let D (y) = supgeNaoAEON;{)M ®(yg) be asin (8.13).

Since the closure of @’ is disjoint from b™ N L, by Proposition 2.19 there exists a

Ty > 0 such that ((exp b)) @ , ¥) =0 for all b € Q' — Q7 . Then by the same argument

€0’ -
as in the proof of Proposition 8.11, forall b € Q" — Q’TO we get that

/ D([h)(exp b))y [ dh = / ®([h)(exp b)) ¥([h]nb)dn db dh
[e]H []H (NB)s,
< ((expb) @}, W) = 0.

Hence

9.27) ///[]H O([h](exp b))y [h]ldh&(b) db =/ ((epr)d);:),\lf)é(b) db

/
QTO

< |05 I211W]12Vol(Q7, )
Hence for all T > T,
#TNQy exp(b}L —C0)Qk) < (G141, D) = ||<D;t)||2||lP||2V01(Q’T0).

This implies the claim in view of Corollary 9.21. |

Forw e W,setT? = 'Tw, H* =0 'Hw and Qo = 0w 'Qyw C H®. Then
#T NQywexp(Cr)Lk) =#(T*° NQyo exp(Cr)QLgw).

Since w € K, it follows that Y = ¥, and that the involution which stabilizes H¢
commutes with 6. Hence

§ =Yreo(v) = b Yre (b).

By applying Corollary 9.21 to I'? and H?® for each w € W, we can also deduce the
asymptotic of #(I' N Qg W exp(Cr)Qk).
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PS |

Theorem 1.10 follows from the following: we set skr ,, (H) = |[L[ elH.v

Theorem 9.28 Suppose that voI' C H\G is discrete for vo = [H] and that [e]H is
uniformly proper. Then skr , (H) < oo, and there exists a ¢, > 0 such that

. #(vol Nvgexp(b™ NLr)7K)
9-29) Am oV WT T (ro—r)/2

= ¢y skry (H).

Moreover, for v = ur, we have

#(vo' Nvg(exp bJTr)K)
Ti>moo e¥rr)T T (ro—r)/2 = Cur Skrup (H),

where b} ={w e b™ : ||w| < T}.

Proof SetC:=b"NLr. By Theorem 7.7(1) and Lemma 8.4, C satisfies the conditions
in (9.1).

By hypothesis, there exists a K—invariant open neighborhood O C I'\G of [e] such
that Yy := {[e]h € T\T'H : [e]hexpC N O # &} is bounded. Set
FrgD:= > lyepcrk(Vorg):
ye(CNH)\T
Let O, C G and ®; be as in (9.19). We may assume that &, is K—invariant as our
functions Fp are K—invariant, in deducing that

(9.30) (Fr—e, ®c) < Fr(le]) < (Frie, P¢).

Observe that

(Frae, @) = fK /b o ( f[e]H B, ((h](exp b)) d[h])é(b) db dk.

For S > 0, let tg € C.([e]H) be a function satisfying 0 < tg < 1 and g = | on the
S—neighborhood of Y. By the definition of Yy, it follows that

(Frae @) = [K fb . ( [MH B, (h](exp b)) s ([A) d[h]) £(b) db dk.

This integral is the same as the one in (9.14), as tg is compactly supported. Hence

1- (FT:E&" q)&‘)
1m
T—o00 e‘S(T:tS)T(”O_")/2

= Cvlifes]H(TS)mBR(@s)-

By sending ¢ — 0 and applying Lemma 9.20, we get from (9.30) that

i Fr([e])
1im

. Ps
T ST T (ro—1)/2 Colte)r (T5)-
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It follows that uFS ., (ts) is a constant function of S > 0, and hence
[elH

u e | = g (Ts) < 0o
This proves the first claim. The second claim follows from the first one in view of the
following lemma, by taking C = b+ N L. i
Lemma 9.31 Let C C b be a convex cone withv = ur € int, C. Set Q :=b™ —C.
Then there exist 0 < 8’ < 8 = Yr(ur) and C > 0 such that forall T > 1,
#T N Qg exp(Qr)Qk) < C®T.
Proof Choose a closed convex cone C’ C inty C so that ur € int, C'. Set @' :=bT —(’

and Q}{ := Qg Hy, where H{ means the unit neighborhood of e in H. We can find a
bi- K—invariant neighborhood O C G of e such that for all g € O,

Qpexp(Qr)K C QY exp(Q’T_H)Kg_l.
Define Gr([g]) = Zyel" IQ’H exp(Q/T)K(Vg)~ Now

(9.32) #T' N Qy exp(Qr)RK) = Y Loy exponx V) < {Gr41. @),
yel

where ® is a nonnegative K—invariant continuous function supported in [e¢]O and such
that [p g ®dg = 1. Now note that

(Gr.9) = [ ( | @([h](epr))d[m)sw) b,
begl \ J[elQy

If we write b = tur + /tw € Q7 with w € ker ®, then 2+ t|w||®> < T? and
w|? > tan? @ - ¢ for some 0 < By < 7 depending on the distance between ur and Q';
cf the proof of Lemma 9.4. Hence if b = tur + +/tw € Q/., then

(9.33) 0<t<T-cosb.

Fix a nonnegative function ¢ € C.(H) which is 1 on Q';. Since (8.12) gives that

130D 20=O)a(tw) /H D([hla(t, w)¢(h) dh| < C’,
it follows that for all z > 1,

< O e(©@—20)(a(t,w))

9.34) ‘/H D ([hla(t,w))¢p(h)dh
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Using (9.16), (9.33) and ®(ur) = ér, we deduce that
/ ( / d([hla(t, w))p(h) dh)g(b) db & / et db < eBreosoT o) ().
bed \JH beQ)
As Vol(by) = O(T"°), for any §’ satisfying dp cos Oy < 8’ < 8 we get
/ ( / ®([hla(t, w))p(h) dh)g(b) db < 5T,
bed. \JH

This proves the lemma by (9.32). |
Finally we give examples satisfying the hypothesis of Theorem 9.28.

Lemma 9.35 Suppose that a =b and Ar C HP/P.

(1) The orbit [e]H is uniformly proper.
(2) The support of MFeSjH is a compact subset of (H N T")\ H and |MFeS]H| > 0.

Proof The condition a = b means H N A = {e}, and hence H N P is compact by (8.6).
Since Ar is a compact subset of HP/P ~ H/(H N P), it follows that Ar C Hy P/ P
for some compact subset Hy C H.

To show (1), let C be a closed cone contained in inta™ U {0}. It suffices to show that
for any given compact subset Z C T'\G,

{leJh e T\TH :[elhexpC N Z # @&}

is bounded. Suppose not; then there exist #; € H with [e]h; — oo in '\T'H,
y; € I and ¢; — oo in expC such that y;h;c; converges to some g € G. Since
[e]H C T'\G is a closed subset, it follows that ¢; — co. We may write h;c; = yi_lgg,-,
where g; — e. Set o = [K] € G/K. By passing to a subsequence, we may as-
sume that yl._lggio converges to some £ € F in the sense of [25, Definition 2.7];
note here that ,u(yi_lgg,-) — oo regularly in a® as Lr C inta™. Since gg; is
bounded, it follows that £ € Ar by [25, Lemma 2.12]. Since hjcin = )/l._lgg,-n — &
for all n € F except for points on a proper submanifold of 7, we may choose
n=net € NteT sothatlim;_ oo hjcinet = &. Writing £ = hge™ for some hgy € Hy,
we have lim; oo hicinci_l P = hyP. Since ¢; € oo inexpC and C C inta™ U {0}, we
have lim; o cinci_l =e. As HP is open, we may write c,-nci_1 = h;.pi € HP with
h; € H and p; € P both tending to e. It follows that s;1; P — ho P as i — oo. Since
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H N P is compact and the sequence /; is bounded, it follows that the sequence /; is
bounded, yielding a contradiction. This proves claim (1).

Since supp(ufes]H) = {[e]h € [e]H : he™ € At} C {[e)hg : ho € Hy(H N P)}, the first
part of claim (2) follows, and the second part follows from (8.8). m|

We remark that this lemma holds when H is replaced by N, by the same proof.
Moreover, by replacing Proposition 8.11 by Theorem 7.12 and considering the Iwasawa
decomposition G = N (exp a) K, the proofs of Theorems 1.8 and 9.28 apply for H =N+
and bT =at.

Example 9.36 Let G = PSL,(C) xPSL,(C) and H = PSL,(R) x PSL,(R). Then
a=b and G/ P can be identified with S? x S? and HP/ P can be identified with D x D,
where D is the open northern hemisphere of S?. Let ¥ be a nonelementary finitely
generated discrete subgroup of PSL,(R). For i = 1, 2, consider a convex cocompact
representation 77; : X — PSL,(C) such that Ay, () C D and {(1(s), m2(s)) : s € X}
is Zariski dense in G. Then it is easy to see that I' := {(;r1(s), m2(s5)) : s € X} is an
Anosov subgroup with Ar C D x D. Hence I satisfies the hypothesis of Lemma 9.35.
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