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Let ! be a Zariski dense Anosov subgroup of a connected semisimple real algebraic

group G. For a maximal horospherical subgroup N of G, we show that the space of all

non-trivial NM-invariant ergodic and A-quasi-invariant Radon measures on !\G, up to

proportionality, is homeomorphic to Rrank G−1, where A is a maximal real split torus and

M is a maximal compact subgroup that normalizes N. One of the main ingredients is to

establish the NM-ergodicity of all Burger–Roblin measures.

1 Introduction

Let G be a connected semisimple real algebraic group and ! < G a Zariski dense discrete

subgroup. A subgroup N of G is called horospherical if there exists a diagonalizable

element a ∈ G such that

N = {g ∈ G : akga−k → ∞ as k → +∞},

or equivalently, N is the unipotent radical of a parabolic subgroup of G. We assume

that N is a maximal horospherical subgroup, which exists uniquely up to conjugation.

We are interested in the measure rigidity property of the N-action on the homogeneous

space !\G. When ! is a lattice, that is, when !\G has finite volume, the well-known
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2 M. Lee and H. Oh

measure rigidity theorems of Furstenberg [17], Veech [57], and Dani [14] give a complete

classification of Radon measures (=locally finite Borel measures) invariant by N.

This rigidity phenomenon extends to any unipotent subgroup action by the celebrated

theorem of Ratner in [45].

When G has rank one and ! is geometrically finite, the horospherical subgroup

action on !\G is known to be essentially uniquely ergodic; there exists a unique non-

trivial invariant ergodic Radon measure on !\G, called the Burger–Roblin measure

([10], [46], [59]). When ! is geometrically infinite, there may be a continuous family

of horospherically invariant ergodic measures as first discovered by Babillot and

Ledrappier ([3], [4]). For a certain class of geometrically infinite groups, a complete

classification of horospherically invariant ergodic measures has been obtained; see [50],

[51], [32], [36], [28], [29], etc. We refer to a recent article by Landesberg and Lindenstrauss

[28] for a more precise description on the rank one case.

When G has rank at least 2 and ! has infinite co-volume in G, very little is

known about invariant measures. In this paper, we focus on a special class of discrete

subgroups, called Anosov subgroups. In the rank one case, this class coincides with

the class of convex cocompact subgroups, and hence the class of Anosov subgroups can

be considered as a generalization of convex cocompact subgroups of rank one groups

to higher rank. The works of Burger [11] and Quint [40] on a higher rank version of

the Patterson–Sullivan theory supply a continuous family of maximal horospherically

invariant Burger–Roblin measures, as was introduced in [15]. We show that all of

these Burger–Roblin measures are ergodic for maximal horospherical foliations, and

classify all ergodic non-trivial Radon measures for maximal horospherical foliations,

which are also quasi-invariant under Weyl chamber flow. In particular, we establish a

homeomorphism between the space of these measures and the interior of the projective

limit cone of !, which is again homeomorphic to Rrank G−1.

In order to formulate our main result precisely, we begin with the definition of

an Anosov subgroup of G. Let P be the normalizer of N, that is, a minimal parabolic

subgroup of G and F := G/P the Furstenberg boundary. We denote by F (2) the unique

open G-orbit in F × F . A Zariski dense discrete subgroup ! < G is called an Anosov

subgroup (with respect to P) if it is a finitely generated word hyperbolic group which

admits a !-equivariant embedding ζ of the Gromov boundary ∂! into F such that

(ζ(x), ζ(y)) ∈ F (2) for all x '= y in ∂!.

First introduced by Labourie [27] as the images of Hitchin representations of

surface groups ([23], [18]), this definition is due to Guichard and Wienhard [22], who

showed that Anosov subgroups (more precisely, Anosov representations) form an open
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Invariant Measures for Horospherical Actions 3

subset in the representation variety Hom(!, G). The class of Anosov groups includes

Schottky subgroups [41], and hence any Zariski dense discrete subgroup of G contains

an Anosov subgroup ([6], [42]). We also refer to the work of Kapovich, Leeb, and Porti

[25] for other equivalent characterizations of Anosov groups, as well as to the excellent

survey articles by Kassel [26] and Wienhard [58] on higher Teichmüller theory.

We let P = NMA be the Langlands decomposition of P, so that N is the unipotent

radical of P, A is a maximal real split torus of G, and M is a compact subgroup that

commutes with A. Note that any maximal horospherical subgroup arises in this way,

that is, as the unipotent radical of a minimal parabolic subgroup.

The limit set $ of ! is the unique minimal !-invariant closed subset of F . Hence

the following set

E := {[g] ∈ !\G : gP ∈ $}

is the unique minimal P-invariant closed subset of !\G. We call a P-quasi-invariant

measure on !\G non-trivial if its support is contained in E .

Theorem 1.1. For any Anosov subgroup ! < G, the space Q! of all non-trivial

NM-invariant ergodic and A-quasi-invariant Radon measures on !\G, up to constant

multiples, is homeomorphic to Rrank G−1.

In order to describe the explicit homeomorphism, we need to define Burger–

Roblin measures on E . Denote by a the Lie algebra of A and fix a positive Weyl chamber

a+ ⊂ a so that log N is the sum of positive root subspaces. Fix a maximal compact

subgroup K of G so that the Cartan decomposition G = K(exp a+)K holds. Let µ : G → a+

denote the Cartan projection map (Def. 2.2). We denote by L! ⊂ a+ the limit cone of !,

which is the asymptotic cone of µ(!) (Def. 2.16). Let ψ! : a → R∪{−∞} denote the growth

indicator function of ! (Def. 2.17).

For Anosov subgroups, the following two spaces are homeomorphic to each

other:

D&
! := {ψ ∈ a& : ψ ≥ ψ!, ψ(v) = ψ!(v) for some v ∈ int L!} + int(PL!)

where int(PL!) denotes the interior of the projective limit cone PL! (Proposition 4.4).

Since int(L!) is a non-empty open convex cone of a+ [6, Thm. 1.2], it follows that D&
! is
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4 M. Lee and H. Oh

homeomorphic to Rrank G−1. We remark that D&
! is in fact a closed analytic submanifold

of a& [38, Prop. 4.11].

For a linear form ψ ∈ a&, a Borel probability measure ν on the limit set $ is

called a (!, ψ)-Patterson–Sullivan measure if for all γ ∈ ! and ξ ∈ F ,

dγ&ν

dν
(ξ) = eψ(βξ (o,γ o)) (1.2)

where o = [K] ∈ G/K and β : F ×G/K×G/K → a denotes the a-valued Busemann function

(Def. 3.2). Quint constructed a (!, ψ)-Patterson–Sullivan measure for each ψ ∈ D&
! [40];

for ! Anosov, this measure exists uniquely (hence !-ergodic), which we denote by νψ

(see Theorem 4.3 and references therein).

In the rest of the introduction, we let ! < G be an Anosov subgroup. By a

Patterson–Sullivan measure on $, we mean a (!, ψ)-Patterson–Sullivan measure on $

for some ψ ∈ a∗. We show:

Theorem 1.3. The map ψ ,→ νψ is a homeomorphism between D&
! and the space of all

Patterson–Sullivan measures on $. Moreover, Patterson–Sullivan measures are pairwise

mutually singular.

When ! is the fundamental group of a closed negatively curved manifold, the

above theorem also follows from [33].

We also denote by νψ the M-invariant lift of νψ on F + K/M to K by abuse

of notation. The Burger–Roblin measure mBR
ψ on !\G is induced from the following !-

invariant measure m̃BR
ψ on G: for g = k(exp b)n ∈ KAN,

dm̃BR
ψ (g) = eψ(b)dn db dνψ (k) (1.4)

where dn and db are Lebesgue measures on N and a, respectively.

The following is a more elaborate version of Theorem 1.1:

Theorem 1.5 (Classification). The map ψ ,→ [mBR
ψ ] defines a homeomorphism between

D&
! and Q!.

While the P-ergodicity of mBR
ψ follows from the !-ergodicity of νψ , establishing

the ergodicity of mBR
ψ , and hence the well-definedness of the above map, is the most

significant part of Theorem 1.5:

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac262/6748198 by Yale U

niversity user on 05 June 2023



Invariant Measures for Horospherical Actions 5

Theorem 1.6 (Ergodicity). For each ψ ∈ D&
!, mBR

ψ is NM-ergodic.

Since E is a second countable topological space, Theorem 1.6 implies:

Corollary 1.7. For mBR
ψ almost all x ∈ E ,

xNM = E .

A Radon measure m on !\G is called P-semi-invariant if there exists a character

χ : P → R∗ such that p∗m = χ(p)m for all p ∈ P. Note that any P-semi-invariant Radon

measure is necessarily NM-invariant since NM is unimodular. We show that any P-semi-

invariant Radon measure on E is of the form mBR
ψ for some ψ ∈ D&

! (Proposition 10.25).

Hence Theorem 1.6 implies:

Corollary 1.8. The space of all P-semi-invariant Radon measures on E coincides with

Q!, up to constant multiples.

Discussion on the proof of Theorem 1.6.

Fix ψ ∈ D&
!. Defining a !-invariant Radon measure ν̂ψ on H := G/NM + F × a by

d̂νψ (gP, b) = eψ(b)dνψ (gP) db,

the standard duality theorem implies that the NM-ergodicity of mBR
ψ is equivalent to the

!-ergodicity of ν̂ψ .

Generalizing the observation of Schmidt [52] (also see [46]) to a higher rank

situation, the !-ergodicity of ν̂ψ follows if the closed subgroup, say Eνψ
= Eνψ

(!),

consisting of all νψ -essential values is equal to a (Proposition 9.2):

Definition 1.9. An element v ∈ a is called a (!, νψ )-essential value, if for any ε > 0 and

any Borel set B ⊂ F with νψ (B) > 0, there exists γ ∈ ! such that

B ∩ γ B ∩ {ξ ∈ F : ‖βξ (o, γ o) − v‖ < ε}

has a positive νψ -measure.

Recalling that the Jordan projection λ(!) of ! generates a dense subgroup of a

[6], the following is the main ingredient of our proof of Theorem 1.6:

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac262/6748198 by Yale U

niversity user on 05 June 2023



6 M. Lee and H. Oh

Proposition 1.10. For each ψ ∈ D&
!, there exists a finite subset Fψ ⊂ λ(!) such that

λ(!) − Fψ ⊂ Eνψ
(!).

In particular, Eνψ
(!) = a.

See Proposition 10.2 for a more general version stated for any Zariski dense

normal subgroup of !.

Among other things, the following three key properties of Anosov groups play

important roles in the proof of Proposition 1.10:

(1) (Antipodality) $ × $ − {(ξ , ξ)} ⊂ F (2);

(2) (Regularity) If γi → ∞ in !, then α(µ(γi)) → ∞ for each simple root α of

Lie(G) with respect to a+;

(3) (Morse property) There exists a constant D > 0 such that any discrete

geodesic ray [e, x) in ! tending to x ∈ ∂! is contained in the D-neighborhood

of some gA+ in G where g ∈ G satisfies gP = ζ(x).

(1) is a part of the definition of an Anosov subgroup. (2) follows from the fact that

L! ⊂ int a+ ∪ {0} ([41], [48], [8]) in view of Lemma 7.2. (3) is proved in [25] (see also

Proposition 5.12).

Many aspects of our proof of Proposition 1.10 can be simplified for a special

class of ψ ∈ D&
! with certain strong positivity property (cf. Lemma 5.1); however, as our

eventual goal is the classification theorem as stated in Theorem 1.1, we need to address

all ψ ∈ D&
!, which makes the proof much more intricate and requires the full force of the

Anosov property of !.

Fix γ0 ∈ !. We aim to show that λ(γ0) ∈ Eνψ
(!). More precisely, for any ε > 0 and

any Borel subset B ⊂ F with νψ (B) > 0, there exists γ ∈ ! such that

νψ (B ∩ γ γ0γ −1B ∩ {ξ ∈ F : ‖βξ (o, γ γ0γ −1o) − λ(γ0)‖ < ε}) > 0. (1.11)

For p ∈ G/K, we define

dψ ,p(ξ1, ξ2) = e−[ξ1,ξ2]ψ ,p

for any ξ1 '= ξ2 in $, where [·, ·]ψ ,p denotes the ψ-Gromov product based at p (Def. 6.1).

Its well-definedness is due to the antipodality (1). In the rank one case, this is simply

the restriction of the classical visual metric to the limit set $. In general, it is not even
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Invariant Measures for Horospherical Actions 7

symmetric but we show that any sufficiently small power of dψ ,p is comparable to some

genuine metric on $:

Theorem 1.12. For all sufficiently small s > 0, there exist a metric ds on $ and Cs > 0

such that for all ξ1 '= ξ2 in $,

C−1
s ds(ξ1, ξ2) ≤ dψ ,p(ξ1, ξ2)s ≤ Csds(ξ1, ξ2).

Remark 1.13. In the process of proving this theorem, we also show that the Gromov

product on ∂! and the ψ-Gromov product [·, ·]ψ ,p are equivalent to each other (see

Theorem 6.13).

As a consequence of Theorem 1.12, dψ ,p can be used to define virtual balls with

respect to which Vitali type covering lemma can be applied (Lemma 6.12). Let ξ0 ∈ F
denote the attracting fixed point of γ0 and consider the family

D(γ ξ0, r) := Bp(γ ξ0,
1
3

e−ψ(a(γ −1p,p)+i a(γ −1p,p))r), γ ∈ !, r > 0

where a(q, p) denotes the a+-valued distance from q to p (Def. 2.4). We then show that

for all sufficiently small r > 0, there are infinitely many D(γiξ0, r) satisfying (1.11)

(Lemma 10.12). The key ingredient in this step is the following:

Lemma 1.14. There exists C = C(ψ , p) > 0 such that for all γ ∈ ! and ξ ∈ $,

− ψ(a(p, γ p)) − C ≤ ψ(βξ (γ p, p)) ≤ ψ(a(γ p, p)) + C.

In the rank one case, a stronger statement −d(p, q) ≤ βξ (q, p) ≤ d(p, q) holds for

all q, p ∈ G/K and ξ ∈ F , which generalizes to strongly positive linear forms (Lemma 5.1).

For a general ψ ∈ D&
!, our proof of Lemma 1.14 is based on the property that the orbit

map γ ,→ γ (o) sends a shadow in the word hyperbolic group ! to a shadow in the

symmetric space G/K (Proposition 5.14), as well as the following lemma, which is of

independent interest: we denote by | · | the word length on ! with respect to a fixed

finite symmetric generating subset.
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8 M. Lee and H. Oh

Lemma 1.15. There exists R > 0 such that for any γ1, γ2 ∈ ! with |γ1γ2| = |γ1| + |γ2|,
we have

‖µ(γ1γ2) − µ(γ1) − µ(γ2)‖ < R.

We emphasize that this lemma does not follow from the property of Anosov

groups that (!, | · |) → G is a quasi-isometric embedding [22, Thm. 1.7], due to the non-

trivial multiplicative constant.

To establish (1.11), we approximate a general Borel subset B ⊂ F by some

D(γ ξ0, r) satisfying (1.11). In this step, we prove the following higher rank generalization

of Tukia’s theorem [56, Thm. 4A] (see also [34], [1], [35]):

Theorem 1.16. For any Patterson–Sullivan measure ν on $, the set of Myrberg limit

points (Def. 8.1) has full ν-measure.

It follows that for the AM-invariant Bowen–Margulis–Sullivan measure mBMS
ψ on

!\G, almost all points have dense A+M orbits (Corollary 8.12). Using the property that

virtual balls Bp(γ ξ0, r) satisfy a covering lemma (Lemma 6.12) that is a consequence of

Theorem 1.12, we show that νψ -almost all Myrberg limit points satisfy the Lebesgue

density type statement for the family {D(γ ξ0, r) : γ ∈ !, r > 0} (Proposition 10.17). By

Theorem 1.16, this gives a desired approximation of B by some D(γ ξ0, r) satisfying (1.11).

We finally remark that in our subsequent work [30], we present refined versions

of Theorems 1.1 and 1.6, building on the main results of this paper.

Organization: In section 2, we go over basic definitions and properties of Zariski dense

discrete subgroups of G. In section 3, we discuss the notion of a-valued Gromov product

and define the generalized BMS measures for a pair of (!, ψ)-conformal densities on

F . From section 4, we assume that ! is Anosov. In section 4, we observe that the BMS

measure mBMS
ψ is AM-ergodic for each ψ ∈ D&

!. Sections 5 and 6 are devoted to proving

Lemma 1.14 and Theorem 1.12, respectively. In section 7, we prove that the space of

PS-measures on $ is homeomorphic to D&
!, which is the first part of Theorem 1.3. In

section 8, we show that the set of Myrberg limit points of ! has full measure for any PS-

measure on $. In section 9, we discuss the relation between the set of essential values

of νψ and the NM-ergodicity of mBR
ψ . In the final section 10, we prove Theorems 1.6, 1.5,

and the second part of Theorem 1.3.

Added to proof : It was recently shown that for any ψ ∈ D&
!, any ψ-conformal

measure is necessarily supported on $, and hence there exists a unique (!, ψ)-conformal
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Invariant Measures for Horospherical Actions 9

measure on F (not only on $), first in [16] for ranks at most 3 and in [31] for general

ranks. As a consequence, the space of all !-Patterson–Sullivan measures on $ in

Theorem 1.3 is equal to the space of all (!, ψ)-conformal measures on F , ψ ∈ D&
!.

2 Limit Set and Limit Cone

Let G be a connected, semisimple real algebraic group with finite center, and ! < G

be a Zariski dense discrete subgroup. We fix, once and for all, a Cartan involution θ

of the Lie algebra g of G, and decompose g as g = k ⊕ p, where k and p are the +1 and

−1 eigenspaces of θ , respectively. We denote by K the maximal compact subgroup of G

with Lie algebra k, and by X = G/K the associated symmetric space. We also choose a

maximal abelian subalgebra a of p. Choosing a closed positive Weyl chamber a+ of a, let

A := exp a and A+ = exp a+. The centralizer of A in K is denoted by M, and we set N to be

the contracting horospherical subgroup: for a ∈ int A+, N = {g ∈ G : a−ngan → e as n →
+∞}. Note that log N is the sum of all positive root subspaces for our choice of A+.

Similarly, we also consider the expanding horospherical subgroup N+: for a ∈ int A+,

N+ := {g ∈ G : anga−n → e as n → +∞}. We set

P+ = MAN+, and P = P− = MAN;

they are minimal parabolic subgroups of G that are opposite to each other. The quotient

F = G/P is known as the Furstenberg boundary of G and is isomorphic to K/M.

Let NK(a) be the normalizer of a in K. Let W := NK(a)/M denote the Weyl group.

Fixing a left G-invariant and right K-invariant Riemannian metric on G induces a W-

invariant inner product on a, which we denote by 〈·, ·〉. The identity coset [e] in G/K is

denoted by o.

Denote by w0 ∈ W the unique element in W such that Adw0
a+ = −a+; it is the

longest Weyl element. Note that w0Pw−1
0 = P+.

Definition 2.1 (Visual map). For each g ∈ G, we define

g+ := gP ∈ G/P and g− := gw0P ∈ G/P.

For all g ∈ G and m ∈ M, observe that g± = (gm)± = g(e±). Let F (2) denote the unique

open G-orbit in F × F :

F (2) = G(e+, e−) = {(g+, g−) ∈ F × F : g ∈ G}.

Note that the stabilizer of (e+, e−) is the intersection P− ∩ P+ = MA.
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10 M. Lee and H. Oh

We say that ξ , η ∈ F are in general position if (ξ , η) ∈ F (2). The Bruhat

decomposition says that G is the disjoint union ∪w∈WNwP+, and NP+ is Zariski open

and dense in G. Hence (ξ , η) /∈ F (2) if and only if (ξ , η) ∈ G(e+, we−) for some w ∈ W − {e}.

Cartan projection and a+-valued distance

Definition 2.2 (Cartan projection). For each g ∈ G, there exists a unique element µ(g) ∈
a+, called the Cartan projection of g, such that

g ∈ K exp(µ(g))K.

When µ(g) ∈ int a+ and g = k1 exp(µ(g))k2, k1, k2 are determined uniquely up

to mod M, more precisely, if g = k′
1 exp(µ(g))k′

2, then for some m ∈ M, k1 = k′
1m and

k2 = m−1k′
2. We write

κ1(g) := [k1] ∈ K/M and κ2(g) := [k2] ∈ M\K.

Lemma 2.3. [6, Lem. 4.6] For any compact subset L ⊂ G, there exists a compact subset

Q = Q(L) ⊂ a such that for all g ∈ G,

µ(LgL) ⊂ µ(g) + Q.

Definition 2.4 (a+-valued distance). We define a : X × X → a+ by

a(p, q) := µ(g−1h)

where p = g(o) and q = h(o).

Accumulation of points of X on F

Let 2 denote the set of all simple roots of g with respect to a+.

Definition 2.5. We write that

(1) vi → ∞ regularly in a+ if α(vi) → ∞ as i → ∞ for all α ∈ 2;

(2) ai → ∞ regularly in A+ if log ai → ∞ regularly in a+;

(3) gi → ∞ regularly in G if µ(gi) → ∞ regularly in a+.
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Invariant Measures for Horospherical Actions 11

If ai → ∞ regularly in A+, then for all n ∈ N+,

lim
i→∞

aina−1
i = e

uniformly on compact subsets of N.

Definition 2.6. We call ! regular if for any sequence γi ∈ ! going to ∞ in G, γi → ∞
regularly in G.

Lemma 2.7. If the closure of {(ξi, e−) : i = 1, 2, · · · } is contained in F (2), then aiξi → e+

for any sequence ai → ∞ regularly in A+.

Proof. The hypothesis implies that ξi = nie
+ for a bounded sequence ni ∈ N+. Hence

aiξi = ainie
+ = (ainia

−1
i )e+ → e+ as ai → ∞ regularly in A+. !

Definition 2.8.

(1) A sequence gi ∈ G is said to converge to ξ ∈ F , if gi → ∞ regularly in G and

lim
i→∞

κ1(gi)
+ = ξ .

(2) A sequence pi = gi(o) ∈ X is said to converge to ξ ∈ F if gi does.

Lemma 2.9. Consider a sequence gi = kiaih
−1
i where ki ∈ K, ai ∈ A+, hi ∈ G satisfy that

k+
i → k+

0 in K, hi → h0 in G, and ai → ∞ regularly in A+. Then for any ξ ∈ F in general

position with h−
0 , we have

lim
i→∞

giξ = k+
0 .

Proof. As (ξ , h−
0 ) ∈ F (2), we have (h−1

0 ξ , e−) ∈ F (2). Since F (2) is open and h−1
i ξ → h−1

0 ξ ,

we have (h−1
i ξ , e−) ∈ F (2) for all large i. By Lemma 2.7, aih

−1
i ξ → e+ as i → ∞. Therefore,

limi→∞ giξ = limi→∞ ki(aih
−1
i ξ) = k+

0 . !

Lemma 2.10. If gi ∈ G converges to ξ ∈ F and pi ∈ X is bounded, then limi→∞ gipi = ξ .

Proof. Write gi = kiai3
−1
i ∈ KA+K. The hypothesis implies that ai → ∞ regularly in A+

and k+
i → ξ as i → ∞. Let k0 ∈ K be such that k+

0 = ξ , and g′
i ∈ G be such that g′

i(o) = pi.

Write gig
′
i = k′

ia
′
i(3

′
i)

−1 ∈ KA+K. We need to show that limi→∞ k′
i = k+

0 . As k+
i → k+

0 , it

suffices to show that any limit of the sequence k−1
i k′

i belongs to M = StabK e+.
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12 M. Lee and H. Oh

Set qi := k−1
i k′

i. Let q be a limit of the sequence qi. By passing to a subsequence,

we may suppose qi → q ∈ K. Since d(o, pi) = d(gio, gipi) = d(aio, qia
′
io), the sequence

h−1
i := a−1

i qia
′
i is bounded. Passing to a subsequence, assume that hi converges to some

h0 ∈ G as i → ∞. Choose η ∈ F that is in general position with both h−
0 and e−. Then

limi→∞ aih
−1
i η = e+ and limi→∞ qia

′
iη = q+ by Lemma 2.9. Since aih

−1
i η = qia

′
iη, we get

e+ = q+ = q(e+). This implies q ∈ StabK e+ = M. !

Lemma 2.11. If gi → g in G and ai → ∞ regularly in A+, then for any p ∈ X,

limi→∞ giai(p) = g+ and limi→∞ gia
−1
i (p) = g−.

Proof. By Lemma 2.10, it suffices to consider the case when p = o. Write giai =
kibi3

−1
i ∈ KA+K. As the sequence gi is bounded, it follows from Lemma 2.3 that bi → ∞

regularly in A+. In order to show that giai(o) → g+, it suffices to show that if ki → k0,

then k+
0 = g+. By passing to a subsequence, we may assume that 3i → 30 in K. Choose

ξ ∈ F that is in general position with both 3−
0 and e−. Then giaiξ → k+

0 by Lemma 2.9. On

the other hand, as (ξ , e−) ∈ F (2), giaiξ → g+ by Lemma 2.7. Hence g+ = k+
0 , proving the

first claim. Now the second claim follows since gia
−1
i = giw0biw

−1
0 for some bi ∈ A+,

and giw0biw
−1
0 (o) = giw0bi(o) → (gw0)+ = g−. !

Limit set and Limit cone

Denote by mo the K-invariant probability measure on F + K/M.

Definition 2.12 (Limit set). The limit set $ of ! is defined as the set of all points ξ ∈ F
such that the Dirac measure δξ is a limit point of {γ∗mo : γ ∈ !} in the space of Borel

probability measures on F .

Benoist showed that $ is the unique minimal !-invariant closed subset of F .

Moreover, $ is Zariski dense in F ([6, Section 3.6], see also [15, Lem. 2.10] for a stronger

statement).

Lemma 2.13. For any p ∈ X, we have

$ =
{

lim
i→∞

γip ∈ F : γi ∈ !
}

.

Proof. Let (γi)∗mo → δξ , and write γi = kiai3
−1
i ∈ KA+K. Suppose ki → k. Then

(ai)∗mo → δk−1ξ . It follows that ai → ∞ regularly in A+ and k−1ξ = e+, that is, ξ = k+.
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Invariant Measures for Horospherical Actions 13

Hence γi → ξ and hence γi(p) → ξ by Lemma 2.10. This proves the inclusion ⊂. If γip → ξ

and γi = kiai3
−1
i ∈ KA+K, then ai → ∞ regularly and k+

i → ξ . Since (ai)∗mo converges to

δe+ , we have (γi)∗mo → δξ . This proves the other inclusion. !

Any element g ∈ G can be written as the commuting product ghgegu, where gh, ge,

and gu are unique elements that are conjugate to elements of A+, K, and N, respectively.

When gh is conjugate to an element of int A+, g is called loxodromic; in such a case,

gu = e. If a loxodromic element g ∈ G satisfies ϕ−1ghϕ ∈ int A+ for ϕ ∈ G, then

yg := ϕ+ (2.14)

is called the attracting fixed point of g. We then have yg−1 = ϕ−.

Lemma 2.15. [6, Lem. 3.6] The set

{(yγ , yγ −1) ∈ $ × $ : γ is a loxodromic element of !}

is dense in $ × $.

The Jordan projection of g is defined as λ(g) ∈ a+, where exp λ(g) is the element

of A+ conjugate to gh.

Definition 2.16 (Limit cone). The limit cone L! ⊂ a+ of ! is defined as the smallest

closed cone containing the Jordan projection λ(!). Alternatively, it can be defined as

the asymptotic cone of µ(!) [6, Thm. 1.2].

The limit cone L! is a convex subset of a+ with non-empty interior [6, Thm. 1.2].

Definition 2.17 (Growth indicator function). The growth indicator function ψ! : a+ →
R ∪ {−∞} is defined as a homogeneous function, that is, ψ!(tu) = tψ!(u), such that for

any unit vector u ∈ a+,

ψ!(u) := inf
open cones C⊂a+

u∈C

τC

where τC is the abscissa of convergence of the series
∑

γ∈!,µ(γ )∈C e−t‖µ(γ )‖.
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14 M. Lee and H. Oh

We may consider ψ! as a function on a by setting ψ! = −∞ outside of a+. Quint

showed the following:

Theorem 2.18. [39, Thm. IV.2.2] The growth indicator function ψ! is concave, is upper-

semicontinuous, and satisfies

L! = {u ∈ a+ : ψ!(u) > −∞}.

Moreover, ψ! is non-negative on L! and positive on int L!.

3 a-Valued Gromov Product and Generalized BMS Measures

Iwasawa cocycle and a-valued Busemann function

The Iwasawa decomposition says that the product map K × A × N → G is a diffeomor-

phism.

Definition 3.1. The Iwasawa cocycle σ : G × F → a is defined as follows: for

(g, ξ) ∈ G × F , σ (g, ξ) ∈ a is the unique element satisfying

gk ∈ K exp(σ (g, ξ))N (3.2)

where k ∈ K is such that ξ = k+.

It satisfies the cocycle relation

σ (g1g2, ξ) = σ (g1, g2ξ) + σ (g2, ξ)

for all g1, g2 ∈ G and ξ ∈ F .

Definition 3.2. The a-valued Busemann function β : F × X × X → a is defined as

follows: for ξ ∈ F and g(o), h(o) ∈ X,

βξ (g(o), h(o)) := σ (g−1, ξ) − σ (h−1, ξ).

Observe that the Busemann function is continuous in all three variables. To ease

the notation, we will write βξ (g, h) = βξ (g(o), h(o)). We can check that for all g, h, q ∈ G
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Invariant Measures for Horospherical Actions 15

and ξ ∈ F ,

βξ (g, h) + βξ (h, q) = βξ (g, q),

βgξ (gh, gq) = βξ (h, q), and

βξ (g, e) =σ (g−1, ξ).

(3.4)

Geometrically, if ξ = k+ ∈ F for k ∈ K, then for any unit vector u ∈ a+,

〈βξ (g, h), u〉 = lim
t→+∞

d(g(o), ξt) − d(h(o), ξt)

where ξt = k exp(tu)o ∈ X.

Lemma 3.5. For any loxodromic element g ∈ G and p ∈ X,

βyg
(p, gp) = λ(g) and βyg−1

(p, gp) = −λ(g−1).

Proof. Let ϕ ∈ G be so that g = ϕamϕ−1 for some a ∈ A+ and m ∈ M. If p = h(o) for

h ∈ G, then, since g−1 fixes ϕ+ = yg,

βyg
(p, gp) = βϕ+(ho, gho) = σ (h−1, ϕ+) − σ (h−1g−1, ϕ+) = −σ (g−1, ϕ+).

Writing ϕ = kb with k ∈ K and b ∈ P, we have

g−1k = ϕ(am)−1ϕ−1k = kb(am)−1b−1 ∈ Ka−1N.

This gives σ (g−1, ϕ+) = log a−1 = −λ(g), and hence the first identity. The second identity

follows from the first, by replacing g with g−1. !

a-valued Gromov product

Definition 3.6 (Opposition involution). The involution i : a → a defined by

i(u) = − Adw0
(u)

is called the opposition involution; it preserves a+. Note that for all g ∈ G,

λ(g−1) = i(λ(g)) and µ(g−1) = i(µ(g)).
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16 M. Lee and H. Oh

It follows that

i(L!) = L! and ψ! ◦ i = ψ!. (3.7)

Definition 3.8. We define the a-valued Gromov product on F (2) as follows: for

(ξ , η) ∈ F (2),

G(ξ , η) := βg+(e, g) + i βg−(e, g)

where g ∈ G satisfies g+ = ξ and g− = η.

The definition does not depend on the choice of a representative of [g] ∈ G/AM.

For all h ∈ G and (x, y) ∈ F (2), we have the following identity:

G(hx, hy) − G(x, y) = σ (h, x) + i σ (h, y). (3.9)

As G(y, x) = i G(x, y), the Gromov product is not symmetric in general.

Lemma 3.10. [55] There exists a family of irreducible representations (ρα, Vα), α ∈ 2,

of G so that

(1) the highest weight χα of ρα is a positive integral multiple of the fundamental

weight 9α corresponding to α;

(2) the highest weight space of ρα is one dimensional.

For α ∈ 2, denote by V+
α the highest weight space of ρα, and by V<

α its unique

complementary A-invariant subspace in Vα. We have ρα(P)V+
α = V+

α , and hence the map

g ,→ (ρα(g)V+
α )α∈2 factors through a proper immersion

F = G/P →
∏

α∈2

P(Vα).

Let 〈·, ·〉α be a K-invariant inner product on Vα with respect to which A is symmetric;

then V+
α and V<

α are orthogonal to each other. We denote by ‖·‖α the norm on Vα induced

by 〈·, ·〉α. For ϕ ∈ V∗
α , ‖ϕ‖α means the operator norm of ϕ. We also use the notation ‖ · ‖α

for a bi-ρα(K)-invariant norm on GL(Vα).
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Invariant Measures for Horospherical Actions 17

Lemma 3.11. For all α ∈ 2 and g ∈ G,

χα(G(g+, g−)) = − log
|ϕ(v)|

‖ϕ‖α‖v‖α

(3.12)

where v ∈ gV+
α and ϕ ∈ V∗

α is such that ker ϕ = gV<
α .

Proof. If we define G′(g+, g−) to be the unique element of a satisfying (3.12), it is shown

in [47, Lem 4.12] that G′ satisfies (3.9). Hence for all h ∈ G,

G′(h+, h−) − G′(e+, e−) = G(h+, h−) − G(e+, e−).

We claim that G′(e+, e−) = 0; to check this, take ϕ to be the projection V → V+
α parallel to

V<
α . Since V+

α and V<
α are orthogonal, it follows that ‖ϕ‖α = 1. Now for v ∈ V+

α , we have

|ϕ(v)|
‖ϕ‖α‖v‖α

= ‖v‖α

‖v‖α

= 1.

Since G(e+, e−) = 0, we conclude G = G′ on F (2). !

Remark 3.13. In view of this lemma, our definition of Gromov product differs by − i

from the one given in [47].

Patterson–Sullivan measures on $

Definition 3.14 (Conformal measures). Given a closed subgroup ! < G and ψ ∈ a∗, a

Borel probability measure ν on F is called a (!, ψ)-conformal measure if, for any γ ∈ !

and ξ ∈ F ,

dγ∗ν
dν

(ξ) = eψ(βξ (e,γ )) (3.15)

where γ∗ν(Q) = ν(γ −1Q) for any Borel subset Q ⊂ F .

If 2ρ denotes the sum of all positive roots of G with respect to a+, then it is

a standard fact that a (G, 2ρ)-conformal measure is precisely the unique K-invariant

probability measure mo on F (cf. [44, Prop. 3.3]).

Fix a Zariski dense discrete subgroup ! < G in the rest of this section.
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18 M. Lee and H. Oh

Definition 3.16 (Patterson–Sullivan measures). For ψ ∈ a∗, a (!, ψ)-conformal measure

supported on the limit set $ will be called a (!, ψ)-PS measure. By a PS measure on $,

we mean a (!, ψ)-PS measure for some ψ ∈ a∗.

Set

D! := {ψ ∈ a∗ : ψ ≥ ψ!}.

The following collection of linear forms is of particular importance:

D&
! := {ψ ∈ D! : ψ(u) = ψ!(u) for some u ∈ L! ∩ int a+}. (3.17)

By (3.7), ψ ◦ i ∈ D&
! for all ψ ∈ D&

!. The concavity of ψ! and the non-emptiness of int L!

imply that D&
! is non-empty by the Hahn–Banach theorem. When ψ(u) = ψ!(u), we say

ψ is tangent to ψ! at u.

Generalizing the work of Patterson and Sullivan ([37], [53]), Quint [40] con-

structed a (!, ψ)-PS measure for every ψ ∈ D&
!.

Generalized BMS-measure mν1,ν2

Given a pair of !-conformal measures on F , we now define an MA-semi invariant

measure on !\G, which we call a generalized BMS-measure.

Definition 3.18 (Hopf parametrization). The map

gM → (g+, g−, b = βg+(e, g))

gives a homeomorphism between G/M and F (2) × a, which is called the Hopf

parametrization of G/M.

Fixing a pair of !-conformal measures νψ1
, νψ2

on F for a pair of linear forms

ψ1, ψ2 ∈ a∗, we define a Radon measure m̃νψ1 ,νψ2
on G/M as follows: for g = (g+, g−, b) ∈

F (2) × a,

dm̃νψ1 ,νψ2
(g) = eψ1(βg+ (e,g))+ψ2(βg− (e,g)) dνψ1

(g+)dνψ2
(g−)db, (3.19)

where db = d3(b) is the Lebesgue measure on a. This measure is left !-invariant, and

hence induces a measure on !\G/M. We denote by mνψ1 ,νψ2
its M-invariant lift to !\G.
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Invariant Measures for Horospherical Actions 19

It is A-semi-invariant as

a∗mνψ1 ,νψ2
= e(ψ2◦i−ψ1)(log a)mνψ1 ,νψ2

(3.20)

for all a ∈ A [15, Lem. 3.6].

BMS-measures: mBMS
νψ ,νψ◦i

. Let ψ ∈ a∗ and let νψ and νψ◦i be respectively (!, ψ) and

(!, ψ ◦ i)-PS measures. We set

mBMS
νψ

:= mνψ ,νψ◦i
(3.21)

and call it the Bowen–Margulis–Sullivan measure associated to (νψ , νψ◦i). It is right MA-

invariant and its support is given by

: := {x ∈ !\G : x± ∈ $};

since $ is !-invariant, the condition x± ∈ $ is well-defined. Note that for [g] ∈ G/M,

dmBMS
νψ

[g] = eψ(G(g+,g−))dνψ (g+)dνψ◦i(g
−)db. (3.22)

N-invariant BR-measures: mBR
νψ

. We set

mBR
νψ

:= mνψ ,mo
(3.23)

and call it the N-invariant Burger–Roblin measure associated to νψ . See [15, Section 3]

for the equivalence of this definition with the one given in (1.4). The support of mBR
νψ

is

given by

E := {x ∈ !\G : x+ ∈ $}.

4 Anosov Groups and AM-Ergodicity of BMS Measures

Let ! be a Zariski dense discrete subgroup of G, and set $(2) := ($ × $) ∩ F (2).

Definition 4.1. We say that ! < G is Anosov, if it is a finitely generated word

hyperbolic group admitting a !-equivariant homeomorphism ζ : ∂! → $ such that

(ζ(x), ζ(y)) ∈ $(2) for all x '= y ∈ ∂!, where ∂! denotes the Gromov boundary of !.
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20 M. Lee and H. Oh

Such ζ is Hölder continuous and exists uniquely ([27, Prop. 3.2] and [8, Lem. 2.5]).

We call it the limit map of !. We note that the antipodal property of $ follows directly:

$ × $ − {(ξ , ξ)} = $(2). (4.2)

In the literature, this definition is referred to as P-Anosov for a minimal parabolic

subgroup P of G. See [22], [21], and [25] for equivalent characterizations of Anosov

subgroups.

In the rest of this section, let ! be an Anosov subgroup of G.

The following theorem was proved by Quint [41, Prop. 3.2 and Thm. 4.7] for

Schottky groups and by Sambarino [48, Coro. 3.12, 3.13 and 4.9] and by [15, Thm. 7.9]

for general Anosov subgroups in view of the results in [13] (see also [15, Remark 7.10]):

Theorem 4.3.

(1) L! ⊂ int a+ ∪ {0} and every non-trivial element of ! is loxodromic ([27], [22]).

(2) ψ! is strictly concave and analytic on int L!.

(3) D&
! = {ψ ∈ D! : ψ(u) = ψ!(u) for some u ∈ int L!}.

(4) For any ψ ∈ D&
!, ψ > 0 on L! − {0}.

(5) For any ψ ∈ D&
!, there exists a unique (!, ψ)-PS measure, say νψ , on F . In

particular, νψ is !-ergodic.

(1) and (3) imply that if ψ ∈ D! is tangent to ψ! at some u ∈ L! − {0}, then

u ∈ int L!. Note also that (1) implies that any Anosov subgroup is regular as defined in

Def. 2.6. For u ∈ L!, we denote by Duψ! the directional derivative of ψ! at u, whenever

it exists.

Proposition 4.4. For each unit vector u ∈ int L!, ψu := Duψ! ∈ D&
! and Duψ!(u) =

ψ!(u). Moreover, the map u ,→ ψu induces a homeomorphism between the set of unit

vectors of int L! (+ int PL!) and D&
!. Hence D&

! + Rrank G−1.

Proof. See ([48, Thm. A], [15, Lem. 2.23]) for the first claim. The fact that ψu ∈ D&
! (and

hence the well-definedness) and surjectivity of the map u ,→ Duψ! follows from it, and

the injectivity follows from the strict concavity of ψ! as in Theorem 4.3(2). Continuity

follows from the analyticity of ψ! on int L!. We claim that if Dui
ψ! → Duψ! for some

unit vectors ui, u ∈ int L!, then ui → u. Let v ∈ L! be a limit of the sequence ui.

By passing to a subsequence, assume ui → v. By the upper-semi continuity of ψ!
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Invariant Measures for Horospherical Actions 21

(Theorem 2.18), we have

ψ!(v) ≥ lim sup
i→∞

ψ!(ui).

Since ψ!(ui) = Dui
ψ!(ui) and Dui

ψ! → Duψ!, we get ψ!(v) ≥ Duψ!(v). Since Duψ! ∈ D&
!,

we have ψ!(v) = Duψ!(v). It follows from Theorem 4.3(1) and (3) that v ∈ int L!. Since

ψ!(u) = Duψ!(u), the strict concavity of ψ! on int L! implies that u = v, establishing

the homeomorphism. Since int(L!) is a non-empty open convex cone of a+, int(PL!) +
P int(L!) is homeomorphic to Rrank G−1. !

We denote by ∇ψ! the gradient of ψ! so that Duψ!(v) = 〈∇ψ!(u), v〉 for u ∈ int L!

and v ∈ a. Set

O! := {∇ψ!(u) ∈ a : u ∈ int L!}, (4.5)

which is an open convex cone of a − {0}. By Proposition 4.4, the map w ,→ 〈w, ·〉 gives

a homeomorphism between {∇ψ!(u) ∈ a : u ∈ int L!, ‖u‖ = 1} and D&
!, and hence a

homeomorphism

O! + R+D&
!.

Quint showed that there exists a unique unit vector, say u! ∈ int a+, such that ψ!(u!) =
max‖u‖=1 ψ!(u). The vector u! is called the direction of maximal growth of !. If we set

δ! := ψ!(u!), then ∇ψ!(u!) = δ!u! and

δ! = lim sup
T→∞

log #{γ ∈ ! : ‖µ(γ )‖ < T}
T

.

Consider the following dual cone to L!:

L∗
! := {w ∈ a : 〈w, v〉 ≥ 0 for all v ∈ L!}.

Note that int L&
! = {w ∈ a : 〈w, v〉 > 0 for all non-zero v ∈ L!}.

Lemma 4.6. We have O! = int L∗
!. In particular,

a+ − {0} ⊂ O! ⊂ a − {0}.
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22 M. Lee and H. Oh

Proof. If w ∈ O!, then 〈w, ·〉 ∈ R+D&
!, and hence by Theorem 4.3 (3), 〈w, v〉 > 0 for all

v ∈ L! − {0}. Hence O! ⊂ int L∗
!. Now suppose w ∈ int L∗

!. Setting ψ(v) := 〈w, v〉, we

claim that ψ ∈ R+D&
!; this implies int L∗

! ⊂ O!. Since w ∈ int L∗
!, ψ > 0 on L! − {0} and

hence c := max‖v‖=1,v∈L!
ψ(v) > 0. Since δ!c−1ψ ≥ ψ! on L!, and hence on a, it follows

that for some ε > 0, εψ ∈ D&
!, that is, ψ ∈ R+D&

!.

Since L! − {0} ⊂ int a+ and the angle between any two walls of a+ is at most π/2,

the second claim follows. !

AM-ergodicity of mBMS
ψ

We fix ψ ∈ D&
! and set

ν := νψ and mBMS
ψ := mBMS

νψ ,νψ◦i
. (4.7)

The composition c := ψ ◦ σ : ! × $ → R is a Hölder cocycle satisfying

c(γ , yγ ) = ψ(λ(γ )) > 0 for all non-trivial γ ∈ !.

Consider the action of ! on $(2) × R given as follows: for γ ∈ ! and

(ξ , η, t) ∈ $(2) × R,

γ .(ξ , η, t) = (γ ξ , γ η, t + c(γ , ξ)).

The R-action on $(2) × R defined by

τs(ξ , η, t) = (ξ , η, t + s)

will be called translation flow.

The following is proved in [49, Thm. 3.2] when ! is the fundamental group of

a closed negatively curved manifold, and can be extended for general Anosov groups,

using ingredients from [8]. The sketch of the proof can be found in [12, Appendix A].

Theorem 4.8. The action of ! on $(2) × R is proper and cocompact, and the measure

dm̃ψ (ξ , η, t) = eψ(G(ξ ,η))dνψ (ξ) ⊗ dνψ◦i(η) ⊗ dt induces the measure of maximal entropy,

say mψ , for {τs : s ∈ R} on !\$(2) × R. In particular, mψ is {τs : s ∈ R}-ergodic.
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Invariant Measures for Horospherical Actions 23

In terms of the Hopf parametrization, ! acts on $(2) ×a = supp m̃BMS
ψ as follows:

for γ ∈ ! and (ξ , η, v) ∈ $(2) × a,

γ .(ξ , η, v) = (γ ξ , γ η, v + σ (γ , ξ)).

Corollary 4.9. For any ψ ∈ D&
!, the AM-action on (!\G, mBMS

ψ ) is ergodic and if

rank G ≥ 2, |mBMS
ψ | = ∞.

Proof. The {τs : s ∈ R}-ergodicity of mψ is equivalent to ergodicity of ($(2), !, νψ ⊗
νψ◦i|$(2) ), which is again equivalent to the AM-ergodicity of mBMS

ψ . Consider the

projection map π : ! \$(2) × a → ! \$(2) × R induced by the !-equivariant map

$(2) × a → $(2) × R given by (ξ , η, v) ,→ (ξ , η, ψ(v)). Then π is a principal ker ψ-

bundle, which is trivial as ker ψ is a vector group. It follows that there exists a ker ψ-

equivariant homeomorphism between ! \$(2) × a and
(
! \$(2) × R

)
× ker ψ . Therefore,

mBMS
ψ disintegrates over the measure mψ with conditional measure being the Lebesque

measure on ker ψ + RrankG−1 so that mBMS
ψ + mψ ⊗Lebker ψ (cf. [47, Prop. 3.5]). This gives

the infinitude of |mBMS
ψ | when G has rank at least 2. !

5 Comparing a-Valued Busemann Functions and Distances via ψ

When G has rank one, for any p, q ∈ X, the maximum and minimum of Busemann

function βξ (p, q), ξ ∈ F are always achieved as ±d(p, q). A higher rank generalization

of this fact can be stated as follows.

Lemma 5.1. Let ψ ∈ a∗ be strongly positive, in the sense that ψ is a non-negative linear

combination of fundamental weights 9α, α ∈ 2. Then for any p, q ∈ X and ξ ∈ F , we

have

− ψ(a(q, p)) ≤ ψ(βξ (p, q)) ≤ ψ(a(p, q)). (5.2)

Proof. We use notations introduced in Lemma 3.10. Since 9α is a positive multiple of

χα, it suffices to prove the claim when ψ = χα for α ∈ 2.

Write q = go, and p = hq for some g, h ∈ G. Note that

χα(a(p, q)) = χα(µ(g−1h−1g)) = log‖ρα(g−1h−1g)‖α.
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24 M. Lee and H. Oh

Write g−1ξ = k+ for some k ∈ K and g−1h−1gk = k′an ∈ KAN. Then

βξ (p, q) = σ (g−1h−1g, k+) = log a.

Hence for a unit vector v ∈ Vα,

χα(βξ (p, q)) = log ‖ρα(g−1h−1g)ρα(k)v‖ ≤ log ‖ρα(g−1h−1g)‖α = χα(a(p, q)).

Since ‖ρα(g−1)‖−1 ≤ ‖ρα(g)v‖ and χα(a(q, p)) = log‖ρα(g−1hg)‖α, we also get

χα(βξ (p, q)) ≥ log ‖ρα(g−1hg)‖−1
α = −χα(a(q, p)).

!

There are ψ ∈ D&
! that are not strongly positive (see Lemma 4.6). We establish

the following modification for Anosov groups, which is the main goal of this section:

Theorem 5.3. Let ! < G be Anosov. For any ψ ∈ D&
! and p ∈ X, there exists

C = C(ψ , p) > 0 such that for all γ ∈ ! and ξ ∈ $,

− ψ(a(p, γ p)) − C ≤ ψ(βξ (γ p, p)) ≤ ψ(a(γ p, p)) + C.

We begin by noting that ψ(a(γ p, p)) is always positive possibly except for

finitely many γ ’s:

Lemma 5.4. Let ψ ∈ D&
! and p ∈ X. For any sequence γi → ∞ in !, ψ(a(γip, p)) → +∞.

Proof. By Lemma 2.3, it suffices to check that ψ(µ(γi)) → +∞ as i → ∞. Setting

ti := ‖µ(γi)‖−1, passing to a subsequence, we may assume that tiµ(γi) converges to some

unit vector u ∈ a. Since L! is the asymptotic cone of µ(!), we have u ∈ L!. Hence, we

have ψ(u) > 0 by Lemma 4.3. Since ψ(tiµ(γi)) → ψ(u) and ψ(µ(γi)) = t−1
i ψ(tiµ(γi)), we

have ψ(µ(γi)) → +∞. !

The following is the main ingredient of the proof of Theorem 5.3:

Proposition 5.5. For p ∈ X, there exists C = C(p) > 0 such that for each (γ , ξ) ∈ ! × $,

we can find γ1 = γ1(ξ), γ2 = γ2(ξ) ∈ ! satisfying

(1) γ = γ1γ2 and |γ | = |γ1| + |γ2|;
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Invariant Measures for Horospherical Actions 25

(2) ‖βξ (γ p, p) + µ(γ1) − µ(γ −1
2 )‖ ≤ C;

(3) ‖a(γ p, p) − µ(γ −1
1 ) − µ(γ −1

2 )‖ ≤ C.

Proof of Theorem 5.3 using Proposition 5.5:. For γ ∈ ! and ξ ∈ $, choose γ1, γ2 ∈ !

as in Proposition 5.5. Then

ψ(βξ (γ p, p)) ≤ ψ(µ(γ −1
2 ) − µ(γ1)) + C‖ψ‖

≤ ψ(µ(γ −1
2 ) + µ(γ −1

1 )) + C‖ψ‖

≤ ψ(a(γ p, p)) + 2C‖ψ‖,

where the second inequality is valid because ψ(µ(γ ±1
1 )) ≥ 0. Similarly, we get

ψ(βξ (γ p, p)) ≥ ψ(µ(γ −1
2 ) − µ(γ1)) − C‖ψ‖

≥ −ψ(µ(γ2) + µ(γ1)) − C‖ψ‖.

Since i µ(g−1) = µ(g), i a(p, q) = a(q, p) and the norm is i-invariant, we get ψ(βξ (γ p, p)) ≥
ψ(a(p, γ p)) − 2C‖ψ‖. !

The rest of this section is devoted to a proof of Proposition 5.5 in which shadows

of F and ∂! as well as their relationship play important roles.

Shadows in F

Let q ∈ X and r > 0. The shadows of the ball B(q, r) viewed from p ∈ X and ξ ∈ F are

respectively defined as

Or(p, q) := {gk+ ∈ F : k ∈ K, gk int A+o ∩ B(q, r) '= ∅}

where g ∈ G satisfies p = g(o), and

Or(ξ , q) := {h+ ∈ F : h− = ξ , ho ∈ B(q, r)}.

The following two lemmas 5.6 and 5.7 are proved for G = SLn(R) in [54]. For

r > 0, we set Ar = {a ∈ A : ‖ log a‖ ≤ r}, and A+
r = Ar ∩ A+.
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26 M. Lee and H. Oh

Lemma 5.6. If a sequence qi ∈ X converges to ξ ∈ F , then for any r > 0, q ∈ X and

ε > 0, we have, for all sufficiently large i,

Or−ε(qi, q) ⊂ Or(ξ , q) ⊂ Or+ε(qi, q).

Proof. Since Or(ξ , g(o)) = gOr(g
−1ξ , o) = kgOr(e

+, o) for k ∈ K with k+ = g−1ξ , it

suffices to consider the case when q = o and ξ = e+. Since qi → e+, we have qi = kiaio for

some ki → e in K and ai → ∞ regularly in A+. As ki → e, Or−ε/2(e+, o) ⊂ k−1
i Or(e

+, o) ⊂
Or+ε/2(e+, o) for all sufficiently large i. Therefore, we may assume without loss of

generality that qi = ai. Let ξ ∈ Or(e
+, o), that is, ξ = h+ for some h ∈ Pw0 ∩ KA+

r K.

Note that the sequence a−1
i hw−1

0 ai is bounded as ai ∈ A+ and hw−1
0 ∈ P. If we write

a−1
i h = k̃iãiñi ∈ KAN, then the following gives the KAN+-decomposition of a−1

i hw−1
0 ai:

a−1
i hw−1

0 ai = k̃iãiñiw
−1
0 ai = (k̃iw

−1
0 )(w0ãiw

−1
0 ai)(a

−1
i w0ñiw

−1
0 ai) ∈ KAN+.

As the product map K × A × N+ → G is a diffeomorphism, there exists R > 1 such

that {w0ãiw
−1
0 ai ∈ A : i ∈ N} ⊂ AR. Moreover, as the sequence a−1

i w0ñiw
−1
0 ai must be

bounded while ai → ∞ regularly in A+, it follows that ñi → e as i → ∞. We now claim

that for all sufficiently large i 8 1,

aik̃i int A+ ∩ KA+
r+εK '= ∅

and hence ξ = h+ = aik̃
+
i ∈ Or+ε(aio, o). Set bi = w0a−1

i w−1
0 . Then

aik̃ibi = aik̃i(w0a−1
i w−1

0 ) = hñ−1
i (ã−1

i w0a−1
i w−1

0 ).

Since ñi → e as i → ∞ and ã−1
i w0a−1

i w−1
0 ∈ AR, we can find b̃i ∈ biAR such that

aik̃ib̃i → h as i → ∞. On the other hand, by the strong wavefront lemma [20, Thm. 2.1],

there exists a neighborhood O of e in G such that KA+
r KO ⊂ KAr+εK. Since h ∈ KA+

r K

and b̃i ∈ int A+ for all large i 8 1, we obtain that aik̃ib̃i ∈ KAr+εK for all sufficiently

large i, proving the inclusion on the right hand side.

Now, in order to show Or−ε(ai, o) ⊂ Or(e
+, o), let ηi ∈ Or−ε(aio, o) be arbitrary.

Since Or−ε(aio, o) = aiOr−ε(o, a−1
i o), there exists k̃i ∈ K and bi ∈ int A+ such that k̃+

i ∈
Or−ε(o, a−1

i o), ηi = aik̃
+
i and aik̃ibi ∈ KA+

r−εK. Since a−1
i o → e−, it follows that k̃+

i → e−

as i → ∞. Hence, k−
i is in general position with e− for all large i and hence (aik̃ibi)

− =
aik̃

−
i → e+ as i → ∞. For all large i, we have ni ∈ N such that (aik̃ibini)

− = e+ and
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Invariant Measures for Horospherical Actions 27

d(nio, o) < ε. Set hi := aik̃ibini. It follows that h+
i = ηi and h−

i = e+. Since

d(hio, o) = d(aik̃ibinio, o) ≤ d(aik̃ibinio, aik̃ibio) + d(aik̃ibio, o)

= d(nio, o) + d(aik̃ibio, o) < ε + (r − ε) = r,

we have ηi = h+
i ∈ Or(e

+, o) as desired. This finishes the proof. !

The following is an analogue of Sullivan’s shadow lemma:

Lemma 5.7. There exists κ > 0 such that for any p, q ∈ X and r > 0, we have

sup
ξ∈Or(p,q)

‖βξ (p, q) − a(p, q)‖ ≤ κr.

We will prove this lemma using the following:

Lemma 5.8.

(1) There exists c1 > 1 such that for all r ≥ 0,

KA+
r K ⊂ KAc1rN.

(2) There exists c2 > 1 such that for all g ∈ G and r ≥ 0, we have

µ(gKA+
r K) ⊂ µ(g) + log Ac2r.

Proof. We use notations introduced in Lemma 3.10. Since χα, α ∈ 2, form a dual basis

of a∗, ‖·‖∗ := ∑
α∈2 |χα(·)| defines a norm on a. Let k ∈ K and a ∈ A+

r be arbitrary. Write

ak = k′bn ∈ KAN. Let α ∈ 2. For vα ∈ V+
α \{0}, we have

‖ρα(ak)vα‖α = ‖ρα(k′bn)vα‖α = ‖ρα(b)vα‖α = eχα(log b)‖vα‖α.

On the other hand, we have

e−χα(log a)‖vα‖α ≤ ‖ρα(ak)vα‖α ≤ eχα(log a)‖vα‖α.

Hence |χα(log b)| ≤ |χα(log a)| for all α ∈ 2; so ‖ log b‖∗ ≤ ‖ log a‖∗. Since ‖ ·‖∗ and

‖ · ‖ are comparable, the first claim follows.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac262/6748198 by Yale U

niversity user on 05 June 2023



28 M. Lee and H. Oh

Note that eχα(µ(g)) = ‖ρα(g)‖α for g ∈ G. For all k ∈ K and a ∈ A+,

‖ρα(gka)‖α ≤ ‖ρα(g)‖α‖ρα(k)‖α‖ρα(a)‖α = eχα(log a)‖ρα(g)‖α,

and similarly,

‖ρα(g)‖α ≤ ‖ρα(gka)‖α‖ρα(k−1)‖α‖ρα(a−1)‖α = eχα(log a)‖ρα(gka)‖α.

It follows that −χα(log a) ≤ χα(µ(gka) − µ(g)) ≤ χα(log a). This means that

‖µ(gka) − µ(g)‖∗ ≤ ‖ log a‖∗, finishing the proof. !

Since i(µ(g)) = µ(g−1), Lemma 5.8(2) easily implies that for all g ∈ G and r ≥ 0,

we have

µ(A+
r KgKA+

r ) ⊂ µ(g) + log A2c2r. (5.9)

Proof of Lemma 5.7. It suffices to prove the claim for p = o and q = a−1o for a ∈ A+.

Let ξ = k+ ∈ Or(o, a−1o) for k ∈ K. Then there exists b ∈ int A+ such that d(kbo, a−1o) < r.

Hence akb ∈ KA+
r K. Now note that ak ∈ Ke−βξ (o,a−1o)N by the definition of βξ (o, a−1o) and

hence

akb ∈ Kbe−βξ (o,a−1o)N ∩ KA+
r K.

By Lemma 5.8(1), be−βξ (o,a−1o) ∈ Ac1r. On the other hand, b ∈ Ka−1KA+
r K, and hence

log b ∈ µ(a−1KA+
r K). By Lemma 5.8(2), b ∈ a−1Ac2r. Since a(o, a−1o) = log(a−1), the

lemma is now proved. !

Lemma 5.7 implies Theorem 5.3 for those ξ ∈ Or(γ p, p). In order to control the

value of βξ (γ p, p) when ξ /∈ Or(γ p, p), we use the Anosov property of !. Let us recall

some basic terminologies for hyperbolic groups for which we refer to [9] and [24].

Discrete geodesics

Let ! be a finitely generated word hyperbolic group. We fix a finite symmetric

generating subset S of ! once and for all. Let | · | : ! → N ∪ {0} denote the word

length associated to S. We denote by dw the associated left-invariant word metric, that

is, dw(γ1, γ2) := |γ −1
1 γ2| for γ1, γ2 ∈ !.
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Invariant Measures for Horospherical Actions 29

A finite sequence (γ0, · · · , γn) of elements of ! will be called a finite path if

γ −1
i γi+1 ∈ S for all i. Such a path will be called a geodesic segment if |γ −1

0 γn| = n. Infinite

and bi-infinite paths can be defined analogously. They will be called geodesic rays and

geodesic lines, respectively, if all of their finite subpaths are geodesic segments.

Let ∂! denote the Gromov boundary of !, that is, ∂! is the set of equivalence

classes of geodesic rays, where two rays are equivalent to each other if and only if

their Hausdorff distance is finite. For a geodesic ray (γ0, γ1, · · · ), we use the notation

[γ0, γ1, · · · ] for its equivalence class in ∂!.

Let (·|·) denote the Gromov product in the hyperbolic space ! based at e ∈ !:

(γ1|γ2) := 1
2

(
dw(γ1, e) + dw(γ2, e) − dw(γ1, γ2)

)
. This extends to ∂!: for x, y ∈ ∂!, (x|y) :=

sup lim infi,j→∞(γi|γ ′
j ) where the supremum is taken over all sequences γi and γ ′

j such

that x = lim γi and y = lim γ ′
j . The union ! ∪ ∂! is a compact space with the topology

given as follows: a sequence γi ∈ ! converges to x ∈ ∂! if and only if limi→∞(γi|vi) = ∞
for any geodesic ray (e, v1, v2, · · · ) representing x.

For any x, y ∈ ! ∪ ∂!, there exists a discrete geodesic starting from x and ending

at y, which may not be unique. By [x, y], we mean one of those geodesics and by [x, y) we

mean [x, y] − {y}.
A geodesic triangle is a union of three geodesics, pairwise sharing a common

endpoint in ! ∪ ∂!. Since ! is hyperbolic, there exists δ = δ(!, S) > 0 such that for any

geodesic triangle <, we can find a point on each edge of < so that the set of these triples

has diameter less than δ.

Shadows in ∂!

For R > 0 and γ1, γ2 ∈ !, the shadow of the ball BR(γ2) viewed from γ1 is given by

OR(γ1, γ2) = {x ∈ ∂! : [γ1, x] ∩ BR(γ2) '= ∅ for some geodesic ray [γ1, x]}.

Shadows satisfy the equivariance property: for any γ , γ1, γ2 ∈ ! and R > 0,

γ OR(γ1, γ2) = OR(γ γ1, γ γ2). (5.10)

Lemma 5.10. There exist R0 > 1 and N0 > 0 such that the following holds: if γ1, γ2 ∈ !

with |γ1|, |γ2| ≥ N0 satisfies |γ1γ2| = |γ1| + |γ2|, then for all R ≥ R0,

OR(γ1γ2, e) ∩ OR(γ1γ2, γ1) ∩ OR(γ1, e) '= ∅.
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30 M. Lee and H. Oh

Proof. Since |γ1γ2| = |γ1|+|γ2|, there exists a geodesic segment [γ1γ2, e] passing through

γ1, say α = (γ1γ2, · · · , γ1, · · · , e). Since ! is word hyperbolic, there exists C > 0 such that α

lies in the C-neighborhood of some geodesic line, say (· · · , u−1, u0, u1, · · · ). Set N0 := 4C.

Choose um, un, and u3 to be elements closest to γ1γ2, γ1, and e, respectively.

We claim that |m − 3| ≥ max(|m − n|, |n − 3|). By the triangle inequality,

|n − 3| = dw(un, u3) ≤ dw(γ1, e) + 2C = |γ1| + 2C;

|m − n| = dw(um, un) ≤ dw(γ1γ2, γ1) + 2C = |γ2| + 2C.

Since |γ1γ2| = |γ1| + |γ2| and |γ1γ2| ≤ dw(um, u3) + 2C = |m − 3| + 2C, it follows that

|γ2| − 2C ≥ max(|γ1|, |γ2|) − 2C + N0

= max(|γ1|, |γ2|) + 2C

≥ max(|n − 3|, |m − n|).

This proves the claim.

Now possibly after flipping the geodesic, we may assume that m ≤ 3. Then the

claim implies that 3−m=|m−n|+|n−3| and hence m ≤ n≤ 3. Set x := [u0, u1, u2, · · · ]∈∂!.

Choose geodesic rays [γ1γ2, x) and [γ1, x). Since the Hausdorff distance between [γ1γ2, x)

and the ray (um, um+1, · · · ) is at most dw(γ1γ2, um) + δ ≤ C + δ, it follows that there exist

v1, v2 ∈ ! lying on [γ1γ2, x] such that dw(un, v1) < C + δ and dw(u3, v2) < C + δ. Since the

Hausdorff distance between [γ1, x) and the ray (un, un+1, · · · ) is at most dw(γ1, un) + δ <

C + δ, there exists v3 ∈ ! lying on [γ1, x) such that dw(u3, v3) < C + δ. These altogether

imply that

x ∈ O2C+δ(γ1γ2, e) ∩ O2C+δ(γ1γ2, γ1) ∩ O2C+δ(γ1, e).

!

In the rest of this section, we assume that ! is an Anosov subgroup of G. The

following Morse property of Kapovich–Leeb–Porti [25, Prop. 5.16] says that a discrete

geodesic line (resp. ray) of ! is contained in a uniform neighborhood of some A-orbit

(resp. A+-orbit) in X.

Proposition 5.12 (Morse property). For any Anosov subgroup ! < G, there exists R1 > 0

such that
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(1) If (· · · , γ−1, γ0, γ1, · · · ) is a geodesic line in (!, dw), then

sup
k∈Z

d(γko, gAo) ≤ R1

for any g ∈ G such that g+ = ζ([γ0, γ1, · · · ]), g− = ζ([γ0, γ−1, · · · ]).

(2) If (γ0, γ1, · · · ) is a geodesic ray in (!, dw), then

sup
k∈N

d(γko, gA+o) ≤ R1,

where g ∈ γ0K is the unique element satisfying g+ = ζ([γ0, γ1, · · · ]).

Using this proposition, we will show that shadows in the Gromov boundary ∂!

are mapped to shadows in the Furstenberg boundary F by the limit map ζ : ∂! → $

(Proposition 5.14). We will need the following lemma:

Lemma 5.13. There exists C > 0 such that for all γ ∈ !, ‖µ(γ )‖ ≤ C|γ |. In particular,

d(o, γ o) ≤ Cdw(e, γ ).

Proof. We use notations from Lemma 3.10. Consider the norm ‖·‖∗ := ∑
α∈2 |χα(·)|

on a. Let γ ∈ ! be arbitrary, and write γ = s1 · · · s3 with si ∈ S and 3 = |γ |. Since

χα(µ(g)) = log‖ρα(g)‖α for all g ∈ G and ‖ρα(s1 · · · s3)‖α ≤ ‖ρα(s1)‖α · · · ‖ρα(s3)‖α, it follows

that for each α ∈ 2,

χα(µ(s1 · · · s3)) ≤ χα(µ(s1)) + · · · + χα(µ(s3)).

Noting that χα is positive on a+, we have

‖µ(γ )‖∗ =
∑

α∈2

|χα(µ(γ ))| =
∑

α∈2

χα(µ(γ ))

≤
∑

α∈2

(
χα(µ(s1)) + · · · + χα(µ(s3))

)
≤ C|γ |,

where C := max
{∑

α∈2 χα(µ(s)) : s ∈ S
}
. Since ‖·‖ and ‖·‖∗ are comparable, this finishes

the proof. !
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32 M. Lee and H. Oh

Proposition 5.14 (Shadows go to shadows). There exists c > 0 such that for all R > 1

and γ , γ ′ ∈ !,

ζ(OR(γ ′, γ )) ⊂ OcR(γ ′o, γ o).

Proof. By (5.10), it suffices to consider the case γ ′ = e. Let x ∈ OR(e, γ ). By the

definition of OR(e, γ ), there exists a geodesic ray (γ ′
0 = e, γ ′

1, γ ′
2, · · · ) representing x such

that dw(γ ′
m, γ ) < R for some m ∈ N. Let R1 > 0 be the constant from Proposition 5.12,

and k ∈ K be an element such that k+ = ζ([e, γ ′
1, γ ′

2, · · · ]). Then by Proposition 5.12(2),

there exists a ∈ A+ such that d(γ ′
mo, kao) ≤ R1. By Lemma 5.13, we have

d(γ o, γ ′
mo) = ‖µ(γ −1γ ′

m)‖ < Cdw(γ , γ ′
m) < CR.

Therefore,

d(γ o, kao) ≤ d(γ o, γ ′
mo) + d(γ ′

mo, kao) ≤ CR + R1.

This implies that ζ(x) ∈ OCR+R1
(o, γ o). Since R > 1, the conclusion follows by setting

c := C + R1. !

Corollary 5.15. There exists R2 > 0 such that for all γ1, γ2 ∈ ! with |γ1γ2| = |γ1| + |γ2|,
we have

‖µ(γ1γ2) − µ(γ1) − µ(γ2)‖ ≤ R2.

Proof. Let N0 and R0 be given by Lemma 5.10. If one of |γ1|, |γ2| is less than N0, then

the claim holds by Lemma 2.3. Now assume that |γ1|, |γ2| ≥ N0. Then by Lemma 5.10 and

Proposition 5.14, we can choose

ξ ∈ OcR0
(γ1γ2o, o) ∩ OcR0

(γ1γ2o, γ1o) ∩ OcR0
(γ1o, o),

where c is as in Proposition 5.14. By Lemma 5.7 and the cocycle identity

βξ (γ1γ2o, o) = βξ (γ1γ2o, γ1o) + βξ (γ1o, o),

we have

‖a(γ1γ2o, o) − a(γ1o, o) − a(γ2o, o)‖ ≤ 3κcR0.
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Invariant Measures for Horospherical Actions 33

Since a(go, o) = i µ(g) for all g ∈ G and i preserves ‖·‖,

‖µ(γ1γ2) − µ(γ1) − µ(γ2)‖ ≤ 3κcR0.

!

Proof of Proposition 5.5. We may assume that p = o by Lemma 2.3. Let γ ∈ ! and

ξ ∈ $ be arbitrary. If γ = γ1γ2, we have

βξ (γ o, o) = βξ (γ o, γ1o) − βξ (o, γ1o).

We claim that we can find γ1, γ2 ∈ ! so that γ = γ1γ2, |γ | = |γ1| + |γ2|, and

ξ ∈ Oc(δ+1)(γ o, γ1o) ∩ Oc(δ+1)(o, γ1o) (5.16)

where c > 0 is as in Proposition 5.14.

If ξ ∈ Oc(δ+1)(o, γ o), then we may simply set γ1 = γ and γ2 = e. In general,

we find γ1 as follows. Consider a geodesic triangle < whose vertices are e, γ ∈ !, and

ζ−1(ξ) ∈ ∂!. Since ! is hyperbolic, we can find three points on <, one on each edge,

whose diameter is less than δ. Let γ1 ∈ ! be the point on the geodesic segment joining e

and γ , and set γ2 := γ −1
1 γ . We then have |γ | = |γ1|+ |γ2|, and ζ−1(ξ) ∈ Oδ(γ , γ1)∩Oδ(e, γ1).

Now the claim follows from Proposition 5.14.

Therefore, by Lemma 5.7,

max(‖βξ (γ o, γ1o) − µ(γ −1
2 )‖, ‖βξ (o, γ1o) − µ(γ1)‖) ≤ κc(δ + 1)

and hence

‖βξ (γ o, o) + µ(γ1) − µ(γ −1
2 )‖ ≤ 2κc(δ + 1).

Since |γ | = |γ1| + |γ2| and S is symmetric, we have |γ −1| = |γ −1
1 | + |γ −1

2 |. As a(γ o, o) =
µ(γ −1), we have, by Corollary 5.15,

‖a(γ o, o) − µ(γ −1
1 ) − µ(γ −1

2 )‖ ≤ R2.

Hence it suffices to set C := max(2κc(δ + 1), R2). !
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34 M. Lee and H. Oh

6 Virtual Visual Metrics via ψ-Gromov Product

In this section, we let ! < G be an Anosov subgroup, and fix ψ ∈ D&
!. The main aim here

is to show that exponentiating the following ψ-Gromov product defines a virtual visual

metric on $ up to a small power.

Definition 6.1. The ψ-Gromov product based at o is a function F (2) → R defined as

follows: for any (ξ1, ξ2) ∈ F (2),

[ξ1, ξ2]ψ ,o := ψ(G(ξ1, ξ2)),

where G is the a-valued Gromov product defined in Definition 3.8. For p = g(o) ∈ X, we

set

[ξ1, ξ2]ψ ,p := [g−1ξ1, g−1ξ2]ψ ,o.

For simplicity, we set [ξ1, ξ2]p := [ξ1, ξ2]ψ ,p.

Define dp = dψ ,p : F (2) → R≥0 by

dp(ξ1, ξ2) = e−[ξ1,ξ2]p . (6.2)

It follows from (3.9) that for all g ∈ G, p ∈ X, and (ξ1, ξ2) ∈ F (2), we have

dgp(ξ1, ξ2) = e−ψ(βξ1 (gp,p)+i βξ2 (gp,p))dp(ξ1, ξ2) = dp(g−1ξ1, g−1ξ2). (6.3)

We set [ξ , ξ ]p = +∞ and dp(ξ , ξ) = 0 for all ξ ∈ F . By the antipodal property

(4.2), [·, ·]p and dp are defined on all of $ × $. The following is the main theorem of this

section:

Theorem 6.4. Fix p ∈ X. For all sufficiently small ε > 0, there exist a metric dε = dε(p)

on $ and a constant Cε = Cε(p) > 0 such that for all ξ1, ξ2 ∈ $,

Cε
−1dψ ,p(ξ1, ξ2)ε ≤ dε(ξ1, ξ2) ≤ Cεdψ ,p(ξ1, ξ2)ε.

This is an analogue of [9, Part III, Prop. 3.21] for Gromov hyperbolic spaces.
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Invariant Measures for Horospherical Actions 35

Weak ultrametric inequality

A well-known construction [19, Section 7.3] shows the existence of a metric in

Theorem 6.4, provided there exists C > 0 such that for all ξ1, ξ2, ξ3 ∈ $, we have

(1) (weak symmetry) dp(ξ1, ξ2) ≤ eCdp(ξ2, ξ1);

(2) (weak ultrametric inequality) dp(ξ1, ξ3) ≤ eC max(dp(ξ1, ξ2), dp(ξ2, ξ3)).

Hence Theorem 6.4 follows from the following proposition:

Proposition 6.5. There exists C = C(p) > 0 such that for all ξ1, ξ2, ξ3 ∈ $, we have

[ξ1, ξ2]p ≥ [ξ2, ξ1]p − C;

[ξ1, ξ3]p ≥ min([ξ1, ξ2]p, [ξ2, ξ3]p) − C.

In the case of X = H2, the classical Gromov product satisfies that there exists a

uniform constant C > 0 such that for any x, y ∈ ∂H2,

|G(x, y) − 2d(o, z)| ≤ C

where z is the unique projection of o to the geodesic connecting x and y. In the following

lemma 6.6, we establish the analogous property for a-valued Gromov products on $×$

using the Morse property of Anosov groups.

For γ ∈ ! and any geodesic segment α in !, we define the set of projections of γ

to α by

πα(γ ) := {γ ′ ∈ α : dw(γ , γ ′) = dw(γ , α)}.

Since ! is hyperbolic, the diameter of πα(γ ) is less than 4δ.

Lemma 6.6. There exists C1 > 0 such that for any x '= y in ∂! and γ ∈ π[x,y](e), we have

‖G(ζ(x), ζ(y)) − (µ(γ ) + i µ(γ ))‖ ≤ C1.

In particular, G is almost symmetric on $: for any ξ1 '= ξ2 ∈ $,

‖G(ξ1, ξ2) − G(ξ2, ξ1)‖ ≤ 2C1.
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36 M. Lee and H. Oh

Proof. Let α := (u0 = e, u1, u2, · · · ) and α′ := (v0 = e, v1, v2, · · · ) be geodesic

representatives of x and y, respectively. Let γ ∈ π[x,y](e) be arbitrary, and f , g, h ∈ G

be elements satisfying the following:

• f (o) = o and f + = ζ(x);

• g(o) = o and g+ = ζ(y);

• h+ = ζ(x) and h− = ζ(y).

Applying Proposition 5.12(1) to the geodesic line [x, y], we have

d(ho, γ o) < R1

after replacing h with some element of hA. Hence by Lemma 2.3, there exists C′ =
C′(R1) > 0 such that

‖µ(h) − µ(γ )‖ ≤ C′. (6.7)

Noting

G(ζ(x), ζ(y)) = G(h+, h−) = βh+(o, ho) + i βh−(o, ho),

it is now sufficient to show that for some uniform constant C1 > 0,

‖βh+(o, ho) − µ(h)‖ ≤ C1 and ‖βh−(o, ho) − µ(h)‖ ≤ C1.

By Lemma 5.7, this claim follows if we show

h+, h− ∈ OR(o, ho) (6.8)

for some uniform constant R > 0.

Since ! is hyperbolic, the diameter of the set πα′(x) ∪ πα(y) ∪ π[x,y](e) is at most

Cδ for some uniform constant C > 1. In particular, we can find k, 3 ∈ N such that the set

{uk, v3, γ } has diameter less than Cδ. Applying Proposition 5.12(2) to the geodesic ray α,

we find a1 ∈ A+ such that

d(fa1o, uko) < R1.
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Invariant Measures for Horospherical Actions 37

Since dw(uk, γ ) = |u−1
k γ | ≤ Cδ, we have

d(uko, γ o) = ‖µ(u−1
k γ )‖ ≤ sup{‖µ(γ ′)‖ : |γ ′| ≤ Cδ}.

Therefore,

d(fa1o, ho) ≤ d(fa1o, uko) + d(uko, γ o) + d(γ o, ho)

≤ 2R1 + sup{‖µ(γ ′)‖ : |γ ′| ≤ Cδ}.

Setting R := 2R1 + sup{‖µ(γ ′)‖ : |γ ′| ≤ Cδ}, it follows that h+ = f + ∈ OR(o, ho). Similar

argument shows that h− = g+ ∈ OR(o, ho). This proves (6.8). !

Lemma 6.9. For any compact subset C ⊂ X, the set {βξ (p, o) : ξ ∈ F , p ∈ C} is bounded.

Proof. This follows from Lemma 5.1 by setting ψ = ∑
α∈2 9α. !

Proof of Proposition 6.5. Observe that the identity (6.3) gives that for any ξ1 '= ξ2 ∈ $,

[ξ1, ξ2]p − [ξ1, ξ2]o = ψ(βξ1
(p, o) + i βξ2

(p, o)).

Now Lemma 6.9 shows the existence of C = C(p, ψ) > 0 such that |[ξ1, ξ2]p − [ξ1, ξ2]o| ≤ C.

Therefore it suffices to show the claim for p = o. The first inequality is an immediate

consequence of Lemma 6.6 with C > 2C1‖ψ‖.

To show the second inequality, let C1 > 0 be a constant from Lemma 6.6 so that

we have

[ξ1, ξ3]o ≥ ψ(µ(γ2) + i µ(γ2)) − C1‖ψ‖. (6.9)

Set xi := ζ−1(ξi) ∈ ∂! for i = 1, 2, 3. For each i, we fix a geodesic line [xi, xi+1] joining xi

and xi+1, and choose γi+2 ∈ π[xi,xi+1](e), where all the indices are to be interpreted mod 3.

By the hyperbolicity of !, for some uniform constant C > 0, there exists 1 ≤ i ≤ 3 such

that dw(γi, γi+1) < Cδ and for some γ ′ ∈ [e, γi+2], the diameter of {γ ′, γi, γi+1} is at most

Cδ.

We first consider the case when i = 1. Since

d(γ1o, γ2o) ≤ dw(γ1, γ2) maxs∈S d(o, s) < Cδ maxs∈S d(o, s),
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38 M. Lee and H. Oh

it follows from Lemma 2.3 that for some uniform C2 > 0,

‖µ(γ1) − µ(γ2)‖ ≤ C2.

In view of (6.9), we now obtain

[ξ1, ξ3]o ≥ ψ(µ(γ1) + i µ(γ1)) − C1‖ψ‖ − 2C2

≥ [ξ2, ξ3]o − 2C1‖ψ‖ − 2C2 by Lemma 6.6

≥ min([ξ1, ξ2]o, [ξ2, ξ3]o) − 2C1‖ψ‖ − 2C2.

The case i = 2 can be handled similarly by interchanging the roles of γ2 and γ3. Finally, in

the case when i = 3, let R2 be as in Corollary 5.15. Since (e, · · · , γ ′, · · · , γ2) is a geodesic,

we have by Corollary 5.15 that

‖µ(γ2) − µ(γ ′) − µ(γ ′−1γ2)‖ ≤ R2.

By (6.9) and the fact ψ(µ((γ ′−1γ2)±1)) ≥ 0, we deduce

[ξ1, ξ3]o ≥ ψ(µ(γ ′) + i µ(γ ′)) − C1‖ψ‖ − 2R2‖ψ‖

≥ ψ(µ(γ1) + i µ(γ1)) − (C1 + 2C2 + 2R2)‖ψ‖,

as the diameter of {γ ′, γ1, γ3} is less than δ. The rest of the proof is similar to the case

i = 1. !

Covering lemma

Using Theorem 6.4, we obtain:

Lemma 6.11 (Triangle inequality). There exists N = N(ψ , p) ≥ 1 such that for any

ξ1, ξ2, ξ3 ∈ $,

dp(ξ1, ξ3) ≤ N
(
dp(ξ1, ξ2) + dp(ξ2, ξ3)

)
.

In particular, dp(ξ1, ξ2) ≤ Ndp(ξ2, ξ1). Moreover, N(ψ , p) can be taken uniformly for all p

in a fixed compact subset of X.
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Invariant Measures for Horospherical Actions 39

Proof. Choose ε > 0 sufficiently small so that Theorem 6.4 holds, and set d := dε,

C := Cε. We then have

dp(ξ1, ξ3)ε ≤ Cd(ξ1, ξ3) ≤ C(d(ξ1, ξ2) + d(ξ2, ξ3)) ≤ C2(dp(ξ1, ξ2)ε + dp(ξ2, ξ3)ε).

Since (aε + bε)1/ε ≤ α(a + b) for all a, b ≥ 0 for some uniform constant α = α(ε) > 0, it

suffices to take the 1/ε power in each side of the above. Now the second part follows

from (6.3) and Lemma 6.9. !

For ξ ∈ $ and r > 0, set

Bp(ξ , r) := {η ∈ $ : dψ ,p(ξ , η) < r}.

Lemma 6.12 (Covering lemma). There exists N0(ψ , p) ≥ 1 satisfying the following: for

any finite collection Bp(ξ1, r1), · · · , Bp(ξn, rn) with ξi ∈ $ and ri > 0, there exists a disjoint

subcollection Bp(ξi1 , ri1), · · · , Bp(ξi3 , ri3) such that

Bp(ξ1, r1) ∪ · · · ∪ Bp(ξn, rn) ⊂ Bp(ξi1 , 3N0ri1) ∪ · · · ∪ Bp(ξi3 , 3N0ri3).

Moreover, N0(ψ , p) can be taken uniformly for all p in a fixed compact subset of X.

Proof. Let N = N(ψ , p) be as given by Lemma 6.11. For simplicity, set Bi := Bp(ξi, ri).

We may assume r1 ≥ · · · ≥ rn without loss of generality and define inductively

i1 = 1, ij+1 = min{i > ij : Bi ∩ (Bi1 ∪ · · · ∪ Bij) = ∅},

as long as possible, to obtain a maximal disjoint subcollection {Bi1 , · · · , Bi3}. Let ξ ∈ Bj

for some 1 ≤ j ≤ n. Then there exists 1 ≤ k ≤ 3 such that Bj ∩ Bik '= ∅ and rik ≥ rj. Choose

η ∈ Bj ∩ Bik . Then by Lemma 6.11, we have dp(η, ξ) ≤ N(dp(η, ξj) + dp(ξj, ξ)) < 2N2rj ≤
2N2rik and dp(ξik , η) < rik . Hence

dp(ξik , ξ) ≤ N(dp(ξik , η) + dp(η, ξ)) < 3N3rik .

Hence it suffices to set N0 := N3. !

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac262/6748198 by Yale U

niversity user on 05 June 2023



40 M. Lee and H. Oh

Comparing Gromov products

Although we will not be using it in the rest of the paper, we record the following theorem,

which is of independent interest:

Theorem 6.13. For any ψ ∈ D&
!, there exist c1 = c1(ψ) ≥ 1, c2 = c2(ψ) > 0 such that for

all x '= y ∈ ∂!,

c−1
1 (x|y) − c2 ≤ ψ(G(ζ(x), ζ(y))) ≤ c1(x|y) + c2.

Note that if γ ∈ π[x,y](e) for x '= y in ∂!, then |(x|y) − |γ || ≤ C for some

uniform constant C > 0 (cf. [9]). Given this fact, Theorem 6.13 follows immediately from

Lemma 6.6 and the following lemma:

Lemma 6.14. For any ψ ∈ D&
!, there exist constants Cψ , cψ > 0 such that for all γ ∈ !,

C−1
ψ |γ | − cψ ≤ ψ(µ(γ )) ≤ Cψ |γ |.

Proof. Since ψ > 0 on L!, we have

0 < d := min
‖u‖=1,u∈L!

ψ(u) ≤ D := max
‖u‖=1,u∈L!

ψ(u) < ∞.

Hence d‖µ(γ )‖ ≤ ψ(µ(γ )) ≤ D‖µ(γ )‖ for all γ ∈ !. So the upper bound follows from

Lemma 5.13, and the lower bound follows from the well-known property of Anosov

groups that for some uniform C > 0, C−1|γ | − C ≤ ‖µ(γ )‖ for all γ ∈ ! [22]. !

7 Conical points, Divergence Type, and Classification of PS Measures

In this section, we show that for Anosov groups, the space of all PS-measures on $ is

homeomorphic to D&
!.

Conical limit points

For a discrete subgroup ! < G and x ∈ !\G, we mean by lim sup xA+M the set of all

limit points lim
i→∞

xaimi where ai → ∞ in A+ and mi ∈ M.

Definition 7.1 (Conical limit points). We call ξ ∈ F a conical limit point of ! if

lim sup !gA+M '= ∅ for some g ∈ G with g+ = ξ . Equivalently, ξ ∈ F is conical if there
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Invariant Measures for Horospherical Actions 41

exists R > 0 such that ξ ∈ OR(o, γio) for some sequence γi → ∞ in !. We denote by $c

the set of all conical limit points of !.

Lemma 7.2. Let ! be a Zariski dense discrete subgroup and c ⊂ int a+ ∪ {0} be a closed

convex cone whose interior contains L! − {0}. If γigiai is a bounded sequence where

gi ∈ G is bounded, γi ∈ ! and ai → ∞ in A+, then

log ai ∈ c for all sufficiently large i. (7.1)

In particular, for any x ∈ !\G, lim sup xA+M coincides with the set

{ lim
i→∞

xaimi : mi ∈ M, log ai → ∞ in c}.

Proof. As gi and γigiai are bounded sequences, the sequence µ(γ −1
i ) − log ai is also

bounded by Lemma 2.3. Hence lim
i→∞

log ai
‖log ai‖ belongs to the asymptotic cone of µ(!), which

is equal to L! [6, Thm. 1.2]. Since L! − {0} ⊂ int c, it follows that log ai ∈ c for all large i.!

We note that for c ⊂ int a+ ∪ {0} as above, there exists a constant s = s(c) > 0

such that for any sequence vi → ∞ in c,

min
α∈2

lim inf
i→∞

α( vi
‖vi‖ ) ≥ s.

We deduce from Proposition 5.12: recall E = {[g] ∈ !\G : g+ ∈ $}.

Proposition 7.4. For ! Anosov, there exist a compact subset Q of E and a closed convex

cone c ⊂ int a+ ∪ {0} such that for any x ∈ E , there exists log ai → ∞ in c such that

xai ∈ Q for all i ≥ 1.

In particular, $ = $c.

Proof. For ! Anosov, we have L! − {0} ⊂ int a+ by Theorem 4.3. Hence we can find a

closed convex cone c ⊂ int a+ ∪ {0} such that L! ⊂ int c ∪ {0}. We first check that $c ⊂ $.

Let g+ ∈ $c for some g ∈ G. Then there exists γi ∈ ! and aimi → ∞ in A+M such

that γigaimi is bounded. By Lemma 7.2, it follows that log ai → ∞ in c. In particular,

ai → ∞ regularly in A+. Hence by Lemma 2.11, gaio → g+ as i → ∞. Since d(gaio, γ −1
i o)

is bounded, γ −1
i o → g+ as i → ∞. By Lemma 2.13, g+ ∈ $.
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42 M. Lee and H. Oh

Let g+ = ξ ∈ $ and z ∈ ∂! be such that ξ = ζ(z). Choose a geodesic ray

r = (γ0 = e, γ1, γ2, · · · ) representing z. Note that if g+ = h+, then for any sequence

ai → ∞ in A+, there exists bi ∈ A+ such that d(gaio, hbio) ≤ 1 for all sufficiently large

i. Hence we may assume that g ∈ K by replacing g by an element of gP. By Proposition

5.12, γio is contained in the R1-neighborhood of gA+o, with R1 given therein. Hence for

some ai → ∞ in A+, !\!gai ∈ Q where Q = !\!{h ∈ G : d(o, ho) ≤ R1} ∩ E . Hence

g+ ∈ $c. Moreover, by Lemma 7.2, log ai ∈ c for all sufficiently large i. This finishes the

proof. !

Classification of PS measures on $

Lemma 7.5. Let ψi ∈ a∗ and νψi
be a (!, ψi)-PS measure for i = 1, 2. If νψ1

= νψ2
, then

ψ1 = ψ2.

Proof. Suppose that νψ1
= νψ2

. Then for all γ ∈ ! and ξ ∈ $, we have

ψ1(βξ (e, γ )) = ψ2(βξ (e, γ )).

By setting ξ = yγ , we obtain λ(γ ) ∈ ker(ψ1 − ψ2) for all γ ∈ !, by Lemma 3.5. Hence

L! ⊂ ker(ψ1 − ψ2). Since L! has nonempty interior [6, Thm. 1.2], this implies that

ψ1 = ψ2. !

Remark 7.6. When ! is an Anosov subgroup, νψ1
and νψ2

are even mutually singular

to each other whenever ψ1 '= ψ2 (See Theorem 10.20 below).

We denote by S! the space of all PS measures on $. Recall that for ψ ∈ D&
!, Quint

constructed a (!, ψ)-PS measure on $ [40]. In the Anosov case, such a measure is unique,

which we denote by νψ . By Lemma 7.5, the map ψ ,→ νψ from D&
! to S! is injective.

Theorem 7.7. For ! < G Anosov, the map ψ ,→ νψ is a homeomorphism between D&
!

and S!.

In the rank one case, there exists a unique Patterson–Sullivan measure on $ and

its dimension is given by the critical exponent of !. The above theorem generalizes such

phenomenon.

To prove that the map ψ ,→ νψ is surjective, we need the following shadow

lemma. It was first presented in [2, Thm. 3.3] and then in [40, Thm. 8.2] in slightly

different forms.
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Lemma 7.8 (Size of shadow). Let ! < G be a Zariski dense discrete subgroup. For

ψ ∈ a∗, let νψ be a (!, ψ)-conformal measure on F . Then

(1) for some R = R(νψ ) > 0, we have c := infγ∈! νψ (OR(γ o, o)) > 0;

(2) for all r ≥ R and for all γ ∈ !,

c · e−‖ψ‖κre−ψ(µ(γ )) ≤ νψ (Or(o, γ o)) ≤ e‖ψ‖κre−ψ(µ(γ )),

where κ > 0 is a constant given in Lemma 5.7. In particular, if $ = $c in

addition, then νψ is atom-free on $.

Proof. Suppose that there exist sequences Ri → ∞ and γi ∈ ! such that for all i ≥ 1,

νψ (ORi
(γ −1

i o, o)) < 1/i. Write γi = kiai3i ∈ KA+K with ki, 3i ∈ K and ai ∈ A+. Passing to a

subsequence, we may assume that 3i → 30 as i → ∞.

We claim that

lim sup ORi
(a−1

i o, o) ⊃ N+e+. (7.9)

Fix an arbitrary h ∈ N+ and aih = kibini ∈ KAN be the Iwasawa decomposition of aih.

Then the Iwasawa decomposition of aiha−1
i is given by

aiha−1
i = ki(bia

−1
i )(ainia

−1
i ) ∈ KAN.

Since aiha−1
i is uniformly bounded, both bia

−1
i and ainia

−1
i are also uniformly bounded

for all i. It follows that the sequence ni ∈ N is uniformly bounded as well. To prove the

claim, we observe that for all i ≥ 1,

h+ ∈ ORi
(a−1

i o, o)

⇔ aih
+ ∈ ORi

(o, aio)

⇔ k+
i ∈ ORi

(o, aio)

⇔ kiA
+o ∩ B(aio, Ri) '= ∅

⇔ a−1
i kiA

+o ∩ B(o, Ri) '= ∅

⇔ hn−1
i b−1

i A+o ∩ B(o, Ri) '= ∅.

On the other hand, by the uniform boundedness of ni and b−1
i ai and since Ri → ∞, we

have hn−1
i (b−1

i ai)o ∈ B(o, Ri) for all sufficiently large i. Hence the claim (7.9) follows.
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Since ORi
(γ −1

i o, o) = 3−1
i ORi

(a−1
i o, o), the hypothesis νψ (ORi

(γ −1
i o, o)) < 1/i now

implies that νψ (3−1
0 N+e+) = 0 by Claim (7.9). Since N+e+ is Zariski open in F , this

contradicts the fact that $ ⊂ supp νψ is Zariski dense in F . This proves the claim (1).

Now let γ ∈ ! and r > R be arbitrary. By Lemma 5.7, for all ξ ∈ Or(γ
−1o, o), we

have

‖βξ (γ
−1o, o) − µ(γ )‖ ≤ κr.

Since

νψ (Or(o, γ o)) =
∫

Or(γ −1o,o)
e−ψ(βξ (γ −1o,o)) dνψ (ξ),

(2) then follows from (1).

Suppose that $ = $c. Then for any ξ ∈ $, there exist r > 0 and a sequence

γi → ∞ in ! such that ξ ∈ ⋂
i Or(o, γio). Since νψ (ξ) ≤ νψ (Or(o, γio)) ≤ Ce−ψ(µ(γi)) and

ψ(µ(γi)) → +∞ as i → ∞, νψ (ξ) = 0. Hence the second claim follows. !

Lemma 7.10. [39, Lem. III.1.3] Let θ : a → R be a continuous function satisfying

θ(tu) = tθ(u) for all t ≥ 0 and u ∈ a. If θ(u) > ψ!(u) for all u ∈ a − {0}, then

∑

γ∈!

e−θ(µ(γ )) < ∞.

If there exists u ∈ a such that θ(u) < ψ!(u), then
∑

γ∈! e−θ(µ(γ )) = ∞.

Lemma 7.11. Suppose that ! is Zariski dense. Let ψ ∈ a∗. If there exists a (!, ψ)-

conformal measure νψ such that νψ ($c) > 0, then

∑

γ∈!

e−ψ(µ(γ )) = ∞.

Moreover, ψ(v) = ψ!(v) for some non-zero v ∈ L!.

Proof. Note that $c is an increasing union
⋃∞

N=1 $N , where

$N := {ξ ∈ $ : there exists γi → ∞ in ! such that ξ ∈ ON(o, γio)}.
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Invariant Measures for Horospherical Actions 45

Hence νψ ($N0
) > 0 for some N0 ≥ 1. Fix N ≥ max{R(ν), N0}, and set C′ := e‖ψ‖κN where

R(ν) is as in Lemma 7.8. Observe that for any m ≥ 1,

$N ⊂
⋃

γ∈!,d(o,γ o)>m

ON(o, γ o).

Hence

0 < νψ ($N) ≤
∑

d(o,γ o)>m

νψ (ON(o, γ o)) ≤ C′ ∑

d(o,γ o)>m

e−ψ(µ(γ )).

Since m > 1 is arbitrary, the first claim follows.

We note that ψ ≥ ψ! by [40, Thm. 8.1]. If ψ(u) > ψ!(u) for all u ∈ L! − {0},
and hence for all u ∈ a − {0}, then Lemma 7.10 implies

∑
γ∈! e−ψ(µ(γ )) < ∞. This is a

contradiction by the first claim. !

When ! is Anosov, $ = $c and hence by Theorem 4.3(5),

Corollary 7.12. If ! is Anosov, then
∑

γ∈! e−ψ(µ(γ )) = ∞ for any ψ ∈ D&
!.

Proof of Theorem 7.7. In order to prove surjectivity, suppose that there exists a (!, ψ)-

PS measure, say νψ , for ψ ∈ a∗. By Lemma 7.11, ψ(v) = ψ!(v) for some non-zero v ∈ L!.

By Theorem 4.3(1), it follows that ψ ∈ D&
!, proving surjectivity.

If ψi → ψ in D&
!, then any weak-limit of νψi

is a (!, ψ)-PS measure. By the

uniqueness of (!, ψ)-conformal measure, νψi
converges to νψ as i → ∞. Hence the

map ψ ,→ νψ is continuous. Now suppose νψi
→ νψ where ψi, ψ ∈ D&

!. Since the

closed cone generated by µ(!) is equal to L! that has non-empty interior, we can find

γ1, · · · , γk ∈ ! such that µ(γi)’s form a basis of a. For each γ3 and r > 0, we have

νψi
(Or(o, γ3o)) → νψ (Or(o, γ3o)). Hence {(ψi−ψ)(µ(γ3)) : i = 1, 2, · · · } is bounded by Lemma

7.8. It follows that {ψi : i = 1, 2, · · · } is a relatively compact subset of a∗. Suppose that

φ ∈ a∗ is a limit of {ψi}. By passing to a subsequence, assume that ψi → φ ∈ a∗. Since

νψi
→ νψ , it follows that νψ is a (!, φ)-PS measure. Since ψ ,→ νψ is a bijection between

D&
! and S!, we have φ ∈ D&

! and νφ = νψ . By Lemma 7.5, we have φ = ψ . Since every limit

of the sequence ψi is ψ , it follows that ψi converges to ψ as i → ∞. This finishes the

proof. !
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Critical exponents. Recall the definition of O! from (4.5). For each unit vector

w ∈ O!, consider the Poincare series

Pw(s, p) :=
∑

γ∈!

e−s〈w,a(p,γ p)〉.

Define the critical exponent δw to be the abscissa of convergence of Pw(s, p), which is

independent of p ∈ G/K:

δw := inf{s ∈ R : Pw(s, p) < ∞}. (7.13)

Corollary 7.14. Let w ∈ O! be a unit vector.

(1) For w = ∇ψ!(u)
‖∇ψ!(u)‖ ∈ O! for u ∈ int L! with ‖u‖ = 1, we have

δw = ‖∇ψ!(u)‖.

In particular, w ,→ δw is analytic on {w ∈ O! : ‖w‖ = 1}.
(2) For any p ∈ G/K, Pw(δw, p) = ∞.

Proof. (1) follows from Lemmas 7.10 and 7.11 together with Theorem 4.3. (2) is a direct

consequence of Lemma 7.11. !

8 Myrberg Limit Points of Anosov Groups

In this section, we discuss the notion of Myrberg limit points. We show that for Anosov

groups, the set of Myrberg limit points has full measure for any PS measure on $. In

the rank one case, this was proved by Tukia [56, Thm. 4A]. Let ! < G be a Zariski dense

discrete subgroup.

Definition 8.1 (Myrberg points). Let p ∈ X. We call a point ξ0 ∈ $ a Myrberg limit point

for ! if, for any ξ '= η in $, there exists a sequence γi ∈ ! such that γip → ξ and γiξ0 → η

as i → ∞.

Note that this definition is independent of the choice of p ∈ X by Lemma 2.10.

We denote by $M ⊂ $ the set of all Myrberg limit points for !.

When G is of rank one, a Myrberg limit point ξ ∈ $ is characterized by the

property that any geodesic ray toward ξ is dense in the space of all geodesics connecting

limit points. The following proposition generalizes this to a general Anosov subgroup.
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Invariant Measures for Horospherical Actions 47

Proposition 8.2. Let ! be Anosov. We have ξ0 ∈ $M if and only if for any g ∈ G with

g+ = ξ0,

lim sup !\!gA+M = :.

Let ! < G be an Anosov subgroup for the rest of this section.

Lemma 8.3. Let bi ∈ A be a sequence tending to ∞ such that w−1b−1
i w ∈ A+ for some

w ∈ W. If γigbi → h for some h, g ∈ G and γi ∈ !, then limi→∞ γigo = hw+ ∈ $. In

particular, if bi ∈ A+, then limi→∞ γigo = h−.

Proof. Let ci := h−1γigbi and ai := w−1b−1
i w ∈ A+. Then gw = γ −1

i hciwai. Hence by

Lemma 7.2, ai → ∞ regularly in A+. Lemma 2.11 implies that hciwai(o) → hw+. Since

γigw = hciwai, we have γigw(o) = γigo → hw+. This proves the first claim by Lemma

2.13. If bi ∈ A+, then w−1
0 b−1

i w0 ∈ A+. Since w+
0 = e−, the last claim follows. !

The following is proved in [25, Coro. 5.8]:

Theorem 8.4 (The limit map as a continuous extension of the orbit map). For any p ∈ X,

the map !∪∂! → X ∪F given by γ ,→ γ p for γ ∈ ! and x ,→ ζ(x) for x ∈ ∂! is continuous.

We need the following basic fact about word hyperbolic groups.

Lemma 8.5. Let x '= y in ∂!. If γi ∈ ! is an infinite sequence such that (γix, γiy) →
(x′, y′) ∈ ∂! × ∂!, then γi converges to either x′ or y′.

Proof. Choose a geodesic line [x, y], and its representative (· · · , u2, u1, u0 =
v0, v1, v2, · · · ). Note that x = [u0, u1, u2, · · · ] and y = [v0, v1, v2, · · · ]. It suffices to

show that γiu0 converges to either x′ or y′. Suppose not. Then by passing to a

subsequence, we have γiu0 → z′ where z′ '∈ {x′, y′}. Since (z′|x′), (z′|y′) < ∞, there exists

a subsequence nk such that supk(γku0|γkunk
) + (γku0|γkvnk

) < ∞. Let L−
k := [γku0, γkunk

]

and L+
k := [γku0, γkvnk

], so that supk dw(e, L±
k ) < ∞. The thin triangle property of the

hyperbolic group ! implies that if the projection of e to the geodesic segment L−
k ∪ L+

k

lies in L±
k , then dw(e, γku0) is equal to dw(e, L∓

k ) up to a uniform additive constant.

And hence dw(e, γku0) is uniformly bounded, which is a contradiction as γk → ∞ as

k → ∞. !

The following is immediate from Theorem 8.4 and Lemma 8.5:
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48 M. Lee and H. Oh

Corollary 8.6. Let γi ∈ ! be an infinite sequence such that (γiξ , γiη) → (ξ ′, η′) in $(2) as

i → ∞. Then for any p ∈ X, γip converges to either ξ ′ or η′.

Lemma 8.7. Let g ∈ G be such that g± ∈ $. If limi→∞ γig
± = ξ for some infinite

sequence γi ∈ !, then limi→∞ γigo = ξ .

Proof. Set x± := ζ−1(g±) and y = ζ−1(ξ). Since ζ : ∂! → $ is a homeomorphism, we

have γix
± → y as i → ∞. By Lemma 8.5, we have γi → y as i → ∞. By Theorem 8.4, we

get limi→∞ γio = ξ . By Lemma 2.10, limi→∞ γigo = ξ as desired. !

Since the fibers of the visual map g ,→ g+ are P-orbits, the following lemma is

an easy consequence of the regularity lemma 7.2.

Lemma 8.8. If g, h ∈ G satisfy g+ = h+, then

lim sup !gA+M = lim sup !hA+M.

Proof of Proposition 8.2. Set :̃ := {g ∈ G : g± ∈ $}. Suppose ξ0 ∈ $M and g+ = ξ0.

We claim that !gA+M = :̃. By Lemma 8.8, we may assume that g− ∈ $. Let h ∈ :̃. As

ξ0 ∈ $M , there exists γi ∈ ! such that γig
+ → h+ and γigo → h−. By Lemma 8.5, by

passing to a subsequence, γig
− converges to h−. Therefore, γigAM → hAM in G/AM;

there exists bimi ∈ AM such that γigbimi → h. We claim that bi ∈ A+ for all large i. If

not, by passing to a subsequence, we have m−1
i converges to some m0 ∈ M and there

exists w ∈ W − {e} such that ai := w−1biw ∈ A+. Then γigwai → hm0w. By Lemma 8.3,

γigo → hm0w−, and hence hm0w− = h−. It follows that w = e, yielding a contradiction.

Therefore, h ∈ lim sup !gA+M, proving the claim.

Now suppose that lim sup !gA+M = :̃. We claim that g+ ∈ $M . Let ξ '= ξ ′ in

$, and let h ∈ G be such that h+ = ξ and h− = ξ ′. By the hypothesis and Lemma 7.2,

there exist γi ∈ !, mi ∈ M and ai → ∞ regularly in A+ such that γigaimi → h in G. Then

γig
+ → h+ = ξ . By Lemma 8.3, γigo → h− = ξ ′. Hence g+ ∈ $M . This finishes the proof

of Proposition 8.2. !

Lemma 8.9. Let ψ ∈ D&
!, and (ξ , ξ ′), (η1, η2) ∈ $(2). If γi ∈ ! and ti → +∞ are such that

lim
i→∞

(γiξ , γiξ
′, ti + ψ(βγiξ

(o, γio))) = (η1, η2, 0),

then limi→∞ γi(o) = η2.
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Invariant Measures for Horospherical Actions 49

Proof. Write x = ζ−1(ξ), x′ = ζ−1(ξ ′), y1 = ζ−1(η1), y2 = ζ−1(η2), and choose u ∈ [x, x′].

Since the triangle [γix, γix
′] ∪ [γiu, γix] ∪ [γiu, γix

′] is δ-thin, it follows that for all i, either

γix ∈ Oδ(u, γiu) or γix
′ ∈ Oδ(u, γiu). We claim the latter holds for all large i.

Suppose not. Then by passing to a subsequence, we may assume that γix ∈
Oδ(u, γiu) for all i. Then by Proposition 5.14 and Lemma 5.7, there exists a uniform

constant c > 0 such that γiξ ∈ Oc(δ+1)(uo, γiuo) and

|ψ(βγiξ
(uo, γiuo))) − ψ(µ(γi))| < ‖ψ‖κc(δ + 1).

Since ψ(µ(γi)) → +∞ as i → ∞ by Lemma 5.4, and ψ(βγiξ
(uo, γiuo))) and ψ(βγiξ

(o, γio)))

are uniformly close to each other, ψ(βγiξ
(o, γio))) → +∞. This contradicts the hypothesis

that the sequence ti + ψ(βγiξ
(o, γio)) converges to a finite number as i → ∞. It follows

that for all sufficiently large i,

γix
′ ∈ Oδ(u, γiu). (8.10)

On the other hand, γiu → y3 for some 3 ∈ {1, 2} by Lemma 8.5. Since γix
′ → y2 and

Oδ(u, γiu) converges to y3, (8.10) implies that γiu → y2. Therefore, γio → η2 by Lemma

8.4. !

Theorem 8.11. For any PS-measure ν on $, ν($M) = 1.

Proof. By Theorem 7.7, ν = νψ for some ψ ∈ D&
!. Let mψ be the R := {τs : s ∈ R}-ergodic

finite measure on !\$(2) × R in Theorem 4.8. Let Zψ ⊂ !\$(2) × R denote the set of

elements with dense R+-orbits, and Z̃ψ be its lift in $(2) × R. By the Birkhoff ergodic

theorem, Zψ has full mψ -measure, and hence ν(π(Z̃ψ )) = ν($) where π : $(2) × R → $

denotes the projection map π(ξ , η, t) = ξ . It is now sufficient to prove that π(Z̃ψ ) ⊂ $M.

Let ξ ∈ π(Z̃ψ ) and (η1, η2) ∈ $(2) be arbitrary. We need to show that there exists

γi ∈ ! such that γiξ → η1 and γio → η2 as i → ∞. Choose (ξ , ξ ′, 0) ∈ Z̃ψ . By definition, we

can find γi ∈ ! and ti → +∞ such that the sequence

γi(τti
.(ξ , ξ ′, 0)) = γi(ξ , ξ ′, ti) = (γiξ , γiξ

′, ti + ψ(βγiξ
(o, γio)))

converges to (η1, η2, 0). Since γio → η2 by Lemma 8.9, this finishes the proof. !

In the rank one case, the BMS measure is finite, and A = {at} is the union of

A+ = {at : t ≥ 0} and A− = {at : t ≤ 0}. The AM-ergodicity of the BMS measure implies
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50 M. Lee and H. Oh

that for almost all x ∈ !\G, xA±M is dense in : = {x ∈ !\G : x± ∈ $}. In general,

A = ∪w∈WwA+w−1, and we have the following corollary of Theorem 8.11:

Corollary 8.12. Let ψ ∈ D&
!. For mBMS

ψ -almost all x ∈ :, each xA+M and xw0A+M is

dense in :.

Proof. Note that for x = !g ∈ :, xwA+M is dense in : if and only if gw+ ∈ $M

by Proposition 8.2. For w = e (resp. w = w0), the claim follows as νψ ($M) = 1 (resp.

νψ◦i($M) = 1) by Theorem 8.11. !

We also observe:

Lemma 8.13. For any x ∈ E and w ∈ W − {e, w0}, the map A+M → xwA+M is proper.

Proof. Note that if (g+, gw+) ∈ F (2) for g ∈ G and w ∈ W, then w = w0. Choose g ∈ G

so that !g = x ∈ E . Since g+ ∈ $ and $ × $ − {(ξ , ξ)} ⊂ F (2) by the antipodality, gw+ ∈ $

can happen only for w ∈ {e, w0}. Suppose for some γi ∈ ! and ai → ∞ in A+, γigwai

converges to some h ∈ G as i → ∞. This means that d(gwai, γ
−1
i h) → 0 as i → ∞,

and hence gw+ ∈ $. Hence, for each w ∈ W − {e, w0}, lim sup xwA+M = ∅, proving the

claim. !

9 Criterion for Ergodicity via Essential Values

In this section, let ! < G be a Zariski dense discrete subgroup, and let νψ be a (!, ψ)-

conformal measure on F for ψ ∈ a∗. Consider the action of G on F × a by

g(ξ , v) = (gξ , v + βξ (g
−1, e)).

Then the map g ,→ (g+, b := βg+(e, g)) induces a G-equivariant homeomorphism G/NM +
F×a. Using this homeomorphism, we define a !-invariant Radon measure ν̂ψ on G/NM +
F × a by

d̂νψ (gNM) = dνψ (g+)eψ(b) db.

Since dmBR
ψ = d̂νψ dm dn, the NM-ergodicity of mBR

ψ is equivalent to the !-ergodicity of

ν̂ψ . For simplicity, we set ν := νψ and ν̂ := ν̂ψ for the rest of the section. Schmidt gave a

characterization of !-ergodicity of ν̂ using the notion of ν-essential values in the rank

one case ([52], see also [46, Prop. 2.1]).
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Invariant Measures for Horospherical Actions 51

Definition 9.1. An element v ∈ a is called a (ν, !)-essential value, if for any Borel set

B ⊂ F with ν(B) > 0 and any ε > 0, there exists γ ∈ ! such that

ν
(
B ∩ γ −1B ∩ {ξ ∈ F : ‖βξ (γ

−1o, o) − v‖ < ε}
)

> 0.

Let Eν = Eν(!) denote the set of all (ν, !)-essential values in a. It is easy to

see that Eν is a closed subgroup of a. The main goal of this section is to prove the

following criterion of !-ergodicity of ν̂, which can be considered as a higher rank version

of [46,Prop. 2.1].

Proposition 9.2. (G/NM, !, ν̂) is ergodic if and only if (G/P, !, ν) is ergodic and

Eν(!) = a.

Fixing ν, we set E := Eν(!) in the rest of this section. Our proof of Proposition 9.2

is an easy adaptation of the proof of [46, Prop. 2.1] to a higher rank case. We begin with

the following lemma.

Lemma 9.3. Let h : G/NM = F × a → [0, 1] be a !-invariant Borel function such that

for each ξ ∈ F , h(ξ , ·) is a C-Lipschitz function on a for some C > 0 independent of ξ .

Then for each log a ∈ E, h(xa) = h(x) for ν̂-a.e. x ∈ G/NM.

Proof. Suppose that ν̂{x ∈ G/NM : h(x) '= h(xa)} > 0 for some log a ∈ E. We will then

find a subset A∗ = A∗(a) ⊂ G/NM with ν̂(A∗) > 0 and γ ∈ ! such that h(γ −1x) '= h(x) for

all x ∈ A∗; this contradicts the !-invariance of h.

By replacing h with −h if necessary, we may assume that ν̂{x ∈ G/NM : h(x) <

h(xa)} > 0. Hence there exist r, ε > 0 such that

Qa := {x ∈ G/NM : h(x) < r − Cε < r + Cε < h(xa)}

has a positive ν̂-measure. Now we can choose a ball O = Ba(v0, ε/2) ⊂ a such that

ν̂((F × O) ∩ Qa) > 0.

Set Fa := {ξ ∈ F : ({ξ} × O) ∩ Qa '= ∅}. We claim that

if (ξ , w) ∈ Fa × O, then h(ξ , w + log a) > r > h(ξ , w). (9.4)
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Note that there exists v ∈ a with ‖v‖ < ε such that (ξ , w + v) ∈ Qa and hence

|h(ξ , w)| ≤ |h(ξ , w) − h(ξ , w + v)| + |h(ξ , w + v)| < C‖v‖ + (r − Cε) ≤ r.

Similarly,

|h(ξ , w + log a)| ≥ |h(ξ , w + v + log a)| − |h(ξ , w + log a) − h(ξ , w + v + log a)|

> (r + Cε) − C‖v‖ > r,

which verifies the claim (9.4).

Since − log a ∈ E and ν(Fa) > 0, there exists γ ∈ ! such that

A := Fa ∩ γ Fa ∩ {ξ ∈ G/P : ‖βξ (o, γ o) + log a‖ < ε/2}

has a positive ν-measure. For ξ ∈ A, set

Oξ := {w ∈ O : w − (βξ (o, γ o) + log a) ∈ O}.

Since ‖βξ (o, γ o) + log a‖ < ε/2, and O is a Euclidean ball of diameter ε, there is a uniform

positive lower bound for the volume of Oξ . It follows that

A∗ :=
⋃

ξ∈A
{ξ} × Oξ

has positive ν̂-measure. We now claim that h ◦ γ −1 > h on A∗.

Let (ξ , w) ∈ A∗. Since (ξ , w) ∈ Fa × O, (9.4) implies that h(ξ , w) < r.

Write γ −1(ξ , w) = (γ −1ξ , w−(βξ (o, γ o)+log a)+log a). Since (γ −1ξ , w−(βξ (o, γ o)+
log a)) ∈ Fa × O, (9.4) says that

h(γ −1(ξ , w)) > r;

this proves the claim. !

Proof of Proposition 9.2. Assume that (G/NM, !, ν̂) is ergodic. Let π : G/NM → G/P

denote the projection map. Since π∗ν̂ is absolutely continuous with respect to ν, it

follows that (G/P, !, ν) is ergodic.
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To show E = a, fix an arbitrary Borel set B ⊂ G/P of positive ν-measure. For any

w ∈ a and ε > 0, we define

Bw,ε := {(ξ , v) ∈ G/P × a : ξ ∈ B, ‖v − w‖ < ε} ⊂ G/NM.

Observe that

ν̂(B0,ε) =
∫

G/P

∫

a
1B0,ε

(ξ , b)eψ(b) db dν(ξ) ≥ Vol(Ba(0, ε)) e−‖ψ‖εν(B) > 0.

Hence it follows from the ergodicity of (G/NM, !, ν̂) that ν̂(G/NM − !B0,ε) = 0. In

particular, there exists γ ∈ ! such that ν̂(Bw,ε ∩ γB0,ε) > 0. Finally, note that if

(ξ , v) ∈ Bw,ε ∩ γB0,ε, then ξ ∈ B ∩ γ B, and

‖βξ (e, γ ) − w‖ ≤ ‖βξ (e, γ ) − v‖ + ‖v − w‖ ≤ ε + ε = 2ε.

This, together with the fact π∗ν̂ < ν, implies that

ν(B ∩ γ B ∩ {ξ ∈ G/P : ‖βξ (e, γ ) − w‖ ≤ 2ε}) > 0,

which finishes the proof of (⇒).

We now assume that (G/P, !, ν) is ergodic and E = a. Let h : G/NM → [0, 1] be a

!-invariant Borel function. We need to show that h is constant ν̂-a.e. Identifying a + Rr

with r = rank G, for each τ = (τ1, · · · , τr) ∈ a, we define a !-invariant Borel function

hτ : G/NM → R as follows:

hτ (x) =
∫ τ1

0
· · ·

∫ τr

0
h(x exp(t1, · · · , tr)) dtr · · · dt1.

Note that hτ satisfies the hypothesis of Lemma 9.3. Hence by the hypothesis

Eν = a, for each a ∈ A, hτ (x) = hτ (xa) for ν̂-a.e. x ∈ G/NM.

Let {an : n ∈ N} be a countable dense subset of A. Then there exists :n of full

ν̂-measure such that for all x ∈ :n, hτ (x) = hτ (xan). Set : := ∩∞
n=1:n. Then for all

x ∈ :, we have hτ (x) = hτ (xa) for all a ∈ A, as hτ (ξ , ·) is continuous on a. Now hτ is a

!-invariant function on G/NM, which is also A-invariant ν̂-a.e.

Since (G/P, !, ν) is ergodic, there exists c(τ ) ∈ R such that hτ = c(τ ) ν̂-a.e. on

G/NM.
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Next, fix 1 ≤ i ≤ r and τ1, · · · , τi−1, τi+1, · · · , τr ≥ 0, and define

f (t) := (τ1, · · · , τi−1, t, τi+1, · · · , τr) ∈ a.

Then t ,→ c(f (t)) is linear; indeed, by definition, we have

hf (t+s) = hf (t) + hf (s) ◦ exp(tei)

for all t, s ≥ 0 and hence c(f (t + s)) = c(f (t)) + c(f (s)). We conclude c(τ ) = κτ1 · · · τr, for

some κ ∈ R.

Hence for each τ ∈ a, hτ = κτ1 · · · τr ν̂-a.e. Since |hτ+σ − hτ | ≤ 2r‖σ‖‖τ‖r−1 and

hence τ → hτ is continuous, using a countable dense subset of a, we conclude there

exists a subset : of full ν̂-measure such that

hτ (x) = κτ1 · · · τr for all x ∈ : and τ ∈ a.

By restricting hτ to each fiber of π : G/NM → G/P, and applying the Lebesque

differentiation theorem, we conclude that 1
τ1···τr

hτ (x) → h(x) as τ → 0 for ν̂-a.e. x.

Consequently, h = κ ν̂-a.e., finishing the proof. !

10 Ergodicity of mBR
ψ and Classification

Let ! < G be an Anosov subgroup. Recall the NM-invariant BR measure mBR
ψ defined in

(3.23). We prove the following theorem in this section:

Theorem 10.1. For each ψ ∈ D&
!, mBR

ψ is NM-ergodic.

Recall the definition of ν̂ψ and νψ from section 9. Since (F , !, νψ ) is ergodic

by Theorem 4.3, the following proposition implies that (G/NM, !, ν̂ψ ), and hence

(!\G, NM, mBR
ψ ), is ergodic by Proposition 9.2.

Proposition 10.2. Let !0 be a Zariski dense normal subgroup of !. For any ψ ∈ D&
!, we

have Eνψ
(!0) = a. In particular, Eνψ

(!) = a.

Most of the section is devoted to the proof of Proposition 10.2. We fix a Zariski

dense normal subgroup !0 of !.
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Lemma 10.3. For any finite subset S0 ⊂ λ(!0), the subgroup generated by λ(!0) − S0 is

dense in a.

Proof. Let F denote the closure of the subgroup generated by λ(!0) − S0. Suppose that

F '= a. Identifying a = Rr, since F is infinite, there exist 1 ≤ k < r and 0 ≤ m ≤ r such

that F = ∑k
i=1 Rvi + ∑m

i=1 Zwi where vi, wi are linearly independent vectors. For each

s = λ(γ ) ∈ S0, λ(γ n) = nλ(γ ) → ∞ as γ is loxodromic. Hence, there exists ns ∈ N so that

nsλ(γ ) ∈ F. Setting N := ∏
s∈S0

ns, we have S0 ⊂ ∑k
i=1 Rvi + N−1 ∑m

i=1 Zwi.

Therefore, the closure of the subgroup generated by F ∪ S0 is contained in
∑k

i=1 Rvi + N−1 ∑m
i=1 Zwi. Since λ(!0) ⊂ ∑k

i=1 Rvi + N−1 ∑m
i=1 Zwi and λ(!0) generates

a dense subgroup of a [7], it follows that k = dim a, yielding a contradiction. !

Proposition 10.4. For any ψ ∈ D&
! and C > 0, the set {λ(γ ) ∈ a+ : γ ∈ !0, ψ(λ(γ )) ≥ C}

generates a dense subgroup of a.

Proof. Theorem 3.2 in [49] extends to general Anosov subgroups (see also [12, Thm. A.2-

(2)]), and hence the cocycle c = ψ ◦ σ has a finite exponential growth rate. In particular,

#{λ(γ ) : γ ∈ !, ψ(λ(γ )) < C} ≤ #{[γ ] ∈ [!] : ψ(λ(γ )) < C} < ∞ (10.5)

where [!] denotes the set of conjugacy classes in !. Hence #{λ(γ ) : γ ∈ !0, ψ(λ(γ )) <

C} < ∞ and the claim follows from Lemma 10.3. !

Lemma 10.6. There exists a compact subset C ⊂ G such that for any ξ ∈ $, there exists

g ∈ C such that g+ = ξ and g− ∈ $.

Proof. In the Gromov hyperbolic space !, there exists a finite subset F ⊂ ! such

that for any x ∈ ∂!, there exists y ∈ ∂! such that [x, y] ∩ F '= ∅. It suffices to choose

a compact subset C ⊂ G such that C(o) contains the R1-neighborhood of F(o) with R1

given in Proposition 5.12. !

We set

N0 := max
p∈C(o)

N0(ψ , p) < ∞

with N0(ψ , p) and C given by Lemmas 6.12 and 10.6, respectively.
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In view of Proposition 10.4, Proposition 10.2 is an immediate consequence of the

following:

Proposition 10.7. For any γ0 ∈ !0 with ψ(λ(γ0)) ≥ 1 + log 3N0,

λ(γ0) ∈ Eνψ
(!0).

Essential values of νψ

Most of this section is devoted to the proof of this proposition. We fix γ0 ∈ !0 with

ψ(λ(γ0)) ≥ log 3N0 + 1.

Since ψ > 0 on λ(!) − {0} by Theorem 4.3(4), we have

ψ(i λ(γ0)) + ψ(λ(γ0)) > log 3N0 + 1. (10.8)

Definition of BR(γ0, ε)

Let 0 < ε < ‖ψ‖−1 be an arbitrary number. We fix g ∈ C such that g+ = yγ0
and g− ∈ $,

given by Lemma 10.6. Set p := go ∈ C(o), ξ0 := yγ0
, and η := g−.

For ξ ∈ $ and r > 0, set

Bp(ξ , r) := {η ∈ $ : dψ ,p(ξ , η) < r}

where dψ ,p is the virtual visual metric defined in section 6.

For each γ ∈ !, define rp(γ ) > 0 to be the supremum r ≥ 0 such that

max
ξ∈Bp(γ ξ0,3N0r)

‖βξ (p, γ γ ±1
0 γ −1p) ∓ λ(γ0)‖ < ε. (10.9)

For each R > 0, we define the family of virtual-balls as follows:

BR(γ0, ε) = {Bp(γ ξ0, r) : γ ∈ !, 0 < r < min(R, rp(γ ))}.

Equivalently, Bp(γ ξ0, r) ∈ BR(γ0, ε) if and only if r < R and one has ‖βη(p, γ γ0γ −1p) − λ(γ0)‖ ≤
ε for all η ∈ Bp(γ ξ0, r).
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Let C = C(ψ , p) > 0 be as in Theorem 5.3. Since ξ0 ∈ Oε/(8κ)(η, p) where κ > 0 is

as in Lemma 5.7, we can choose 0 < s = s(γ0) < R small enough such that

Bp(ξ0, eψ(λ(γ0)+i λ(γ0))+ 1
2 ‖ψ‖ε+2Cs) ⊂ Oε/(8κ)(η, p); (10.10)

sup
x∈Bp(ξ0,e2Cs)

‖βx(p, γ ±1
0 p) ∓ λ(γ0)‖ < ε/4. (10.11)

For each γ ∈ ! and r > 0, set

D(γ ξ0, r) := Bp(γ ξ0,
1

3N0
e−ψ(a(γ −1p,p)+i a(γ −1p,p))r).

Lemma 10.12. Fix R > 0. If ξ ∈ $ and γi ∈ ! is a sequence such that γ −1
i p → η and

γ −1
i ξ → ξ0 as i → ∞, then for any 0 < r ≤ s(γ0), there exists i0 = i0(r) > 0 such that for

all i ≥ i0,

D(γiξ0, r) ∈ BR(γ0, ε) and ξ ∈ D(γiξ0, r).

In particular, for any R > 0,

$M ⊂
⋃

D∈BR(γ0,ε)

D.

Proof. Set !p := {γ ∈ ! : ψ(a(γ −1p, p) + i a(γ −1p, p)) > 0}; note that ! − !p is a finite

subset by Lemma 5.4. Hence we may assume that for all i, γi ∈ !p. Since γ −1
i p → η as

i → ∞, we may assume by Lemma 5.6 that for all i,

Oε/(8κ)(η, p) ⊂ Oε/(4κ)(γ
−1
i p, p). (10.13)

To prove that D(γiξ0, r) ∈ BR(γ0, ε), we need to check that

max
ξ ′∈Bp(γiξ0,3N0si)

‖βξ ′(p, γiγ
±1
0 γ −1

i p) ∓ λ(γ0)‖ < ε,

where si = 1
3N0

e−ψ(a(γ −1
i p,p)+i a(γ −1

i p,p))r. Let ξ ′ ∈ Bp(γiξ0, 3N0si). We only prove that

‖βξ ′(p, γiγ0γ −1
i p) − λ(γ0)‖ < ε, as the other case can be treated similarly. First, observe
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that

dp(ξ0, γ −1
i ξ ′) = dp(γiξ0, ξ ′)e

ψ(βξ0 (γ −1
i p,p)+i β

γ−1
i ξ ′ (γ

−1
i p,p))

≤ e
−ψ(a(γ −1

i p,p)+i a(γ −1
i p,p))+ψ(βξ0 (γ −1

i p,p)+i β
γ−1
i ξ ′ (γ

−1
i p,p))

r

≤ e2Cr by Theorem 5.3. (10.14)

Since r ≤ s(γ0), this implies that

‖β
γ −1

i ξ ′(p, γ0p) − λ(γ0)‖ < ε/4.

Hence, by (6.3), we have

dp(ξ0, γ −1
0 γ −1

i ξ ′) = e
−ψ(βξ0 (γ0p,p)+i β

γ−1
i ξ ′ (γ0p,p))

dp(ξ0, γ −1
i ξ ′)

≤ eψ(λ(γ0)+i λ(γ0))+ 1
2 ‖ψ‖ε+2Cr. (10.15)

Since r ≤ s(γ0), it follows from (10.14), (10.15), and (10.10) that both γ −1
i ξ ′ and γ −1

0 γ −1
i ξ ′

belong to Oε/(8κ)(η, p). Since, γ −1
i ξ ′, γ −1

0 γ −1
i ξ ′ ∈ Oε/(4κ)(γ

−1
i p, p) by (10.13), it follows from

Lemma 5.7 that

‖β
γ −1

i ξ ′(γ
−1
i p, p) − β

γ −1
0 γ −1

i ξ ′(γ
−1
i p, p)‖ < 2κ(ε/4κ) = ε/2.

Now we have

‖βξ ′(p, γiγ0γ −1
i p) − λ(γ0)‖

≤ ‖βξ ′(γip, γiγ0p) − λ(γ0)‖ + ‖βξ ′(p, γip) − βξ ′(γiγ0γ −1
i p, γiγ0p)‖

= ‖β
γ −1

i ξ ′(p, γ0p) − λ(γ0)‖ + ‖β
γ −1

i ξ ′(γ
−1
i p, p) − β

γ −1
0 γ −1

i ξ ′(γ
−1
i p, p)‖

≤ ε/4 + ε/2 < ε,

which verifies that D(γiξ0, r) belongs to the family BR(γ0, ε).

We now check that ξ ∈ D(γiξ0, r). Since γ −1
i ξ → ξ0, we may assume that for all i,

dp(ξ0, γ −1
i ξ) <

1
3N0

e−‖ψ‖εr. (10.16)
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Since r ≤ s(γ0), (10.10), (10.13), and (10.16) imply that γ −1
i ξ ∈ Oε/(4κ)(γ

−1
i p, p). Since

ξ0 ∈ Oε/(4κ)(γ
−1
i p, p) as well, we have

‖β
γ −1

i ξ
(γ −1

i p, p) − a(γ −1
i p, p)‖ ≤ ε/4 and ‖βξ0

(γ −1
i p, p) − a(γ −1

i p, p)‖ ≤ ε/4,

by Lemma 5.7. Note that

dp(γiξ0, ξ) = dγ −1
i p(ξ0, γ −1

i ξ)

= e
−ψ(βξ0 (γ −1

i p,p)+i β
γ−1
i ξ

(γ −1
i p,p))

dp(ξ0, γ −1
i ξ)

≤ e−ψ(a(γ −1
i p,p)+i a(γ −1

i p,p))+ 1
2 ‖ψ‖εdp(ξ0, γ −1

i ξ)

≤ 1
3N0

e−ψ(a(γ −1
i p,p)+i a(γ −1

i p,p))r by 10.16.

This proves that ξ ∈ D(γiξ0, r). !

Consider the following measure νp = νψ ,p on $:

dνp(ξ) = eψ(βξ (o,p))dνψ (ξ).

Proposition 10.17. Let B ⊂ F be a Borel subset with νp(B) > 0. Then for νp-a.e. ξ ∈ B,

lim
R→0

sup
ξ∈D,D∈BR(γ0,ε)

νp(B ∩ D)

νp(D)
= 1.

Proof. For a given Borel function h : F → R, we define h∗ : F → R by

h∗(ξ) = lim
R→0

sup
ξ∈D,D∈BR(γ0,ε)

1
νp(D)

∫

D
h dνp.

By Lemma 10.12, h∗ is well defined on $M . Since $M has a full νp measure by Theorem

8.11, h∗ is defined νp-a.e. on F . We will prove that h = h∗, νp-a.e.; by taking h = 1B, the

conclusion of the lemma will follow. Note that h = h∗ when h is continuous. To deal

with the general case, we proceed as follows.

Step 1: For all α > 0,

νp({h∗ > α}) ≤ eψ(λ(γ0))+‖ψ‖ε

α

∫

F
|h| dνp.
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Letting Q be an arbitrary compact subset of {ξ : h∗(ξ) > α}, it suffices to show

that

νp(Q) ≤ eψ(λ(γ0))+‖ψ‖ε

α

∫

F
|h| dνp.

Fix R > 0. By definition, for each x ∈ Q, there exists Dx ∈ BR(γ0, ε) containing x such

that

1
νp(Dx)

∫

Dx

h dνp > α.

Since K is compact, there exists a finite subcover of {Dx : x ∈ Q}, say Di = Bp(γiξ0, si)(i =
1, · · · , n) where γi ∈ ! and si = 1

3N0
e−ψ(a(γ −1

i p,p)+i a(γ −1
i p,p))ri for some 0 < ri < R.

For brevity, we will write 3N0Di := Bp(γiξ0, 3N0si). By Lemma 6.12, there exists a

disjoint subcollection {Di1 , · · · , Di3} such that

n⋃

k=1

Dk ⊂
3⋃

j=1

3N0Dij .

Now we claim that 3N0Dij ⊂ γijγ0
−1γ −1

ij
Dij : note that for ξ ∈ 3N0Dij ,

dp(γijξ0, γijγ0γ −1
ij

ξ) = d
γij γ0−1γ −1

ij
p(γijξ0, ξ)

= e
−ψ(βγij

ξ0 (γij γ0
−1γ −1

ij
p,p)+i βξ (γij γ0

−1γ −1
ij

p,p))
dp(γijξ0, ξ)

≤ 3N0e−ψ(λ(γ0)+i λ(γ0))+‖ψ‖εsij < sij ,

by (6.3), (5.2), (10.9), and (10.8). Hence

νp(3N0Dij) ≤ νp(γijγ0
−1γ −1

ij
Dij)

=
∫

Dij

e
ψ(βξ (e,γij γ0γ −1

ij
))

dνp(ξ)

≤ eψ(λ(γ0))+‖ψ‖ενp(Dij),
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where the last inequality follows from (10.9). Therefore,

νp(Q) ≤
3∑

j=1

νp(3N0Dij) ≤
3∑

j=1

eψ(λ(γ0))+‖ψ‖ενp(Dij)

≤ eψ(λ(γ0))+‖ψ‖ε

α

3∑

j=1

∫

Dij

h dνp ≤ eψ(λ(γ0))+‖ψ‖ε

α

∫

F
|h| dνp,

which was to be proved.

Step 2: h(ξ) = h∗(ξ) for νp-a.e ξ .

We first prove that h(ξ) ≤ h∗(ξ) for νp-a.e ξ . Let α > 0 be arbitrary. It suffices to

show that νp({ξ : h(ξ) − h∗(ξ) > α}) = 0. Let hn be a continuous function converging to h

in L1(νp). Note that h∗
n = hn and

νp({ξ : h(ξ) − h∗(ξ) > α})

≤ νp({ξ : h(ξ) − hn(ξ) > α/2}) + νp({ξ : h∗
n(ξ) − h∗(ξ) > α/2})

≤ 2
α ‖h − hn‖1 + 2

α eψ(λ(γ0))+‖ψ‖ε‖h − hn‖1.

Taking n → ∞, we get

νp({ξ : h(ξ) − h∗(ξ) > α}) = 0.

As α > 0 is arbitrary, it follows that h ≤ h∗, νp-a.e. A similar argument shows that

h∗ ≤ h, νp -a.e. !

Proof of Proposition 10.7. It is easy to check that Eν(!0) = Eνp
(!0). Hence it suffices

to show λ(γ0) ∈ Eνp
(!0). Let B ⊂ F be a Borel subset with νp(B) > 0 and ε > 0. By

Proposition 10.17, there exists D = Bp(γ ξ0, r) ∈ BR(γ0, ε) for γ ∈ ! and r > 0 such that

νp(D ∩ B) > (1 + e−ψ(λ(γ0))−‖ψ‖ε)−1νp(D). (10.18)

!

Since r < rp(γ ), we have

D ⊂ {ξ : ‖βξ (p, γ γ0
±γ −1p) ∓ λ(γ0)‖ ≤ ε}

⊂ {ξ : |ψ(βξ (p, γ γ0
±γ −1p)) ∓ ψ(λ(γ0))| ≤ ‖ψ‖ε}.
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We note that γ γ0γ −1D ⊂ D: if ξ ∈ D, by (6.3),

dp(γ ξ0, γ γ0γ −1ξ) = dγ γ0−1γ −1p(γ ξ0, ξ)

= eψ(βγ ξ0 (p,γ γ −1
0 γ −1p)+i βξ (p,γ γ −1

0 γ −1p))dp(γ ξ0, ξ)

≤ e−ψ(λ(γ0)+i λ(γ0))+‖ψ‖εr < r.

Since

B ∩ γ γ0γ −1B ∩ {ξ : ‖βξ (p, γ γ0γ −1p) − λ(γ0)‖ < ε} ⊃ (D ∩ B) ∩ γ γ0γ −1(D ∩ B),

it suffices to prove that (D ∩ B) ∩ γ γ0γ −1(D ∩ B) has a positive νp-measure. Note that

νp(γ γ0γ −1(D ∩ B)) =
∫

D∩B
eψ(βξ (p,γ γ0

−1γ −1p)) dνp(ξ)

≥ e−ψ(λ(γ0))−‖ψ‖ενp(D ∩ B).

Hence by (10.18),

νp(D ∩ B) + νp(γ γ0γ −1(D ∩ B)) > (1 + e−ψ(λ(γ0))−‖ψ‖ε)νp(D ∩ B) > νp(D).

Since both D∩B and γ γ0γ −1(D∩B) are contained in D, this implies that their intersection

has a positive νp-measure. Since γ γ0γ −1 ∈ !0, it follows that λ(γ0) ∈ Eνp
(!0).

In view of Proposition 9.2, we obtain the following corollary:

Corollary 10.19. Let !0 be a Zariski dense normal subgroup of an Anosov subgroup

! < G. Let ψ ∈ D&
!. If νψ is !0-ergodic, then mBR

ψ , considered as a measure on !0\G, is

NM-ergodic.

Patterson–Sullivan measures are mutually singular

Theorem 10.20. Let ! < G be an Anosov subgroup. Then {νψ : ψ ∈ D&
!} are pairwise

mutually singular.

Proof. Since ! < G is Anosov, the family {νψ : ψ ∈ D&
!} consists of !-ergodic measures

(see the remark following Theorem 4.3). Hence any νψ1
and νψ2

in this family are either

mutually singular or absolutely continuous to each other. Now the claim follows from

Lemma 10.21 below, in view of Proposition 10.2. !
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Lemma 10.21. For i = 1, 2, let νψi
be a (!, ψi)-PS measure for some ψi ∈ a∗. If Eνψ2

= a

and νψ1
< νψ2

, then ψ1 = ψ2.

Proof. Suppose that νψ1
< νψ2

and that ψ1 '= ψ2. Consider the Radon–Nikodym

derivative f := dνψ1
dνψ2

∈ L1($, νψ2
). Note that there exists a νψ2

-conull set E ⊂ $ such

that for all ξ ∈ E and γ ∈ !, we have

f (γ −1ξ) = e(ψ1−ψ2)(βξ (e,γ ))f (ξ). (10.22)

If f were continuous, then f '= 0 and by applying ξ = yγ in the above, we get

ψ1(λ(γ )) = ψ2(λ(γ )) for all γ ∈ !. Since λ(!) generates a dense subgroup of a, it follows

that ψ1 = ψ2.

In general, we use the hypothesis Eνψ2
= a. Choose 0 < r1 < r2 such that

B := {ξ ∈ $ : r1 < f (ξ) < r2}

has a positive νψ2
-measure. Since ψ1 '= ψ2, we can choose w ∈ a such that

e(ψ1−ψ2)(w) > 2r2
r1

. (10.23)

Choose ε > 0 such that e‖ψ1−ψ2‖ε < 2. Since νψ2
(B) > 0 and Eνψ2

= a, there exists γ ∈ !

such that

B′ := B ∩ γ B ∩ {ξ ∈ $ : ‖βξ (e, γ ) − w‖ < ε}

has a positive νψ2
-measure. Now note that

∫

B′
f (γ −1ξ) dνψ2

(ξ) > e(ψ1−ψ2)(w)−‖ψ1−ψ2‖ε
∫

B′
f (ξ) dνψ2

(ξ)

> r2
r1

∫

B′
f (ξ) dνψ2

(ξ)

by (10.22), (10.23), and the choice of ε. In particular,

νψ2

{
ξ ∈ B′ : f (γ −1ξ) > r2

r1
f (ξ)

}
> 0.
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It follows that there exists ξ ∈ B′ ∩ E such that

f (γ −1ξ) > r2
r1

f (ξ). (10.24)

On the other hand, for ξ ∈ B′, both ξ and γ −1ξ belong to B. Hence, by definition of B, for

all ξ ∈ B′, we have

f (γ −1ξ) < r2
r1

f (ξ).

This is a contradiction to (10.24). !

P-semi-invariant measures

In this section, we establish that P-semi-invariant Radon measures supported in

E = {x ∈ !\G : x+ ∈ $}, up to constant multiples, are parametrized by D&
!.

If µ is P-semi-invariant, then there exists a linear form χµ ∈ a∗ such that for all

a ∈ A,

a∗µ = e−χµ(log a)µ.

We set ψµ := χµ + 2ρ ∈ a∗. The first part of the following proposition is known

in the rank one case (see e.g., [3], [10], and [28]), and the proof can be easily adapted to

the higher rank case.

Proposition 10.25. For any Zariski dense discrete subgroup ! < G, any P-semi-

invariant Radon measure µ on !\G is proportional to mνψµ ,mo
where νψµ

is a (!, ψµ)-

conformal measure and ψµ ∈ D!. Moreover, if µ is supported on E , then µ is proportional

to mBR
ψµ

. If ! is Anosov, we also have ψµ ∈ D&
!.

Proof. For simplicity, set χ = χµ and ψ = ψµ. Let µ̃ be the !-invariant lift of µ to G

and π : G → G/P be the projection. Choose a section c : G/P → K so that π ◦ c = id and

consider the measurable isomorphism

G/P × M × A × N → G

(ξ , m, a, n) → c(ξ)man.
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Let dm, dn, and da be the Haar measures on M, N, and A. As µ̃ is a P-semi-invariant

Radon measure, there exist χ̃ ∈ a∗ and a Radon measure ν on G/P such that

dµ̃(c(ξ)man) = eχ̃(log a)dn da dm dν(ξ).

Without loss of generality, we may assume that |ν| = 1. Because dµ̃(· a) = eχ(log a)dµ̃(·),
we have

χ = χ̃ − 2ρ, or equivalently, χ̃ = ψ .

Note that G is measurably isomorphic to the product G/P × P and the left

!-action with respect to these coordinates is given by γ · (ξ , p) = (γ · ξ , >(γ , ξ)p) for

some P-valued cocycle > : ! × G/P → P where γ ∈ ! and (ξ , p) ∈ G/P × P. One can check

that

>(γ , ξ) = m(γ , ξ) exp(βξ (γ
−1, e))n(γ , ξ)

for some m(γ , ξ) ∈ M and n(γ , ξ) ∈ N. Hence, for p = man, the MAN-coordinates for

>(γ , ξ)p are given by

>(γ , ξ)p =
(
m(γ , ξ)m

)(
exp(βξ (γ

−1, e))a
)(

(ma)−1n(γ , ξ)man
)
. (10.26)

Since µ̃ is left-!-invariant, we have for any f ∈ Cc(G) and any γ ∈ !,

∫

G
f (g) dµ̃(g) =

∫

G
f (g) d(γ∗µ̃)(g)

=
∫

G/P

∫

P
f ((γ ξ , >(γ , ξ)p)eψ(log a) dn da dm dν(ξ)

=
∫

G/P

∫

P
f (ξ , p)eψ

(
log a−β

γ−1ξ
(γ −1,e)

)
dn da dm d(γ∗ν)(ξ),

where in the last equality, we have used (10.26) and the change of variables

a′ = a exp(βξ (e, γ −1)). On the other hand, we have

∫

G
f (g) dµ̃(g) =

∫

G/P

∫

P
f (ξ , p)eψ(log a)dn da dm dν(ξ).

By comparing these two identities, we get that for any γ ∈ !,

d(γ∗ν)(ξ) = eψ(βξ (e,γ ))dν(ξ),
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that is, ν is a (!, ψ)-conformal measure. By [40, Thm. 8.1], ψ ∈ D!.

Finally, recall that for all g ∈ G and φ ∈ Cc(G),

∫

N
φ(gn) dn =

∫

G/P
φ(gn)e2ρ(βgn− (e,gn))dmo(gn−).

For g = c(ξ)man ∈ KAN, we have βg+(e, g) = log a and g+ = ξ . Hence, for any f ∈ Cc(G),

∫

G
f (g)dµ̃(g) =

∫

G/P

∫

P
f (c(ξ)man)eψ(log a)dn da dm dν(ξ)

=
∫

G/M

∫

M
f (g)e2ρ(βg− (e,g))eψ(βg+ (e,g)) dm da dmo(g−) dν(g+)

= m̃ν,mo
(f ).

Therefore, µ̃(f ) = m̃ν,mo
(f ).

Now, if µ is supported on E , then ν is supported on $. Hence ν is a (!, ψ)-PS

measure; so µ = mBR
ψ . When ! is Anosov, ψ ∈ D&

! by Theorem 7.7. !

Let P! be the space of all P-semi-invariant Radon measures on E up to

proportionality. Let Q! be the space of all NM-invariant, ergodic, and A-quasi-invariant

Radon measures supported on E up to proportionality.

Theorem 10.27. Let ! < G be an Anosov subgroup. We have P! = Q! and the map

D&
! → Q! given by ψ ,→ [mBR

ψ ] is a homeomorphism between D&
! and Q!. In particular,

Q! is homeomorphic to Rrank G−1.

Proof. For µ ∈ Q! and a ∈ A, a∗µ and µ are equivalent to each other, and by the

NM-ergodicity of µ, the Radon–Nikodym derivative da∗µ/dµ is constant, say χ(a). Now

the function a ,→ χ(a) gives the semi-invariance of µ by A and hence by P. This implies

Q! ⊂ P!. The other direction P! ⊂ Q! follows from Proposition 10.25 and Theorem 10.1.

Let Q♠
! be the space of all NM-ergodic A-quasi-invariant Radon measures

supported on {x ∈ !\G : x+ ∈ $}, so that Q! = Q♠
!/ ∼. Set ι(ψ) = mBR

ψ for

ψ ∈ D&
!. Since mBR

ψ is NM-ergodic by Theorem 10.1, the map ι : D&
! → Q♠

! is well

defined and injective by Lemma 10.21. By Proposition 10.25, ι(D&
!) contains precisely

one representative of each class in Q!. Hence it suffices to show that the map ι

gives a homeomorphism between D&
! and its image ι(D&

!). Continuity of ι follows from

Theorem 7.7. Now, suppose that mBR
ψi

→ mBR
ψ for some sequence ψi, ψ ∈ D&

!. Then the
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A-semi-invariance of the BR-measures given by (3.20) and the convergence a∗mBR
ψi

→
a∗mBR

ψ implies that limi→∞ e(2ρ−ψi)(log a)mBR
ψi

(f ) = e(2ρ−ψ)(log a)mBR
ψ (f ) for all f ∈ Cc(!\G).

Since limi→∞ mBR
ψi

(f ) = mBR
ψ (f ), we get limi→∞ e(2ρ−ψi)(log a) = e(2ρ−ψ)(log a) for all a ∈ A.

Hence ψi → ψ . This proves that D&
! and Q! are homeomorphic to each other. The last

claim follows from Proposition 4.4. !
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