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Let I' be a Zariski dense Anosov subgroup of a connected semisimple real algebraic
group G. For a maximal horospherical subgroup N of G, we show that the space of all
non-trivial NM-invariant ergodic and A-quasi-invariant Radon measures on I'\G, up to
proportionality, is homeomorphic to R™2kG-1 where A is a maximal real split torus and
M is a maximal compact subgroup that normalizes N. One of the main ingredients is to

establish the NM-ergodicity of all Burger—-Roblin measures.

1 Introduction

Let G be a connected semisimple real algebraic group and I' < G a Zariski dense discrete
subgroup. A subgroup N of G is called horospherical if there exists a diagonalizable

element a € G such that
N:{geG:akga_k—>oo as k — +o0},

or equivalently, N is the unipotent radical of a parabolic subgroup of G. We assume
that N is a maximal horospherical subgroup, which exists uniquely up to conjugation.
We are interested in the measure rigidity property of the N-action on the homogeneous

space I'\G. When T is a lattice, that is, when I'\G has finite volume, the well-known
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measure rigidity theorems of Furstenberg [17], Veech [57], and Dani [14] give a complete
classification of Radon measures (=locally finite Borel measures) invariant by N.
This rigidity phenomenon extends to any unipotent subgroup action by the celebrated
theorem of Ratner in [45].

When G has rank one and I' is geometrically finite, the horospherical subgroup
action on I'\G is known to be essentially uniquely ergodic; there exists a unique non-
trivial invariant ergodic Radon measure on I'\G, called the Burger-Roblin measure
([10], [46], [59]). When T' is geometrically infinite, there may be a continuous family
of horospherically invariant ergodic measures as first discovered by Babillot and
Ledrappier ([3], [4]). For a certain class of geometrically infinite groups, a complete
classification of horospherically invariant ergodic measures has been obtained; see [50],
[51], [32], [36], [28], [29], etc. We refer to a recent article by Landesberg and Lindenstrauss
[28] for a more precise description on the rank one case.

When G has rank at least 2 and I' has infinite co-volume in G, very little is
known about invariant measures. In this paper, we focus on a special class of discrete
subgroups, called Anosov subgroups. In the rank one case, this class coincides with
the class of convex cocompact subgroups, and hence the class of Anosov subgroups can
be considered as a generalization of convex cocompact subgroups of rank one groups
to higher rank. The works of Burger [11] and Quint [40] on a higher rank version of
the Patterson—Sullivan theory supply a continuous family of maximal horospherically
invariant Burger—-Roblin measures, as was introduced in [15]. We show that all of
these Burger-Roblin measures are ergodic for maximal horospherical foliations, and
classify all ergodic non-trivial Radon measures for maximal horospherical foliations,
which are also quasi-invariant under Weyl chamber flow. In particular, we establish a
homeomorphism between the space of these measures and the interior of the projective
limit cone of I, which is again homeomorphic to Rrark G—1,

In order to formulate our main result precisely, we begin with the definition of
an Anosov subgroup of G. Let P be the normalizer of N, that is, a minimal parabolic
subgroup of G and F := G/P the Furstenberg boundary. We denote by 7@ the unique
open G-orbit in F x F. A Zariski dense discrete subgroup I' < G is called an Anosov
subgroup (with respect to P) if it is a finitely generated word hyperbolic group which
admits a '-equivariant embedding ¢ of the Gromov boundary dI' into F such that
(¢(x),¢(y)) € F@ for all x # yin oT".

First introduced by Labourie [27] as the images of Hitchin representations of
surface groups ([23], [18]), this definition is due to Guichard and Wienhard [22], who

showed that Anosov subgroups (more precisely, Anosov representations) form an open
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subset in the representation variety Hom(I', G). The class of Anosov groups includes
Schottky subgroups [41], and hence any Zariski dense discrete subgroup of G contains
an Anosov subgroup ([6], [42]). We also refer to the work of Kapovich, Leeb, and Porti
[25] for other equivalent characterizations of Anosov groups, as well as to the excellent
survey articles by Kassel [26] and Wienhard [58] on higher Teichmiiller theory.

We let P = NMA be the Langlands decomposition of P, so that N is the unipotent
radical of P, A is a maximal real split torus of G, and M is a compact subgroup that
commutes with A. Note that any maximal horospherical subgroup arises in this way,
that is, as the unipotent radical of a minimal parabolic subgroup.

The limit set A of T is the unique minimal I'-invariant closed subset of F. Hence

the following set

E:={lgl e T\G:gP e A}

is the unique minimal P-invariant closed subset of '\G. We call a P-quasi-invariant

measure on I'\G non-trivial if its support is contained in £.

Theorem 1.1. For any Anosov subgroup I' < G, the space Qp of all non-trivial
NM-invariant ergodic and A-quasi-invariant Radon measures on I'\G, up to constant

multiples, is homeomorphic to RrarkG-1,

In order to describe the explicit homeomorphism, we need to define Burger—
Roblin measures on £. Denote by a the Lie algebra of A and fix a positive Weyl chamber
at C a so that logN is the sum of positive root subspaces. Fix a maximal compact
subgroup K of G so that the Cartan decomposition G = K(exp a*)K holds. Let u : G — a*
denote the Cartan projection map (Def. 2.2). We denote by £ C a* the limit cone of T,
which is the asymptotic cone of u(I'") (Def. 2.16). Let ¢ : a — RU{—o0} denote the growth
indicator function of I' (Def. 2.17).

For Anosov subgroups, the following two spaces are homeomorphic to each

other:

Di:={y €a* : ¢y > Y, ¥ (v) = ¥ (v) for some v € int £} ~ int(PL[)

where int(P£) denotes the interior of the projective limit cone PL (Proposition 4.4).

Since int(£) is a non-empty open convex cone of a® [6, Thm. 1.2], it follows that D}. is
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4 M. Lee and H. Oh

homeomorphic to R™"kG-1 We remark that Dy is in fact a closed analytic submanifold
of a* [38, Prop. 4.11].
For a linear form ¢ € a*, a Borel probability measure v on the limit set A is

called a (I", ¥)-Patterson—Sullivan measure if for all y € " and & € F,

dy,v

) = eV (P:(0,y0)) (1.2)
dv

whereo = [K] € G/K and 8 : F x G/K x G/K — a denotes the a-valued Busemann function
(Def. 3.2). Quint constructed a (T', )-Patterson—Sullivan measure for each v € Dy. [40];
for I' Anosov, this measure exists uniquely (hence I'-ergodic), which we denote by v,
(see Theorem 4.3 and references therein).

In the rest of the introduction, we let I' < G be an Anosov subgroup. By a
Patterson—Sullivan measure on A, we mean a (I, y)-Patterson-Sullivan measure on A

for some ¢ € a*. We show:

Theorem 1.3. The map ¢ > v, is a homeomorphism between D}. and the space of all
Patterson-Sullivan measures on A. Moreover, Patterson—-Sullivan measures are pairwise

mutually singular.

When I' is the fundamental group of a closed negatively curved manifold, the
above theorem also follows from [33].
We also denote by v, the M-invariant lift of v, on 7 ~ K/M to K by abuse

of notation. The Burger-Roblin measure ng on I'\G is induced from the following I'"-

invariant measure m;" on G: for g = k(exp b)n € KAN,

dmiR(g) = e’ Pdndbdv, (k) (1.4)

where dn and db are Lebesgue measures on N and a, respectively.

The following is a more elaborate version of Theorem 1.1:

Theorem 1.5 (Classification). The map ¥ — [mﬁR] defines a homeomorphism between
Dy and Q.

While the P-ergodicity of my® follows from the I'-ergodicity of v, establishing
the ergodicity of m?f‘, and hence the well-definedness of the above map, is the most

significant part of Theorem 1.5:
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Invariant Measures for Horospherical Actions 5

Theorem 1.6 (Ergodicity). For each y € D}, my® is NM-ergodic.
Since £ is a second countable topological space, Theorem 1.6 implies:

Corollary 1.7.  For m}® almost all x € £,

xNM = €£.

A Radon measure m on I'\G is called P-semi-invariant if there exists a character
x : P — R* such that p,m = x(p)m for all p € P. Note that any P-semi-invariant Radon
measure is necessarily NM-invariant since NM is unimodular. We show that any P-semi-
invariant Radon measure on £ is of the form m?f‘ for some ¢ € D}. (Proposition 10.25).

Hence Theorem 1.6 implies:

Corollary 1.8. The space of all P-semi-invariant Radon measures on £ coincides with

Qr, up to constant multiples.

Discussion on the proof of Theorem 1.6.

Fix € D}.. Defining a I'-invariant Radon measure ’ﬁw on H := G/NM >~ F x a by

dv, (gP,b) = e’ dv,, (gP) db,

the standard duality theorem implies that the NM-ergodicity of ng is equivalent to the
I'-ergodicity of v,,.

Generalizing the observation of Schmidt [52] (also see [46]) to a higher rank
situation, the I'-ergodicity of ’v‘w follows if the closed subgroup, say va = va (),

consisting of all v, -essential values is equal to a (Proposition 9.2):

Definition 1.9. An element v € ais called a (T, vv/)-essential value, if for any ¢ > 0 and

any Borel set B C F with vy (B) > 0, there exists y € I" such that
BNyBN{§ € F: |f:(0,y0) — v <&}
has a positive v, -Ineasure.

Recalling that the Jordan projection A(T") of " generates a dense subgroup of a

[6], the following is the main ingredient of our proof of Theorem 1.6:
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6 M. Lee and H. Oh

Proposition 1.10. For each v € D}, there exists a finite subset F, c D) such that
M) —F, CE, ().
In particular, Ew T =a.

See Proposition 10.2 for a more general version stated for any Zariski dense
normal subgroup of I.
Among other things, the following three key properties of Anosov groups play

important roles in the proof of Proposition 1.10:

(1) (Antipodality) A x A — {(§,&)} ¢ F@;

(2) (Regularity) If y; — oo in I', then a(u(y;)) — oo for each simple root « of
Lie(G) with respect to a*;

(3) (Morse property) There exists a constant D > 0 such that any discrete
geodesic ray [e, x) in I" tending to x € 9I" is contained in the D-neighborhood

of some gA™ in G where g € G satisfies gP = ¢(x).

(1) is a part of the definition of an Anosov subgroup. (2) follows from the fact that
Ly C inta™ U {0} ([41], [48], [8]) in view of Lemma 7.2. (3) is proved in [25] (see also
Proposition 5.12).

Many aspects of our proof of Proposition 1.10 can be simplified for a special
class of ¢ € D}. with certain strong positivity property (cf. Lemma 5.1); however, as our
eventual goal is the classification theorem as stated in Theorem 1.1, we need to address
all ¢ € D}, which makes the proof much more intricate and requires the full force of the
Anosov property of I'.

Fix y, € I'. We aim to show that A(y) € Eu,,, (T"). More precisely, for any ¢ > 0 and
any Borel subset B ¢ F with v, (B) >0, there exists y € I' such that

vy BN yyey 'BN{E € F:l|B:(0,yvor ' 0) — A(yp)ll < €}) > 0. (1.11)

For p € G/K, we define

dw,p(él'%-Z) — e E1.&2lyp

for any &, # &, in A, where [, ], , denotes the y-Gromov product based at p (Def. 6.1).
Its well-definedness is due to the antipodality (1). In the rank one case, this is simply

the restriction of the classical visual metric to the limit set A. In general, it is not even
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Invariant Measures for Horospherical Actions 7

symmetric but we show that any sufficiently small power of d, , is comparable to some

genuine metric on A:

Theorem 1.12. For all sufficiently small s > 0, there exist a metric d, on A and C; > 0
such that for all §; # &, in A,

Cs_lds(éllsz) = dwyp(%'l/éz)s = Csds(SIIEZ)'

Remark 1.13. In the process of proving this theorem, we also show that the Gromov
product on JI' and the -Gromov product [, -], , are equivalent to each other (see
Theorem 6.13).

As a consequence of Theorem 1.12, dw,p can be used to define virtual balls with
respect to which Vitali type covering lemma can be applied (Lemma 6.12). Let &, € F

denote the attracting fixed point of y, and consider the family
1 _ —1 i =1
D(y&y, 1) = Bp(VEO' ge v(a(y " pp)tialy P,P))r), yel,r>0

where a(q, p) denotes the a'-valued distance from g to p (Def. 2.4). We then show that
for all sufficiently small r > 0, there are infinitely many D(y;&,,r) satisfying (1.11)
(Lemma 10.12). The key ingredient in this step is the following:

Lemma 1.14. There exists C = C(y,p) > 0 such that forall y e " and & € A,

—¥(a yp) —C=¥(B:(yp,p) < ¥(alyp,p)) +C.

In the rank one case, a stronger statement —d(p, q) < B:(q,p) < d(p, q) holds for
allg,p € G/K and & € F, which generalizes to strongly positive linear forms (Lemma 5.1).
For a general ¢ € D%, our proof of Lemma 1.14 is based on the property that the orbit
map y — y(0) sends a shadow in the word hyperbolic group I' to a shadow in the
symmetric space G/K (Proposition 5.14), as well as the following lemma, which is of
independent interest: we denote by | - | the word length on I' with respect to a fixed

finite symmetric generating subset.
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8 M. Lee and H. Oh

Lemma 1.15. There exists R > 0 such that for any y;,y, € " with |y, = l¥1| + v2l

we have

le(rrve) — () — n)ll < R.

We emphasize that this lemma does not follow from the property of Anosov
groups that (T, | - |) — G is a quasi-isometric embedding [22, Thm. 1.7], due to the non-
trivial multiplicative constant.

To establish (1.11), we approximate a general Borel subset B C F by some
D(y&y, r) satisfying (1.11). In this step, we prove the following higher rank generalization
of Tukia’s theorem [56, Thm. 4A] (see also [34], [1], [35]):

Theorem 1.16. For any Patterson-Sullivan measure v on A, the set of Myrberg limit

points (Def. 8.1) has full v-measure.

It follows that for the AM-invariant Bowen-Margulis-Sullivan measure mj3

on
I'\G, almost all points have dense A™M orbits (Corollary 8.12). Using the property that
virtual balls B, (y&,, r) satisfy a covering lemma (Lemma 6.12) that is a consequence of
Theorem 1.12, we show that v, -almost all Myrberg limit points satisfy the Lebesgue
density type statement for the family {D(y&,,7) : y € I',r > 0} (Proposition 10.17). By
Theorem 1.16, this gives a desired approximation of B by some D(y&,, r) satisfying (1.11).
We finally remark that in our subsequent work [30], we present refined versions
of Theorems 1.1 and 1.6, building on the main results of this paper.
Organization: In section 2, we go over basic definitions and properties of Zariski dense
discrete subgroups of G. In section 3, we discuss the notion of a-valued Gromov product
and define the generalized BMS measures for a pair of (I, ¥)-conformal densities on
F. From section 4, we assume that I is Anosov. In section 4, we observe that the BMS

measure mﬁMs

is AM-ergodic for each ¥ € D}.. Sections 5 and 6 are devoted to proving
Lemma 1.14 and Theorem 1.12, respectively. In section 7, we prove that the space of
PS-measures on A is homeomorphic to D}, which is the first part of Theorem 1.3. In
section 8, we show that the set of Myrberg limit points of I" has full measure for any PS-
measure on A. In section 9, we discuss the relation between the set of essential values
of vy, and the NM-ergodicity of mgP‘. In the final section 10, we prove Theorems 1.6, 1.5,
and the second part of Theorem 1.3.

Added to proof: It was recently shown that for any ¢ € Dy, any y-conformal

measure is necessarily supported on A, and hence there exists a unique (I', ¥)-conformal
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Invariant Measures for Horospherical Actions 9

measure on F (not only on A), first in [16] for ranks at most 3 and in [31] for general
ranks. As a consequence, the space of all I'-Patterson-Sullivan measures on A in

Theorem 1.3 is equal to the space of all (T, )-conformal measures on F, ¥ € Dy.

2 Limit Set and Limit Cone

Let G be a connected, semisimple real algebraic group with finite center, and I' < G
be a Zariski dense discrete subgroup. We fix, once and for all, a Cartan involution 6
of the Lie algebra g of G, and decompose g as g = ¢ & p, where ¢ and p are the +1 and
—1 eigenspaces of 6, respectively. We denote by K the maximal compact subgroup of G
with Lie algebra ¢, and by X = G/K the associated symmetric space. We also choose a
maximal abelian subalgebra a of p. Choosing a closed positive Weyl chamber a* of a, let
A :=expaand AT = exp a™. The centralizer of A in K is denoted by M, and we set N to be
the contracting horospherical subgroup: fora € intA*, N={ge G:a "ga® — easn —
+00}. Note that log N is the sum of all positive root subspaces for our choice of A™.
Similarly, we also consider the expanding horospherical subgroup N*: for a € intAT,

Nt:={geG:a%ga™"™ — easn — +oo}. We set

Pt = MANT, and P =P = MAN;

they are minimal parabolic subgroups of G that are opposite to each other. The quotient
F = G/P is known as the Furstenberg boundary of G and is isomorphic to K/M.

Let Ng(a) be the normalizer of a in K. Let W := Ng(a)/M denote the Weyl group.
Fixing a left G-invariant and right K-invariant Riemannian metric on G induces a W-
invariant inner product on a, which we denote by (-, ). The identity coset [e] in G/K is
denoted by o.

Denote by w, € WV the unique element in W such that Ad,,, a* = —a™; it is the
longest Weyl element. Note that w,Pw, ' = P*.

Definition 2.1 (Visual map). For each g € G, we define

g :=gPeG/P and g :=gw,P e G/P.

For all g € G and m € M, observe that g* = (gm)* = g(e*). Let F® denote the unique
open G-orbit in F x F:

FD =gt e)={grg)e FxF:geG

Note that the stabilizer of (eT, e™) is the intersection P~ NPT = MA.
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10 M. Lee and H. Oh

We say that &,7 € F are in general position if (¢,7) € F®. The Bruhat
decomposition says that G is the disjoint union U, .y, NwP", and NP is Zariski open

and dense in G. Hence (£, ) ¢ F? if and only if (£, ) € G(et, we™) for some w € W — {e}.

Cartan projection and aT-valued distance

Definition 2.2 (Cartan projection). For each g € G, there exists a unique element u(g) €

a't, called the Cartan projection of g, such that

g € Kexp(u(g)K.

When u(g) € inta® and g = k; exp(u(9))k,, ki, k, are determined uniquely up
to mod M, more precisely, if g = k exp((g9))k;, then for some m € M, k;, = kim and

k, = m~1k),. We write
k(@ :=1k]]e K/M and «,(g) = Ilky] € M\K.

Lemma 2.3. [6, Lem. 4.6] For any compact subset L C G, there exists a compact subset
Q = Q(L) C asuch that for all g € G,

w(LgL) C n(g) + Q.

Definition 2.4 (a*-valued distance). We definea : X x X — a* by

ap,q) =g 'h
where p = g(0) and g = h(0).

Accumulation of points of X on F

Let I1 denote the set of all simple roots of g with respect to a*.

Definition 2.5. We write that
(1) v; > ooregularly in at if a(v;) > coasi — oo forall « € IT;
(2) a; > ooregularly in A" if loga; — oo regularly in a™;

(3) g; — ooregularly in G if u(g;) — oo regularly in a*.
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Invariant Measures for Horospherical Actions 11

If a; — oo regularly in A*, then foralln e N*,

lim al-nai_1 =e
i—00

uniformly on compact subsets of .

Definition 2.6. We call I" regular if for any sequence y; € I' going to co in G, y; - o©

regularly in G.

Lemma 2.7. If the closure of {(§;,¢7) :i=1,2,---} is contained in F®, then a;&, — e*

for any sequence a; — oo regularly in A™.

Proof. The hypothesis implies that & = n;e* for a bounded sequence n; € N*. Hence

a;t; = a;net = (a;n;a; et — et as a; > oo regularly in A™. [ |

Definition 2.8.

(1) A sequence g; € G is said to converge to £ € F, if g; — oo regularly in G and
ll_l)rg Ky (gi)+ =§.
(2) A sequence p; = g;(0) € X is said to converge to £ € F if g; does.

.a;h; ! where k; € K, a; € A*, h; € G satisfy that

[Aad At

ki — k§ in K, h; - hyin G, and a; — oo regularly in A*. Then for any £ € 7 in general

Lemma 2.9. Consider a sequence g; =k

position with hj, we have
lim g;& = k{.
11—

Proof. As (§,hy) € F@, we have (hy'£,e7) € F@. Since F@ is open and h;lg — hy't,
we have (hi_lé, e”) € F@ for all large i. By Lemma 2.7, aihi_l.f — et asi — oo. Therefore,
£ =lim; ,  kj(a;h;'E) = k. [ |

hmiaoo 9i 1— 00

Lemma 2.10. If g; € G converges to £ € F and p; € X is bounded, then lim; ,  g;p; = &.

Proof. Write g; = k;a;¢; ' € KA*K. The hypothesis implies that a; — oo regularly in A*

[0 0

and kl?L — & asi — oo. Let k; € K be such that kar =&, and g, € G be such that g;(0) = p;.
Write g;g, = kla;(¢})~! € KATK. We need to show that lim,_, k, = ki. As k' — kJ, it

1—> 0

suffices to show that any limit of the sequence k;lkg belongs to M = Stabg e™.
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12 M. Lee and H. Oh

Set g; == ki_lkg. Let g be a limit of the sequence g;. By passing to a subsequence,
we may suppose q; — q € K. Since d(o, p;) = d(g;0,9;p;) = d(a;0,q;a;0), the sequence
h;l = a;lqia; is bounded. Passing to a subsequence, assume that h; converges to some
hy € G as i — oo. Choose n € F that is in general position with both h; and e”. Then
aihi_ln = et and lim;_,  g;a/n = q* by Lemma 2.9. Since aihi_ln = q;a;n, we get

hmi%oo

et = q" = q(e™). This implies q € Stabg e™ = M. [ |

Lemma 2.11. If g; - g in G and a; — oo regularly in A*, then for any p € X,

lim; ., g;a;(p) = g+ and lim, , _ g;a; ' (p) =g~

Proof. By Lemma 2.10, it suffices to consider the case when p = o. Write g;a; =
kibiﬂlfl € KA'K. As the sequence g; is bounded, it follows from Lemma 2.3 that b; — oo
regularly in A™. In order to show that g;a;(0) — g*, it suffices to show that if k; — k,
then ki = g*. By passing to a subsequence, we may assume that ¢; — ¢, in K. Choose
& € F that is in general position with both ¢; and e™. Then g;a;§ — ka“ by Lemma 2.9. On
the other hand, as (¢,e7) € 7@, g;a;6 — g* by Lemma 2.7. Hence g* = k;, proving the
first claim. Now the second claim follows since giai_1 = g;wob;wy! for some b; € AY,

and giwobiwal(o) = g;wyb;(0) — (gwy)t =g~. [ ]
Limit set and Limit cone

Denote by m, the K-invariant probability measure on F ~ K/M.

Definition 2.12 (Limit set). The limit set A of " is defined as the set of all points & € F
such that the Dirac measure §; is a limit point of {y,m, : y € I'} in the space of Borel

probability measures on F.

Benoist showed that A is the unique minimal I'-invariant closed subset of F.
Moreover, A is Zariski dense in F ([6, Section 3.6], see also [15, Lem. 2.10] for a stronger

statement).

Lemma 2.13. For any p € X, we have
A:{ limypeF:yel }
11—

Proof. Let (y).m, — &, and write y; = k;a;t;' € KA*K. Suppose k; — k. Then

1Yt

(@)),m, = 8p-1¢. It follows that @; — oo regularly in A* and k~'¢ = e™, that is, § = k*.
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Invariant Measures for Horospherical Actions 13

Hence y; — £ and hence y;(p) — & by Lemma 2.10. This proves the inclusion C. If y;p — £

and y; = kiaiéi_l € KA'K, then a; — oo regularly and k; — &. Since (a;),m, converges to

8¢+, we have (y;),m, — 8. This proves the other inclusion. u

Any element g € G can be written as the commuting product g;,9.9,,, where g3, g,.
and g,, are unique elements that are conjugate to elements of A", K, and N, respectively.
When g;, is conjugate to an element of intA™, g is called loxodromic; in such a case,

g,, = e. If a loxodromic element g € G satisfies (p_lgh(p € intAT for ¢ € G, then
ygi=9" (2.14)

is called the attracting fixed point of g. We then have Yg1=¢".

Lemma 2.15. [6, Lem. 3.6] The set
{(y, ¥,-1) € A x Ay is aloxodromic element of I'}

is densein A x A.

The Jordan projection of g is defined as A(g) € a™, where exp A(g) is the element

of AT conjugate to gy,

Definition 2.16 (Limit cone). The limit cone L C at of I' is defined as the smallest
closed cone containing the Jordan projection A(T"). Alternatively, it can be defined as

the asymptotic cone of u(I') [6, Thm. 1.2].
The limit cone £ is a convex subset of a* with non-empty interior [6, Thm. 1.2].

Definition 2.17 (Growth indicator function). The growth indicator function ¥ : at —
R U {—o0} is defined as a homogeneous function, that is, ¥ (tu) = ty(u), such that for

any unit vector u € a™,

Yr(u) = inf e
open cones CCa’t
ueC

where 7. is the abscissa of convergence of the series 3 . ,,)cc € @l
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14 M. Lee and H. Oh

We may consider Y- as a function on a by setting ¥ = —oo outside of a™. Quint

showed the following:

Theorem 2.18. [39, Thm. IV.2.2] The growth indicator function ¢ is concave, is upper-

semicontinuous, and satisfies
Lr={uea’:yYr(u) > —oo}.

Moreover, ¥ is non-negative on £ and positive on int L.

3 a-Valued Gromov Product and Generalized BMS Measures
Iwasawa cocycle and a-valued Busemann function

The Iwasawa decomposition says that the product map K x A x N — G is a diffeomor-

phism.

Definition 3.1. The Iwasawa cocycle 0 : G x F — a is defined as follows: for

(9,8) € Gx F,0(g,&) € ais the unique element satisfying
gk € Kexp(o(g,£)N (3.2)
where k € K is such that £ = k™.
It satisfies the cocycle relation
0(9192,8) = 0(g1,928) +0(g,,%)

forall g,,g, € Gand £ € F.

Definition 3.2. The a-valued Busemann function 8 : F x X x X — a is defined as
follows: for &€ € 7 and g(0), h(o) € X,

B:(g(0), h(0)) :=0 (g™, &) —a(h™',&).

Observe that the Busemann function is continuous in all three variables. To ease

the notation, we will write Bz (g, h) = B:(g(0), h(o0)). We can check that for all g,h,q € G
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Invariant Measures for Horospherical Actions 15

and & € F,

B: (g, h) + B:(h,q) = B:(9,9),
Bgs(Gh,9@) = B¢(h,q), and (3.4)

B:(g.e) =o(g~",&).
Geometrically, if £ = k* € F for k € K, then for any unit vector u € a*,
(B: (9, h),u) = tlg-noo d(g(o), &) — d(h(o), &)
where &, = kexp(tu)o € X.

Lemma 3.5. For any loxodromic element g € G and p € X,

By,(p.gp) =1(g) and B,  (p,gp)=—Ag ).

Proof. Let ¢ € G be so that g = pamg~! for some a € A* and m € M. If p = h(o) for

h € G, then, since g~ fixes ¢ = Vg
By, (0, 9P) = B+ (ho,gho) = o(h™!,¢T) —o(h™'g™!,¢") = —a (g™ ¢™).
Writing ¢ = kb with k € K and b € P, we have
g_lk = w(am)_lgo_lk = kb(am)"'b~! € Ka"'N.

1 1

This gives 6 (g1, ¢™) =loga™! = —A(g), and hence the first identity. The second identity

follows from the first, by replacing g with g—!. |

a-valued Gromov product

Definition 3.6 (Opposition involution). The involutioni: a — a defined by
i(w) = — Ad,,, (w)
is called the opposition involution; it preserves a*. Note that for all g € G,

MgTH =1i((g) and (@ =iug).
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16 M. Lee and H. Oh

It follows that
i(lp) =Ly and yYpoi=yr. (3.7)

Definition 3.8. We define the a-valued Gromov product on F? as follows: for
(&, e FP,

g(‘i:l 77) = :Bg+ (er g) + iﬂg* (er g)

where g € G satisfies gt =& and g~ = 1.

The definition does not depend on the choice of a representative of [g] € G/AM.
For all h € G and (x,y) € F?, we have the following identity:

G(hx, hy) —G(x,y) =0 (h,x) +io(h,y). (3.9)

As G(y,x) =iG(x,y), the Gromov product is not symmetric in general.

Lemma 3.10. [55] There exists a family of irreducible representations (p,, V,), @ € II,
of G so that

(1) the highest weight x, of p, is a positive integral multiple of the fundamental
weight w, corresponding to «;

(2) the highest weight space of p, is one dimensional.

For o € II, denote by V; the highest weight space of p,, and by V; its unique
complementary A-invariant subspace in V,. We have p,(P)V,}" = V', and hence the map

g+ (py(@V),en factors through a proper immersion

F=G/P—> H P(V,).

aell

Let (-,-), be a K-invariant inner product on V, with respect to which A is symmetric;
then V; and V; are orthogonal to each other. We denote by ||-||, the norm on V, induced
by (., -),. For ¢ € V}, |l¢|l, means the operator norm of ¢. We also use the notation | - |,

for a bi-p, (K)-invariant norm on GL(V,).

€202 dunp GO uo Jasn Ajsianiun e A AQ 86181/9/29Z0BUI/UIWI/SE0 "0 | /I0p/3]21MB-80UBAPE/UIWI/WO0D dNO"dIWapEI.//:Sd)y WOol) POPEOjUMO(]



Invariant Measures for Horospherical Actions 17

Lemma 3.11. Foralle e [Tand g € G,

lp(v)]

(3.12)
ol vl

Xe(G(gT,g7)) =—log

where v € gV} and ¢ € V} is such that kerp = gV;.

Proof. If we define G'(g*, g7) to be the unique element of a satisfying (3.12), it is shown
in [47, Lem 4.12] that G’ satisfies (3.9). Hence for all h € G,

g/(h+, h_) - g/(e+, e_) = g(h+, h_) - g(e+, e_)'

We claim that G’(e™, e”) = 0; to check this, take ¢ to be the projection V — V; parallel to

V5. Since V;} and V; are orthogonal, it follows that |¢|, = 1. Now for v € V;}, we have

lem| v, _ 1
lel vig vl
Since G(eT,e”) = 0, we conclude G = G’ on F@, [ |

Remark 3.13. In view of this lemma, our definition of Gromov product differs by —i

from the one given in [47].

Patterson-Sullivan measures on A

Definition 3.14 (Conformal measures). Given a closed subgroup I' < G and ¢ € a*, a
Borel probability measure v on F is called a (I, ¥)-conformal measure if, for any y € '
and & € F,

dy,v

(%—) — e'//(ﬂé(er)/)) (315)
dv

where y,v(Q) = v(y~1Q) for any Borel subset Q C F.

If 2p denotes the sum of all positive roots of G with respect to a*, then it is
a standard fact that a (G, 2p)-conformal measure is precisely the unique K-invariant
probability measure m, on F (cf. [44, Prop. 3.3]).

Fix a Zariski dense discrete subgroup I' < G in the rest of this section.
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18 M. Lee and H. Oh

Definition 3.16 (Patterson-Sullivan measures). For ¢ € a*, a (I, ¥)-conformal measure
supported on the limit set A will be called a (T", ¥/)-PS measure. By a PS measure on A,

we mean a (I', ¥)-PS measure for some ¢ € a*.
Set
Dpi={y € a* 1 ¥ > Y.
The following collection of linear forms is of particular importance:
T :={y € Dr: ¥ (uw) = ¢y (w) for some u € L Nint at). (3.17)

By (3.7), ¥ oi € Dy. for all ¥ € Dy. The concavity of ¥ and the non-emptiness of int L.
imply that D}. is non-empty by the Hahn-Banach theorem. When v (u) = ¥ (u), we say
¥ is tangent to Y at u.

Generalizing the work of Patterson and Sullivan ([37], [53]), Quint [40] con-
structed a (I", ¥)-PS measure for every v € Dy.

Generalized BMS-measure my, ,

Given a pair of I'-conformal measures on F, we now define an MA-semi invariant

measure on I'\G, which we call a generalized BMS-measure.

Definition 3.18 (Hopf parametrization). The map

gM - (g+rgirb = ﬁng(erg))

gives a homeomorphism between G/M and F@ x a, which is called the Hopf

parametrization of G/M.

Fixing a pair of I'-conformal measures v, ,v,, on F for a pair of linear forms
¥, ¥y € a*, we define a Radon measure m on G/M as follows: for g = (g*,g7,b) €

F@ xa,

Vyrp Vg

dmvv,l iy (g) — ewl (ﬁg+ (e.9)+V2 (ﬂg, (€.9) del (g+)de2 (g—)db, (3.19)

where db = d{(b) is the Lebesgue measure on a. This measure is left I'-invariant, and

hence induces a measure on I'\G/M. We denote by m,, its M-invariant lift to I'\G.

17V
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Invariant Measures for Horospherical Actions 19

It is A-semi-invariant as

oi— 1
am,, ., = eWzei=v1)( Og“)mwllw2 (3.20)

for all a € A [15, Lem. 3.6].

BMS
Vyr Vyroi
(I, ¢ 01)-PS measures. We set

BMS-measures: m . Let ¥ € o* and let v, and v, be respectively (I',¢) and

BMS . 1 (3.21)

ml)y, U]/, ,V¢Oi

and call it the Bowen-Margulis-Sullivan measure associated to (v, vy,.). It is right MA-

invariant and its support is given by
Q:={xel\G:x" € A}
since A is I'-invariant, the condition x* € A is well-defined. Note that for [g] € G/M,
dmPMS[gl = €979y, (g*)dv,,.;(g7)db. (3.22)
N-invariant BR-measures: m;*. We set

BR ._
vy T mvd,,mo

m (3.23)

and call it the N-invariant Burger—Roblin measure associated to v,,. See [15, Section 3]
BR ;
is

for the equivalence of this definition with the one given in (1.4). The support of m; )

given by
E:={xel\G:x" eA).

4 Anosov Groups and AM-Ergodicity of BMS Measures
Let I' be a Zariski dense discrete subgroup of G, and set A® := (A x A) N F®@,
Definition 4.1. We say that I' < G is Anosov, if it is a finitely generated word

hyperbolic group admitting a I'-equivariant homeomorphism ¢ : 4" — A such that
(¢ (x),2(y)) € AP for all x # y € aT', where 9" denotes the Gromov boundary of I.
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20 M. Lee and H. Oh

Such ¢ is Holder continuous and exists uniquely ([27, Prop. 3.2] and [8, Lem. 2.5]).
We call it the limit map of I'. We note that the antipodal property of A follows directly:

AxA—{E8))=AP, (4.2)

In the literature, this definition is referred to as P-Anosov for a minimal parabolic
subgroup P of G. See [22], [21], and [25] for equivalent characterizations of Anosov
subgroups.

In the rest of this section, let I" be an Anosov subgroup of G.

The following theorem was proved by Quint [41, Prop. 3.2 and Thm. 4.7] for
Schottky groups and by Sambarino [48, Coro. 3.12, 3.13 and 4.9] and by [15, Thm. 7.9]

for general Anosov subgroups in view of the results in [13] (see also [15, Remark 7.10]):

Theorem 4.3.

(1) Ly Cintat U{0} and every non-trivial element of I is loxodromic ([27], [22]).
(2) 4y is strictly concave and analytic on int L.

(3) Df ={¥ €Dy : ¥ (u) =Y(u) for some u € int L-}.

(4) For any ¢ € D}, ¥ > 0 on L — {0}.

(5) For any ¢ € DF, there exists a unique (I, ¥)-PS measure, say vy, on F.In

particular, v,, is I'-ergodic.

(1) and (3) imply that if ¢ € D is tangent to Y at some u € L — {0}, then
u € int L. Note also that (1) implies that any Anosov subgroup is regular as defined in
Def. 2.6. For u € L, we denote by D,y the directional derivative of ¥ at u, whenever

it exists.

Proposition 4.4. For each unit vector u € intL, ¥, := DY € D}. and D ¥ (u) =
Y (u). Moreover, the map u +— v, induces a homeomorphism between the set of unit

vectors of int £ (~ int PLy) and Df.. Hence Df ~ Rrank G-1,

Proof. See ([48, Thm. A], [15, Lem. 2.23]) for the first claim. The fact that v, € D}. (and
hence the well-definedness) and surjectivity of the map u — D,y follows from it, and
the injectivity follows from the strict concavity of v as in Theorem 4.3(2). Continuity
follows from the analyticity of ¢~ on int L. We claim that if D, . — D, for some
unit vectors u;,, u € intL, then u; — u. Let v € L be a limit of the sequence u;.

By passing to a subsequence, assume u; — v. By the upper-semi continuity of v
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Invariant Measures for Horospherical Actions 21

(Theorem 2.18), we have

Yr(v) = lim sup ¥ (w;).
1—>00
Since Y (u;) = Dy ¥r(u;) and Dy ¥+ — Dy, we get Y (v) = Dy (v). Since D,y € Dy,
we have y(v) = D,y (v). It follows from Theorem 4.3(1) and (3) that v € int L. Since
Yr(u) = D,y (u), the strict concavity of ¢ on int £ implies that u = v, establishing
the homeomorphism. Since int(£) is a non-empty open convex cone of a*, int(PL) ~

Pint(L;) is homeomorphic to Rk G-1, [ ]

We denote by Vi the gradient of ¢ so that D, yp(v) = (VY- (u),v) foru € int L

and v € a. Set
Op :={Vyp(uw) ea:uecint Ly}, (4.5)

which is an open convex cone of a — {0}. By Proposition 4.4, the map w — (w, ) gives
a homeomorphism between {Vy(u) € a : u € intLy, |lull = 1} and D}, and hence a

homeomorphism
O ~ R_Df.

Quint showed that there exists a unique unit vector, say ur € inta™, such that Y- (up) =
max,, - ¥r(u). The vector ur. is called the direction of maximal growth of I'. If we set
8p = Y (up), then Vyrr(up) = drup and

log# r: T
5r = lim sup 8 r el < T4
T—o00 T

Consider the following dual cone to L:
Ll :={wea:(w,v)>0forallve L}
Note that int £}. = {w € a : (w, v) > 0 for all non-zero v € L}.
Lemma 4.6. We have O = int L} In particular,

at —{0} c Op Ca—{0}.
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Proof. If w € Or, then (w,-) € R D}, and hence by Theorem 4.3 (3), (w,v) > 0 for all
v € Ly — {0}. Hence O C int£{. Now suppose w € int L}. Setting ¢(v) := (w,v), we
claim that ¥ € R, Dy; this implies int L. C Or. Since w € int L}, ¥ > 0 on L — {0} and
hence ¢ := max;,_; yer. ¥(v) > 0. Since §r¢~'y > ¥ on L, and hence on q, it follows
that for some ¢ > 0, ey € Dy, that is, ¥ € R _Df.

Since L — {0} C inta™ and the angle between any two walls of a™ is at most /2,

the second claim follows. [ |

AM-ergodicity of mgMS

We fix ¢ € Dy and set

vi=v, and my™ = mﬁf"{fwoi. (4.7)
The composition ¢ (= Yy oo : I' x A — R is a Hélder cocycle satisfying

c(y,y,) =¥ ((y)) > 0 for all non-trivial y € I'.
Consider the action of I' on A® x R given as follows: for y € I and
(¢t e AP xR,

v.& nt)= & ynt+cy,§)).

The R-action on A® x R defined by

(&, ) =&, n,t+5s)

will be called translation flow.
The following is proved in [49, Thm. 3.2] when I" is the fundamental group of
a closed negatively curved manifold, and can be extended for general Anosov groups,

using ingredients from [8]. The sketch of the proof can be found in [12, Appendix Al.

Theorem 4.8. The action of I' on A® x R is proper and cocompact, and the measure
dm, &,n,t) = e‘“g(‘f"’))dvv, (§) ® dvy,;(n) ® dt induces the measure of maximal entropy,
say m,, for {r; : s € R} on '\A® x R. In particular, m,, is {r; : s € R}-ergodic.
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In terms of the Hopf parametrization, I" acts on A®) x a = supp my™* as follows:

for y e’ and (¢,7,v) € A® x q,

V(Er T],V) = (Vfr yn, v+ O'(V/S))

Corollary 4.9. For any y € Df, the AM-action on (I'\G, mj™®) is ergodic and if

rank G > 2, |m5MS| = 00.

Proof. The {z; : s € R}-ergodicity of m,, is equivalent to ergodicity of (A®,T,v, ®

Vyoila@), which is again equivalent to the AM-ergodicity of myM®

. Consider the
projection map 7 : '\A® x a - I'\A® x R induced by the I'-equivariant map
AP xa - AP x R given by (¢,7,v) — (£,1,¢%(v)). Then = is a principal kery -
bundle, which is trivial as kery is a vector group. It follows that there exists a ker y-
equivariant homeomorphism between I' \ A® x a and (I'\ A®® x R) x kery. Therefore,
mEMS disintegrates over the measure m,, with conditional measure being the Lebesque
measure on ker y ~ R™G~1 50 that m3MS ~ m,, ® Leby,, (cf. [47, Prop. 3.5)). This gives

the infinitude of |m3MS| when G has rank at least 2. [ ]

5 Comparing a-Valued Busemann Functions and Distances via ¢

When G has rank one, for any p,q € X, the maximum and minimum of Busemann
function B, (p,q),é € F are always achieved as +d(p,q). A higher rank generalization

of this fact can be stated as follows.

Lemma 5.1. Lety € a* be strongly positive, in the sense that ¢ is a non-negative linear
combination of fundamental weights w,, o € I1. Then for any p,q € X and & € F, we

have

—v(aq,p) =¥ (B:(p, @) = ¥@ap q). (5.2)

Proof. We use notations introduced in Lemma 3.10. Since w,, is a positive multiple of
Xq. it suffices to prove the claim when ¢ = y, for o € II.

Write g = go, and p = hq for some g, h € G. Note that

X (@®, @) = %o (1(g*h 1 9)) = loglip, (@ h 1)l
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Write g~'& = k* for some k € K and g 'h~!gk = kK'an € KAN. Then

B(p,@) =0 (g 'h~'g, k") =loga.
Hence for a unit vectorv e V,
X Be (@, @) =10g 19, (g h ) p, (VI < log oy (g ' h 7 ), = X4 (@(p, @)
since [0, (g~ )II™! < llp,(9)vI and x,(a(q, p)) = logllp, (g~ 'hg)l,, we also get

X Be @, ) = Log Iy (9 R, = —x4(@(q, p)).
|

There are v € D} that are not strongly positive (see Lemma 4.6). We establish

the following modification for Anosov groups, which is the main goal of this section:

Theorem 5.3. Let I' < G be Anosov. For any ¢ € D}. and p € X, there exists
C=C@,p) >0suchthatforally el"and & € A,

— v, yp) —C=v¥(B:(yp,p) < ¥(alyp,p)) +C.

We begin by noting that ¥ (a(yp,p)) is always positive possibly except for

finitely many y's:
Lemma 5.4. Let ¢ € D}. and p € X. For any sequence y; — oo in T, ¥ (a(y;p, p)) — +oo.

Proof. By Lemma 2.3, it suffices to check that y¥(u(y;)) — +oc as i — oo. Setting
t; = ||u(yi)||_1, passing to a subsequence, we may assume that ¢;u(y;) converges to some
unit vector u € a. Since L is the asymptotic cone of u(I"), we have u € L. Hence, we
have ¥ (u) > 0 by Lemma 4.3. Since ¥ (¢;u(y;)) — ¥ (u) and ¢ (u(y;)) = t;lw(ti,u(yi)), we
have ¥ (u(y;)) = +oo. |

The following is the main ingredient of the proof of Theorem 5.3:

Proposition 5.5. For p € X, there exists C = C(p) > 0 such that for each (y,&) € T x A,
we can find y; = y; (&), ¥, = v,(&) € T satisfying

() ¥ =yypand |y| =yl + yal;
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(2) 1B:(yp.p) + 1y — ulyy HI <G
(3) lla(yp,p) — ny; H —uy; Hl < C.

Proof of Theorem 5.3 using Proposition 5.5:. Fory € I' and & € A, choose y;,y, € T

as in Proposition 5.5. Then

V(B (vp. D) < ¥y, ) — () + Cly |
<Yy D +ulr) +Clvl

< ¥(a(yp.p) +2C|vl,

where the second inequality is valid because Iﬂ(,u()/lil)) > 0. Similarly, we get

Y (B:(yp. D) = ¥ (u(y; ") — n(y) — Cllvll

> =¥ (u(yp) + ulyp) — Cliyl.

Sinceiu(g™') = n(9),ia(p, @) = a(q, p) and the norm is i-invariant, we get ¥ (8, (yp, p)) >
Y(a(p,yp)) — 2CIIY |l [ |

The rest of this section is devoted to a proof of Proposition 5.5 in which shadows

of 7 and dI" as well as their relationship play important roles.

Shadows in F

Let g € X and r > 0. The shadows of the ball B(qg, r) viewed from p € X and & € F are

respectively defined as
0,(p.q) :={gk" € F: k€K, gkintAtoNnB(q,r) # 0}
where g € G satisfies p = g(0), and
0,(,9) :={ht € F:h~ =£,ho € B(q,1)}.

The following two lemmas 5.6 and 5.7 are proved for G = SL,(R) in [54]. For
r>0,wesetA,={acA:|logal <r},and A} =A,NAT.
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Lemma 5.6. If a sequence g; € X converges to £ € F, then for any r > 0, g € X and

¢ > 0, we have, for all sufficiently large i,

Or—g(qil CI) C Or(sl q) - Or+g(qi/ q)

Proof. Since 0,(£,9(0)) = gO0,(g~'&,0) = kgO,(e*,0) for k € K with kt = g71¢, it
suffices to consider the case when g = 0o and § = e*. Since q; — e, we have g; = k;a;o0 for
some k; — e in K and a; — oo regularly in A*. As k; — e, O,_ 5(e",0) C k;'0,.(e*,0) C
O,1./2(e",0) for all sufficiently large i. Therefore, we may assume without loss of
generality that g; = a;. Let £ € O,(e",0), that is, & = h* for some h € Pw, N KA/K.
Note that the sequence a;lhwalai is bounded as a; € A* and hw,' € P. If we write

ai_lh = k;a;71; € KAN, then the following gives the KAN*-decomposition of ai_lhwglai:

—1_ —1 AP 71 | 1 = 1
a; ' hwy'a; = k;a;n;wy ' a; = (kywy ) (woawy ' ay)(a; ' won;wy ' a;) € KANT

As the product map K x A x Nt — G is a diffeomorphism, there exists R > 1 such

that {woa;w,'a; € A : i € N} C Ag. Moreover, as the sequence a;lwoﬁiwalai must be

bounded while a; — oo regularly in A™, it follows that i2; — e as i — co. We now claim

that for all sufficiently large i > 1,

a;k;int AY NKAS K #0

1

and hence § = ht = aifcf € 0,,.(a;0,0). Set b; = wya; w, . Then

7 7 -1.,.~1 o s | -1.,.~1
a;k;b; = a;k;(woa; wy) = hn; " (a; woa; "wy ).

lwal € Ag, we can find b; € b;Ag such that

Since n; — eas i — oo and Eli_lwoai—
aifcii)i — h as i — oo. On the other hand, by the strong wavefront lemma [20, Thm. 2.1],
there exists a neighborhood O of e in G such that KAJKO C KA, K. Since h € KAK
and b; € intA* for all large i >> 1, we obtain that a;k;b; € KA, K for all sufficiently
large i, proving the inclusion on the right hand side.

Now, in order to show O,_,(a; 0) C O,(e*,0), let n; € O,_.(a;0,0) be arbitrary.
Since O,_,(a;0,0) = aiOr_s(o,ai_lo), there exists k; € K and b; € intA* such that ]NC?_ €

;k;b; € KA, K. Since a;'o — e, it follows that k7 — e~

0, ,(0,a;'0), n; = a;k{ and a
as i — 0o. Hence, klf is in general position with e~ for all large i and hence (aifcibi)* =

a;k; — et as i — oo. For all large i, we have n; € N such that (a;k;b;n;)~ = e* and
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d(n,0,0) < ¢. Set h; := a;k;b;n;. It follows that h} =n;and h; = e™. Since

d(h;0,0) = d(aifcibinio,o) < d(aileibinio,ailéibio) + d(aifcibio,o)

= d(n;0,0) + d(a;k;p;0,0) <&+ (r—e) =r,
we have n; = hj € 0,(e*, 0) as desired. This finishes the proof. |
The following is an analogue of Sullivan’'s shadow lemma:

Lemma 5.7. There exists « > 0 such that for any p,q € X and r > 0, we have

§€0r(p.Q)

We will prove this lemma using the following:

Lemma 5.8.

(1) There exists ¢; > 1 such that forall r > 0,

KA}K C KA, ,N.

Cc1r

(2) There exists ¢, > 1 such that for all g € G and r > 0, we have
1(gKAFK) C 1u(g) +log A,
Proof. We use notations introduced in Lemma 3.10. Since x,, « € I1, form a dual basis

of a*, |I'll, := X yen 1%, ()| defines a norm on a. Let k € K and a € A; be arbitrary. Write
ak = k'bn € KAN. Let « € Il. For v,, € V,\{0}, we have

«(loghb
0y @KV, ll, = oy (Kb)V, I, = 10y D)V, I, = e8Py ||,.
On the other hand, we have

e 18Dy || < |p, (@k)v, |, < 18D v ||

Hence |x,(logb)| < |x,(oga)| forall « € IT; so || logb||, < | logall,. Since | - ||, and

| - || are comparable, the first claim follows.
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Note that eX#@) = ||p (g)||, forg € G. Forallk e K and a € A,

106 (GK@) I < 1106 D lo Il 06 Bl Nl 0 (@)l = €218V o (@),

and similarly,

100 @ lly < 110e @K@l 1l g (KD, llo, (@ DI, = 18D | p, (gka)l,-

It follows that —yx,(loga) < x,(u(gka) — wu(@) < x,(oga). This means that
lu(gka) — n(@ll, < lllogall,, finishing the proof. |

Since i(u(g)) = u(g~!), Lemma 5.8(2) easily implies that for allg € G and r > 0,

we have
W(AFKgKAT) C u(g) +1og Ay, (5.9)

Proof of Lemma 5.7. It suffices to prove the claim forp = o0 and g =a !ofora e A*.
Let& = k* € 0,(0,a '0) for k € K. Then there exists b € int A* such that d(kbo,a"'o) <.
Hence akb € KA} K. Now note that ak € Ke™ (0.a7'0) 7 by the definition of B (o, a~lo)and

hence
akb € Kbe (04" ON N KATK.

By Lemma 5.8(1), be—Fs(0a o) ¢ A, On the other hand, b € Ka 'KAK, and hence
logh € u(a 'KA}K). By Lemma 5.8(2), b € a~'A_,,. Since a(o,a '0) = log(a™?), the

lemma is now proved. |

Lemma 5.7 implies Theorem 5.3 for those £ € O,(yp,p). In order to control the
value of B;(yp,p) when & ¢ O,(yp,p), we use the Anosov property of I'. Let us recall

some basic terminologies for hyperbolic groups for which we refer to [9] and [24].

Discrete geodesics

Let I' be a finitely generated word hyperbolic group. We fix a finite symmetric
generating subset S of I' once and for all. Let | - | : ' — N U {0} denote the word

length associated to S. We denote by d,, the associated left-invariant word metric, that

is, dy(y1,v2) i= ly; ‘vol for vy, v, € T.
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A finite sequence (yy,---,¥,) of elements of I' will be called a finite path if
yi_lyiH € Sforall i. Such a path will be called a geodesic segment if |y0_1yn| = n. Infinite
and bi-infinite paths can be defined analogously. They will be called geodesic rays and
geodesic lines, respectively, if all of their finite subpaths are geodesic segments.

Let o' denote the Gromov boundary of T", that is, aT" is the set of equivalence
classes of geodesic rays, where two rays are equivalent to each other if and only if
their Hausdorff distance is finite. For a geodesic ray (yy, y;,---), we use the notation
[¥o, ¥1.- -] for its equivalence class in dI".

Let (-|-) denote the Gromov product in the hyperbolic space I' based at e € TI':
nlye) = 3 (dw(v1. € + dy (s, €) — dy(yy, v5)). This extends to aT: for x,y € T, (x|y) =
sup liminf; ; | . (y;ly/) where the supremum is taken over all sequences y; and y; such
that x = limy; and y = lim y]’ The union I' U JT" is a compact space with the topology
given as follows: a sequence y; € I' converges to x € dI' if and only if lim;_, . (y;|v;) = o0
for any geodesic ray (e, v;, vy, - - -) representing x.

For any x,y € T UAT, there exists a discrete geodesic starting from x and ending
at y, which may not be unique. By [x, y], we mean one of those geodesics and by [x, y) we
mean [x, y] — {y}.

A geodesic triangle is a union of three geodesics, pairwise sharing a common
endpoint in I' U dI". Since I" is hyperbolic, there exists § = §(I', S) > 0 such that for any
geodesic triangle A, we can find a point on each edge of A so that the set of these triples

has diameter less than §.

Shadows in oI

For R > 0 and y;, y, € T, the shadow of the ball Bg(y,) viewed from y, is given by
Or(y1,v9) = {x €9l : [y;,xINBg(y,) # ¥ for some geodesic ray [y,, x1}.
Shadows satisfy the equivariance property: for any y,y;,y, € ' and R > 0,

YOr(V1:¥2) = Og(Y Y1,V Vo). (5.10)

Lemma 5.10. There exist Ry > 1 and N > 0 such that the following holds: if y;,y, € T
with |y, |, lye| = N, satisfies |y, y,| = |ly;| + |¥,l, then for all R > R,

Or(Y172.€) N Og(y1v2,v1) N Ogr(yy, € # 9.
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Proof. Since |y, 5| = |y;|+|y;l, there exists a geodesic segment [y, y,, el passing through
vi,saya = (¥1¥y, -+, V1, -+ . e). Since I is word hyperbolic, there exists C > 0 such that «
lies in the C-neighborhood of some geodesic line, say (--- ,u_y, ug, 4, --). Set N := 4C.
Choose u,,, u,, and u, to be elements closest to y;y,, y;, and e, respectively.

We claim that [m — ¢| > max(/m — n/|, |n — £|). By the triangle inequality,

In — L =dy(u,, uy) < dy(y), € +2C= |y | +2C

im —n| =dy,WU,, u,) < dy(1v2,71) +2C = |y,| + 2C.

Since |y ¥, = lyil + 1vel and |y, v5| < dy(u,,, u,) + 2C = |m — €] + 2C, it follows that

lyo| — 2C = max(|y;, lya|) — 2C + Ny
= max(|yl, ly,l) + 2C

> max(|n — ¢|,|m — n|).

This proves the claim.

Now possibly after flipping the geodesic, we may assume that m < ¢. Then the
claim implies that {—m=|m—n|+|n—¢{| and hencem < n < {.Setx := [ugy, u;, uy,---1€dl.
Choose geodesic rays [y; y,, x) and [y;, x). Since the Hausdorff distance between [y, y,, x)
and the ray (u,,, U, 1, --) is at most d, (v, ¥5, U,,) + 8 < C+ 4, it follows that there exist
v, Vy € I' lying on [y, y,, x] such that d,(u,, v;) < C+§ and d,,(u,, v,) < C + 4. Since the
Hausdorff distance between [y, x) and the ray (u,, u,,,---) is at most d,,(y;, u,) + 8 <
C + §, there exists v4 € I' lying on [y;, x) such that d,,(u,, v3) < C + 8. These altogether
imply that

X € Oycp5(r1¥2,€) N Ogcy5(v1¥2, 1) N Oz s5(yy,©).
|

In the rest of this section, we assume that I" is an Anosov subgroup of G. The
following Morse property of Kapovich-Leeb—Porti [25, Prop. 5.16] says that a discrete
geodesic line (resp. ray) of I" is contained in a uniform neighborhood of some A-orbit
(resp. AT -orbit) in X.

Proposition 5.12 (Morse property). For any Anosov subgroup I' < G, there exists R; > 0
such that
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(1) If(--,¥_1, ¥ Y1, ) is a geodesic line in (T, d,,), then

sup d(y;0,gAo) < R,
keZ

for any g € G such that g™ = ¢(lyg, vy, - ). 9~ = ¢y, v_1, -+ D).
(2) If (yg,yy,---) is a geodesic ray in (I, d,,), then

sup d(y;0,9A"0) <Ry,
keN

where g € y,K is the unique element satisfying g* = ¢([yy, v, -+ - D.

Using this proposition, we will show that shadows in the Gromov boundary aI'
are mapped to shadows in the Furstenberg boundary F by the limit map ¢ : aT' — A

(Proposition 5.14). We will need the following lemma:

Lemma 5.13. There exists C > 0 such that for all y € T, ||u(y)|l < C|y|. In particular,
d(ol )/0) S de(el )’)

Proof. We use notations from Lemma 3.10. Consider the norm ||-|, = > o %,

on a. Let y € I' be arbitrary, and write y = s;---s, with s; € S and £ = |y|. Since

Xa (@) = 10gllo, @), forall g € G and [0, (s ---5P)lly < 104D g -+~ 10450l it follows
that for each « € I1,

X (87 -+ 8p)) < X (u(87)) + -+ -+ xo ((Sp)).

Noting that x, is positive on a™, we have

L = D X N = D Xo (1 (1))

aell aell

<D (X (als)) + - + xa (1(sp)) < Cly,

aell

where C := max {Zaen X ((S)) s € S}. Since ||| and ||-||, are comparable, this finishes
the proof. |
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Proposition 5.14 (Shadows go to shadows). There exists ¢ > 0 such that for all R > 1
and y,y’ €T,

C(Og(Y',¥)) C Oug(y'0,y0).

Proof. By (5.10), it suffices to consider the case y’ = e. Let x € Ogx(e, y). By the
definition of Og(e, y), there exists a geodesic ray (y; = e, y;, 5, - --) representing x such
that d,,(y,,.¥) < R for some m € N. Let R; > 0 be the constant from Proposition 5.12,
and k € K be an element such that k™ = ¢([e, Y1+ ¥4, ---1). Then by Proposition 5.12(2),

there exists a € A" such that d(y,,0, kao) < R,. By Lemma 5.13, we have
d(y0,7,0) = [uly "yl < Cdy (v, vi) < CR.

Therefore,

d(yo, kao) < d(yo, y,,0) + d(y,,0,kao) < CR+R,.

This implies that ¢(x) € O¢g,g,(0,70). Since R > 1, the conclusion follows by setting
c:=C+R,. |

Corollary 5.15. There exists R, > 0 such that for all y;, y, € ' with |y, 5] = |y + |72l

we have

lie(yrve) — u(yy) — n(y)ll < R,.

Proof. Let N, and R, be given by Lemma 5.10. If one of |y,[, |y,| is less than N, then
the claim holds by Lemma 2.3. Now assume that |y, |, |y,| = N,. Then by Lemma 5.10 and

Proposition 5.14, we can choose
£ € Ocr, (¥1720,0) N Ocg (1720, 7,0) N Ocgy(¥10,0),
where c is as in Proposition 5.14. By Lemma 5.7 and the cocycle identity
Be (Y1720,0) = B (Y1720, 7,0) + B (y,0,0),
we have

lla(y,v50,0) — a(y,0,0) — a(y,0,0)|| < 3kcR.
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Since a(go,0) =iu(g) for all g € G and i preserves |-||,

I (y1v2) — m(yy) — n(ya)ll < 3kcRg.
[ |

Proof of Proposition 5.5. We may assume that p = o by Lemma 2.3. Let y € I and
& € A be arbitrary. If y = y,y,, we have

Be(y0,0) = B:(y0,y,0) — B:(0,7,0).
We claim that we can find y;, ¥, € I so that y = y; vy, Y| = [y + |v2], and

£ € Og(541)(0,710) N Og(s41)(0, ¥10) (5.16)
where ¢ > 0 is as in Proposition 5.14.

If & € Oys41)(0,70), then we may simply set y; = y and y, = e. In general,
we find y, as follows. Consider a geodesic triangle A whose vertices are e,y € I', and
1) e dr. Since I' is hyperbolic, we can find three points on A, one on each edge,
whose diameter is less than §. Let y; € I" be the point on the geodesic segment joining e
and y, and set y, = yl_ly. We then have |y| = |y;|+|y,|, and 7HE) e O;s(y,y1)NOs(e, yy).

Now the claim follows from Proposition 5.14.

Therefore, by Lemma 5.7,
max (|| (70, 70) — vz DI, 1B (0, ¥10) — n(yI) < k(8 + 1)
and hence
1B (¥0,0) + 1u(yy) — iu(yz DIl < 26c(8 + 1).

Since |y| = |y;| + |y,| and S is symmetric, we have |y ~!| = |y1_1| + |y2_1|. As a(yo,0) =
w(y~1), we have, by Corollary 5.15,

la(yo,0) — n(y; 1) — uly; Hil < R,.

Hence it suffices to set C := max(2kc(§ + 1), Ry). [ ]
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6 Virtual Visual Metrics via 1/-Gromov Product

In this section, we let I' < G be an Anosov subgroup, and fix ¢ € D}.. The main aim here
is to show that exponentiating the following 1-Gromov product defines a virtual visual

metric on A up to a small power.

Definition 6.1. The -Gromov product based at o is a function 7@ — R defined as
follows: for any (§;,&,) € F@,

[51 ' 52]11,,0 = W(g(iﬁ ’ 52)),

where G is the a-valued Gromov product defined in Definition 3.8. For p = g(0) € X, we

set

[51152]¢,p = [g_lél’g_lgzlw,o'

For simplicity, we set [§1, &1, == [§;, &)y, -
Define d, =d,, , : F® — R, by

dy (&1, &) = e 5152, 6.2)
It follows from (3.9) that forall g € G, p € X, and (£, £,) € F?, we have

We set [§,£], = +oo and d,(§,6) = 0 for all § € F. By the antipodal property
4.2), [, -]p and dp are defined on all of A x A. The following is the main theorem of this

section:

Theorem 6.4. Fix p € X. For all sufficiently small ¢ > 0, there exist a metric d, = d,(p)
on A and a constant C, = C,.(p) > 0 such that for all §,&, € A,

C.7'dy p(61,E)° <d.(5),E) < C.d,, ,(5),E)°.

This is an analogue of [9, Part III, Prop. 3.21] for Gromov hyperbolic spaces.
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Weak ultrametric inequality

A well-known construction [19, Section 7.3] shows the existence of a metric in

Theorem 6.4, provided there exists C > 0 such that for all £;,&,,&; € A, we have

(1) (weak symmetry) d,(&,,&,) < ecdp(sz,gl);
(2) (weak ultrametric inequality) dp($1,§3) <eC max(dp(él,éz), dp(éz,és)).

Hence Theorem 6.4 follows from the following proposition:

Proposition 6.5. There exists C = C(p) > 0 such that for all §,&,,&; € A, we have

[Slréz]p > [éz:él]p —C;
[";'-1;%-3]1, > min([sllsz]p! [52’53]p) —C.

In the case of X = H?, the classical Gromov product satisfies that there exists a

uniform constant C > 0 such that for any x,y € oHZ,

IG(x,y) —2d(0,2)| < C
where z is the unique projection of o to the geodesic connecting x and y. In the following
lemma 6.6, we establish the analogous property for a-valued Gromov products on A x A
using the Morse property of Anosov groups.

For y € I' and any geodesic segment « in I', we define the set of projections of y

to o by
T, (y) i={y €a:dy(y,y) =dy(y, o)}

Since T is hyperbolic, the diameter of 7, (y) is less than 43.

Lemma 6.6. There exists C; > 0 such that for any x # y in 9I" and y € m, ,)(€), we have

16X, £(¥) — (u(y) +iny)I = Cy.

In particular, G is almost symmetric on A: for any &, # &, € A,

1G(§1,82) — G(&2, 6Dl = 2C;.
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Proof. Let o := (uy, = eu;,uy---) and o = (v, = e, v}, vy, --) be geodesic

representatives of x and y, respectively. Let y € my, ,j(e) be arbitrary, and f,g,h € G

be elements satisfying the following:

e f(o)=oandf"=¢(x);
e g(0)=o0andg" =¢(y);
e ht=¢(x)and h™ =(y).

Applying Proposition 5.12(1) to the geodesic line [x, y], we have

d(ho,yo) <R,

after replacing h with some element of hA. Hence by Lemma 2.3, there exists C' =

C'(R;) > 0 such that

lw(h) = nll < C'.

Noting

g(;(X), é-(Y)) = g(h+, hi) = IBh+ (O, hO) + iﬁh* (Or hO),

it is now sufficient to show that for some uniform constant C; > 0,

1Bp+ (0, h0) — (W[l < €, and ||y~ (0, ho) — u(h)| = Cy.

By Lemma 5.7, this claim follows if we show
h*,h™ € Og(0, ho)

for some uniform constant R > 0.

(6.7)

(6.8)

Since I' is hyperbolic, the diameter of the set 7, (x) U, (y) U Ty y1(€) is at most

C§ for some uniform constant C > 1. In particular, we can find k, ¢ € N such that the set

{ug, vy, v} has diameter less than C5. Applying Proposition 5.12(2) to the geodesic ray «,

we find a, € A™ such that

d(fa,0,u;0) <R;.
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Since d,,(uy, y) = Iu,gl)/l < C8, we have
d(u0,y0) = [n(ug ' vl < sup{llu()l : 1y'| < Cs).
Therefore,

d(fa,0,ho) < d(fa,o,u;0) + d(uio,yo) + d(yo, ho)
< 2R, +sup{llu(y) : Iyl < C8}.

Setting R := 2R, + sup{|lu(y))|l : |y'| < C8}, it follows that h™ = f € Og(0, ho). Similar
argument shows that h~ = g* € Og(0, ho). This proves (6.8). |

Lemma 6.9. For any compact subset C C X, the set {B;(p,0) : § € F,p € C} is bounded.
Proof. This follows from Lemma 5.1 by setting = >, . .- |

Proof of Proposition 6.5. Observe that the identity (6.3) gives that for any §; # &, € A,

[Sllgzlp —[&,8], = w(ﬁgl (p,o) + iﬂgz (p,0)).

Now Lemma 6.9 shows the existence of C = C(p, ¥) > 0 such that |[§1,.§2]p —[&,&],l <C.
Therefore it suffices to show the claim for p = o. The first inequality is an immediate
consequence of Lemma 6.6 with C > 2C,[|y|.

To show the second inequality, let C; > 0 be a constant from Lemma 6.6 so that

we have

€1, 8310 = Y (n(yp) +in(yy) — GVl (6.9)

Set x; := ¢~1(§) € oI for i = 1,2, 3. For each i, we fix a geodesic line [x;, x;, ] joining x;
and x;,,, and choose y; ., € 7y, .. j(e), where all the indices are to be interpreted mod 3.
By the hyperbolicity of I', for some uniform constant C > 0, there exists 1 < i < 3 such
that d,(y;, ¥;41) < Cé and for some y’ € [e, y;, ], the diameter of {y’,y;, y;,,} is at most
Cs.

We first consider the case when i = 1. Since

d(y,0,y,0) < dy (¥, ¥p) max, s d(0,s) < CSmax, ¢ d(o,s),
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it follows from Lemma 2.3 that for some uniform C, > 0,

lCyy) — u(y)ll < C,.

In view of (6.9), we now obtain

(1,831 = v(n(y) +in(n) — ClvIl — 2C,

> [£,,&], — 2C, |l¥]| — 2C, by Lemma 6.6

> min([§1,§2]0, [$2,§3]O) - 201 ”W” - 202'

The case i = 2 can be handled similarly by interchanging the roles of y, and y;. Finally, in
the case when i = 3, let R, be as in Corollary 5.15. Since (e,--- ,y’,--- , ¥,) is a geodesic,

we have by Corollary 5.15 that

lu(yy) — u(y’) — u(y' vl < Ry

By (6.9) and the fact ¥ (u((y'~1y,)*)) > 0, we deduce

&1, 81, = v () +in(y) = CilIVI — 2R, Y|

> Y (u(yy) +ip(yy) — (Cp +2C, + 2R) IV,

as the diameter of {y’, y;, ¥3} is less than 5. The rest of the proof is similar to the case
i=1. [ |

Covering lemma

Using Theorem 6.4, we obtain:

Lemma 6.11 (Triangle inequality). There exists N = N(y,p) > 1 such that for any
51:%-2,53 S Al

dy(&1,85) < N(dy(&1,5) + dy (5, &)

In particular, d,(&;,&,) < Nd,(&,,&). Moreover, N(/, p) can be taken uniformly for all p

in a fixed compact subset of X.
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Proof. Choose ¢ > 0 sufficiently small so that Theorem 6.4 holds, and set d := d,,
C := C,. We then have

dp(§1:$3)s < Cd(&),&3) < C(d(§;,&y) +d(£,,83)) < Cz(dp(fpé%z)s + dp(52/§3)s)-

Since (a® + b®)!/¢ < a(a + b) for all a,b > 0 for some uniform constant « = a(g) > 0, it
suffices to take the 1/¢ power in each side of the above. Now the second part follows
from (6.3) and Lemma 6.9. |

For& €e Aandr > 0, set

B,§.r):={neA:dy,,&n <r}

Lemma 6.12 (Covering lemma). There exists Ny(y,p) > 1 satisfying the following: for
any finite collection By(€1, 1) By 1y) with §; € A and r; > 0, there exists a disjoint
subcollection Bp(éil,ril), e ,Bp(éiz, ri,) such that

IBp(éll rl) U---u ]B%p(gn!rn) C Bp(slll 3N0rll) U---u EP(SLZIBNOrl[)

Moreover, Ny(¥, p) can be taken uniformly for all p in a fixed compact subset of X.

Proof. Let N = N(y,p) be as given by Lemma 6.11. For simplicity, set B; := By, (& 1y)-

We may assume r; > --- > r, without loss of generality and define inductively
=1, iJ-Jrl = min{i > i]- :B; N (B;, U~--UBij) = 0},

as long as possible, to obtain a maximal disjoint subcollection {B; ,---,B; }. Let § € B;
for some 1 <j < n. Then there exists 1 < k < ¢ such that B;NB; # ¢ and i, = 1j. Choose
n € B; N B; . Then by Lemma 6.11, we have d,(,£) < N(d,(n,§) + d,(§, %)) < 2N2rj <
2N?r; and d,,(&;,,n) < r;,. Hence

d, (&, §) < N(dp (&, ) +dy(n,6)) < 3N°r,.

Hence it suffices to set N, := N3, [
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Comparing Gromov products

Although we will not be using it in the rest of the paper, we record the following theorem,

which is of independent interest:

Theorem 6.13. For any ¥ € D}, there exist ¢; = ¢;(¢) > 1,¢, = ¢c,(¥) > 0 such that for
all x #y € aT,

o] xly) — ¢y < ¥ (G (), ¢(y) < o xly) +cy.

Note that if y € Ty y1(€) for x # y in 9T, then |(x|y) — |y|| < C for some
uniform constant C > 0 (cf. [9]). Given this fact, Theorem 6.13 follows immediately from

Lemma 6.6 and the following lemma:

Lemma 6.14. For any ¢ € D}, there exist constants Cw, cy > 0 such that forall y € T,

C,llyl—cy, <¥(uy)) < Cylyl.
Proof. Since y > 0 on L, we have

O<d:= min ¢(u)<D:= max v(u) < oo.
lull=1,uelr lull=1,uelr

Hence d||u(y)]l < ¥ (u(y)) < D|ju(y)| for all y € I'. So the upper bound follows from
Lemma 5.13, and the lower bound follows from the well-known property of Anosov

groups that for some uniform € > 0, C™!|y| — C < ||u(y)| for all y € T [22]. |
7 Conical points, Divergence Type, and Classification of PS Measures
In this section, we show that for Anosov groups, the space of all PS-measures on A is
homeomorphic to Dy.
Conical limit points
For a discrete subgroup I' < G and x € I'\G, we mean by lim sup xA™M the set of all
limit points lim xa,m; where a; — oo in A* and m; € M.

1—> 00

Definition 7.1 (Conical limit points). We call &€ € F a conical limit point of I' if

limsup TgA*M # ¢ for some g € G with g™ = &. Equivalently, £ € F is conical if there
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exists R > 0 such that £ € Oy(0, y;0) for some sequence y; — oo in I'. We denote by A,

the set of all conical limit points of T'.

Lemma 7.2. Let I be a Zariski dense discrete subgroup and ¢ C inta* U {0} be a closed
convex cone whose interior contains £ — {0}. If y,g;a; is a bounded sequence where

g; € Gis bounded, y; € I' and a; — oo in AT, then
loga; € ¢ for all sufficiently large i. (7.1)
In particular, for any x € I'\G, lim sup xA*M coincides with the set

{lim xa;m; : m; e M, loga; — oo in c}.
i—00

Proof. As g; and y,g;a; are bounded sequences, the sequence u(yi_l) — loga,; is also
loga;

bounded by Lemma 2.3. Hence lim -5-%: belongs to the asymptotic cone of u(I"), which

I TlogaT

is equal to L [6, Thm. 1.2]. Since L — {0} C int¢, it follows that loga; € ¢ for all large @

We note that for ¢ C inta™ U {0} as above, there exists a constant s = s(¢c) > 0
such that for any sequence v; - oo in ¢,

min liminfo () > s.
aell  i—oo lvil

We deduce from Proposition 5.12: recall £ = {[g] e '\G : g+ € A}.

Proposition 7.4. For I"' Anosov, there exist a compact subset Q of £ and a closed convex

cone ¢ C intat U {0} such that for any x € &, there exists loga; — oo in ¢ such that
xa; € Q foralli>1.
In particular, A = A_.

Proof. For I' Anosov, we have £ — {0} C inta®™ by Theorem 4.3. Hence we can find a
closed convex cone ¢ C inta™ U {0} such that £ C intc U {0}. We first check that A, C A.
Let g© € A, for some g € G. Then there exists y; € I' and a;m; — oo in ATM such
that y;ga;m; is bounded. By Lemma 7.2, it follows that loga; — oo in ¢. In particular,
a; — oo regularly in A*. Hence by Lemma 2.11, ga;0 — g* as i — oo. Since d(ga,0, yiflo)

is bounded, ylflo — gt asi— oco. By Lemma 2.13, gt € A.
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Let gt = £ € A and z € 3T be such that £ = ¢(z). Choose a geodesic ray
r = (¥ = €7, vy ) representing z. Note that if gt = h*, then for any sequence
a; — oo in A™, there exists b; € AT such that d(ga;0, hb,0) < 1 for all sufficiently large
i. Hence we may assume that g € K by replacing g by an element of gP. By Proposition
5.12, y;0 is contained in the R;-neighborhood of gA*o, with R, given therein. Hence for
some a; — oo in A", '\I'ga; € Q where @ = I'\I'{h € G : d(o,ho) < R;} N E. Hence
gt € A,. Moreover, by Lemma 7.2, loga; € ¢ for all sufficiently large i. This finishes the

proof. |

Classification of PS measures on A

Lemma 7.5. Let y; € a* and Dy, be a (I', ¥;)-PS measure fori = 1,2. If Vg, = Vg then
W1 = ‘Pz-

Proof. Suppose thatv, =v, .Thenforall y €' andé € A, we have

U1 (Be(e,y)) = va(Be(e, v)).

By setting § = y,, we obtain A(y) € ker(y; — ) for all y € I, by Lemma 3.5. Hence
Ly C ker(y; — v¥,). Since £ has nonempty interior [6, Thm. 1.2], this implies that
v, = Vs |

Remark 7.6. When I" is an Anosov subgroup, v, and v, are even mutually singular
to each other whenever ¢, # v, (See Theorem 10.20 below).

We denote by S the space of all PS measures on A. Recall that for ¢ € D}, Quint
constructed a (I, ¥)-PS measure on A [40]. In the Anosov case, such a measure is unique,

which we denote by v,,. By Lemma 7.5, the map ¢ +— v,, from Dr. to S is injective.

Theorem 7.7. For I' < G Anosov, the map ¥ +— v, is a homeomorphism between D},
and Sr.

In the rank one case, there exists a unique Patterson-Sullivan measure on A and
its dimension is given by the critical exponent of I". The above theorem generalizes such
phenomenon.

To prove that the map ¢ ~— v, is surjective, we need the following shadow
lemma. It was first presented in [2, Thm. 3.3] and then in [40, Thm. 8.2] in slightly

different forms.
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Lemma 7.8 (Size of shadow). Let ' < G be a Zariski dense discrete subgroup. For

¥ € a*, let vy, be a (I', ¥)-conformal measure on F. Then

(1) for someR = R(vy) > 0, we have ¢ := infyer vy, (Og(y0,0)) > 0;
(2) forallr > Randforally €T,

¢ e IWIkTg=V 1) <y, (0,(0,y0)) < eV IkTeV ),

where ¥ > 0 is a constant given in Lemma 5.7. In particular, if A = A, in

addition, then vy is atom-free on A.

Proof. Suppose that there exist sequences R; — oo and y; € I' such that forall i > 1,
vw(ORi(yi_lo,o)) < 1/i. Write y; = k;a;¢; € KATK with k;,¢; € K and a; € A". Passing to a

171 1

subsequence, we may assume that £; - £, as i — oo.
We claim that

lim sup ORi(ai_lo, 0) DN'te™. (7.9)

Fix an arbitrary h € Nt and aq;h = k;b;n; € KAN be the Iwasawa decomposition of a;h.

Then the Iwasawa decomposition of aihalfl is given by

a‘hai_1 = ki(biai_l)(ainiai_l) € KAN.

1

Since aihalfl is uniformly bounded, both b;a;” ! and a;n;a; ! are also uniformly bounded
for all i. It follows that the sequence n; € N is uniformly bounded as well. To prove the

claim, we observe that forall i > 1,

ht e ORi(alflo,o)
& a;h" € Og (0,a,;0)
&k € 0g,(0,a,0)
& k;AtoNB(a;0,R;) # 0
s a; 'k AToNB(o,R;) #
& hn;'b;'AT0o N B(o,Ry) # 0.

On the other hand, by the uniform boundedness of n; and b;lai and since R; — oo, we

have hn;l(bglai)o € B(o, R;) for all sufficiently large i. Hence the claim (7.9) follows.
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Since ORi(yi_lo,o) = ei_lORi(ai_lo,o), the hypothesis vw(ORi(yi_lo,o)) < 1/i now
implies that vv,(zalN*e*) = 0 by Claim (7.9). Since Nte™' is Zariski open in F, this
contradicts the fact that A C suppv,, is Zariski dense in F. This proves the claim (1).

Now let y € I' and r > R be arbitrary. By Lemma 5.7, for all £ € O,(y'o,0), we

have
1B (v 10,0) — u(y)|l < .
Since
vy, (0.(0,y0)) = /O tom eV (Be(y~10,0) dv,, (&),

(2) then follows from (1).
Suppose that A = A,. Then for any £ € A, there exist r > 0 and a sequence
y; — oo in T such that & € ();0,(0,;0). Since v, (§) < v,(0,(0,¥,0)) < Ce V") and

Y (u(y;))) - +ooasi— oo, v, (§) = 0. Hence the second claim follows. |

Lemma 7.10. [39, Lem. II1.1.3] Let # : a — R be a continuous function satisfying
O(tu) = t6(u) forall t > 0 and u € a. If 6(u) > Y (u) for all u € a — {0}, then

Z e ) — 5.
yell

If there exists u € a such that 6(u) < ¢ (u), then 3 - e ) = o,

Lemma 7.11. Suppose that I' is Zariski dense. Let ¥ € a*. If there exists a (I, ¥)-

conformal measure vy such that vy (Ag) >0, then

> V) = oo,
yel

Moreover, ¥ (v) = Y (v) for some non-zero v € L.

Proof. Note that A, is an increasing union |J§_; Ay, where

Ay :=1{& € A : there exists y; — oo in I" such that £ € Oy(o, y;0)}.
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Hence v, (Ay,) > 0 for some N, > 1. Fix N > max{R(v), Ny}, and set C' := elV IV where

R(v) is as in Lemma 7.8. Observe that for any m > 1,

Ay C U Oy (0, y0).
yel,d(o,yo)>m

Hence

0<v,(Ay) < D v, (Oy0,yo)<C > e Vro,

d(o,yo)>m d(o,yo)>m

Since m > 1 is arbitrary, the first claim follows.
We note that ¢ > ¢ by [40, Thm. 8.1]. If ¥ (u) > Y (u) for all u € L — {0},
and hence for all u € a — {0}, then Lemma 7.10 implies > e V) < oo, This is a

contradiction by the first claim. |
When I is Anosov, A = A, and hence by Theorem 4.3(5),
Corollary 7.12.  If I" is Anosov, then > . e~V “"") = oo for any ¢ € Df.

Proof of Theorem 7.7. In order to prove surjectivity, suppose that there exists a (", ¥)-
PS measure, say v, for ¢ € a*. By Lemma 7.11, ¥ (v) = y/-(v) for some non-zero v € L.
By Theorem 4.3(1), it follows that ¢ € D%, proving surjectivity.

If ¥; — ¢ in Dy, then any weak-limit of Vy, is a (I, ¥)-PS measure. By the
uniqueness of (T, ¥)-conformal measure, v, converges to v, as i — oo. Hence the
map ¥ +— v, is continuous. Now suppose v, — v, where y;, % € Df. Since the
closed cone generated by n(I') is equal to £ that has non-empty interior, we can find
Y1, ¥ € I such that u(y;)’s form a basis of a. For each y, and r > 0, we have
vy, (01(0,7,0)) = v, (0,(0, y,0)). Hence {(¥;—¥) (1 () : i=1,2,---}is bounded by Lemma
7.8. It follows that {y; : i = 1,2,---} is a relatively compact subset of a*. Suppose that
¢ € a* is a limit of {y;}. By passing to a subsequence, assume that y; — ¢ € a*. Since
Vg, = Vo it follows that vy is a (I, ¢)-PS measure. Since ¢ — vy, is a bijection between
Dt and S, we have ¢ € D} and v, = v,,. By Lemma 7.5, we have ¢ = . Since every limit
of the sequence vy, is v, it follows that y; converges to ¢ as i — oo. This finishes the

proof. |
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Critical exponents. Recall the definition of O from (4.5). For each unit vector

w € O, consider the Poincare series

P, (s,p) == Z e~ S{wa@yp)
yell

Define the critical exponent §,, to be the abscissa of convergence of P, (s, p), which is

independent of p € G/K:
8, =inf{s e R: P, (s,p) < oo}. (7.13)

Corollary 7.14. Let w € O be a unit vector.

_ Viyrw ; ; _
(1) Forw = V@l € Or for u € int £ with |Ju|]| = 1, we have

Sy = IVYr@|l.

In particular, w +— §,, is analytic on {w € Oy : [|w]| = 1}.

(2) For any p € G/K, P, (8,,,p) = oo.

Proof. (1) follows from Lemmas 7.10 and 7.11 together with Theorem 4.3. (2) is a direct

consequence of Lemma 7.11. |

8 Myrberg Limit Points of Anosov Groups

In this section, we discuss the notion of Myrberg limit points. We show that for Anosov
groups, the set of Myrberg limit points has full measure for any PS measure on A. In
the rank one case, this was proved by Tukia [56, Thm. 4A]. Let I' < G be a Zariski dense

discrete subgroup.

Definition 8.1 (Myrberg points). Let p € X. We call a point £, € A a Myrberg limit point
for T if, for any &£ # n in A, there exists a sequence y; € I" such that y;p — £ and y;§; — 7

as i — oo.

Note that this definition is independent of the choice of p € X by Lemma 2.10.
We denote by Ay, C A the set of all Myrberg limit points for I'.

When G is of rank one, a Myrberg limit point & € A is characterized by the
property that any geodesic ray toward £ is dense in the space of all geodesics connecting

limit points. The following proposition generalizes this to a general Anosov subgroup.
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Proposition 8.2. Let I' be Anosov. We have &, € Ay if and only if for any g € G with
g+ = é:OI
limsup'\'gATM = Q.

Let I’ < G be an Anosov subgroup for the rest of this section.

Lemma 8.3. Let b; € A be a sequence tending to oo such that W‘lblflw € A for some
w € W. If y,gb; — h for some h,g € G and y; € T, then lim, , _y;,g0 = hw' € A. In
particular, if b; € A%, then lim; |, _y;,g0 =h".

— 1 . ~13-1 -1
Proof. Letc; := h™'y;gb; and a; := w™'b; 'w € A*. Then gw = y; " hc;wa;. Hence by
Lemma 7.2, a; — oo regularly in A™. Lemma 2.11 implies that hc;wa;(0) — hw. Since
y,gw = hc;wa;, we have y;gw (o) = y;go — hw™. This proves the first claim by Lemma

2.13.1f b; € A", then Walb;1w0 € AT. Since wg = e, the last claim follows. ]
The following is proved in [25, Coro. 5.8]:

Theorem 8.4 (The limit map as a continuous extension of the orbit map). Foranyp € X,

the map T'UAT — XUF given by y > ypfory € I' and x — ¢(x) for x € aI" is continuous.
We need the following basic fact about word hyperbolic groups.

Lemma 8.5. Letx # yin aT'". If y; € I' is an infinite sequence such that (y;x, y;y) —

(x',y") € 8T x aT", then y; converges to either x’ or y’.
y i g y

Proof. Choose a geodesic line [x,y], and its representative (---,uUy, U;, Uy =
Vo, V1, Vy,---). Note that x = [ug, uy,uy,---1 and y = vy, vy, vy, ---1. It suffices to
show that y;u, converges to either x' or y’. Suppose not. Then by passing to a
subsequence, we have y;u, — z' where z’ ¢ {x’,y’}. Since (Z'|x'), (Z'|y’) < oo, there exists
a subsequence n; such that supy (v U lvetn,) + (VelUolvkVp,) < 00. Let L1 = [ypug, vy, |
and L] := [yxUo, vk Vp, 1, so that supy d,,(e, L‘f) < oo. The thin triangle property of the
hyperbolic group I" implies that if the projection of e to the geodesic segment £, U E;
lies in £, then d, (e vy up) is equal to d,,(e, Cﬁ) up to a uniform additive constant.
And hence d (e, y,u,) is uniformly bounded, which is a contradiction as y;, — oo as

k — oo. [ |

The following is immediate from Theorem 8.4 and Lemma 8.5:
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Corollary 8.6. Let y; € I' be an infinite sequence such that (y;£, y;n) — (€/,7) in A® as

i — oo. Then for any p € X, y;p converges to either £’ or n'.

Lemma 8.7. Let g € G be such that g* € A. If lim; ,  y;,g° = £ for some infinite

sequence y; € I', then lim;_,  y;g0 =¢.

Proof. Set x* := ¢ !(g%) and y = ¢71(£). Since ¢ : T — A is a homeomorphism, we
have y;x* — y as i — oco. By Lemma 8.5, we have y; — y as i — oco. By Theorem 8.4, we

get lim o0 =&. By Lemma 2.10, lim;_, . y;go = £ as desired. |

isoo Vi
Since the fibers of the visual map g — g* are P-orbits, the following lemma is

an easy consequence of the regularity lemma 7.2.
Lemma 8.8. If g,h € G satisfy g* = h', then
limsup'gA™M = limsup ThA*T M.

Proof of Proposition 8.2. Set Q := {g € G : g* € A}. Suppose & € Ay and gt = &,.
We claim that TgATM = Q. By Lemma 8.8, we may assume that g~ € A. Let h € Q. As
& € Ay, there exists y; € T such that ;g7 — h' and y;,g0 — h~. By Lemma 8.5, by
passing to a subsequence, y;g~ converges to h~. Therefore, y;gAM — hAM in G/AM;
there exists b;m; € AM such that y;gb;m; — h. We claim that b; € A" for all large i. If

. -1
not, by passing to a subsequence, we have m;

converges to some m, € M and there
exists w € W — {e} such that a; := w—'b,w € A*. Then y;gwa; — hmyw. By Lemma 8.3,
¥;90 — hmyw~, and hence hmyw~ = h™. It follows that w = e, yielding a contradiction.
Therefore, h € lim sup 'gA™M, proving the claim.

Now suppose that limsup 'gA*M = Q. We claim that g* € Ay, Let & # £ in
A, and let h € G be such that h* = & and h~ = £'. By the hypothesis and Lemma 7.2,
there exist y; € I', m; € M and a; — oo regularly in A" such that y;,ga;m; — h in G. Then
v;,97 — ht = &. By Lemma 8.3, y;g0 — h~ = &’. Hence gt € Ay,. This finishes the proof

of Proposition 8.2. n
Lemma 8.9. Lety € D%, and (§,£'),(ny,ny) € A@ . If y, € T and t; — +oo are such that
lim (yiSI )’islr ti + W(ﬂ;,g (OI Vlo))) = (7)1 Moy O)r
11— 00

then lim; ,  y;(0) = n,.
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Proof. Writex = ¢ 1(&), X =¢ Y&, y; =¢7 (), v, = (1), and choose u < [x, x'].
Since the triangle [y;x, y;x'1U [y;u, y;x]1 U [y;u, y;x'] is §-thin, it follows that for all i, either
¥;x € Os(u, y;u) or y;x" € Os(u, y;u). We claim the latter holds for all large i.

Suppose not. Then by passing to a subsequence, we may assume that y;x €
O;(u, y;u) for all i. Then by Proposition 5.14 and Lemma 5.7, there exists a uniform

constant ¢ > 0 such that y;§ € O, (uo, y;uo0) and

[V (B, (o, v;u0))) — ¥ (u(y))| < I¥llke@d + 1).

Since ¥ (u(y;)) — 400 as i — oo by Lemma 5.4, and ¥ (B, (uo, v;u0))) and ¥ (B,:(0,7;0)))
are uniformly close to each other, y(8,.¢ (0, ¥;0))) — +oo. This contradicts the hypothesis
that the sequence t; + ¥ (B,,:(0,7,0)) converges to a finite number as i — oo. It follows

that for all sufficiently large i,
y;x € Os(u, y;u). (8.10)

On the other hand, y;u — y, for some ¢ € {1,2} by Lemma 8.5. Since y;x’ — y, and
O;(u, y;u) converges to y,, (8.10) implies that y,u — y,. Therefore, y;0 — 1, by Lemma
8.4. |

Theorem 8.11. For any PS-measure v on A, v(Ay,) = 1.

Proof. By Theorem 7.7, v = vy for some ¥ € D.. Let m,, be the R := {7, : s € R}-ergodic
finite measure on '\A® x R in Theorem 4.8. Let Z, C T'\A® x R denote the set of
elements with dense R, -orbits, and Z, be its lift in A® x R. By the Birkhoff ergodic
theorem, Z, has full m,-measure, and hence v(n(Z/,)) = v(A) where 7 : A® xR — A
denotes the projection map 7 (§,7,t) = £. It is now sufficient to prove that 7 (Z,) C Ay
Let £ € 7(Z,) and (n;,n,) € A® be arbitrary. We need to show that there exists
y; € I' such that y;§ — n; and y;0 — 1, as i — co. Choose (§,¢’,0) € Z,,. By definition, we

can find y; € I' and ¢; — +o0 such that the sequence
Vit (6,8,0)) = (5,8, t) = (v§, viE  t; + ¥ (B,,£(0,;0)))
converges to (1, 1,,0). Since y;0 — n, by Lemma 8.9, this finishes the proof. |

In the rank one case, the BMS measure is finite, and A = {a,} is the union of
AT ={a,:t>0}and A~ = {a, : t < 0}. The AM-ergodicity of the BMS measure implies
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that for almost all x € I'\G, xA*M is dense in @ = {x € I'\G : x* € A}. In general,

A = U, ywATw™!, and we have the following corollary of Theorem 8.11:

Corollary 8.12. Let y € D}. For mﬁMs—almost all x € Q, each xA™M and xwyATM is

dense in .

Proof. Note that for x = I'g € Q, xwA'TM is dense in Q if and only if gw" € Ay,
by Proposition 8.2. For w = e (resp. w = wj), the claim follows as v, (Ay) = 1 (resp.
Vyoi(Apr) = 1) by Theorem 8.11. n

We also observe:
Lemma 8.13. For any x € £ and w € W — {e, w,,}, the map A™M — xwA™M is proper.

Proof. Note that if (g*,gw*) € F@ for g € G and w € W, then w = w,,. Choose g € G
sothat 'g = x € £. Since g* € A and A x A — {(£,£)} c F@ by the antipodality, gw™' € A
can happen only for w € {e, w,}. Suppose for some y; € I and a; — oo in AT, y,gwa;
converges to some h € G as i — oo. This means that d(gwai,yi_lh) — 0asi — oo,
and hence gw™ € A. Hence, for each w € W — {e, w,}, lim sup xwA*M = ¢, proving the

claim. [ ]

9 Criterion for Ergodicity via Essential Values

In this section, let I' < G be a Zariski dense discrete subgroup, and let vy be a (T, ¥)-

conformal measure on F for ¢ € a*. Consider the action of G on F x a by
gE,v) = (g&, v+ (g~ e)).

Then the map g — (g*,b := Bg+(e,9)) induces a G-equivariant homeomorphism G/NM =
Fxa. Using this homeomorphism, we define a I'-invariant Radon measure T)‘w on G/NM ~
F x a by

dv,, (gNM) = dv,,(g")e’® db.

Since dmy® = dv,, dm dn, the NM-ergodicity of m® is equivalent to the I'-ergodicity of
V,,. For simplicity, we set v := v, and vV := v, for the rest of the section. Schmidt gave a
characterization of I'-ergodicity of v using the notion of v-essential values in the rank

one case ([52], see also [46, Prop. 2.1]).
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Definition 9.1. An element v € a is called a (v, I')-essential value, if for any Borel set
B ¢ F with v(B) > 0 and any ¢ > 0, there exists y € I" such that

v (Bmlem{g € F: 1By 0,0) — vl < e}) > 0.

Let E, = E,(I') denote the set of all (v,I')-essential values in a. It is easy to
see that E is a closed subgroup of a. The main goal of this section is to prove the
following criterion of I'-ergodicity of V, which can be considered as a higher rank version
of [46,Prop. 2.1].

Proposition 9.2. (G/NM,T,v) is ergodic if and only if (G/P,T,v) is ergodic and
E,T) =a.

Fixing v, we set E := E (I") in the rest of this section. Our proof of Proposition 9.2
is an easy adaptation of the proof of [46, Prop. 2.1] to a higher rank case. We begin with

the following lemma.

Lemma 9.3. Leth: G/NM = F x a — [0,1] be a I'-invariant Borel function such that
for each & € F, h(§,-) is a C-Lipschitz function on a for some C > 0 independent of &.
Then for each loga € E, h(xa) = h(x) for v-a.e. x € G/NM.

Proof. Suppose that V{x € G/NM : h(x) # h(xa)} > 0 for some loga € E. We will then
find a subset A* = A*(a) C G/NM with V(A*) > 0 and y € I' such that h(y "1x) # h(x) for
all x € A*; this contradicts the I'-invariance of h.

By replacing h with —h if necessary, we may assume that V{x € G/NM : h(x) <

h(xa)} > 0. Hence there exist r, ¢ > 0 such that
Q,:={xeG/NM: h(x) <r—Ce <r+ Ce < h(xa)}
has a positive V-measure. Now we can choose a ball O = B, (v, ¢/2) C a such that
V(Fx0)naQ, > 0.
SetF,:={& e F:({§} x O)NQ, # ¥}). We claim that

if (§,w) e F, x O, then h(¢§,w +loga) > r > h(¢, w). (9.4)
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Note that there exists v € a with ||v|| < ¢ such that (¢, w + v) € Q, and hence
|h(¢&, w)| < |h(, w) —h(E, w+ V)| + |hE, w+ V)| <Clv]+ (r—Ce) <.
Similarly,

|h(§, w+loga)| = |h(§, w + v +loga)| — |h(, w +1oga) — h(§, w + v + loga)|

> (r+Ce) = Clv| >r,

which verifies the claim (9.4).

Since —loga € E and v(F,) > 0, there exists y € I" such that
A=F,NyF,N{§ e G/P: 1Bs (0, y0) + logal < ¢/2}
has a positive v-measure. For £ € A, set
O :i={w e O:w—(B(0,y0) +loga) € O}.

Since [|B¢ (0, y0) + logall < ¢/2,and O is a Euclidean ball of diameter ¢, there is a uniform

positive lower bound for the volume of O;. It follows that

A* = U {£} x O
teA

has positive D-measure. We now claim that ho y~! > h on A*.

Let (¢, w) € A*. Since (¢§,w) € F, x O, (9.4) implies that h(¢§, w) < 1.

Write y "1 (¢, w) = (y '§, w—(B: (0, y0)+log a)+log a). Since (y 1§, w—(B; (0, y0)+
loga)) € F, x O, (9.4) says that

h(y 1€ w) > T;
this proves the claim. |
Proof of Proposition 9.2. Assume that (G/NM,T',v) is ergodic. Let = : G/NM — G/P

denote the projection map. Since 7,V is absolutely continuous with respect to v, it
follows that (G/P, T, v) is ergodic.
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To show E = q, fix an arbitrary Borel set B C G/P of positive v-measure. For any

w € a and ¢ > 0, we define
BW,S ={¢,v)eG/Pxa:&€B, |lv—w]| <e} CG/NM.
Observe that
V(By,) = /G/P/ 15,. (6, b)e’® dbdv(€) > Vol(B,(0,) eV I€u(B) > 0.
a

Hence it follows from the ergodicity of (G/NM,T,v) that V(G/NM — I'B,,) = 0. In
particular, there exists y e I' such that V(B,,, N yB,,) > 0. Finally, note that if
&,v)eB, NyBy, thené € BNyB, and

IB:(e,y) —wll < IBz(e,y) —VI+Ilv-w| <e+¢e=2e.
This, together with the fact 7,V « v, implies that
v(BNyBN{§ € G/P: ||Be(e,y) —wl| < 2¢}) >0,

which finishes the proof of (=).

We now assume that (G/P,T",v) is ergodic and E = a. Let h : G/NM — [0,1] be a
[-invariant Borel function. We need to show that & is constant v-a.e. Identifying a >~ R"
with r = rank G, for each t = (r,---,7,) € a, we define a I'-invariant Borel function
h,:G/NM — R as follows:

71 T
h,(X):/0 /0 h(xexp(t,,---,t.))dt, ---dt;.

Note that h_ satisfies the hypothesis of Lemma 9.3. Hence by the hypothesis
E, =a,foreacha € A, h (x) = h,(xa) forv-a.e. x € G/NM.

Let {a, : n € N} be a countable dense subset of A. Then there exists @, of full
v-measure such that for all x € Q,, h,(x) = h (xa,). Set Q@ = N3°,Q,. Then for all
x € Q, we have h_(x) = h (xa) for all a € A, as h,_(§,-) is continuous on a. Now h_ is a
[-invariant function on G/NM, which is also A-invariant v-a.e.

Since (G/P,T,v) is ergodic, there exists c(r) € R such that h, = c(r) V-a.e. on
G/NM.
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Next, fix 1 <i<randrt,--- v T 1Tyt a5 20, and define

f(t) = (Tll"' 'Ti—l’t'ri-ﬁ—l'.” ,‘[r) € a.

Then t — c(f(t)) is linear; indeed, by definition, we have

R tys) = Ry + Rys) 0 exp(tey)

for all t,s > 0 and hence c(f(t + s)) = c(f(t)) + c(f(s)). We conclude c(zr) = k7, ---7,, for
some k € R.

Hence for each v € a, h, = «x7,---7, V-a.e. Since |h, , — h,| < 27 lo|lllz]”"! and
hence t — h, is continuous, using a countable dense subset of a, we conclude there

exists a subset Q of full V-measure such that

h,(x)=«t;---1, forallxe Qandr €a.

By restricting h, to each fiber of # : G/NM — G/P, and applying the Lebesque

differentiation theorem, we conclude that ﬁhr (x) — h(x) as Tt — O for v-a.e. x.

Consequently, h = « V-a.e., finishing the proof. [ |

10 Ergodicity of m}® and Classification

Let I' < G be an Anosov subgroup. Recall the NM-invariant BR measure mﬁR defined in

(3.23). We prove the following theorem in this section:

Theorem 10.1. For each y € D, mﬁR is NM-ergodic.

Recall the definition of ﬁw and vy from section 9. Since (]-',F,vw) is ergodic
by Theorem 4.3, the following proposition implies that (G/NM,F,'%), and hence
("'\G, NM, mﬁR), is ergodic by Proposition 9.2.

Proposition 10.2. Let I'y be a Zariski dense normal subgroup of I'. For any ¢ € D}, we

have E, (') = a. In particular, E, (I') = a.

Most of the section is devoted to the proof of Proposition 10.2. We fix a Zariski

dense normal subgroup I'y of T".
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Lemma 10.3. For any finite subset Sy C A(I'y), the subgroup generated by A(I'g) — S, is

dense in a.

Proof. Let F denote the closure of the subgroup generated by A(I'y) — S,. Suppose that
F # a. Identifying a = R, since F is infinite, there exist 1 <k < rand 0 < m < r such
that F = Zle Rv; + >, Zw; where v;, w; are linearly independent vectors. For each
s =A(y) € Sp, A(y™) = nA(y) — oo as y is loxodromic. Hence, there exists ng € N so that
ngh(y) € F. Setting NV := [[ g5, 15, we have Sy C Sk Ry, +N1YT Zw,.

Therefore, the closure of the subgroup generated by F U S, is contained in
Sk Rv; + N1 Zw,. Since A(Ty) C >F Rv, + N~ 37, Zw; and A(Ty) generates

a dense subgroup of a [7], it follows that k = dim q, yielding a contradiction. [ |

Proposition 10.4. For any ¢ € D} and C > 0, the set {A(y) € a® : y € Ty, ¥ (A(y)) = C}

generates a dense subgroup of a.

Proof. Theorem 3.2 in [49] extends to general Anosov subgroups (see also [12, Thm. A.2-

(2)1), and hence the cocycle ¢ = ¥ o o has a finite exponential growth rate. In particular,

#Ar(y):y e, ¥y (A(y) <C =#{lyl e [l]: ¥ (A(y)) < C} <00 (10.5)

where [I'] denotes the set of conjugacy classes in I'. Hence #{A(y) : y € Ty, v (A (y)) <

C} < oo and the claim follows from Lemma 10.3. |

Lemma 10.6. There exists a compact subset C C G such that for any & € A, there exists

geCsuchthatg™ =& and g~ € A.

Proof. In the Gromov hyperbolic space I', there exists a finite subset F C I' such
that for any x € dI', there exists y € dI" such that [x,y] N F # @. It suffices to choose
a compact subset C C G such that C(o) contains the R;-neighborhood of F(o) with R,

given in Proposition 5.12. |

We set

Ny := max Ny(y,p) < o©
peC(o)

with Ny (¢, p) and C given by Lemmas 6.12 and 10.6, respectively.
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In view of Proposition 10.4, Proposition 10.2 is an immediate consequence of the

following:
Proposition 10.7. For any y, € I'y with ¥ (A(yy)) > 1 + log 3N,
Myo) € E,, (Tp).

Essential values of vy,

Most of this section is devoted to the proof of this proposition. We fix y, € I'y with
¥ (M(yp)) > log 3N, + 1.
Since ¥ > 0 on A(I") — {0} by Theorem 4.3(4), we have
V(A A (V) + ¥ (A(yg)) > log 3N, + 1. (10.8)

Definition of Bgr(yy, €)

Let 0 < ¢ < ||| ~! be an arbitrary number. We fix g € C such that gt = Yy, and g- € A,
given by Lemma 10.6. Set p := go € C(0), & := Yyor and n:=g .
For&é e Aandr > 0, set

Bp(é:rr) = {77 € A . d]//,p(%_l 77) < r}

where dw,p is the virtual visual metric defined in section 6.

For each y € T', define r,,(y) > O to be the supremum r > 0 such that

max B (0. vy y ') F Al < e (10.9)
£€By (yéo,3Nor) P Yo p 0

For each R > 0, we define the family of virtual-balls as follows:

Br(vp. &) = {B,(vép,r) iy €0 <r< min(R,rp(y))}.

Equivalently, B, (y&,, ) € Bg(yp, ¢) if and only if r < R and one has ||, (p, Yoy D) — Ayl <
eforall n e Bp(yso, r).
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Let C = C(¥,p) > 0 be as in Theorem 5.3. Since §, € O, g, (n, p) where « > 0 is

as in Lemma 5.7, we can choose 0 < s = s(y;) < R small enough such that

: 1
Bp (&0, ¥ A(v0)+ A(n)+3 HI//II8+ZCS) c OS/(SK)(n’p); (10.10)

sup 1B, (@ v&'p) F Al < e/4. (10.11)

x€Bp (£0,6%Cs)

Foreachy e"and r > 0, set

1 ~1 s
D(y&g, 1) = Bp(VSOI o e~ V@aly  pptialy PrP))r)_
0

Lemma 10.12. FixR > 0.If £ € A and y; € T is a sequence such that yi_lp — n and
yi_lg — £y as i — oo, then for any 0 < r < s(y,), there exists i = iy(r) > 0 such that for

all i > i,

D(y;&0,7) € Bg(yg. ) and & € D(y;&,, 7).

In particular, for any R > O,

Ayc |J D
DeBr(y0,6)

Proof. Set Ip={yel: V(a(y~'p,p) +ia(y 'p,p)) > 0}; note that I" — Iy is a finite
. . ~1
subset by Lemma 5.4. Hence we may assume that for all i, y; € I',. Since y; 'p — n as

i — oo, we may assume by Lemma 5.6 that for all i,

Oc86)(1:D) C O,y (v ', D) (10.13)

To prove that D(y;€,, 1) € Bg(yy, €), we need to check that

+1, -1
max 1B (0 vive vy P)FA)I <e,
£€By (ko 3Nos)  © 0T 0

1 . -1
where s; = ﬁe*‘”@yﬂ pp+ial; PPy Let & € B, (v;£0, 3Nps;). We only prove that

I1Be: (P, yl-yoylflp) — Myl < €, as the other case can be treated similarly. First, observe
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that
_ v (Beo vy ') HB 1, (v PD))
dp(Eo v; &) = dp (i€ ENe s

—¥(@ly; ' pp)+Hal PPNV Bey (v ' PP, 1, (v PD)
e i r

< e?“r by Theorem 5.3. (10.14)
Since r < s(y,), this implies that

18,14 (P voP) — A(vo)ll < &/4.

Hence, by (6.3), we have

1 — —¥ (Bey (Yop.P)+Hi B —1,,(vop.D)) _
dyGo. vy v e =e " v dy (€0, v, 1E))

< eV A(ro)+H A(Vo))Jr%Ill//HSJFZCr‘ (10.15)

Since r < s(yy), it follows from (10.14), (10.15), and (10.10) that both yi_lé’ and yo_lyi_lé’
belong to O, g, (1, p). Since, yi_lé’, yo_lyi_lé" € 08/<4K)(yi_1p,p) by (10.13), it follows from
Lemma 5.7 that

18,16 'P/P) = B, 10 (v DD < 26(e/4K) = /2.

Now we have

1B @, vivov; ') — A1)l
< 1B vip, vivoD) = Xl + 1Be @, viD) — Be (vivo¥; ' P, vivoD) |l
= 11B,-1: @, voP) = 2(ro)ll + ||ﬁyi-lé,(y;1p,p> - ﬁyo—lyi—lg,(yi‘lp,p)ll

<e/d+e/2<ce,

which verifies that D(y;&,, r) belongs to the family Bg(y,, €).

We now check that & € D(y;&,, r). Since yi_ls — &,, we may assume that for all i,

1
-1 _
dp(ko v '6) < gy-e Whr. (10.16)
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Since r < s(yy), (10.10), (10.13), and (10.16) imply that yi_lé c (’)8/(4K)(yi_1p,p). Since
& € (’)8/(4K)(yi_1p,p) as well, we have

18,-1:07 'p.p) = a(y; 'p.p)Il < e/4and |1B, (v 'p.p) — aly; PP < £/4,

by Lemma 5.7. Note that

dp (vifo §) = d,1,(Eo, 7 '8)

—¥(Bey v ' PD)HB 1, (D)) _
=e O dy (&, v 'E)
_ -1 i -1 1 _
<e valy; pp)tialy; p'p))+2w”gdp(‘§0,)/i 1&-)

<L v pptaw; 'PP)r by 10.16.
= 3N,

This proves that & € D(y;&,, 7). |
Consider the following measure v, = v, , on A:

dvp &) = eV (Ps(0.p) dvl/f &).

Proposition 10.17. Let B C F be a Borel subset with v p(B) > 0. Then for v,-a.e. § € B,

. vy (BN D)
lim sup - =
R—0¢ep DeBr(yo,e)  VpD)

Proof. For a given Borel function i : F — R, we define h* : 7 — R by

h* ) = hm sup / hdv
R—0 EEDDEBR()/O £) p(D)

By Lemma 10.12, h* is well defined on A,,. Since Ay has a full v, measure by Theorem
8.11, h* is defined v,-a.e. on F. We will prove that h = h*, V,-a.e.; by taking h = 1, the
conclusion of the lemma will follow. Note that h = h* when h is continuous. To deal
with the general case, we proceed as follows.

Step 1: For all « > O,

vp({R* > a}) <

eV o)+Ivlle /
_— D

|h| dv
f
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Letting Q be an arbitrary compact subset of {§ : h*(§) > «}, it suffices to show
that

eV G (vo)+lvlle /

vp(Q) < ;

|| dvp.

Fix R > 0. By definition, for each x € Q, there exists D, € Bi(y,,¢) containing x such
that

1
v,(Dy) Jp,

hdvp > .

Since K is compact, there exists a finite subcover of {D, : x € Q}, say D; = B, (y;§,,5,) (i =
-1 . -1
1,---,n)wherey; e I'and s; = ﬁe_‘/’@(”i pp)Hial; PPy for some 0 < r; < R.
For brevity, we will write 3N,D; := B, (y;6y, 3Nys;). By Lemma 6.12, there exists a
disjoint subcollection {Di1 ,ee ,Dil} such that

n L
U D c U 3WoD;,
k=1 j=1

Now we claim that 3NoD; Cy;, yo_lyijleij: note that for & 3NoD;;,

-1
dp(yl]é:o: Vl]VOVL] %‘) = d)’zjl/ofl)/lj_lp(ylléo’ 5)

1 1

_ efw(ﬁyijso(ylyyo’ yi]’.lp,pHiﬂs(VijVo* Vi]flp,p))

dp (60, 6)

< 3N e~ VO-00HA IV leg, _ .
=% y ooy
by (6.3), (5.2), (10.9), and (10.8). Hence
vp(3ND;) = vy %1y ' Dy

(Bs evi;vor: )
/ el/f P (evi;vov, dvp(E)
D;

J

< e*//()»(yo))+|\1/f||£vp(Dij),
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where the last inequality follows from (10.9). Therefore,

14 4
vp(a) < va(P’NODij) < ZGW(A(VO))-HWIIz?vp(Dij)
j=1 j=1

vaGo)+HIvle £ Y (o) v lle

e e

<> [ s [y,
“ =177 * d

which was to be proved.
Step 2: h(§) = h*(&) for vp-a.eé.

We first prove that h(¢) < h*(&) for vy-a.e . Leta >0 be arbitrary. It suffices to
show that vp({§ h(€) — h*(¢) > a}) = 0. Let h,, be a continuous function converging to h
in L' (v,). Note that hj, = h,, and

vp({€ : h(§) —h*(§) > a})
<vp({& : h(§) — hy(§) > a/2}) +v,({€ : Ay (§) — h*(§) > /2})

< %”h —hy,ll, + %ellf(k(yo))-i-l\llfllfnh — Ryl
Taking n — oo, we get
vp({& t h(§) — h*(§) > a}) = 0.

As a > 0 is arbitrary, it follows that h < h*, vp-a.e. A similar argument shows that

h* <h, vy, -8.€. [ |

Proof of Proposition 10.7. It is easy to check that E (I'y) = E, (I'p). Hence it suffices
to show A(yy) € Evp(FO). Let B C F be a Borel subset with vp(B) > 0 and ¢ > 0. By
Proposition 10.17, there exists D = ]Eép(yéo, r) € Br(yp, ¢) for y € T’ and r > 0 such that

v,(DNB) > (1 + e VC0-IWIey=1) (D), (10.18)
[

Since r < rp(y), we have

D CHE: 1B vy y~'D) F A0l < &)

CHE VB vy y ' D) F YOG < ¥},
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We note that yy,y ~!D C D: if ¢ € D, by (6.3),

dy,(vEy yvor 16 =d,,0-1,-1,(rEp, &)

-1 -1 : -1 -1
= eV Breg@yvy v PHB DYy Y p))dp()/éo,é)

< e VROOHAGO IV ey _ .

Since

BNyyy 'BOE 1B, v vy 'P) — A(yp)ll < £} D D NB)Nyyy H(DNB),

it suffices to prove that (DN B) N yyoy_l (DN B) has a positive v,-measure. Note that

_ -1.,-1
vp(yyoy I(D nB)) — / eW(ﬁS(pVVVO )4 P)) dvp(é:)
DNB

> e V00-IVley (D B,
Hence by (10.18),
v,(DNB) +v,(yypy (DN B)) > (1 + e V*0=IVley, (DA B) > v, (D).

Since both DNB and yyoy_l (DNB) are contained in D, this implies that their intersection
has a positive v,-measure. Since YYoy ' € Iy, it follows that A(y,) € E,,(To).

In view of Proposition 9.2, we obtain the following corollary:

Corollary 10.19. Let I'y be a Zariski dense normal subgroup of an Anosov subgroup
I'< G.Lety € Dj.. If Vy is I'y-ergodic, then mﬁR, considered as a measure on I'j\G, is
NM-ergodic.

Patterson-Sullivan measures are mutually singular

Theorem 10.20. Let I' < G be an Anosov subgroup. Then {v, : € D}.} are pairwise

mutually singular.

Proof. Since I' < G is Anosov, the family {v, : Y € D} consists of I'-ergodic measures
(see the remark following Theorem 4.3). Hence any v, and v, in this family are either
mutually singular or absolutely continuous to each other. Now the claim follows from

Lemma 10.21 below, in view of Proposition 10.2. [ |
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Lemma 10.21. Fori=1,2, let Yy, be a (T, ¥;)-PS measure for some y; € a*. If EW/2 =a
and vy, < v, then ¥, = v,.

Proof. Suppose that v, <« v, and that v, # ,. Consider the Radon-Nikodym

. . d .
derivative f := HEV& € Ll(A,vwz). Note that there exists a v, -conull set E C A such
/2

that for all £ € E and y € I', we have
f()/_lf) — e(l/f1—l//z)(ﬁs(8y)/))f(€)_ (10.22)
If f were continuous, then f # 0 and by applying & = v, in the above, we get

Y (A(y)) = ¥, (A(y)) for all y € T'. Since A(I") generates a dense subgroup of g, it follows

In general, we use the hypothesis sz = a. Choose 0 < r; < r, such that

B:={seA:r; <f() <ry}
has a positive v, -measure. Since y; # V,, we can choose w € a such that

1=V (W) _ 21y (10.23)

r

Choose ¢ > 0 such that elV1—¥z2lle < 2. Since vy, (B > 0 and vaz = a, there exists y € I’
such that

B :=BNyBN{§cA:|B(ey)—wl| <e}

has a positive v, -measure. Now note that

/ fiy—te) dez(g) - e(‘ﬂl*Wz)(W)*”Wl*WZHS/ & dez &)
B’ B

> ;—f/B,f(é)dvl/,z(E)
by (10.22), (10.23), and the choice of ¢. In particular,

v, [EeB 1 f0 70 > 2F@©)] > 0.
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It follows that there exists & € B’ N E such that

f71e) > Zf(©). (10.24)

On the other hand, for & € B/, both £ and y‘1§' belong to B. Hence, by definition of B, for

all £ € B/, we have

flr18) < Bf®).

This is a contradiction to (10.24). | |

P-semi-invariant measures

In this section, we establish that P-semi-invariant Radon measures supported in
— R ; ;
£ ={xeTl'\G:x" € A}, up to constant multiples, are parametrized by Dy..
If u is P-semi-invariant, then there exists a linear form X, € a* such that for all

acA,
au= efx,l<10ga>u‘

We set ¢, := x,, + 2p € a*. The first part of the following proposition is known
in the rank one case (see e.g., [3], [10], and [28]), and the proof can be easily adapted to

the higher rank case.

Proposition 10.25. For any Zariski dense discrete subgroup I' < G, any P-semi-

invariant Radon measure u on I'\G is proportional to m where Vi, isa (I'¢,)-

Vi Mo
conformal measure and y, € D.. Moreover, if ;1 is supported on &, then y is proportional
BR

to my". If T is Anosov, we also have wﬂ € Dy.
Proof. For simplicity, set x = x, and ¥ = ¢,,. Let it be the I'-invariant lift of u to G
and 7 : G — G/P be the projection. Choose a section ¢ : G/P — K so that 7 oc = id and

consider the measurable isomorphism

G/PxMxAXN — G

¢, m, a, n) —  c(&)man.
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Let dm, dn, and da be the Haar measures on M, N, and A. As ji1 is a P-semi-invariant

Radon measure, there exist ¥ € a* and a Radon measure v on G/P such that

dii(c(&)man) = eX198Ddn da dm dv(§).

Without loss of generality, we may assume that |v| = 1. Because dji(-a) = exdoga)dp(y,

we have

X = X — 2p, or equivalently, x = .

Note that G is measurably isomorphic to the product G/P x P and the left
[-action with respect to these coordinates is given by y - (§,p) = (v - &, ®(y,&)p) for
some P-valued cocycle @ : I' x G/P — P where y € I" and (¢, p) € G/P x P. One can check
that

Dy, &) =m(y, &) expB(y ', @)n(y, £)

for some m(y,&) € M and n(y,£) € N. Hence, for p = man, the MAN-coordinates for
®(y,&)p are given by

®(y,&)p = (m(y,&)m)(exp(B:(y ', e)a)((ma) " 'n(y, £)man). (10.26)
Since ji is left-T'-invariant, we have for any f € C.(G) and any y € T,
/G f(@ di(g) = /G f@dr.)(9)
= [ [ e, 00, pre o5 andadm dvee)
G/PJP

=/ /f(é,p)e‘”(l°g“_‘9f15(yﬂ'e)) dndadmd(y,v)(),
G/pJp

where in the last equality, we have used (10.26) and the change of variables

a=a exp (B (e, y~1). On the other hand, we have

/f(g) dii(g) =/ /f(é,p)e‘”(log“)dn da dmdv(&).
G G/pJp
By comparing these two identities, we get that for any y € I,

d(y,v)(€) = eV Py ),
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that is, v is a (', )-conformal measure. By [40, Thm. 8.1], ¥ € Dy.
Finally, recall that for all g € G and ¢ € C,(G),

/ ¢(gn)dn = / ¢ (gn)e** Pon= @I dm (gn").
N G/P

For g = c(§)man € KAN, we have Bg+(e.g) = loga and g* = &. Hence, for any f € C.(G),

/ f(@dji(g) = / / f(c&)man)e? 18V dn da dm dv (&)
G G/PJP
= / / f(g)ezp(ﬁg— (€.9) e‘/’(ﬁg+ e9) dmda dmo(g—) dv(g+)
G/M JM

=M, m, ).

Therefore, i(f) =m, n, (f).
Now, if u is supported on &, then v is supported on A. Hence v is a (I, ¥)-PS

measure; so y = mﬁR. When T is Anosov, ¢ € D} by Theorem 7.7. [ |

Let P be the space of all P-semi-invariant Radon measures on £ up to
proportionality. Let O be the space of all NM-invariant, ergodic, and A-quasi-invariant

Radon measures supported on £ up to proportionality.

Theorem 10.27. LetI' < G be an Anosov subgroup. We have P, = QO and the map
D} — Qr given by ¢ ~ [m}¥] is a homeomorphism between D} and Qr. In particular,

Qr is homeomorphic to Rk -1,

Proof. For u € Qp and a € A, a,u and p are equivalent to each other, and by the
NM-ergodicity of p, the Radon-Nikodym derivative da,u/du is constant, say x (a). Now
the function a — x(a) gives the semi-invariance of u by A and hence by P. This implies
Qr C Pr. The other direction P C Q follows from Proposition 10.25 and Theorem 10.1.

Let Q? be the space of all NM-ergodic A-quasi-invariant Radon measures
supported on {x € T'\G : x* € A}, so that QO = Qf/ ~. Set «(y) = mpR for
¥ € D}. Since my® is NM-ergodic by Theorem 10.1, the map ¢ : D} — Q% is well
defined and injective by Lemma 10.21. By Proposition 10.25, ((D}.) contains precisely
one representative of each class in Qp. Hence it suffices to show that the map ¢
gives a homeomorphism between D}. and its image (D). Continuity of « follows from

Theorem 7.7. Now, suppose that mj* — my® for some sequence ¥;, ¥ € Df. Then the
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A-semi-invariance of the BR-measures given by (3.20) and the convergence a*mgf‘ —

a,my® implies that lim,_, e(z"“”i)(log“)mg?(f) = e(20—¥)(log DImyR(f) for all f € C,(I'\G).
Since lim;_, ., mER(f) = mER(f), we get lim,_, , e*~Vloga) — ¢2r=¥)(oga) for all a € A.
Hence y; — V. This proves that D} and Q. are homeomorphic to each other. The last

claim follows from Proposition 4.4. |
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