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Abstract

We present a quantitative isolation property of the lifts of properly immersed geodesic
planes in the frame bundle of a geometrically finite hyperbolic 3-manifold. Our estimates
are polynomials in the tight areas and Bowen–Margulis–Sullivan densities of geodesic
planes, with degree given by the modified critical exponents.

Contents

1 Introduction 489
The case when M is compact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
General geometrically finite case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
Discussion on proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

2 Notation and preliminaries 495
Thick–thin decomposition of X0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

3 Tight area of a properly immersed geodesic plane 496
4 Shadow constants 499

PS-measures on U -orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
Shadow constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
Shadow lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

5 Linear algebra lemma 505
6 Height function ω 508
7 Markov operators 510

Bowen–Margulis–Sullivan measure mY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
8 Return lemma and number of nearby sheets 514

Return lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
Number of nearby sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

9 Margulis function: construction and estimate 517
Markov operator for the height function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
Log-continuity of Fs,λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Main inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Received 10 April 2020, accepted in final form 2 November 2022, published online 28 February 2023.
2020 Mathematics Subject Classification 57K32 (primary), 20F67, 22E40, 37A17 (secondary).
Keywords: geometrically finite, hyperbolic manifolds, geodesic planes, quantitative isolation.

The authors were supported in part by NSF Grants.

© 2023 The Author(s). Published by Cambridge University Press on behalf of Foundation Compositio Mathe-
matica. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution, and reproduction
in any medium, provided the original work is properly cited.

4  :��  19��9�3 ������� �������	.����	��
��!0���421�98��82�0#�
/70��132��8�"2��� #���2��

http://www.compositio.nl/
http://www.ams.org/msc/
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1112/S0010437X22007928


Isolations of geodesic planes in the frame bundle of a hyperbolic 3-manifold

10 Quantitative isolation of a closed orbit 522
Number of properly immersed geodesic planes . . . . . . . . . . . . . . . . . . . . . . . 524

Acknowledgements 525
Appendix A. Proof of Theorem 1.1 in the compact case 526
References 528

1. Introduction

Let H3 denote the hyperbolic 3-space, and let G := PSL2(C), which can be identified with the
group Isom+(H3) of all orientation preserving isometries of H3. Any complete orientable hyper-
bolic 3-manifold can be presented as a quotient M = Γ\H3 where Γ is a torsion-free discrete
subgroup of G. An oriented geodesic plane in M is the image of a totally geodesic immersion of
the hyperbolic plane H2 ⊂ H3 equipped with an orientation under the quotient map H3 → Γ\H3.
In this paper, all geodesic planes are assumed to be oriented. Set X := Γ\G. Via the identifica-
tion of X with the oriented frame bundle FM , a geodesic plane in M arises as the image of a
unique PSL2(R)-orbit under the base point projection map

π : X # FM → M.

Moreover, a properly immersed geodesic plane in M corresponds to a closed PSL2(R)-orbit
in X.

Setting H := PSL2(R), the main goal of this paper is to obtain a quantitative isolation result
for closed H-orbits in X when Γ is a geometrically finite group. Fix a left invariant Riemannian
metric on G, which projects to the hyperbolic metric on H3. This induces the distance d on X so
that the canonical projection G → X is a local isometry. We use this Riemannian structure on
G to define the volume of a closed H-orbit in X. For a closed subset S ⊂ X and ε > 0, B(S, ε)
denotes the ε-neighborhood of S.

The case when M is compact
We first state the result for compact hyperbolic 3-manifolds. In this case, Ratner [Rat91] and
Shah [Sha91] independently showed that every H-orbit is either compact or dense in X. Moreover,
there are only countably many compact H-orbits in X. Mozes and Shah [MS95] proved that an
infinite sequence of compact H-orbits becomes equidistributed in X. Our questions concern the
following quantitative isolation property: for given compact H-orbits Y and Z in X,

(1) How close can Y approach Z?
(2) Given ε > 0, what portion of Y enters into the ε-neighborhood of Z?

It turns out that volumes of compact orbits are the only complexity which measures their
quantitative isolation property. The following theorem was proved by Margulis in an unpublished
note.

Theorem 1.1 (Margulis). Let Γ be a cocompact lattice in G. For every 1/3 ≤ s < 1, the
following hold for any compact H-orbits Y %= Z in X.

(1) We have

d(Y,Z) & α−4/s
s · Vol(Y )−1/s Vol(Z)−1/s

where αs = (1/(1 − s))1/(1−s).
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(2) For all 0 < ε < 1,

mY (Y ∩ B(Z, ε)) ) α4
s · εs · Vol(Z)

where mY denotes the H-invariant probability measure on Y .

In both statements, the implied constants depend only on the injectivity radius of Γ\G (see (A.9)
and (A.10) for more details).

Remark 1.2. (1) By recent work [MM22, BFMS21], there may be infinitely many compact
H-orbits only when Γ is an arithmetic lattice.

(2) Theorem 1.1 for some exponent s is proved in [EMV09, Lemma 10.3]. The proof
in [EMV09] is based on the effective ergodic theorem which relies on the arithmeticity of Γ via
uniform spectral gap on compact H-orbits; the exponent s obtained in their approach however
is much smaller than 1.

(3) Margulis’ proof does not rely on the arithmeticity of Γ and is based on the construction
of a certain function on Y which measures the distance d(y, Z) for y ∈ Y (cf. (1.14)). A similar
function appeared first in the work of Eskin, Mozes and Margulis in the study of a quantitative
version of the Oppenheim conjecture [EMM98], and later in several other works (e.g. [EM04,
BQ12, EMM15]).

General geometrically finite case
We now consider a general hyperbolic 3-manifold M = Γ\H3. Denote by Λ ⊂ ∂H3 the limit set
of Γ and by coreM the convex core of M , i.e.

core M = Γ\hull Λ ⊂ M

where hull Λ ⊂ H3 denotes the convex hull of Λ. In the rest of the introduction, we assume that
M is geometrically finite, that is, the unit neighborhood of coreM has finite volume.

Let Y ⊂ X be a closed H-orbit and SY = ∆Y \H2 be the associated hyperbolic surface, where
∆Y < H is the stabilizer in H of a point in Y . We assume that Y is non-elementary, that is, ∆Y

is not virtually cyclic; otherwise, we cannot expect an isolation phenomenon for Y , as there is a
continuous family of parallel elementary closed H-orbits in general when M is of infinite volume.
It is known that SY is always geometrically finite [OS13, Theorem 4.7].

Let 0 < δ(Y ) ≤ 1 denote the critical exponent of SY , i.e. the abscissa of the convergence of
the series

∑
γ∈∆Y

e−sd(o,γ(o)) for some o ∈ H2. We define the following modified critical exponent
of Y :

δY :=

{
δ(Y ) if SY has no cusp,
2δ(Y ) − 1 otherwise;

(1.3)

note that 0 < δY ≤ δ(Y ) ≤ 1, and δY = 1 if and only if SY has finite area.
In generalizing Theorem 1.1(1), we first observe that the distance d(Y,Z) between two closed

H-orbits Y,Z may be zero, e.g. if they both have cusps going into the same cuspidal end of X.
To remedy this issue, we use the thick–thin decomposition of coreM . For p ∈ M , we denote by
inj p the injectivity radius at p. For all ε > 0, the ε-thick part

(core M)ε := {p ∈ core M : inj p ≥ ε} (1.4)

is compact, and for all sufficiently small ε > 0, the ε-thin part given by coreM − (core M)ε is
contained in finitely many disjoint cuspidal ends, i.e. images of horoballs in Γ\H3. Let X0 ⊂ X
denote the renormalized frame bundle RFM (see (2.1)). Using the fact that the projection of X0
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is contained in coreM under π, we define the ε-thick part of X0 as follows:

Xε := {x ∈ X0 : π(x) ∈ (core M)ε}.

The following theorem extends Theorem 1.1 to all geometrically finite hyperbolic manifolds.

Theorem 1.5. Let M be a geometrically finite hyperbolic 3-manifold. Let Y %= Z be non-
elementary closed H-orbits in X, and denote by mY the probability Bowen–Margulis–Sullivan
measure on Y . For every δY /3 ≤ s < δY the following hold.

(1) For all 0 < ε) 1, we have

d(Y ∩ Xε, Z) & α−$/s
Y,s ·

(
vY,ε

areat Z

)1/s

(1.6)

where:
• vY,ε = miny∈Y ∩Xε mY (BY (y, ε)) where BY (y, ε) is the ε-ball around y in the induced

metric on Y ;
• areat Z denotes the tight area of SZ relative to M (Definition 1.7);

• αY,s :=
(
sY /(δY − s)

)1/(δY −s)
where sY is the shadow constant of Y (Definition 1.8).

(2) For all 0 < ε) 1,

mY (Y ∩ B(Z, ε)) ) α$
Y,s · εs · areat Z.

In both statements, the implied constants and & depend only on Γ.

Remark. (1) We give a proof of a more general version of Theorem 1.5(1) where Z is allowed to
be equal to Y (see Corollary 10.5 for a precise statement).

(2) When X has finite volume, we have δY = 1 and mY is H-invariant so that vY,ε ,
ε3 Vol(Y )−1. Moreover, the tight area areat Z and the shadow constant sY are simply the usual
area of SZ and a fixed constant (in fact, the constant can be taken to be 2) respectively. There-
fore Theorem 1.5 recovers Theorem 1.1. Moreover, the exponent & depends only on G as well;
this follows since the proofs of Theorem 9.18 and theorems in § 10, of which Theorem 1.5 is a
special case, show that & depends only on sY , pY and δY , which are all absolute constants in the
finite volume case.

We now give definitions of the tight area areat Z and the shadow constant sY for a general
geometrically finite case; these are new geometric invariants introduced in this paper.

Definition 1.7 (Tight area of S). For a properly immersed geodesic plane S of M , the tight-
area of S relative to M is given by

areat(S) := area(S ∩N (core M))

where N (core M) = {p ∈ M : d(p, q) ≤ inj(q) for some q ∈ core M} is the tight neighborhood of
core M .

We show that areat(S) is finite in Theorem 3.3, by proving that S ∩N (coreM) is contained
in the union of a bounded neighborhood of core (S) and finitely many cusp-like regions (see
Figure 1). We remark that the area of the intersection S ∩ B(core M, 1) is not finite in general.

Definition 1.8 (Shadow constant of Y ). For a closed H-orbit Y in X, let ΛY ⊂ ∂H2 denote
the limit set of ∆Y , {νp : p ∈ H2} the Patterson–Sullivan density for ∆Y , and Bp(ξ, ε) the
ε-neighborhood of ξ ∈ ∂H2 with respect to the Gromov metric at p. The shadow constant of
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Figure 1. S ∩N (core M).

Y is defined as follows:

sY := sup
ξ∈ΛY ,p∈[ξ,ΛY ],0<ε≤1/2

νp(Bp(ξ, ε))1/δY

ε · νp(Bp(ξ, 1/2))1/δY
, (1.9)

where [ξ,ΛY ] is the union of all geodesics connecting ξ to a point in ΛY .

We show that sY < ∞ in Theorem 4.8.

Remark 1.10. If Y is convex cocompact, then for all 0 < ε < 1, we have vY,ε , ε1+2δY with
the implied constant depending on Y . When Y has a cusp, Sullivan’s shadow lemma (cf.
Proposition 4.11) implies that limε→0 log vY,ε/ log ε does not exist.

A hyperbolic 3-manifold M is called convex cocompact acylindrical if coreM is a compact
manifold with no essential discs or cylinders which are not boundary parallel. For such a manifold,
there exists a uniform positive lower bound for δ(Y ) = δY for all non-elementary closed H-orbits
Y [MMO17]; therefore the dependence of δY can be removed in Theorem 1.5 if one is content
with taking some s which works uniformly for all such orbits.

Examples of X with infinitely many closed H-orbits are provided by the following theorem
which can be deduced from [MMO17, MMO22, BO22].

Theorem 1.11. Let M0 be an arithmetic hyperbolic 3-manifold with a properly immersed
geodesic plane. Any geometrically finite acylindrical hyperbolic 3-manifold M which covers M0

contains infinitely many non-elementary properly immersed geodesic planes.

It is easy to construct examples of M satisfying the hypothesis of this theorem. For instance, if
M0 is an arithmetic hyperbolic 3-manifold with a properly embedded compact geodesic plane P ,
M0 is covered by a geometrically finite acylindrical manifold M whose convex core has boundary
isometric to P .

Finally, we mention the following application of Theorem 1.5 in view of recent interests in
related counting problems [CMN22].

Corollary 1.12. Let Vol(M) < ∞, and let N (T ) denote the number of properly immersed
totally geodesic planes P in M of area at most T . Then for any 1/2 < s < 1, we have

N (T ) )s T (6/s)−1 for all T > 1;

see Corollary 10.7 for a detailed information on the dependence of the implied constant.

We remark that when Vol(M) < ∞, the heuristics suggest s = dimG/H = 3 in Theorem 1.5
and hence N (T ) ) T in Corollary 1.12. Indeed, when Γ = PSL2(Z[i]), the asymptotic N (T ) ∼
c · T , as suggested in [Sar05], has been obtained by Jung [Jun19] based on subtle number theoretic
arguments.
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Figure 2. IZ(y).

Remark 1.13. We can also obtain an estimate for N (T ) for a general geometrically finite hyper-
bolic manifold. By [MMO17, BO22], if Vol(M) = ∞, there are only finitely many properly
immersed geodesic planes of finite area (note that they are necessarily contained in the con-
vex core of M); hence supT N (T ) < ∞. We also obtain that there exists N0 ≥ 1 (depending only
on G) such that for any 1/2 < s < 1, we have

N (T ) )s Vol(unit-nbd of core M) ε−N0
M T 6/s−1

where the implied constant depends only on s (see Remark 10.11 for details). Note that this
kind of upper bound is meaningful despite the finiteness result mentioned above, as the implied
constant is independent of M .

Discussion on proofs
We discuss some of the main ingredients of the proof of Theorem 1.5. First consider the case when
X = Γ\G is compact (the account below deviates slightly from Margulis’ original argument).
Let εX be the minimum injectivity radius of points in X. The Lie algebra of G decomposes as
sl2(R) ⊕ isl2(R). Hence, for each y ∈ Y , the set

IZ(y) := {v ∈ isl2(R) : 0 < ‖v‖ < εX , y exp(v) ∈ Z}

keeps track of all points of Z ∩ B(y, εX) in the direction transversal to H (see Figure 2).
Therefore, the following function fs : Y → [2,∞) (0 < s < 1) encodes the information on the

distance d(y, Z):

fs(y) =

{∑
v∈IZ(y) ‖v‖−s if IZ(y) %= ∅,

ε−s
X otherwise.

(1.14)

A function of this type is referred to as a Margulis function in the literature.
The proof of Theorem 1.1 is based on the following fact: the average of fs is controlled by

the volume of Z, i.e.

mY (fs) )s Vol(Z). (1.15)
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We prove the estimate in (1.15) using the following super-harmonicity type inequality: for
any 1/3 ≤ s < 1, there exist t = ts > 0 and b = bs > 1 such that for all y ∈ Y ,

Atfs(y) ≤ 1
2fs(y) + b Vol(Z) (1.16)

where (Atfs)(y) =
∫ 1
0 fs(yurat) dr, ur =

(
1 0
r 1

)
, and at =

(
et/2 0
0 e−t/2

)
.

The proof of (1.16) is based on the inequality (A.1), which is essentially a lemma in linear
algebra. We refer to Appendix A, where a more or less complete proof of Theorem 1.1 is given.

For a general geometrically finite hyperbolic manifold, many changes are required, and several
technical difficulties arise. In general, there is no positive lower bound for the injectivity radius
on X, and the shadow constant of Y appears in the linear algebra lemma (Lemma 5.6). These
facts force us to incorporate the height of y as well as the shadow constant of Y in the definition
of the Margulis function (see Definition 9.1). The correct substitutes for the volume measures
on Y and Z turn out to be the Bowen–Margulis–Sullivan probability measure mY and the tight
area of Z respectively.

It is more common in the existing literature on the subject to define the operator At using
averages over large spheres in H2. Our operator At, however, is defined using averages over
expanding horocyclic pieces; this choice is more amenable to the change of variables and iteration
arguments for Patterson–Sullivan measures. Indeed, for a locally bounded Borel function f on
Y ∩ X0 and for any y ∈ Y ∩ X0,

(Atf)(y) =
1

µy([−1, 1])

∫ 1

−1
f(yurat) dµy(r)

where µy is the Patterson–Sullivan measure on yU (see (4.2)).
When X is compact and hence mY is H-invariant, (1.15) follows by simply integrating

(1.16) with respect to mY . In general, we resort to Lemma 7.3, the proof of which is based on
an iterated version of (1.16) for Ant0 , n ∈ N, for some t0 > 0, as well as on the fact that the
Bowen–Margulis–Sullivan measure mY is at0-ergodic.

In fact, the main technical result of this paper can be summarized as follows.

Proposition 1.17. Let Γ be a geometrically finite subgroup of G. Let Y %= Z be non-elementary
closed H-orbits in X = Γ\G, and set Y0 := Y ∩ X0. For any δY /3 ≤ s < δY , there exist ts > 0
and a locally bounded Borel function Fs : Y0 → (0,∞) with the following properties.

(1) For all y ∈ Y0,

d(y, Z)−s ≤ s$Y Fs(y).

(2) For all y ∈ Y0 and n ≥ 1,

(
AntsFs

)
(y) ≤ 1

2n
Fs(y) + α$

Y,s areat(SZ).

(3) There exists 1 < σ ) s$Y such that for all y ∈ Y0 and for all h ∈ H with ‖h‖ ≥ 2 and yh ∈ Y0,

σ−1Fs(y) ≤ Fs(yh) ≤ σFs(y).

Finally we mention that the reason that we can take the exponent s arbitrarily close to δY
lies in the two ingredients of our proof: first, the linear algebra lemma (Lemma 5.6) is obtained
for all δY /3 ≤ s < δY ; and second, for any y ∈ Y ∩ X0, we can find |r| < 1 so that yur ∈ X0 and
the height of yur can be lowered to be O(1) by the geodesic flow of time comparable to the
logarithmic height of y; see Lemma 8.4 for the precise statement.
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Organization
We end this introduction with an outline of the paper. In §2, we fix some notation and conventions
to be used throughout the paper. In § 3, we show the finiteness of the tight area of a properly
immersed geodesic plane. In § 4, we show the finiteness of the shadow constant of a closed
H-orbit. In § 5, we prove a lemma from linear algebra; this lemma is a key ingredient to prove
a local version of our main inequality. Section 6 is devoted to the study of the height function
in X0. In § 7, the definition of the Markov operator and a basic property of this operator are
discussed. In § 8, we prove the return lemma, and use it to obtain a uniform control on the
number of sheets of Z in a neighborhood of y. In § 9, we construct the desired Margulis function
and prove the main inequalities. In § 10, we give a proof of Theorem 1.5. In Appendix A, we
provide a proof of Theorem 1.1.

2. Notation and preliminaries

In this section, we review some definitions and introduce notation which will be used throughout
the paper.

We set G = PSL2(C) # Isom+(H3), and H = PSL2(R). We fix H2 ⊂ H3 with an orientation
so that {g ∈ G : g(H2) = H2} = H. Let A denote the following one-parameter subgroup of G:

A =
{

at =
(

et/2 0
0 e−t/2

)
: t ∈ R

}
.

Set K0 = PSU(2) and M0 the centralizer of A in K0. We fix a point o ∈ H2 ⊂ H3 and a unit
tangent vector vo ∈ To(H3) so that their stabilizer subgroups are K0 and M0 respectively. The
isometric action of G on H3 induces identifications G/K0 = H3, G/M0 = T1 H3, and G = F H3

where T1 H3 and FH3 denote, respectively, the unit tangent bundle and the oriented frame bundle
over H3. Note also that H ∩ K0 = PSO(2) and that H(o) = H2.

The right translation action of A on G induces the geodesic/frame flow on T1 H3 and FH3,
respectively. Let v±o ∈ ∂H3 denote the forward and backward end points of the geodesic given
by vo. For g ∈ G, we define

g± := g(v±o ) ∈ ∂H3.

Let Γ < G be a discrete torsion-free subgroup. We set

M := Γ\H3 and X := Γ\G # FM.

We denote by π : X → M the base point projection map. Denote by Λ = Λ(Γ) the limit set of Γ.
The convex core of M is given by coreM = Γ\hull(Λ). Let X0 denote the renormalized frame
bundle RFM , i.e.

X0 = {[g] ∈ X : g± ∈ Λ}, (2.1)

that is, X0 is the union of all the A-orbits whose projections to M stay inside core M . We remark
that X0 does not surject onto core M in general.

In the whole paper, we assume that Γ is geometrically finite, that is, the unit neighborhood of
core M has finite volume. This is equivalent to the condition that Λ is the union of the radial limit
points and bounded parabolic limit points: Λ = Λrad

⋃
Λbp (cf. [Bow93, MT98]). A point ξ ∈ Λ is

called radial if the projection of a geodesic ray toward to ξ accumulates on M = Γ\H3, parabolic
if it is fixed by a parabolic element of Γ, and bounded parabolic if it is parabolic and StabΓ(ξ)
acts co-compactly on Λ − {ξ}. In particular, for Γ geometrically finite, the set of parabolic limit
points Λp is equal to Λbp. For ξ ∈ Λp, the rank of the free abelian subgroup StabΓ(ξ) is referred
to as the rank of ξ.
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A geometrically finite group Γ is called convex cocompact if coreM is compact, or
equivalently, if Λ = Λrad.

We denote by N the expanding horospherical subgroup of G for the action of A:

N =
{

us =
(

1 0
s 1

)
: s ∈ C

}
.

For ξ ∈ Λp, a horoball h̃ξ ⊂ G based at ξ is of the form

h̃ξ(T ) = gNA(−∞,−T ]K0 for some T ≥ 1, (2.2)

where g ∈ G is such that g− = ξ and A(−∞,−T ] = {at : −∞ < t ≤ −T}. Its image h̃ξ(o) in H3 is
called a horoball in H3 based at ξ. By a horoball hξ in X and in M , we mean their respective
images of horoballs h̃ξ and h̃ξ(o) in X and M under the corresponding projection maps.

Thick–thin decomposition of X0

We fix a Riemannian metric d on G which induces the hyperbolic metric on H3. By abuse of
notation, we use d to denote the distance function on X induced by d, as well as on M . For a
subset S ⊂ ♠ and ε > 0, B♠(S, ε) denotes the set {x ∈ ♠ : d(x, S) ≤ ε}. When ♠ is a subgroup of
G and S = {e}, we simply write B♠(ε) instead of B♠(S, ε). When there is no room for confusion
for the ambient space ♠, we omit the subscript ♠.

For p ∈ M , we denote by inj p the injectivity radius at p ∈ M , that is: the supremum r > 0
such that the projection map H3 → M = Γ\H3 is injective on the ball BH3(p̃, r) where p̃ ∈ H3

is such that p = [p̃] = p̃Γ. For S ⊂ M and ε > 0, we call the subsets {p ∈ S : inj(p) ≥ ε} and
{p ∈ S : inj(p) < ε} the ε-thick part and the ε-thin part of S respectively.

As M is geometrically finite, coreM is contained in a union of its ε-thick part (coreM)ε

and finitely many disjoint horoballs for all small ε > 0 (cf. [MT98]). If p = gusa−to is contained
in a horoball hξ = gNA(−∞,−T ](o), then inj(p) , e−t for all t & T , this is a standard fact see,
e.g. [KO21, Proposition 5.1].

Let εM > 0 be the supremum of ε with respect to which such a decomposition of coreM
holds. We call the εM -thick part of coreM the compact core of M , and denote by Mcpt.

For x = [g] ∈ X, we denote by inj(x) the injectivity radius of π(x) ∈ M . For ε > 0, we set

Xε := {x ∈ X0 : inj(x) ≥ ε}.
We set εX = εM/2; note that X0 − XεX is either empty or is contained in a union of horoballs

in X.

Convention
By an absolute constant, we mean a constant which depends at most on G and Γ. We will use
the notation A , B when the ratio between the two lies in [C−1, C] for some absolute constant
C ≥ 1. We write A ) B$ (respectively A , B$, A ) &B) to mean that A ≤ CBL (respectively
C−1BL ≤ A ≤ CBL, A ≤ C · B) for some absolute constants C > 0 and L > 0.

3. Tight area of a properly immersed geodesic plane

In this section, we show that the tight area of a properly immersed geodesic plane of M is finite.
For a closed subset Q ⊂ M , we define the tight neighborhood of Q by

N (Q) := {p ∈ M : d(p, q) ≤ inj(q) for some q ∈ Q}.
We are mainly interested in the tight neighborhood of coreM . If M is convex cocompact,

N (coreM) is compact. In order to describe the shape of N (core M) in the presence of cusps, fix
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Figure 3. Chimney.

a set ξ1, . . . , ξ' of Γ-representatives of Λp, cf. [MT98]. Then coreM is contained in the union of
Mcpt and a disjoint union

⋃
hξi of horoballs based at the ξis.

Consider the upper half-space model H3 = {(x1, x2, y) : y > 0} = R2 × R>0, and let ∞ ∈ Λp.
Let p : H3 → M denote the canonical projection map. As ∞ is a bounded parabolic fixed point,
there exists a bounded rectangle, say, I ⊂ R2 and r > 0 (depending on ∞) such that:

(1) p(I × {y > r}) ⊃ N (h∞ ∩ core M); and
(2) p(I × {r}) ⊂ B(Mcpt, R)

where R depends only on M . We call this set C∞ := I × {y ≥ r} a chimney for ∞ (cf. Figure 3).
Note that increasing R if necessary, we have

N (core M) ⊂ B(Mcpt, R) ∪
( ⋃

1≤i≤'

p(Cξi)
)

, (3.1)

where Cξi is a chimney for ξi.

Definition 3.2. For a properly immersed geodesic plane S of M , we define the tight-area of S
relative to M as follows:

areat(S) := area(S ∩N (core M)).

Theorem 3.3. For a properly immersed non-elementary geodesic plane S of M , we have

1 ) areat(S) < ∞,

where the implied multiplicative constant depends only on M .

Proof. Since no horoball can contain a complete geodesic, it follows that S intersects the compact
core Mcpt. Therefore,

areat S ≥ 4π sinh2(εX/2),

as S ∩ Mcpt contains a hyperbolic disk of radius εX (see § 2). This implies the lower bound.
We now turn to the proof of the upper bound. We use the notation in (3.1). Fix a geodesic

plane P ⊂ H3 which covers S and let ∆ = StabΓ(P ). Fix a Dirichlet domain D in P for the
action of ∆. As ∆\P is geometrically finite, the Dirichlet domain is a finite sided polygon;
hence, D ∩ hull(∆) has finite area, and the set D − hull(∆) is a disjoint union of finitely many
flares, where a flare is a region bounded by three geodesics as shown in Figure 4. Fixing a flare
F ⊂ D − hull(∆), it suffices to show that {x ∈ F : p(x) ∈ N (core M)} has finite area. As S is
properly immersed, the set {x ∈ F : d(p(x), Mcpt) ≤ R} is bounded. Therefore, fixing a chimney
Cξi as above, it suffices to show that the set {x ∈ F : p(x) ∈ Cξi} = F ∩ ΓCξi has finite area.
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Figure 4. Flare F and Fε.

Without loss of generality, we may assume ξi = ∞. We will denote by ∂F the intersection
of the closure of F and ∂P , and let Fε ⊂ F denote the ε-neighborhood of ∂F in the Euclidean
metric in the unit disc model of P (cf. Figure 4).

Fix ε0 > 0 so that
Fε0 ∩ {x ∈ D : d(p(x), Mcpt) < R} = ∅; (3.4)

such ε0 exists, as S is a proper immersion. Writing C∞ = I × {y ≥ r} as above, let H∞ :=
R2 × {y > r}, and set Γ∞ := StabΓ(∞).

We claim that
#{γH∞ : Fε0/2 ∩ γC∞ %= ∅} < ∞. (3.5)

Suppose not. Since ΓH∞ is closed in the space of all horoballs in H3, there exists a sequence of
distinct γi(∞) ∈ Γ(∞) such that Fε0/2 ∩ γiC∞ %= ∅ and the size of the horoballs γiH∞ goes to 0
in the Euclidean metric in the ball model of H3. Note that if ∞ has rank 2, then Γ∞(I × {r}) =
R2 × {r} and that if ∞ has rank 1, then Γ∞(I × {r}) contains a region between two parallel
horocycles in R2 × {r}. Since P ∩ γiC∞ %= ∅, it follows that P ∩ γi(Γ∞(I × {r})) %= ∅. Moreover,
if i is large enough so that the Euclidean size of γiH∞ is smaller than ε0/2, the condition
Fε0/2 ∩ γiC∞ %= ∅ implies that Fε0 ∩ γi(Γ∞(I × {r})) %= ∅. This yields a contradiction to (3.4)
since p(I × {r}) is contained in the R-neighborhood of Mcpt, proving the claim.

By Claim 3.5, it is now enough to show that, fixing a horoball γH∞, the intersection
Fε0 ∩ γΓ∞C∞ has finite area. Suppose that Fε0 ∩ γΓ∞C∞ is unbounded in P ; otherwise the
claim is clear. Without loss of generality, we may assume γ = e, by replacing P by γ−1P if
necessary. If ∞ /∈ ∂P , then Fε0 ∩ Γ∞C∞, being contained in P ∩ H∞, is a bounded subset of
P , which contradicts our supposition. Therefore, ∞ ∈ ∂P . Then, as Fε0 ∩ Γ∞C∞ ⊂ Fε0 ∩ H∞ is
unbounded, we have ∞ ∈ ∂F . Since F is a flare, it follows that ∞ is not a limit point for ∆.
This implies that the rank of ∞ in Λp is 1 [OS13, Lemma 6.2]. Therefore Γ∞C∞ is contained
in a subset of the form T × {y ≥ r} where T is a strip between two parallel lines L1, L2 in R2.
Since ∞ is not a limit point for ∆, the vertical plane P is not parallel to the Li. Therefore, the
intersection Fε0 ∩ Γ∞C∞, being a subset of P ∩ (T × {y ≥ r}), is contained in a cusp-like region,
isometric to {(x, y) ∈ H2 : y ≥ r} and x is also bounded from above and below (recall that P is
not parallel to the Li). This finishes the proof. !

The proof of the above theorem demonstrates that the portion of S, especially of the flares
of S, staying in the tight neighborhood of coreM can go to infinity only in cusp-like shapes,
by visiting the chimneys of horoballs of coreM (Figure 1). This is not true any more if we
replace the tight neighborhood of coreM by the unit neighborhood of coreM . More precisely if
Λ contains a parabolic limit point of rank one which is not stabilized by any element of π1(S),
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then some region of S with infinite area can stay inside the unit neighborhood of coreM . This
situation may be compared to the presence of divergent geodesics in finite area setting.

4. Shadow constants

In this section, fixing a closed non-elementary H-orbit Y in X, we recall the definition of
Patterson–Sullivan measures µy on horocycles in Y , and relate its density with the shadow
constant sY , which we show is a finite number.

Set ∆Y := StabH(y0) to be the stabilizer of a point y0 ∈ Y ; note that despite the notation,
∆Y is uniquely determined up to a conjugation by an element of H. As Γ is geometrically finite
and Y = Hy0 is a closed orbit, the subgroup ∆Y is a geometrically finite subgroup of H, [OS13,
Theorem 4.7]. We denote by ΛY ⊂ ∂H2 the limit set of ∆Y . Let 0 < δ(Y ) ≤ 1 denote the critical
exponent of ∆Y , or equivalently, the Hausdorff dimension of ΛY .

We denote by {νp = νY,p : p ∈ H2} the Patterson–Sullivan density for ∆Y , normalized so that
|νo| = 1. This means that the collection {νp} consists of Borel measures on ΛY satisfying that
for all γ ∈ ∆Y , p, q ∈ H2, ξ ∈ ΛY ,

dγ∗νp

dνp
(ξ) = e−δ(Y )βξ(γ−1(p),p) and

dνq

dνp
(ξ) = e−δ(Y )βξ(q,p)

where βξ(·, ·) denotes the Busemann function. In what follows we will refer to the first identity
above as Γ-conformality of {νp}.

As ∆Y is geometrically finite, there exists a unique Patterson–Sullivan density up to a
constant multiple.

PS-measures on U-orbits
Set

U :=
{

ur =
(

1 0
r 1

)
: r ∈ R

}
= N ∩ H

which is the expanding horocylic subgroup of H. Using the parametrization r 6→ ur, we may
identify U with R. Note that for all r, t ∈ R,

a−turat = uetr.

For any h ∈ H, the restriction of the visual map g 6→ g+ is a diffeomorphism between hU
and ∂H2 − {h−}. Using this diffeomorphism, we can define a measure µhU on hU :

dµhU (hur) = eδ(Y )β(hur)+ (p,hur(p)) dνp(hur)+; (4.1)

this is independent of the choice of p ∈ H2. We simply write dµh(r) for dµhU (hur). Note that
these measures depend on the U -orbits but not on the individual points. By the ∆Y -invariance
and the conformal property of the PS-density, we have

dµh(O) = dµγh(O) (4.2)

for any γ ∈ ∆Y and for any bounded Borel set O ⊂ R; therefore µy(O) is well defined for y ∈
∆Y \H.

For any y ∈ ∆Y \H and any t ∈ R, we have

µy([−et, et]) = eδ(Y )tµya−t([−1, 1]). (4.3)

Set
Y0 := {[h] ∈ ∆Y \H : h± ∈ ΛY } (4.4)
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where h± = limt→±∞ hat(o).

Shadow constant
As in the introduction, we define the modified critical exponent of Y :

δY =

{
δ(Y ) if Y is convex cocompact,
2δ(Y ) − 1 otherwise.

(4.5)

If Y has a cusp, then δ(Y ) > 1/2, and hence 0 < δY ≤ δ(Y ) ≤ 1.
Define

pY = sup
y∈Y0,0<r≤2

µy([−r, r])1/δY

r · µy([−1, 1])1/δY
; (4.6)

the range 0 < r ≤ 2 is motivated by our applications later; see e.g. (7.13).
Recall the shadow constant sY = sup0<ε≤1/2 sY (ε) in (1.8) where

sY (ε) := sup
ξ∈ΛY ,p∈[ξ,ΛY ]

νp(Bp(ξ, ε))1/δY

ε · νp(Bp(ξ, 1/2))1/δY
, (4.7)

where [ξ,ΛY ] is the union of all geodesics connecting ξ to a point in ΛY , and Bp(ξ, ·) is as
in (4.10).

The rest of this section is devoted to the proof of the following theorem using a uniform
version of Sullivan’s shadow lemma.

Theorem 4.8. We have

sY , pY < ∞.

In principle, this definition of sY involves making a choice of ∆Y = StabH(y0), i.e. the choice
of y0 ∈ Y , as ΛY is the limit set of ∆Y . However, we observe the following.

Lemma 4.9. The constant sY is independent of the choice of y0 ∈ Y .

Proof. Let y = y0h−1 ∈ Y for h ∈ H. Define s′Y similar to sY using ∆′
Y = StabH(y) = h∆Y h−1

and put ν ′p := h∗νh−1p for each p ∈ H2. If ξ ∈ ΛY , then

d
(
(hγh−1)∗ν ′p

)

dν ′p
(hξ) =

d
(
(hγ)∗νh−1p

)

dh∗νh−1p
(hξ) =

dγ∗νh−1p

dνh−1p
(ξ)

= e−δ(Y )βξ(γ−1(h−1p),h−1p) = e−δ(Y )βhξ(hγ−1h−1(p),p).

Since the limit set of ∆′
Y is given by hΛY , this implies that the family {ν ′p : p ∈ H2} is the

Patterson–Sullivan density for ∆′
Y . Now for any 0 < ε ≤ 1 and ξ ∈ ΛY , we have

ν ′hp(Bhp(hξ, ε)) = h∗νp(Bhp(hξ, ε)) = νp(h−1Bhp(hξ, ε)) = νp(Bp(ξ, ε)).

It follows that sY = s′Y . !

Shadow lemma
Consider the associated hyperbolic plane and its convex core:

SY := ∆Y \H2 and core (SY ) := ∆Y \hull(ΛY ).

We denote by CY the compact core of SY , defined as the minimal connected surface whose
complement in core(SY ) is a union of disjoint cusps. If SY is convex cocompact, then CY = SY .
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Let
dY := max{1, diam(CY )}.

We can write core (SY ) as the disjoint union of the compact core C0 := CY and finitely many
cusps, say, C1, . . . , Cm. Fix a Dirichlet domain FY ⊂ H2 for ∆Y containing the base point o. For
each Ci, 0 ≤ i ≤ m, choose the lift C̃i ⊂ FY ∩ hull(ΛY ) so that ∆Y \∆Y C̃i = Ci. In particular,
∂C̃0 intersects C̃i in an interval for i ≥ 1. Let ξi ∈ ΛY be the base point of the horodisc C̃i, i.e. ξi =
∂C̃i ∩ ∂H2. Let Fξi ⊂ ∂H2 − {ξi} be a minimal closed interval so that ΛY − {ξi} ⊂ Stab∆Y (ξi)Fξi .

For p ∈ H2, let dp denote the Gromov distance on ∂H2: for ξ %= η ∈ ∂H2,

dp(ξ, η) = e−(βξ(p,q)+βη(p,q))/2

where q is any point on the geodesic connecting ξ and η. The diameter of (∂H2, dp) is equal to 1.
For any h ∈ H, we have dp(ξ, η) = dh(p)(h(ξ), h(η)). For ξ ∈ ∂H2, and r > 0, set

Bp(ξ, r) = {η ∈ ∂H2 : dp(η, ξ) ≤ r} (4.10)

as was defined in the introduction. Also, denote by V (p, ξ, r) the set of all η ∈ ∂H2 such that the
distance between p and the orthogonal projection of η onto the geodesic [p, ξ) is at least r. Note
that

V (p, ξ, t) = Bp

(
ξ,

e−t

√
1 + e−2t

)
,

see ([Sch04, Lemma 2.5] and the discussion following that lemma). Therefore,

V (p, ξ, r + 1) ⊂ Bp(ξ, e−r) ⊂ V (p, ξ, r − 1) for all r ≥ 1.

The following is a uniform version of Sullivan’s shadow lemma [Sul84]. The proof of this
proposition is similar to the proof of [Sch04, Theorem 3.2]; since the dependence on the multi-
plicative constant is important to us, we give a sketch of the proof while making the dependence
of constants explicit.

Proposition 4.11. There exists a constant c , e$dY such that for all ξ ∈ ΛY , p ∈ C̃0, and t > 0,

c−1 · νp(Fξt)βY e−δ(Y )t+(1−δ(Y ))d(ξt,∆Y (p)) ≤ νp(V (p, ξ, t))

≤ c · νp(Fξt)e
−δ(Y )t+(1−δ(Y ))d(ξt,∆Y (p))

where:

• {ξt} is the unit speed geodesic ray [p, ξ) so that d(p, ξt) = t;
• Fξt = ∂H2 if ξt ∈ ∆Y C̃0, and Fξt = Fξi if ξt ∈ ∆Y C̃i for 1 ≤ i ≤ m;
• βY := infη∈ΛY ,q∈C̃0

νq(Bq(η, e−dY )).

Proof. Let p, ξ ∈ ΛY and ξt be as in the statement. By the δ(Y )-conformality of the PS density,
we have

νp(V (p, ξ, t)) = e−δ(Y )tνξt(V (p, ξ, t)).
Therefore it suffices to show

νξt(V (p, ξ, t)) , νp(Fξt) · e(1−δ(Y ))d(ξt,∆Y (p))

while making the dependence of the implied constant explicit.

Claim A. If ξt ∈ ∆Y C̃0, then

e−δ(Y )dY · inf
η∈ΛY

νp(B(η, e−dY )) ) νξt(V (p, ξ, t)) ) eδ(Y )dY |νp| (4.12)

where the implied constants are absolute.
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First note that this implies the claim in the proposition if ξt ∈ ∆Y C̃0. Indeed d(ξt, ∆Y (p)) ≤
dY and Fξt = ∂H2 in this case. Moreover, by (4.12), we have

e−$dY βY e−δ(Y )t ≤ νp(V (p, ξ, t)) = e−δ(Y )tνξt(V (p, ξ, t)) ≤ e$dY e−δ(Y )t

where we also used |νp| = e$dY (recall that p ∈ C̃0). Thus the claim in the proposition follows in
this case.

We now turn to the proof of Claim A. As ξt ∈ ∆Y C̃0, there exists γ ∈ ∆Y such that
d(ξt, γp) ≤ dY . Hence

e−δ(Y )dY νξt(V (p, ξ, t)) ≤ νγp(V (p, ξ, t)) = νp(V (γ−1p, γ−1ξ, t))

≤ eδ(Y )dY νξt(V (p, ξ, t)).

The upper bound in (4.12) follows from the first inequality, while the lower bound follows
from the second inequality; indeed

V (γ−1p, γ−1ξ, t) = V (γ−1ξt, γ
−1ξ, 0)

and the latter contains Bp(γ−1ξ, e−dY ), since d(p, γ−1ξt) ≤ dY and dY ≥ 1.

Claim B. Let ξ be a parabolic limit point in ΛY . Assume that for some i ≥ 1, ξt ∈ C̃i for all
large t.

We claim

νξt(V (p, ξ, t)) , νp(Fξ) · e(1−δ(Y ))(d(ξt,∆Y (p))+dY ) (4.13)

and

νξt(∂H2 − V (p, ξ, t)) , νp(Fξ) · e(1−δ(Y ))(d(ξt,∆Y (p))+dY ) (4.14)

where here and in what follows implied constants are of the form e±$dY unless otherwise is stated
explicitly.

Let si ≥ 0 be such that ξsi ∈ ∂C̃i. Then for all t ≥ si,

|d(ξt, ∆Y (p)) − (t − si)| ≤ dY .

Hence for (4.13), it suffices to show

νξt(V (p, ξ, t)) , e(1−δ(Y ))(t−si)νp(Fξ). (4.15)

Note that if we set ∆Y,ξ = Stab∆Y (ξ),

νξt(V (p, ξ, t)) ,
∑

γ∈∆Y,ξ,γFξ∩V (p,x̃,t) *=∅

νξt(γFξ).

Let F ∗
ξ denote the image of Fξ on the horocycle based at ξ passing through p via the inverse

of the visual map. Since p ∈ C̃0, there exists γ ∈ ∆Y,ξ so that γF ∗
ξ is contained in the closure

of C̃0. Hence,

diam F ∗
ξ ≤ dY = max{1, diam(C̃0)}.

We now apply [Sch04, Lemma 2.9] with K = F ∗
ξ and let K3 be as in [Sch04]. By the definition of

K3 given in the proof of [Sch04, Lemma 2.9], we have K3 ) diam F ∗
ξ where the implied constant

is absolute. Thus, in view of [Sch04, Lemma 2.9], if γ ∈ ∆Y,ξ is so that γFξ ∩ V (p, ξ, t) %= ∅, then
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d(p, γp) ≥ 2t − kdY , where k is absolute. In consequence,

νξt(V (p, ξ, t)) ,
∑

γ∈∆Y,ξ,d(p,γp)≥2t

νξt(γFξ)

where the implied constant is absolute.
Now we use the fact that if d(p, γp) ≥ 2t, then for all η ∈ Fξ,

|βη(γ−1ξt, ξt) − d(p, γp) + 2t| ) diamF ∗
ξ ≤ dY

(cf. proof of [Sch04, Lemma 2.9]). Since

νξt(γFξ) =
∫

γFξ

dνξt =
∫

Fξ

e−δ(Y )βγη(ξt,γξt)) dνξt(η),

and νξt(Fξ) = e−δ(Y )tνp(Fξ), we deduce, with multiplicative constant , eδ(Y )dY ,
∑

γ∈∆Y,ξ,d(p,γp)≥2t

νξt(γFξ) ,
∑

γ∈∆Y,ξ,d(p,γp)≥2t

e2δ(Y )t−δ(Y )d(p,γp)νξt(Fξ)

, νp(Fξ)eδ(Y )t
∑

γ∈∆Y,ξ,d(p,γp)≥2t

e−δ(Y )d(p,γp)

, νp(Fξ)e(1−δ(Y ))t

using an := #{γ ∈ ∆Y,ξ : n < d(p, γp) ≤ n + 1} , en/2 in the last estimate. This proves (4.13).
The estimate (4.14) follows similarly now using

νξt(∂H2 − V (p, ξ, t)) ,
∑

γ∈∆Y,ξ,d(p,γp)≤2t

νξt(γF )

and
∑[2t]

n=0 ane−δ(Y )n , e(1−2δ(Y ))t.
Note that when ξ is a parabolic limit point, (4.13) holds with multiplicative constant , e$dY

(see the proof of [Sch04, Proposition 3.4]).
As for the remaining case, i.e. ξ is a radial limit point but ξt ∈ ∆Y C̃i for some i, one can prove

that (4.13) holds with multiplicative constant , e$dY (see the proof of [Sch04, Lemma 3.6]). !
Proposition 4.16. Fix p = pY ∈ C̃0. There exists RY , e$dY such that for all y ∈ Y0, we have

R−1
Y βY e(1−δ(Y ))d(CY ,π(y))|νp| ≤ µy([−1, 1]) ≤ RY e(1−δ(Y ))d(CY ,π(y))|νp|

where π denotes the base point projection ∆Y \H = T1(SY ) → SY .

Proof. The following argument is a slight modification of the proof of [MS14, Proposition 5.1].
Since the map y 6→ µy[−1, 1] is continuous on Y0 and {[h] ∈ Y0 : h− is a radial limit point of ΛY }
is dense in Y0, it suffices to prove the claim for y = [h], assuming that h− is a radial limit point
for ∆Y .

Recall that µy([−1, 1]) = eδ(Y )tµya−t([−e−t, e−t]) for all t ∈ R. Let t ≥ 0 be the minimal
number so that π(ya−t) ∈ CY ; this exists as h− is a radial limit point. Then

d(π(y), CY ) ≤ d(π(y),π(ya−t)) ≤ dY + d(π(y), CY ). (4.17)

Set ξt = ha−t(o). Then

µya−t [−e−t, e−t] , νξt(V (ξt, h+, t))

(cf. [Sch04, Lemma 4.4]).
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Since ya−t ∈ CY , Fξt = ∂H2. So νξt(Fξt) = |νξt | , |νp| up to a multiplicative constant e$dY .
Therefore, for some implied constant , e$dY , we have

βY e−δ(Y )t+(1−δ(Y ))d(π(y),π(ya−t))|νp| ) νξt(V (ξt, h+, t))

) e−δ(Y )t+(1−δ(Y ))d(π(y),π(ya−t))|νp|.

This estimate and (4.17), therefore, imply that

βY e(1−δ(Y ))d(π(y),CY )|νp| ) µy([−1, 1]) ) e(1−δ(Y ))d(π(y),CY )|νp|

with the implied constant , e$dY , proving the claim. !
We use the following result, essentially obtained by Schapira and Maucourant [Sul84, MS14].

Corollary 4.18. Fix ρ > 0. Then for all 0 < ε ≤ ρ,

R−2
Y · βY ≤ sup

y∈Y0

µy([−ε, ε])
εδY µy([−1, 1])

≤ max{1, ρ2} · R2
Y · β−1

Y < ∞,

where RY is as in Proposition 4.16.

Proof. By (4.3), we have µy([−ε, ε]) = εδ(Y )µya− log ε([−1, 1]). Hence the case when Y is convex
cocompact follows from Proposition 4.16.

Now suppose that Y has a cusp. Let y ∈ Y0. Using the triangle inequality, we get that
d(π(ya− log ε), CY ) − d(π(y), CY ) ≤ | log ε|. Therefore, by Proposition 4.16, we have

µya− log ε([−1, 1])
µy([−1, 1])

≤ R2
Y β

−1
Y · e(1−δ(Y ))(d(π(ya− log ε),CY )−d(π(y),CY ))

≤
{

R2
Y · β−1

Y · εδ(Y )−1 if 0 < ε < 1,
R2

Y · β−1
Y · ε1−δ(Y ) if ε ≥ 1.

As a consequence, we have

µy([−ε, ε])
ε2δ(Y )−1µy([−1, 1])

≤
{

R2
Y · β−1

Y if 0 < ε < 1,
R2

Y · β−1
Y · ρ2 if ρ ≥ 1 and 1 ≤ ε ≤ ρ.

Recall from (4.5) that δY = δ(Y ) when Y is cocompact and δY = 2δ(Y ) − 1 otherwise. The above
thus establishes the upper bound.

By choosing y ∈ Y0 such that d(π(ya− log ε), CY ) − d(π(y), CY ) = | log ε|, we get the lower
bound. !

Theorem 4.8 follows from the following proposition.

Proposition 4.19. We have:

(1) for any 0 < ε ≤ 1/2, 0 < sY (ε) < ∞;

(2) sY , pY ) e$dY /δY β−1/δY
Y .

Proof. Let y ∈ Y0 and h ∈ H be so that y = [h]. Fix 0 < r ≤ 2. Recall

µy([−r, r]) =
∫ r

−r
e
−δ(Y )β

hu+
s

(h(o),hus(o))
dνh(o)(hu+

s ).

Since |βhu+
r
(h(o), hur(o))| ≤ d(o, ur(o)), we have

e
−δ(Y )β

hu+
r

(h(o),hur(o)) , 1

with the implied constant independent of all 0 < r ≤ 2.
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Since do(u+
r , e+) = dh(o)((hur)+, h+) where e is the identity (recall that v+

o = e+), we have

νh(o)

(
Bh(o)

(
h+,

c−1r√
1 + 2r2

))
) µy([−r, r]) ) νh(o)

(
Bh(o)

(
h+,

cr√
1 + 2r2

))

for some c > 1 independent of r and h.
This implies that

µy([−ε/c′, ε/c′]) ) νh(o)(Bh(o)(h+, ε)) ) µy([−c′ε, c′ε])

as well as
µy([−ε/c′, ε/c′])

εδY µy([−c′/2, c′/2])
)

νh(o)(Bh(o)(h+, ε))
εδY νh(o)(Bh(o)(h+, 1/2))

) µy([−c′ε, c′ε])
εδY µy([−1/(2c′), 1/(2c′)])

where c′ > 1 is independent of 0 < ε < 1/2 and h ∈ H.
First note that by Corollary 4.18, we have

µy([−1/(2c′), 1/(2c′)]) ,c′ µy[−1, 1] ,c′ µy([−c′/2, c′/2]).

Similarly, using Corollary 4.18, for any 0 < ε ≤ 1/2, we have

µy([−ε/c′, ε/c′]) ,c′ µy[−4ε, 4ε] ,c′ µy([−c′ε, c′ε]);

the choice of the constant 4 here is motivated by the definitions of pY and sY in (4.6) and (4.7),
respectively.

Altogether we conclude that

νh(o)(Bh(o)(h+, ε))
εδY νh(o)(Bh(o)(h+, 1/2))

, µy([−4ε, 4ε])
(4ε)δY µy([−1, 1])

.

Taking supremum over 0 < ε ≤ 1/2 and h ∈ H with h± ∈ ΛY , we conclude that sY , pY .
The last claim follows from Corollary 4.18. !

5. Linear algebra lemma

The goal of this section is to prove the linear algebra lemma (Lemma 5.6) and its slight variant
(Lemma 5.13).

In this section, it is more convenient to identify G as SO(Q)◦ for the quadratic form

Q(x1, x2, x3, x4) = 2x1x4 − x2
2 − x2

3.

As Q has signature (1, 3), PSL2(C) # SO(Q)◦ as real Lie groups. We consider the standard
representation of G on the space R4 of row vectors and denote the Euclidean norm on R4 by
‖ · ‖. We have

H = StabG(e3) # SO(1, 2)◦,

A = {at = diag(et, 1, 1, e−t) : t ∈ R} < H,

U =





ur =





1 0 0 0
r 1 0 0
0 0 1 0

r2/2 r 0 1



 : r ∈ R





< H.

Set
V := Re1 ⊕ Re2 ⊕ Re4.
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Then the restriction of the standard representation of G to H induces a representation of H on
V , which is isomorphic to the adjoint representation of H on its Lie algebra sl2(R); in particular,
it is irreducible.

Note that for each t > 0, Re2 = {v ∈ V : vat = v}, Re1 is the subspace of all vectors with
eigenvalues > 1, and Re4 is the subspace of all vectors with eigenvalues < 1.

Let p : V → Re1 ⊕ Re2 and p+ : V → Re1 denote the natural projections. Writing v = v1e1 +
v2e2 + v4e4, a direct computation yields that for any r ∈ R,

p(vur) =
(

v1 + v2r +
v4r2

2

)
e1 + (v2 + v4r)e2 and p+(vur) =

(
v1 + v2r +

v4r2

2

)
e1. (5.1)

For a unit vector v ∈ V and ε > 0, define

D(v, ε) = {r ∈ [−1, 1] : ‖p(vur)‖ ≤ ε},
D+(v, ε) = {r ∈ [−1, 1] : ‖p+(vur)‖ ≤ ε}.

Lemma 5.2. For all 0 < ε < 1/2 and a unit vector v ∈ V , we have

.(D(v, ε)) ) ε and .(D+(v, ε)) ) ε1/2

where . denotes the Lebesgue measure on R.

Proof. Since we are allowed to choose the implied constant in the statement, it suffices to prove
the lemma for 0 < ε ≤ 0.01.

Writing v = v1e1 + v2e2 + v4e4, we have

.(D(v, ε)) ≤ .

{
r ∈ [−1, 1] :

∣∣∣∣v1 + v2r +
v4r2

2

∣∣∣∣ ≤ ε and |v2 + v4r| ≤ ε

}
.

If |v4| ≥ 0.01, then

.(D(v, ε)) ≤ .{r ∈ [−1, 1] : |v2 + v4r| ≤ ε} ≤ 200ε.

If |v4| < 0.01 but 0.1 ≤ |v2| ≤ 1, then for r ∈ [−1, 1], we have |v2 + v4r| ≥ 0.09, and hence for
all ε ≤ 0.01,

.(D(v, ε)) ≤ .{r ∈ [−1, 1] : |v2 + v4r| ≤ ε} = 0.

Now consider the case when |v4| ≤ 0.01 and |v2| ≤ 0.1. Then, since ‖v‖ = 1, we get that |v1| ≥ 0.7.
Hence for all r ∈ [−1, 1], |v1 + v2r + v4r2/2| > 0.5. In consequence, for all ε < 1/2,

.(D(v, ε)) ≤ .{r ∈ [−1, 1] : |v1 + v2r + v4r
2/2| ≤ ε} = 0,

proving the estimate on D(v, ε). To estimate D+(v, ε), observe that p+(vur) = (v1 + v2r +
v4r2/2)e1 is a polynomial map of degree at most 2. Moreover, since ‖v‖ = 1, we have

max{|v1|, |v2|, |v4|} & 1.

Therefore, supr∈[−1,1] ‖p+(vur)‖ & 1. The claim about D+(v, ε) now follows using Lagrange’s
interpolation; see [BG73] for a more general statement. !

For the rest of this section, we fix a closed non-elementary H-orbit Y .

Lemma 5.3. There exists an absolute constant b̂0 > 0 for which the following holds: for any
y ∈ Y0 and 0 < ε < 1, we have

sup
v∈V,‖v‖=1

µy(D(v, ε)) ≤ b̂0p
δY
Y εδY µy([−1, 1]), (5.4)
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and

sup
v∈V,‖v‖=1

µy(D+(v, ε)) ≤ b̂0p
δY
Y εδY /2µy([−1, 1]) (5.5)

where pY is given as in (4.6).

Proof. By (5.1), each set D(v, ε) and D+(v, ε) consists of at most two intervals. By Lemma 5.2,
D(v, ε) (respectively D+(v, ε)) may be covered by ) 1 many intervals of length ε (respec-
tively ε1/2). Therefore (5.4) (respectively (5.5)) follows from the definition of pY . !

We use Lemma 5.3 to prove the following lemma which will be crucial in what follows.

Lemma 5.6 (Linear algebra lemma). For any δY /3 ≤ s < δY , 1 ≤ ρ ≤ 2, and t > 0, we have

sup
y∈Y0,v∈V,‖v‖=1

1
µy([−ρ, ρ])

∫ ρ

−ρ

1
‖vurat‖s

dµy(r) ≤ b0
pδY

Y e−(δY −s)t/4

(δY − s)
(5.7)

where b0 ≥ 2 is an absolute constant.

Proof. We first claim that it suffices to prove the claim for ρ = 1. Indeed, let tρ = t − log ρ
and let yρ = ya− log ρ, and for every v ∈ V , let vρ = va− log ρ. Recall also that µy[−r, r] =
ρδ(Y )µya− log ρ [−r/ρ, r/ρ] and that Y0 is A-invariant. Thus,

1
µy([−ρ, ρ])

∫ ρ

−ρ

1
‖vurat‖s

dµy(r) =
1

µy([−ρ, ρ])

∫ ρ

−ρ

1
‖va− log ρuρ−1ratρ‖s

dµy(r)

= ρδ(Y )‖vρ‖−s 1
µyρ([−1, 1])

∫ 1

−1

1
‖v′ρuratρ‖s

dµyρ(r)

where v′ρ = vρ/‖vρ‖.
Since ‖vρ‖−s , 1 (with absolute implied constants for 1 ≤ ρ ≤ 2) and Y0 is A-invariant, it

thus suffices to prove the lemma for ρ = 1.
Fix 0 < s < δY and t > 0. We observe that for all r ∈ R,

‖vurat‖ ≥ ‖p(vur)‖ and ‖vurat‖ ≥ et‖p+(vur)‖. (5.8)

For simplicity, set βy := 1/µy([−1, 1]). The inequality (5.4) and the first estimate in (5.8)
imply that for any 0 < ε ≤ 1 and any unit vector v ∈ V , we have

βy

∫

r∈D(v,ε)−D(v,ε/2)
‖vurat‖−sdµy(r) ≤ b̂0pY

δY
εδY · (ε/2)−s

≤ 2b̂0p
δY
Y εδY −s.

We write D(v, ε) =
⋃∞

k=0 D(v, ε/2k) − D(v, ε/2k+1). Now applying the above estimate for each
ε/2k and summing up the geometric series, we get that for any 0 < ε < 1,

βy

∫

r∈D(v,ε)
‖vurat‖−s dµy(r) ≤

2b̂0p
δY
Y εδY −s

1 − 2s−δY
. (5.9)

Moreover, using (5.5) and the first estimate in (5.8) again, for any κ > 0, we have

βy

∫

r∈D+(v,κ)−D(v,ε)
‖vurat‖−s dµy(r) ≤ 2b̂0p

δY
Y κδY /2ε−s. (5.10)

Finally, the definition of D+(v,κ) and the second estimate in (5.8) imply

βy

∫

r∈[−1,1]−D+(v,κ)
‖vurat‖−s dµy(r) ≤ κ−se−st. (5.11)
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Combining (5.9), (5.10), and (5.11) and using the inequality 1/(1 − 2−(δY −s)) ≤ 2/(δY − s), we
deduce that for any 0 < ε,κ < 1,

βy

∫ 1

−1
‖vurat‖−s dµy(r) ≤

2b̂0p
δY
Y

δY − s

(
εδY −s + κδY /2ε−s + κ−se−st

)
.

Let ε = e−t/4 and κ = ε2. As δY /3 ≤ s < δY , we have e−s/2 ≤ e(s−δY )/4. This yields

βy

∫ 1

−1
‖vurat‖−s dµy(r) ≤

6b̂0p
δY
Y

δY − s
· e−(δY −s)t/4,

as we claimed. !
We will extend the upper bound in Lemma 5.6 to all unit vectors v ∈ e1G, based on the fact

that the vectors in e1G are projectively away from the H-invariant point corresponding to Re3.

Lemma 5.12. There exists an absolute constant b1 > 1 such that for any vector v ∈ e1G ⊂ R4,

‖v‖ ≤ b1‖v1‖

where v1 is the projection of v ∈ R4 to V = Re1 ⊕ Re2 ⊕ Re4.

Proof. Since Q(e1) = 0 and G = SO(Q)◦, we have Q(e1g) = 0 for every g ∈ G. Since Q(e3) = −1,
the set {‖v‖−1v : v ∈ e1G} is a compact subset of the unit sphere in R4 not containing ±e3.
Therefore there exists an absolute constant 0 < η < 1 such that if we write v = v1 + re3 ∈ e1G,
then |r| ≤ η‖v‖. Therefore ‖v1‖2 = ‖v‖2 − r2 ≥ (1 − η2)‖v‖2. Hence it suffices to set b1 = (1 −
η2)−1/2. !
Lemma 5.13 (Linear algebra lemma II). For any δY /3 ≤ s < δY , 1 ≤ ρ ≤ 2, and t > 0, we have

sup
y∈Y0,v∈e1G,‖v‖=1

1
µy([−ρ, ρ])

∫ ρ

−ρ

1
‖vurat‖s

dµy(r) ≤ b0b1
pδY

Y e−(δY −s)t/4

(δY − s)

where b0 ≥ 2 and b1 > 1 are absolute constants as in Lemmas 5.6 and 5.12 respectively.

Proof. Let v ∈ e1G be a unit vector, and write v = v0 + v1 where v0 ∈ Re3 and v1 ∈ V . Since e3

is H-invariant, we have vh = v0 + v1h ∈ Re3 ⊕ V for all h ∈ H. Therefore,

1
µy([−ρ, ρ])

∫ ρ

−ρ

1
‖vurat‖s

dµy(r) ≤
1

µy([−ρ, ρ])

∫ ρ

−ρ

1
‖v1urat‖s

dµy(r)

≤
b0p

δY
Y e−(δY −s)t/4

(δY − s)
‖v1‖−s by Lemma 5.6

≤
b0b1p

δY
Y e−(δY −s)t/4

(δY − s)
‖v‖−s by Lemma 5.12. !

6. Height function ω

In this section we define the height function ω : X0 → (0,∞) and show that ω(x) is comparable
to the reciprocal of the injectivity radius at x.

For this purpose, we continue to realize G as SO(Q)◦ acting on R4 by the standard
representation, as in § 5. Observe that Q(e1) = 0 and the stabilizer of e1 in G is equal to M0N .

Fixing a set of Γ-representatives ξ1, . . . , ξ' in Λbp, choose elements gi ∈ G so that g−i = ξi
and ‖e1g

−1
i ‖ = 1; this is possible since {g ∈ G : g− = ξi} is a conjugate of AM0N .
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Set
vi := e1g

−1
i ∈ e1G. (6.1)

Note that
StabG(ξi) = giAM0Ng−1

i and StabG(vi) = giM0Ng−1
i .

By Witt’s theorem, we have that for each i,

{v ∈ R4 − {0} : Q(v) = 0} = viG # giM0Ng−1
i \G.

Lemma 6.2. For each 1 ≤ i ≤ ., the orbit viΓ is a closed (and hence discrete) subset of R4.

Proof. The condition ξi ∈ Λbp implies that Γ\ΓgiM0N is a closed subset of X. Equivalently,
ΓgiM0N as well as ΓgiM0Ng−1

i is closed in G. Therefore, its inverse giM0Ng−1
i Γ is a closed

subset of G. In consequence, viΓ ⊂ R4 is a closed subset of viG = {v ∈ R4 − {0} : Q(v) = 0}.
It remains to show that viΓ does not accumulate on 0. Suppose on the contrary that there

exists an infinite sequence viγ' converging to 0 for some γ' ∈ Γ. Using the Iwasawa decomposition
G = giNAK0, we may write γ' = gin'at&k' with n' ∈ N, t' ∈ R and k' ∈ K0. Since

viγ' = et&(e1k'),

the assumption that viγ' → 0 implies that t' → −∞.
On the other hand, as ξi ∈ Λbp, StabΓ(ξi) = Γ ∩ giAM0Ng−1

i contains a parabolic element,
say, γ′ %= e. Note that n0 := g−1

i γ′gi is then an element of N and hence a unipotent element, as
any parabolic element of AM0N belongs to N in the group G # PSL2(C). Now observe that, as
N is abelian,

γ−1
' γ′γ' = k−1

' a−t&(n
−1
' g−1

i γ′gin')at&k' = k−1
' (a−t&n0at&)k'.

Since t' → −∞, the sequence a−t&n0at& converges to e. Since {k−1
' } is a bounded sequence,

it follows that, up to passing to a subsequence, γ−1
' γ′γ' is an infinite sequence converging to e,

contradicting the discreteness of Γ. !
Definition 6.3 (Height function). Define the height function ω : X0 → [2,∞) by

ω(x) := max
1≤i≤'

ωi(x)

where
ωi(x) = max

γ∈Γ

{
2, ‖viγg‖−1

}
for any g ∈ G with x = [g];

this is well-defined by Lemma 6.2.
If Γ has no parabolic elements, we define ω(x) = 2 for all x ∈ X0.

By the definition of εX , X0 is contained in the union of XεX and ∪'
j=1hj where hj is a horoball

based at ξj .
Fix Tj > 0 so that hj = [gj ]NA(−∞,−Tj ]K0.

Set h̃j := gjNA(−∞,−Tj ]K0.
The following is an immediate consequence of the thick–thin decomposition of M .

Lemma 6.4. If h̃j ∩ γh̃i %= ∅ for some 1 ≤ i, j ≤ . and γ ∈ Γ, then i = j, γ ∈ StabG(ξi) = Stab h̃i,
and hence h̃j = γh̃i.
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Lemma 6.5. For all 1 ≤ i, j ≤ . and γ ∈ Γ such that h̃j %= γh̃i,

inf
q∈h̃i

‖vjγh‖ ≥ η0 (6.6)

where η0 := min1≤m≤' e−Tm .

Proof. Let q ∈ h̃i and γ ∈ Γ. Using G = gjNAK0, write γq = gjuask ∈ gjNAK0. Then ‖vjγq‖ =
es. Hence if ‖vjγq‖ < η0, then s ≤ −Tj . So γq ∈ h̃j . Therefore h̃j ∩ γh̃i %= ∅. By Lemma 6.4,
h̃j = γh̃i. !
Proposition 6.7. There is an absolute constant α ≥ 2 such that for all x ∈ X0,

1
2α

· inj(x) ≤ ω(x)−1 ≤ α

2
· inj(x). (6.8)

Proof. Fixing 1 ≤ j ≤ ., it suffices to show the claim for all x ∈ X0 ∩ hj .
Let g ∈ giua−tk ∈ h̃i be so that x = [g], where ua−tk ∈ NA(−∞,−Tj ]K0.
Note that

ωi(x)−1 ≤ ‖vig‖ = ‖e1g
−1
i (giua−tk)‖ = ‖e1ua−tk‖ = e−t.

In view of the definition of ω and ωi, this together with Lemma 6.5 implies that

ω(x) = ωi(x) = et.

Since inj(x) , e−t, this finishes proof. !

7. Markov operators

In this section we define a Markov operator At and prove Proposition 7.5 which relates the
average mY (F ) of a locally bounded, log-continuous, Borel function F on Y0 with a super-
harmonic type inequality for AtF . This proposition will serve as a main tool in our approach to
prove Theorem 1.5.

Fix a closed non-elementary H-orbit Y in X.

Bowen–Margulis–Sullivan measure mY

We denote by mY the Bowen–Margulis–Sullivan probability measure on ∆Y \H = T1(SY ), which
is the unique probability measure of maximal entropy (that is δ(Y )) for the geodesic flow. We
will also use the same notation mY to denote the push-forward of the measure to Y via the
map StabH(y0)\H → Y given by [h] → y0h. Considered as a measure on Y , mY is well defined,
independent of the choice of y0 ∈ Y .

Recall the definition of Y0 in (4.4); note that Y0 = supp mY . In the following, all of our Borel
functions are assumed to be defined everywhere in their domains. By a locally bounded function,
we mean a function which is bounded on every compact subset.

Definition 7.1 (Markov operator). Let t ∈ R and ρ > 0. For a locally bounded Borel function
ψ : Y0 → R, we define

(At,ρψ)(y) :=
1

µy([−ρ, ρ])

∫ ρ

−ρ
ψ(yurat) dµy(r). (7.2)

We set At := At,1.

Note that At,ρψ is a locally bounded Borel function on Y0. Although limn→∞ Ant(ψ) = mY (ψ)
for any ψ ∈ Cc(Y0) and any t > 0 [OS13], the Margulis function F we will be constructing is not

510

4  :��  19��9�3 ������� �������	.����	��
��!0���421�98��82�0#�
/70��132��8�"2��� #���2��

https://doi.org/10.1112/S0010437X22007928


Isolations of geodesic planes in the frame bundle of a hyperbolic 3-manifold

a continuous function on Y0, and hence we cannot use such an equidistribution statement to
control mY (F ). We will use the following lemma instead.

Lemma 7.3. Let F : Y0 → [2,∞) be a locally bounded Borel function. Assume that there exist
some t > 0 and D > 0 such that

lim sup
n→∞

AntF (y) ≤ D for all y ∈ Y0. (7.4)

Then

mY (F ) ≤ 8D.

Proof. For every k ≥ 2, let Fk : Y0 → [2,∞) be given by

Fk(y) := min{F (y), k}.

As Fk is bounded, it belongs to L1(Y0, mY ). Since the action of A is mixing for mY by the work
of Babillot [Bab02], we have mY is at-ergodic for each t %= 0. Hence, by the Birkhoff ergodic
theorem, for mY a.e. y ∈ Y0, we have

lim
N→∞

1
N

N∑

n=1

Fk(yant) =
∫

Fk dmY .

Therefore, using Egorov’s theorem, for every ε > 0, there exist Nε > 1 and a measurable subset
Y ′

ε ⊂ Y0 with mY (Y ′
ε ) > 1 − ε2 such that for every y ∈ Y ′

ε and all N > Nε, we have

1
N

N∑

n=1

Fk(yant) >
1
2

∫
Fk dmY .

Now by the maximal ergodic theorem [Lin06, Appendix A.1], if ε is small enough, there exists a
measurable subset Yε ⊂ Y ′

ε with m(Yε) > 1 − ε so that for all y ∈ Yε, we have

µy{r ∈ [−1, 1] : yur ∈ Y ′
ε} > 1

2µy([−1, 1]).

Altogether, if y ∈ Yε and N > Nε, we have

1
N

N∑

n=1

AntFk(y) =
1

µy([−1, 1])

∫ 1

−1

1
N

N∑

n=1

Fk(yurant) dµy(r) >
1
4

∫
Fk dmY .

Fix y ∈ Yε. By the hypothesis (7.4), there exists n0 = n0(y) such that for all n ≥ n0, we have

AntFk(y) ≤ AntF (y) ≤ 2D.

Therefore, we deduce that for all sufficiently large N & 1,

1
4

∫
Fk dmY ≤ 1

N

( n0∑

n=1

AntFk(y) +
N∑

n=n0+1

AntFk(y)
)

≤ kn0

N
+

2D(N − n0)
N

.

By sending N → ∞, we get that for all k > 2,
∫

Fk dmY ≤ 8D.

Since {Fk : k = 3, 4, ..} is an increasing sequence of positive functions converging to F point-
wise, the monotone convergence theorem implies

∫
F dmY = lim

k→∞

∫
Fk dmY ≤ 8D

as we claimed. !
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We remark that in [EMM98], the Markov operator At was defined using the integral over
the translates SO(2)at, whereas we use the integral over the translates U[−ρ,ρ]at of a horocyclic
piece. The proof of the following proposition, which is an analogue of [EMM98, § 5.3], is the main
reason for our digression from their definition, as the handling of the PS-measure on U is more
manageable than that of the PS-measure on SO(2) in performing change of variables.

Proposition 7.5. Let F : Y0 → [2,∞) be a locally bounded Borel function satisfying the
following properties.

(a) There exists σ ≥ 2 such that for all h ∈ BH(2) and y ∈ Y0,

σ−1F (y) ≤ F (yh) ≤ σF (y).

(b) There exist t ≥ 2 and D0 > 0 such that for all y ∈ Y0 and 1 ≤ ρ ≤ 2,

At,ρF (y) ≤ 1
8σpδY

Y

· F (y) + D0,

where pY is as in (4.6).

Then

mY (F ) ≤ 64D0p
δY
Y .

In view of Lemma 7.3, Proposition 7.5 is an immediate consequence of the following.

Proposition 7.6. Let F be as in Proposition 7.5. Then for all y ∈ Y0 and n ≥ 1, we have

AntF (y) ≤ 1
2n

F (y) + 8D0p
δY
Y . (7.7)

Proof. The main step of the proof is the following estimate.

Claim. For any 1 ≤ ρ ≤ 3
2 , y ∈ Y0 and n ∈ N, we have

A(n+1)t,ρF (y) ≤ 1
2Ant,ρ+e−ntF (y) + D̂ (7.8)

where D̂ := 4D0p
δY
Y ; recall that e−nt ≤ 1/2.

Let us first assume this claim and prove the proposition. We observe:

•
∑

j≥1 e−jt ≤ 1/2 (as t ≥ 2);

• (8σpδY
Y )−1 ≤ 1/2; and

• D0 ≤ D̂.

Using the assumption (b) of Proposition 7.5 with ρn = 1 +
∑n−1

j=1 e−jt (n ≥ 2), we deduce that
for any n ≥ 2,

AntF (y) ≤ 1
2n−1

At,ρnF (y) + D̂

(
1 +

1
2

+ · · · + 1
2n−2

)

≤ 1
2n−1

(
(8σpδY

Y )−1F (y) + D0
)

+ D̂

(
1 +

1
2

+ · · · + 1
2n−2

)

≤ 1
2n

F (y) + 2D̂ (7.9)

which establishes the proposition.
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We now prove the claim (7.8). For y ∈ Y0 and ρ > 0, set

by(ρ) := µy([−ρ, ρ]) and by = by(1).

To ease the notation, we prove (7.8) with ρ = 1; the proof in general is similar. By assumption
(a) and (b) of Proposition 7.5, we have

AtF (y) ≤ c0F (y) + D0 ≤
(

c0σ

by

∫ 1

−1
F (yur) dµy(r)

)
+ D0 (7.10)

where c0 = (8σpδY
Y )−1.

Set ρn := e−nt. Let {[rj − ρn, rj + ρn] : j ∈ J} be a covering of

[−1, 1] ∩ supp(µy)

with rj ∈ [−1, 1] ∩ supp(µy) and with multiplicity bounded by 2. For each j ∈ J , let zj := yurj .
Then ∑

j

bzj (ρn) =
∑

j

µy([rj − ρn, rj + ρn]) ≤ 2by(2). (7.11)

Moreover, we get

A(n+1)tF (y) =
1
by

∫ 1

−1
F (yura(n+1)t) dµy(r)

≤ 1
by

∑

j

∫ ρn

−ρn

F (zjura(n+1)t) dµzj (r)

=
1
by

∑

j

∫ ρn

−ρn

F (zjanturentat) dµzj (r). (7.12)

We now make the change of variables s = rent. In view of (7.12), we have

A(n+1)tF (y) ≤ 1
by

∑

j

bzj (ρn)
bzjant

∫ 1

−1
F (zjantusat) dµzjant(s).

Applying (7.10) with the base point zjant, we get from the above that

A(n+1)tF (y) ≤ 1
by

∑

j

bzj (ρn)c0σ

bzjant

∫ 1

−1
F (zjantus) dµzjant(s)

+
1
by

∑

j

bzj (ρn)D0. (7.13)

By (7.11), we have (1/by)
∑

j bzj (ρn)D0 ≤ D̂.

Therefore, reversing the change of variable, i.e. now letting r = e−nts, we get from (7.13) the
following:

A(n+1)tF (y) ≤ 1
by

∑

j

c0σ

∫ ρn

−ρn

F (zjurant) dµzj (r) + D̂

≤ 2c0σ

by

∫ 1+ρn

−(1+ρn)
F (yurant) dµy(r) + D̂

=
2c0σby(1 + ρn)

by
Ant,1+ρnF (y) + D̂.
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Since

sup
y∈Y0

2c0σby(2)
by

= (4pδY
Y )−1 sup

y∈Y0

by(2)
by

≤ 1
2
,

we get
A(n+1)tF (y) ≤ 1

2Ant,1+ρnF (y) + D̂.

The proof is complete. !

8. Return lemma and number of nearby sheets

We fix closed non-elementary H-orbits Y and Z in X. Since Z is closed, a fixed ball around
y ∈ Y0 intersects only finitely many sheets of Z (see Figure 2). The aim of this section is to
show that the number of sheets of Z in B(y, inj(y)) is controlled by the tight area of SZ with a
multiplicative constant depending on pY and δY .

The main ingredient is a return lemma which says that for any y ∈ Y0, there exists some
point in {yur ∈ Y0 : r ∈ [−1, 1]} whose minimum return time to a fixed compact subset under
the geodesic flow is comparable to log(ω(y)) (see Lemma 8.4).

Return lemma
We use the notation of § 6.

Recall that Lie(G) = isl2(R) ⊕ sl2(R). We define a norm ‖ · ‖ on Lie(G) using an inner prod-
uct with respect to which sl2(R) and isl2(R) are orthogonal to each other. Given a vector
w ∈ Lie(G), we write

w = iIm(w) + Re(w) ∈ isl2(R) ⊕ sl2(R).

Since the exponential map Lie(G) → G defines a local diffeomorphism, there exists an absolute
constant c1 ≥ 2 satisfying the following two properties.

(1) For all x ∈ X, and all w = iIm(w) + Re(w) ∈ Lie(G) with ‖w‖ ≤ max(1, εX),

c−1
1 ‖w‖ ≤ d(x, x exp(iIm(w)) exp(Re(w))) ≤ c1‖w‖. (8.1)

(2) If d(x, x′) ≤ εX/c1, then x′ = x exp(iIm(w)) exp(Re(w)) for some w ∈ Lie(G).

We choose an absolute constant dX ≥ 24 so that

XεX ⊂ {x ∈ X0 : ω(x) ≤ dX}.

Let D1 := D1(Y ) be given by

D1 = c1α

(
6b1

κη0
+ dX

)
(8.2)

where κ is defined by b̂0p
δY
Y κδY /2 = 1/2, 0 < η0 < 1 is as in (6.6), α ≥ 1 is as in (6.8), and c1 is

as in (8.1). We note that by increasing b̂0 if necessary, we may and will assume that κ ∈ (0, 1).
Moreover, we put η0 = 1

2 when Y is convex cocompact.
Define

KY = {y ∈ Y0 : ω(y) ≤ D1/(c1α)}. (8.3)

Note that XεX ∩ Y0 ⊂ KY .
The choices of the above parameters are motivated by our applications in the following

lemmas. Indeed the choice of κ is used in (8.6). The multiplicative parameter c1α, which features
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in the definitions of D1 and KY , is tailored so that we may utilize Lemma 8.10 in the proof of
Lemma 8.13.

Lemma 8.4 (Return lemma). For every y ∈ Y0, there exists some |r| ≤ 1 so that yura−t ∈ KY

where t = log(η0ω(y)/6).

Proof. Let y ∈ Y0 −KY . By the definition of ω, there exist 1 ≤ i ≤ . and g ∈ h̃i so that y = [g]
and

ω(y) = ωi(y),

see § 6 for the notation. Set v := vig. Then

‖v‖−1 = ωi(y) = ω(y).

Let us write v = w + se3 where w ∈ V and s ∈ R. Recall from Lemma 5.12 that there exists
b1 > 1 so that

‖w‖ ≥ b−1
1 ‖v‖. (8.5)

Let κ > 0 be as used in (8.2). Then (5.5) implies that

µy

(
D+

(
w

‖w‖ ,κ

))
≤ 1

2
µy([−1, 1]). (8.6)

Therefore, there exists r ∈ supp(µy) ∩
(
[−1, 1] − D+(w/‖w‖,κ)

)
. This means that yur ∈ Y0,

moreover, we have, using (8.5),

‖p+(vur)‖ = ‖p+(wur)‖ > κ‖w‖ ≥ κb−1
1 ‖v‖.

Set t := log(η0ω(y)/6). Then

κb−1
1 ‖v‖ · η0ω(y)

6
= κb−1

1 ‖v‖et ≤ ‖p+(vur)at‖

≤ ‖vurat‖ ≤ ‖vur‖et ≤ 2‖v‖ · η0ω(y)
6

,

where we use ‖vur‖ ≤ 2‖v‖ in the last inequality.
Hence, using the fact that ω(y) = ‖v‖−1,

κb−1
1 η0

6
≤ ‖vurat‖ = ‖vigurat‖ ≤ η0

3
.

This in particular implies that gurat ∈ h̃i. By Lemma 6.5, whenever γ ∈ Γ and 1 ≤ j ≤ . satisfy
that h̃j %= γh̃i, we have

‖vjγgurat‖ ≥ η0;

note that i = j is allowed.
This and the above upper bound thus imply

ω(yurat) = ‖vigurat‖−1.

Therefore,

ω(yurat) ≤
6b1

κη0
≤ D1/(c1α)

proving the claim. !
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Number of nearby sheets
Recalling that sl2(C) = sl2(R) ⊕ isl2(R), we set V = isl2(R) and consider the action of H on
V via the adjoint representation; so v · h = h−1vh for v ∈ V and h ∈ H. We use the relation
g(exp v)h = gh exp(v · h) which is valid for all g ∈ G, v ∈ V, h ∈ H.

If D ≥ α/2 for α as in Proposition 6.7, then D−1ω(y)−1 ≤ 1
2 inj(y).

Definition 8.7. For y ∈ Y0 and D ≥ α/2, we define

IZ(y, D) = {v ∈ V − {0} : ‖v‖ < D−1ω(y)−1, y exp(v) ∈ Z}. (8.8)

Since V is the orthogonal complement to Lie(H), the set IZ(y, D) can be understood as the
number of sheets of Z in the ball around y of radius D−1ω(y)−1.

It turns out that #IZ(y, D) can be controlled in terms of the tight area of SZ , uniformly
over all y ∈ Y0 for an appropriate D > 1.

Notation 8.9. We set

τZ := areat(SZ).

Theorem 3.3 shows that 1 ) τZ < ∞ where the implied constant depends only on M .
We begin with the following lemma.

Lemma 8.10. With c1 ≥ 2 and α ≥ 2 given respectively in (8.1) and (6.7), we have that for all
y ∈ Y0,

#IZ(y, c1α) ) ω(y)3τZ . (8.11)

Proof. Let c1 ≥ 1 and α be the absolute constants given in (8.1) and (6.7) respectively. It follows
that for any y ∈ Y0 and v ∈ IZ(y,α),

d(y, y exp(v)) ≤ c1‖v‖ ≤ c1(c1α)−1 · ω(y)−1 < 1
2 · inj(y). (8.12)

It follows that for each v ∈ IZ(y, c1α), inj(y exp v) ≥ inj(y)/2. Hence the balls
BZ(y exp v, inj(y)/2), v ∈ IZ(y, c1α) are disjoint from each other, and hence

#IZ(y,α) · Vol(BH(e, inj(y)/2)) = Vol
{⋃

BZ(y exp v, inj(y)/2) : v ∈ IZ(y,α)
}

.

On the other hand, if we set ρy := min{1, inj(y)/2}, then

π

({⋃
BZ(y exp v, ρy) : v ∈ IZ(y, c1α)

})
⊂ SZ ∩N (core (M)).

Therefore
#IZ(y, c1α) ≤ Vol(BH(e, ρy))−1 · τZ ) ρ−3

y τZ ) ω(y)3τZ ;

we have used that 2π(cosh r − 1) ≥ r3 for all r > 0 and Proposition 6.7 respectively in the last
two estimates. !

Let D1 be as in (8.2). By the choice of κ, we have D1 ) p2
Y (see the discussion

following (8.2)).

Lemma 8.13 (Number of sheets). For D1 = D1(Y ) ) p2
Y as in (8.2), we have

sup
y∈Y0

#IZ(y, D1) ≤ c0 · p6
Y · τZ

where c0 ≥ 2 is an absolute constant.
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Proof. Let KY be as in (8.3):

KY = {y ∈ Y0 : ω(y) ≤ (c1α)−1D1}.

If y ∈ KY , then, by Lemma 8.10,

#IZ(y, D1) ≤ #IZ(y, c1α) ) D3
1τZ ) p6

Y τZ .

Now suppose that y ∈ Y0 −KY . By Lemma 8.4, there exist |r| < 1 and t = log(η0 · ω(y)/6), where
0 < η0 ≤ 1 is as in (6.6), such that

yurat ∈ KY .

We claim that if v ∈ IZ(y, D1), then v(urat) ∈ IZ(yurat, c1α). Firstly, note that, plugging
t = log(η0 · ω(y)/6) and using 0 < η ≤ 1,

‖v(urat)‖ ≤ 3et‖v‖ =
3η0 ω(y) ‖v‖

6
< ω(y) · ‖v‖.

Hence for v ∈ IZ(y, D1), as ω(y)‖v‖ < D−1
1 ,

‖v(urat)‖ < ω(y) · ‖v‖ ≤ D−1
1 ≤ (c1α)−1ω(yurat)−1.

where we used the fact that (c1α)−1D1 > ω(yurat).
Since y(exp v)urat = (yurat) exp(v(urat)) ∈ Z, this implies that v(urat) ∈ IZ(yurat, c1α).

Therefore the map v 6→ v(urat) is an injective map from IZ(y, D1) into IZ(yurat, c1α).
Consequently,

#IZ(y, D1) ≤ #IZ(yurat, c1α) ) p6
Y · τZ .

This finishes the proof. !

9. Margulis function: construction and estimate

Throughout this section, we fix closed non-elementary H-orbits Y,Z in X and

δY
3

≤ s < δY .

In this section, we define a family of Margulis functions Fs,λ = Fs,λ,Y,Z , λ > 1 and show that
the hypothesis of Proposition 7.5 is satisfied for a certain choice of λ, which we will denote by λs.
As a consequence, we will get an estimate on mY (Fs,λs) in Theorem 9.18.

We set
IZ(y) := {v ∈ V − {0} : ‖v‖ < D−1

1 ω(y)−1, y exp(v) ∈ Z}

for D1 > 1 as given in Lemma 8.13.

Definition 9.1 (Margulis function).

(1) Define fs := fs,Y,Z : Y0 → (0,∞) by

fs(y) :=

{∑
v∈IZ(y) ‖v‖−s if IZ(y) %= ∅,

ω(y)s otherwise.

(2) For λ ≥ 1, define Fs,λ = Fs,λ,Y,Z : Y0 → (0,∞) as follows:

Fs,λ(y) = fs(y) + λ ω(y)s. (9.2)
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Note that for all y ∈ Y0

ω(y)s ≤ fs(y) < ∞. (9.3)

Since Y and Z are closed orbits, both fs and Fs,λ are locally bounded. Moreover, they are
also Borel functions. Indeed, ωs is continuous on Y0, and fs is continuous on the open subset
{y ∈ Y0 : IZ(y) %= ∅} as well as on its complement.

In this section, we specify choices of parameters ts and λs so that the average AtsFs,λs satisfies
the hypothesis of Proposition 7.5 with controlled size of the additive term (Lemma 9.14).

Notation 9.4 (Parameters).

(1) For 0 < c < 1, define t(c, s) > 0 by

b0b1p
δY
Y e−(δY −s)t(c,s)/4

(δY − s)
= c

where b0 and b1 are given in Lemma 5.13.
(2) For 0 < c < 1 and t > 0, define λ(t, c, s) > 0 by

λ(t, c, s) :=
(
2c0D1p

6
Y τZ

)e2ts

c

where c0 is given by (8.13).

As it is evident from the above, the definition of t(c, s) is motivated by the linear algebra
Lemma 5.13. Indeed, for any vector v ∈ e1G and t ≥ t(c, s), we have

sup
1≤ρ≤2

1
µy[−ρ, ρ]

∫ ρ

−ρ

1
‖vurat‖s

dµy(r) ≤ c‖v‖−s. (9.5)

The choice of λ(t, c, s) is to control the additive difference between fs(yurat) and∑
v∈IZ(y) ‖vurat‖−s uniformly over all r ∈ [−1, 1] such that yur ∈ Y0, so that we will get

Atfs(y) ≤ c · fs(y) +
λ(t, c, s)c

2
ω(y)s

(see Lemma 9.11, (9.15) and (9.16)).

Markov operator for the height function
In this subsection, we use notation from § 6.

It will be convenient to introduce the following notation.

Notation 9.6. Let Q ⊂ G be a compact subset.

(1) Let dQ ≥ 1 be the infimum of all d ≥ 1 such that for all g ∈ Q and v ∈ R4,

d−1‖v‖ ≤ ‖vg‖ ≤ d‖v‖. (9.7)

Note that dQ , maxg∈Q ‖g‖, up to an absolute multiplicative constant.
(2) We also define cQ ≥ 1 to be the infimum of all c ≥ 1 such that for any x ∈ X0, g ∈ Q with

xg ∈ X0, and for all 1 ≤ i ≤ .

c−1ωi(x) ≤ ωi(xg) ≤ cωi(x). (9.8)

We note that cQ , maxg∈Q ‖g‖ up to an absolute multiplicative constant.

Lemma 9.9. For any 0 < c ≤ 1/2 and t ≥ t(c, s), there exists D2 , e2t so that for all y ∈ Y0 and
1 ≤ ρ ≤ 2,

At,ρω(y)s ≤ c · ω(y)s + D2.
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Proof. Let t ≥ t(c, s). We compare ω(yurat) and ω(y) for r ∈ [−2, 2]. Setting

Q := {aτur : |r| ≤ 2, |τ | ≤ t},

we have cQ , et.
Let η0 be as in Lemma 6.5. Fix 0 < ηX ≤ min{εX , η0} so that

ηX , εX and η−1
X ≥ sup

y∈XεX∩Y0

ω(y).

We consider two cases.

Case 1: ω(y) ≤ 2cQ/ηX . In this case, for h ∈ Q with yh ∈ Y0,

ω(yh) ≤ 2c2
Q/ηX .

Hence, the claim in this case follows if we choose D2 = 2c2
Q/ηX , e2t.

Case 2: ω(y) > 2cQ/ηX . By the definition of ω, there exists 1 ≤ i ≤ . such that

ωi(y) > 2cQ/ηX , and hence y ∈ hi.

By the definition of cQ, see (9.8), we have

ωi(yh) > 2/ηX , and hence yh ∈ hi

for all h ∈ Q with yh ∈ Y0. Choose g0 ∈ G so that y = [g0]. In view of Lemma 6.5, see in par-
ticular (6.6), and since ηX ≤ η0 there exists γ ∈ Γ such that simultaneously for all h ∈ Q with
yh ∈ Y0,

ω(yh) = ωi(yh) = ‖viγg0h‖−1.

Since vi = e1g
−1
i ∈ e1G (see (6.1)), we may apply Lemma 5.13 (linear algebra lemma II) and

deduce

At,ρω(y)s =
1

µy([−ρ, ρ])

∫ ρ

−ρ

1
‖viγurat‖s

dµy(r)

≤
b0b1p

δY
Y e−(δY −s)t/4

(δY − s)
‖viγ‖−s ≤ c · ω(y)s;

in the last inequality we used the fact that t ≥ t(c, s). The proof is now complete. !

Log-continuity of Fs,λ

The following log-continuity lemma with a control on the multiplicative constant σ is the first
hypothesis in Proposition 7.5.

Lemma 9.10 (Log-continuity lemma). There exists 2 ≤ σ ) p8
Y so that the following holds: for

every λ ≥ τZ , we have

σ−1Fs,λ(y) ≤ Fs,λ(yh) ≤ σFs,λ(y)

for all y ∈ Y0 and all h ∈ BH(2) so that yh ∈ Y0.

Let c0 be as in Lemma 8.13. Recall from Theorem 3.3 that τZ ≥ ε2X , replacing c0 by its
multiple (which we continue to denote by c0) if necessary we assume that c0τZ ≥ 1.

We first obtain the following estimate for f on nearby points.
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Lemma 9.11. Let Q ⊂ H be a compact subset. For any y ∈ Y0 and h ∈ Q such that yh ∈ Y0,
we have

fs(yh) ≤
∑

v∈IZ(y)

‖vh‖−s +
(
c0cQdQD1p

6
Y τZ

)
ω(y)s

where c0 is as above and the sum is understood as 0 when IZ(y) = ∅.
Proof. Let y ∈ Y0 and h ∈ Q with yh ∈ Y0. If IZ(yh) = ∅, then by (9.8), we have

fs(yh) = ω(yh)s ≤ cs
Qω(y)s

proving the claim; recall that c0τZ ≥ 1.
Now suppose that IZ(yh) %= ∅. Setting

ε := (dQD1ω(y))−1,

we write
fs(yh) =

∑

v∈IZ(yh),‖v‖<ε

‖v‖−s +
∑

v∈IZ(yh),‖v‖≥ε

‖v‖−s. (9.12)

Since #IZ(yh) ≤ c0p6
Y τZ by Lemma 8.13, we have

∑

v∈IZ(yh),‖v‖≥ε

‖v‖−s ≤
(
c0p

6
Y τZ

)
ε−s ≤

(
c0dQD1p

6
Y τZ

)
ω(y)s. (9.13)

Thus, if there is no v ∈ IZ(yh) with ‖v‖ ≤ ε, then the lemma follows from (9.12).
If v ∈ IZ(yh) satisfies ‖v‖ < ε, then

‖vh−1‖ ≤ dQε = D−1
1 ω(y)−1;

in particular, vh−1 ∈ IZ(y). Therefore, by setting v′ = vh−1,
∑

v∈IZ(yh),‖v‖<ε

‖v‖−s ≤
∑

v′∈IZ(y)

‖v′h‖−s.

Together with (9.13), this finishes the proof. !
Proof of Lemma 9.10. Since BH(2)−1 = BH(2), it suffices to show the inequality ≤. By
Lemma 9.11, applied with Q = BH(2), c := cBH(2) and d := dBH(2), we have that for all h ∈
BH(1) with yh ∈ Y0, we have

fs(yh) ≤
∑

v∈IZ(y)

‖vh‖−s +
(
c0cdD1p

6
Y τZ

)
ω(y)s

≤ d
∑

v∈IZ(y)

‖v‖−s + c0cdD1p
6
Y τZω(y)s,

where we have used the definition of d.
Recall from Theorem 3.3 that ε2X ≤ τZ ≤ λ and that D1 ) p2

Y .
If IZ(y) = ∅, then

Fs,λ(yh) ) p8
Y τZω(y)s + λω(y)s ) p8

Y λω(y)s

) p8
Y (fs(y) + λω(y)s) ) p8

Y Fs,λ(y).

If IZ(y) %= ∅, then

Fs,λ(yh) ≤ d · fs(y) + c0cdD1p
6
Y τZω(y)s + λω(yh)s

) fs(y) + p8
Y λω(y)s ) p8

Y Fs,λ(y).

This finishes the upper bound. The lower bound can be obtained similarly. !
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Main inequality
We will apply the following lemma to obtain the second hypothesis of Proposition 7.5 for c :=
(8σpδY

Y )−1 < 1/2.

Lemma 9.14 (Main inequality). Let 0 < c ≤ 1/2. For t ≥ t(c/2, s) and λ = λ(t, c, s), we have
the following: for any y ∈ Y0 and 1 ≤ ρ ≤ 2, we have

At,ρFs,λ(y) ≤ c Fs,λ(y) + λD2

where D2 ) e2t is as in Lemma 9.9.

Proof. The following argument is based on comparing the values of fs(yurat) and fs(y) for
r ∈ [−2, 2] such that yurat ∈ Y0.

Let Q := {aτur : |r| ≤ 2, |τ | ≤ t}. Then

cQ,et and dQ,et

where cQ and dQ are as in (9.6). Hence, by Lemma 9.11, we have that for any |r| ≤ 2 such that
yurat ∈ Y0,

fs(yurat) ≤
∑

v∈IZ(y)

‖vurat‖−s + c0D1p
6
Y τZω(y)se2ts (9.15)

where c0 is as in Lemma 9.11.
By averaging (9.15) over [−ρ, ρ] with respect to µy, and applying (9.5), we get

At,ρfs(y) ≤ c · fs(y) + c0D1p
6
Y τZω(y)se2ts

≤ c · fs(y) +
λc

2
ω(y)s. (9.16)

Then by Lemma 9.9 and (9.16), we have

At,ρFs,λ(y) = At,ρfs(y) + At,ρλω(y)s

≤ c · fs(y) +
cλ

2
ω(y)s +

cλ

2
ω(y)s + λD2

= c · Fs,λ(y) + λD2. !
By Theorem 4.8, we have sY , pY . For the sake of simplicity of notation, we put

αY,s :=
(

sY
δY − s

)1/(δY −s)

,
(

pY

δY − s

)1/(δY −s)

. (9.17)

We are now in a position to apply Proposition 7.5 to get the following estimate.

Theorem 9.18 (Margulis function on average). There exists λs > 1 such that

mY (Fs,λs) ) α$
Y,sτZ .

Proof. Let 1 ≤ σ ) p8
Y be given by Lemma 9.10. Let c := (8σpδY

Y )−1 < 1/2, ts := t(c, s) and
λs := λ(ts, c, s) be given by (9.4). Then in view of Lemmas 9.10 and 9.14, Fs,λs satisfies the
conditions of Proposition 7.5 with t = ts and D0 = λsD2, where D2 ) e2ts is given in Lemma 9.9.
Therefore

mY (Fs,λs) ≤ 64λsp
δY
Y D2. (9.19)

Since

e(δY −s)ts =
(8σb0b1p

2δY
Y )4

(δY − s)4
)

(
pY

δY − s

)$

and λs =
(
2c0D1p

6
Y τZ

)e2tss

c
,
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we get
λsp

δY
Y D2 ) p$

Y e4tsτZ ) α$
Y,sτZ .

Combining this with (9.19) finishes the proof. !

10. Quantitative isolation of a closed orbit

In this section, we deduce Theorem 1.5 from Theorem 9.18. Let Y,Z be non-elementary closed
H-orbits in X. We allow the case Y = Z as well. Let δY /3 ≤ s < δY .

Recall the definitions of fs = fs,Y,Z and Fs,λ = Fs,λ,Y,Z from Definition 9.1. Let λs be given
by Theorem 9.18. Using the log-continuity lemma for Fs,λs (Lemma 9.10), we first deduce the
following estimate.

Proposition 10.1. For any 0 < ε < εX and y ∈ Y0 ∩ Xε, we have

fs,Y,Z(y) ≤ Fs,λs(y) )
α$

Y,sτZ

mY (B(y, ε))
.

Proof. Let y ∈ Y0 ∩ Xε. Then inj(y) ≥ ε and hence yBH(ε) = B(y, ε). For all h ∈ BH(εX),
Fs,λs(y) ≤ σFs,λs(yh) for some constant σ ) p6

Y by Lemma 9.10. By applying Theorem 9.18,
we get

Fs,λs(y) ≤
σ

∫
x∈yBH(ε) Fs,λs(x) dmY (x)

mY (B(y, ε))
≤
σ · mY (Fs,λs)
mY (B(y, ε))

)
α$

Y,sτZ

mY (B(y, ε))
. !

Recall from (6.8) that for all x ∈ X0,
1
2α

· inj(x) ≤ ω(x)−1 ≤ α

2
· inj(x). (10.2)

Using the next lemma, we will be able to use the estimate for fs,Y,Z obtained in
Proposition 10.1 to deduce a lower bound for d(y, Z).

Lemma 10.3.

(1) Let y ∈ Y0 and z ∈ Z − BY (y, inj(y)). If d(y, z) ≤ (1/2αc1D1) inj(y), then

d(y, z)−s ≤ c1fs,Y,Z(y)

where c1 ≥ 1 is as in (8.1).
(2) If Y %= Z, then for any y ∈ Y0,

d(y, Z)−s ) p2
Y fs,Y,Z(y).

Proof. As Z is closed and d(y, z) ≤ (1/2αc1D1) inj(y) < 1
2 inj(y), the hypothesis z ∈ Z −

BY (y, inj(y)) and the choice of c1 implies that z is of the form y exp(v) exp(v′) with v ∈
isl2(R) − {0} and v′ ∈ sl2(R).

In particular y exp(v) = z exp(−v′) ∈ Z. Moreover, by (8.1),

‖v‖ ≤ ‖v + v′‖ ≤ c1d(y, z) ≤ D−1
1 inj(y)/(2α) ≤ (D1ω(y))−1.

It follows that v ∈ IZ(y, D1). Therefore

d(y, z)−s ≤ cs
1‖v‖−s ≤ c1‖v‖−s ≤ c1fs(y), (10.4)

proving (1).
We now turn to the proof of (2); suppose thus that Y %= Z. Then there exists z ∈ Z such that

d(y, Z) = d(y, z). In view of (1), it suffices to consider the case when d(y, z) > (1/2αc1D1) inj(y).
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Since s ≤ 1, ω(y)s ≤ fs(y), and D1 ) p2
Y , we get

d(y, z)−s ≤ 2αc1D1 inj(y)−s ≤ 2α2c1D1ω(y)s ) p2
Y fs,Y,Z(y)

where we also used (10.2). The proof is complete. !
Theorem 1.5(1) is a special case of the following theorem.

Theorem 10.5 (Isolation in distance). For any 0 < ε < εX , y ∈ Y0 ∩ Xε, and z ∈ Z, at least
one of the following holds:

(1) z ∈ BY (y, ε) = yBH(e, ε); or

(2) d(y, z) & α−$/s
Y,s mY (B(y, ε))1/sτZ−1/s, where αY,s is as given in (9.17).

Proof. As y ∈ Xε, inj(y) ≥ ε. Suppose that z /∈ BY (y, ε). We first observe that since
mY (B(y, ε))1/s ) ε and p−2

Y & α−$/s
Y,s , we have

ε

2αc1D1
& p−2

Y ε& α−$/s
Y,s mY (B(y, ε))1/s.

Therefore, if d(y, z) ≥ (1/2αc1D1)ε, then (2) holds in view of the fact that τZ ≥ ε2X .
If d(y, z) ≤ (1/2αc1D1)ε ≤ (1/2αc1D1) inj(y), then by Lemma 10.3, d(y, z)−s ≤ c1fs(y).

Hence applying Proposition 10.1, we conclude

d(y, z)−s ≤ c1fs(y) ≤ c1

α$
Y,sτZ

mY (B(y, ε))
which finishes the proof in this case as well. !

The following theorem is Theorem 1.5(2).

Theorem 10.6 (Isolation in measure). Let 0 < ε ≤ εX . Let Y %= Z. We have

mY {y ∈ Y : d(y, Z) ≤ ε} ) α$
Y,sτZε

s.

Proof. Let λs be given by Theorem 9.18. By Lemma 10.3(2),

d(y, Z)−s ≤ cfs,Y.Z(y) ≤ C · Fs,λs(y)

for some 1 < C ) p2
Y .

For 0 < ε < εX , if we set

Ωε := {y ∈ Y0 : Fs,λs(y) > C−1ε−s},

then {y ∈ Y0 : d(y, Z) ≤ ε} ⊂ Ωε. On the other hand, we have

C−1ε−smY (Ωε) ≤
∫

Ωε

Fs,λs dmY ≤ mY (Fs,λs).

Since mY (Fs,λs) ) α$
Y,sτZ by Theorem 9.18, we get that

mY {y ∈ Y0 : d(y, Z) ≤ ε} ≤ mY (Ωε) ) α$
Y,sτZε

s. !
Proof of Proposition 1.17. Let Fs = Fs,λs be as in Theorem 9.18. Then Fs satisfies (1) in the
proposition by Lemma 10.3. It satisfies (3) by Lemma 9.10.

Moreover, in view of Lemmas 9.10 and 9.14, Fs satisfies the conditions of Proposition 7.5.
Hence, by Proposition 7.6, it also satisfies (2) in the proposition. !

We remark that in both Theorems 10.5 and 10.6, the exponents & depend only on G, and
the implied constants are respectively of the form c εNX and c−1 ε−N

X for some c ≤ 1 and N ≥ 1
both depending only on G.
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Number of properly immersed geodesic planes
When Vol(M) < ∞, we record the following corollary of Theorem 10.5. Let N (T ) denote the
number of properly immersed totally geodesic planes P in M of area at most T .

We deduce the following upper bound from Theorem 10.5 using the pigeonhole principle.

Corollary 10.7. Let Vol(M) < ∞. There exists N ≥ 1 (depending only on G) such that for
any 1/2 < s < 1, we have

N (T ) )s Vol(M)ε−N
X T 6/s−1

where the implied constant depends only on s.

Proof. We begin by recalling that αY,s = αs := (1/(1 − s))1/(1−s) for any closed H-orbit Y in X
when Vol(M) < ∞.

We obtain an upper bound for the number of closed H-orbits in X which yields the above
result. The proof is based on applying Theorem 10.5.

If X is compact, let ρ = 0.1εX . If X is not compact, then the quantitative non-divergence of
the action of U on X implies that there exists ρ > 0 so that for all x ∈ X such that xU is not
compact,

1
T
.{t ∈ [0, T ] : xut ∈ X − Xρ} ≤ 0.01

for all sufficiently large T & 1, e.g. see [DM91]. Moreover, ρ can be taken to be , εkX for some
k ≥ 1.

Since (Y,mY ) is U -ergodic by the Moore’s ergodicity theorem for every closed orbit Y = xH,
the Birkhoff ergodic theorem says that for mY a.e. y ∈ Y ,

lim
T→∞

1
T
.{t ∈ [0, T ] : yut ∈ X − Xρ} = mY (X − Xρ)

where . denotes the Lebesgue measure on R; therefore

mY (X − Xρ) < 0.01. (10.8)

For every S > 0 put

Y(S) := {xH : xH is closed and S/2 < Vol(xH) ≤ S}.

In view of the above choice of ρ, we have Vol(xH) ≥ ρ3 & 1 for every closed orbit xH. Let
n0 = 83 log2(ρ)9, and for every T > 1, let nT = :log2 T ;. Then we have

{xH : xH is closed and vol(xH) ≤ T} ⊂
nT⋃

n0

Y(2k).

Let η , ρ be so that the map g 6→ xg is injective for all x ∈ Xρ and all

g ∈ Box(η) := exp(Bisl2(R)(0, η)) exp(Bsl2(R)(0, η)).

Fix some 1/2 < s < 1 and some z ∈ X. We claim that

#
(
connected components of Y(2k) ∩ z.Box(η)

)
) α12/s

s 26k/s (10.9)

where the implied constant depends on ρ.
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For any connected component C of Y(2k) ∩ z.Box(η), there exists some v ∈ isl2(R) so that

C = z exp(v) exp(Bsl2(R)(0, η)).

Let us write C = Cv. Now in view of Theorem 10.5, for every two connected components Cv %=
Cv′ , we have

‖v − v′‖ &ρ α
−4/s
s 2−2k/s. (10.10)

Because dim(r) = 3, the cardinality of an α−4/s
s 2−2k/s-separated set in Bisl2(R)(0, η) is )

α12/s
s 26k/s, where the implied constant depends only on the choice of norm. The claim in (10.9)

thus follows from (10.10).
Let

{
zj .Box(η) : 1 ≤ j ≤ R

}
be a covering of Xρ with sets of the form z.Box(η); we may find

such a covering with R = O(Vol(X)η−6) the implied constant is absolute (see also the definition
of c1 in (8.1)). Then we compute

N (2k) ≤ 2−k+1
∑

Y(2k)

vol(xH) by the definition of Y(2k)

) 2−k
M∑

j=1

∑

Cv⊂zj .Box(η)

vol(Cv) by (10.8)

) α12/s
s

R∑

j=1

26k/s−k by (10.9)

) Vol(X)α12/s
s 26k/s−k since R = O(Vol(X));

in the above we also used the fact that vol(Cv) )ρ 1.
Since ρ , η can be taken , εkX , we conclude that for some absolute constant N1, N2 ≥ 1 and

c = c(s) ≥ 1,

N (T ) ≤ c Vol(X)ρ−N1α12/s
s

nT∑

k=n0

26k/s−k ≤ c Vol(X)ε−N2
X T 6/s−1

which implies the claim (note here that Vol(X) = Vol(M), since Γ is torsion-free.) !
Remark 10.11. Let NM (T ) be the number of properly immersed geodesic planes of area at most
T in a general geometrically finite manifold M = Γ\H3. If Y is a closed H-orbit Y of finite
area in Γ\G, then pY , sY = 2, τY = Vol(Y ) and the non-divergence of the U -action as given in
[BZ17, Theorem 1.1] implies that (10.8) also holds in this setting.

In view of these, the proof of Corollary 10.7 works in the same way for the following: there
exists N ≥ 1 (depending only on G) such that for any 1/2 < s < 1, we have

NM (T ) )s Vol(unit-nbd of core M) ε−N
M T 6/s−1

where the implied constant depends only on s.
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Appendix A. Proof of Theorem 1.1 in the compact case

In this section we present the proof of Theorem 1.1 when X is compact. As was mentioned in
the introduction, this case is due to G. Margulis.

Let Y %= Z be two closed H-orbits in X = Γ\G. Recall εX = minx∈X inj(x) where inj(x) is
the injectivity radius measured in Γ\H3.

Fix 0 < s < 1, and define fs : Y → [2,∞) as follows: for any y ∈ Y ,

fs(y) =

{∑
v∈IZ(y) ‖v‖−s if IZ(y) %= ∅,

ε−s
X otherwise,

where
IZ(y) = {v ∈ isl2(R) : 0 < ‖v‖ < εX , y exp(v) ∈ Z}.

Define Fs = Fs,Y,Z : Y → (0,∞) as follows:

Fs(y) = fs(y) + Vol(Z)ε−s
X .

Note that in the case at hand, Fs is a bounded Borel function on Y . We also note that in the
case at hand ω, as defined in (6.3), is a bounded function on X (recall that ω = 2 in this case),
and hence Fs here and Fs,λs that we considered in the proof of Theorem 1.5 are essentially the
same functions in this case.

We use the following special case of Lemma 5.6: for any v ∈ isl2(R) with ‖v‖ = 1, 1/3 ≤ s < 1
and t > 0, we have

∫ 1

0

dr

‖vurat‖s
≤ b0

e(s−1)t/4

1 − s
(A.1)

where vh = Ad(h)(v) for all h ∈ H.

Remark A.2. It is worth noting that the symmetric interval [−1, 1] was used in Lemma 5.6. We
remark that this is necessary in the infinite volume setting; indeed the half interval [0, 1] may
even be a null set for µy for some y; see (4.1) for the notation.

For a locally bounded function ψ on Y and t > 0, define

Atψ(y) =
∫ 1

0
ψ(yurat) dr for y ∈ Y . (A.3)

Proposition A.4. Let 1/3 ≤ s < 1. There exists t = t(s) > 0 such that for all y ∈ Y ,

AtFs(y) ≤ 1
2Fs(y) + c ε−4

X α4
s Vol(Z) (A.5)

where αs = (1 − s)−1/(1−s) and c ≥ 1 is an absolute constant.

Proof. It suffices to show that Atfs(y) ≤ 1
2fs(y) + α4

sVol(Z).
Let b0 be as in (A.1), and let t = t(s) be given by the equation

b0
e(s−1)t/4

1 − s
= 1/2.

We compare fs(yurat) and fs(y) for r ∈ [0, 1]. Let C1 , et be large enough so that ‖vh‖ ≤
C1‖v‖ for all v ∈ isl2(R) and all

h ∈ {aτur : |r| < 1, |τ | ≤ t}.

Let v ∈ IZ(yurat) be so that ‖v‖ < εX/C1. Then ‖va−tu−r‖ ≤ εX ; in particular, va−tu−r ∈
IZ(y).

526

4  :��  19��9�3 ������� �������	.����	��
��!0���421�98��82�0#�
/70��132��8�"2��� #���2��

https://doi.org/10.1112/S0010437X22007928


Isolations of geodesic planes in the frame bundle of a hyperbolic 3-manifold

In the following, if IZ(·) = ∅, the sum is interpreted as to equal to ε−s
X . In view of the above

observation and the definition of fs, we have

fs(yurat) =
∑

v∈IZ(yurat)

‖v‖−s

=
∑

v∈IZ(yurat),‖v‖<εX/C1

‖v‖−s +
∑

v∈IZ(yurat),‖v‖≥εX/C1

‖v‖−s

≤
∑

v∈IZ(y)

‖vurat‖−s +
∑

v∈IZ(yurat),‖v‖≥εX/C1

‖v‖−s. (A.6)

Moreover, note that #IZ(y) ) ε−3
X Vol(Z) (see the proof of Lemma 8.13). Hence,

∑

‖v‖≥εX/C1

‖v‖−s ) Cs
1ε

−4
X Vol(Z) ) ε−4

X estVol(Z). (A.7)

We now average (A.6) over [0, 1]. Then using (A.7) and (A.1) we get

Atfs(y) ≤ 1
2fs(y) + O(estVol(Z)).

As (1 − s)−1/(1−s) , est/4, this proves (A.5). !
Let mY be the H-invariant probability measure on Y .

Corollary A.8. We have

mY (Fs) ≤ c ε−4
X α4

s Vol(Z)

where c ≥ 1 is an absolute constant.

Proof. Since mY is an H-invariant probability measure, mY (Atfs) = mY (fs). Hence the claim
follows by integrating (A.5) with respect to mY . !
Proof of Theorem 1.1. There exists σ > 0 such that for any h ∈ BH(εX) and y ∈ Y , Fs(y) ≤
σFs(yh) (cf. Lemma 9.10); BH(εX) denotes the εX -ball centered at the identity in H.

Hence, using Corollary A.8, we deduce

fs(y) ≤ Fs(y) ≤
σ

∫
BH(εX) Fs(yh) dmY (yh)

mY (B(y, εX))

≤ σ · mY (Fs)
mY (B(y, εX))

) α4
sε

−7
X Vol(Y ) Vol(Z)

with an absolute implied constant. Since d(y, Z)−s ≤ c1fs(y) for an absolute constant c1 ≥ 1
(see (10.4)), we have

d(y, Z) & α−4/s
s ε7/s

X Vol(Z)−1/s Vol(Y )−1/s. (A.9)

This shows Theorem 1.1(1). By Corollary A.8 and the Chebyshev inequality, we get

mY {y ∈ Y : d(y, Z) ≤ ε} ≤ mY {y ∈ Y : Fs(y) ≥ c−1
1 ε−s} ≤ c1mY (Fs)εs.

Therefore
mY {y ∈ Y : d(y, Z) ≤ ε} ≤ c1cε

sε−4
X α4

s Vol(Z), (A.10)

which implies Theorem 1.1(2). !
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