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Uniqueness of Conformal Measures and Local Mixing
for Anosov Groups

SaM EpwARDS, MINJU LEE, & HEE OH

Dedicated to Gopal Prasad on the occasion of his 75th birthday with respect.

ABSTRACT. In the late seventies, Sullivan showed that, for a convex
cocompact subgroup I" of SO°(n, 1) with critical exponent § > 0, any
I'-conformal measure on dH" of dimension § is necessarily supported
on the limit set A and that the conformal measure of dimension § ex-
ists uniquely. We prove an analogue of this theorem for any Zariski
dense Anosov subgroup I' of a connected semisimple real algebraic
group G of rank at most 3. We also obtain the local mixing for gener-
alized BMS measures on I'\ G including Haar measures.

1. Introduction

Let (X, d) be a Riemannian symmetric space of rank one and d X be the geomet-
ric boundary of X. Let G = Isom™ X denote the group of orientation preserving
isometries and I' < G a nonelementary discrete subgroup. Fixing o € X, a Borel
probability measure v on dX is called a I'-conformal measure of dimension s > 0
if, forally e"and £ € 0X,

dyv
dv

where B¢ (x, y) =lim,¢ d(x, z) — d(y, z) denotes the Busemann function.

Let § > 0 denote the critical exponent of T, that is, the abscissa of the con-
vergence of the Poincare series } .1 e~34(ro.9) The well-known construction
of Patterson and Sullivan [8; 10] provides a I"-conformal measure of dimension §
supported on the limit set A, called the Patterson—Sullivan (PS) measure. A dis-
crete subgroup I' < G is called convex cocompact if I' acts cocompactly on some
nonempty convex subset of X.

€)= e (Be (0,y0)) ,

THEOREM 1.1 (Sullivan [10]). If T is convex cocompact, then any I"-conformal
measure on 0 X of dimension § is necessarily supported on A. Moreover, the PS-
measure is the unique I"-conformal measure of dimension §.
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In this paper, we extend this result to Anosov subgroups, which may be regarded
as higher rank analogues of convex cocompact subgroups of rank one groups. Let
G be a connected semisimple real algebraic group and P be a minimal parabolic
subgroup of G. Let F := G/P be the Furstenberg boundary and F® be the
unique open G-orbit in F x F under the diagonal action of G. In the whole
paper, we let I be a Zariski dense Anosov subgroup of G with respect to P.
This means that there exists a representation ¢ : ¥ — G of a Gromov hyperbolic
group X with I' = &(¥), which induces a continuous equivariant map ¢ from the
Gromov boundary 9 ¥ to F such that (£ (x), £(y)) € F@ forall x #y € 3%. This
definition is due to Guichard and Wienhard [5], generalizing that of Labourie [6].

Let A < P be a maximal real split torus of G and a := Lie(A). Given a linear
form v € a*, a Borel probability measure v on F is called a (T", /)-conformal
measure if, forany y € I" and £ € F,

dy.v
dv

where S8 denotes the a-valued Busemann function (see (2.1) for the definition).
Let A C F denote the limit set of I", which is the unique I"-minimal subset (see
[1; 7D. A (T, ¥r)-conformal measure supported on A will be called a (T, )-PS
measure. Finally, a I'-PS measure means a (T", ¥/)-PS measure for some ¥ € a*.

Fix a positive Weyl chamber a™ C a and let L1 C at denote the limit cone
of I'. Benoist [1] showed that Lr is a convex cone with nonempty interior using
the well-known theorem of Prasad [9] on the existence of an R-regular element
in any Zariski dense subgroup of G. Let ¢ : a — R U {—o0} denote the growth
indicator function of I" as defined in (2.2). Set

Df :={y €a*:y > yr, ¥ () =yYr ) forsome u € Lr Ninta®}.  (1.2)

(%‘):eW(IgE(EJ/)), (11)

Since I' is Anosov, for any ¢ € D%, there exist a unique unit vector u € intLr,
such that ¥ (u) = ¥r(u), and a unique (I', ¥)-PS measure vy,. Moreover, this
gives bijections among

Df~{ueintLr : ||u|| = 1} >~ {I'-PS measures on A}

(see [4; 7]). When G has rank one, D} = {§}. Therefore the following generalizes
Sullivan’s theorem [.1. We denote the real rank of G by rank G, that is, rank G =
dima.

THEOREM 1.2. Let rank G < 3. For any € D}, any (I, ¥)-conformal measure
on F is necessarily supported on A. Moreover, the PS measure vy is the unique
(T, ¥)-conformal measure on F.

Our proof of Theorem |.2 is obtained by combining the rank dichotomy theorem
established by Burger, Landesberg, Lee, and Oh [2] and the local mixing prop-
erty of a generalized Bowen—Margulis—Sullivan measure (Theorem 3.1), which
generalizes our earlier work [4]. Indeed, our proof yields that under the hypoth-
esis of Theorem , any (T, ¥)-conformal measure on F is supported on the
u-directional radial limit set A, (see (4.1)) where ¥ (1) = Y (u).
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We end the by the following:
Open Problem: Is Theorem |.2 true without the hypothesis rank G < 3?

2. Local Mixing of Generalized Bowen—-Margulis—Sullivan Measures

Let G be a connected semisimple real algebraic group and I' < G be a Zariski
dense discrete subgroup. Let P = M AN be a minimal parabolic subgroup of G
with fixed Langlands decomposition so that A is a maximal real split torus, M
is the maximal compact subgroup centralizing A, and N is the unipotent radical
of P.

In [4, Prop. 6.8], we proved that local mixing of a BMS-measure on '\G/M
implies local mixing of the Haar measure on I'\G /M. In this section, we provide
a generalized version of this statement, where we replace the Haar measure with
any generalized BMS-measure and also work on the space I'\ G, rather than on
I'\G/M. We refer to [4] for a more detailed description of a generalized BMS-
measure, while only briefly recalling its definition here.

Let a = Lie(A) and fix a positive Weyl chamber a* < a so that log N consists
of positive root subspaces. We also fix a maximal compact subgroup K < G so
that the Cartan decomposition G = K (expa™)K holds. Denote by u : G — a*
the Cartan projection, that is, for g € G, u(g) € at is the unique element such
that g € K expu(g)K. Denote by Lr C a* the limit cone of I', which is the
asymptotic cone of w(T"), that is, Lr = {lim#;u(y;) € a¥ :t; — 0,y; € T'}. The
Furstenberg boundary 7 = G/ P is isomorphic to K/M as K acts on F transi-
tively with KNP =M.

The a-valued Busemann function 8 : F x G x G — a is defined as follows:
foré e Fand g,h € G,

Be(g,h):=0(g &) —a(h™ ', &), 2.1)

where the Iwasawa cocycle o (g~ !, £) € a is defined by the relation g~ 'k €
Kexp(o(g~',€)N foré =kP, ke K.

The growth indicator function v : a™ — R U {—o0} is defined as a homoge-
neous function, that is, Y (fu) =ty (u) for all # > 0 such that for any unit vector
uecat,

Yr(u) = inf 7c, 2.2)

ueC,open cones CCa™

where 7¢ is the abscissa of convergence of } . cr ,,)ec €™ I+ and the norm
Il - |l on ais the one induced from the Killing form on g.

Denote by wo € K a representative of the unique element of the Weyl group
Nk (A)/M such that Ad,,, a* = —a™. The opposition involution i : a — a is de-
fined by

i(u) = — Ady, ().

Note that i preserves int Lp.
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The Generalized BMS-Measures m., .,
For g € G, we consider the following visual images:
gt =gPeF and g =gwyPeF.
Then the map
gM = (87,87, b= Py (e, 2))

gives a homeomorphism G/M ~ F® x q, called the Hopf parametrization of
G/M.

For a pair of linear forms 1, ¥, € a* and a pair of (I, 1) and (T, ¥») confor-
mal measures vy and v, respectively, define a locally finite Borel measure 7., .,
on G/M as follows: for g = (g¥, g7, b) e F® x q,

d”hw,vz(g) — e‘/fl (ﬁg+(e,g))+1//2(/3g— (e,8)) d\}] (g+) d\)z(g_)db, (23)

where db = d{(b) is the Lebesgue measure on a. By abuse of notation, we also
denote by 71, ., the M-invariant measure on G induced by 1, .,. This is al-
ways left I'-invariant, and we denote by m,, ., the M-invariant measure on I'\G
induced by 7y, , .

The Generalized BMS*-Measures m*

Vi, V2

Similarly, with a different Hopf parametrization
gM > (g1, g7, b =B, (e.8))

(that is, g~ replaced with g% in the subscript for 8), we define the following
measure:

dnjl:l,vz (g) = ewl(ﬂg+(3,g))+‘ﬁ2(ﬁg— (e,8)) dv; (g+) dva(g™)db (2.4)
first on G/M and then the M-invariant measure dm? , on I'\G. We can check

Vi, V2

m,’jl’vz = My, v, -WO- (2.5)

LEmMA 2.1. If Yo = oi, then my, v, =m

k

Vi, ©

Proof. When yr» = 1 oi, we can check that m,, ,,.wog = m,, ,,, which implies

the claim by (2.5). O
PS-Measures on gN*

Let N~ =N and Nt = woN wy ' Toa given (T, )-conformal measure v and
g € G, we define the following associated measures on gN*: for n € N* and
heN—,

dpgn+y(n) =" Pt @8 du((gn))  and
dgn- ., (h) = Pian=E) gy ((gn)7).
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Note that these are left I'-invariant; forany y € I' and g € G, (tygn+, = gyt v
For a given Borel subset X C I'\ G, define the measure wyn+ ,[x on N7T by
dpgn+ vlx(m) =1x([gln) dpugn+ v (n);

note that here the notation |x is purely symbolic, because pgy+ ,|x is not a mea-
sure on X. Set P¥:= MANE.Fore > 0and+= N, Nt, A, M, let », denote the
g-neighborhood of e in ». We then set P = NF A, M,.

We recall the following lemmas from [4].

LEMmA 2.2 ([4, Lem. 5.6, Cor. 5.7]). We have:

(1) For any fixed p € C.(N*) and g € G, the map N¥ — R given by n
HenN+,v(0) is continuous.

(2) Given ¢ > 0 and g € G, there exist R > 1 and a nonnegative pg . € C-(NR)
such that penn v(pg.e) > 0 foralln € N

LeEMMA 2.3 ([4, Lem. 4.2]). Forany g € G,a € A,ng,n € N*, we have

dO;  wen+ ) ) =e VD qp e (),

where  : Nt — N7 is given by 0(n) =angna~!.

LEMMA 2.4 ([4, Lem. 4.4 and 4.5]). Fori =1,2, let Y; € a* and v; be a (T, y;)-
conformal measure. Then

(1) Forge G, feC.(gNTP),and nham e NTNAM,
mvl,vz(f)

:/N+ </;VAM f(gnham)e(wlfwzm)(loga) dmdady,gnN,vz(h)) dpgn+ v, ().

(2) ForgeG, feC.(gPN™), and hamn e NAMNT,
iy, (f)

= / (  f(ghamm) dghamn+ v, <n)>e—*”2°i<‘°g“> dmdadgn v, (h).
NAM N

Local Mixing

Let P° denote the identity component of P and )r denote the set of all P°-
minimal subsets of ['\G. Although there exists a unique P-minimal subset of
I'\G given by {[g] € T\G : g* € A}, there may be more than one P°-minimal
subset. Note that #))r <[P : P°] =[M : M°]. Set 2 = {[g] e '\G : gjE e A}
and write

Agr={yrnQcrh\G:Ye9r}.

Note that for each Y € Yr we have ¥ = (Y N Q)N, and the collection {(Y N
Q)N*' :Y e Qr} is in one-to-one correspondence with the set of (M°AN™)-
minimal subsets of I'\G.
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In the rest of the section, we fix a unit vector # € L Nintat, and set
a; =exp(tu) forteR.
We also fix
Yi€a* and Yy =1 oica’.

Foreachi =1, 2, we fix a (', ¥;)-PS measure v; on F. We will assume that the
associated BMS-measure m = m,, ,, satisfies the local mixing property for the
{a; : t € R}-action in the following sense.

Hypothesis on m = m,, ,,: There exists a proper continuous function ¥ :
(0, 0c0) — (0, 00) such that, for all fi, f>» € C.(I'\G),

Jim W) o fitxa) fr(x)ydmx) = Y miz(fmlz(f2). (2.6)

Ze3r

The main goal in this section is to obtain the following local mixing property
for a generalized BMS-measure m;, 5, from that of m (note that A; and A, are
not assumed to be supported on A).

THEOREM 2.5. Fori = 1,2, let ¢; € a* and \; be a (T, ¢;)-conformal measure on
F. Then, for all f1, fr € C.(I'\G), we have

lim W (r)e@ —¥Duw / fi(xar) f2(x) dm3, 5, (x)
G

t—>—+00

= Y maulzn (fOm}, 3, zn (f2).

Ze3r

REMARK 2.6. If ¢ = ¢ o1, then we may replace mj{l,kz with my, », in Theo-
rem by Lemma 2.1. For general ¢1, ¢, using identity (2.5), we get: for all
J1, f2 € Cc(I'\G), we have

t—+00

lim W (r)e1 ¥ / fi(xa_;) fr(x)dmy, 5, (x)
r\G

= Z my s zn+ (fOmog v 1 zn (f2).

Ze3r

In order to prove Theorem 2.5, we first deduce equidistribution of translates of
Hgn+ v, from the local mixing property of m (Proposition 2.7), and then convert
this into equidistribution of translates of w,y+ ;, (Proposition 2.8).

PROPOSITION 2.7. Forany x =[g] € T\G, f € C.(T'\G), and ¢ € C.(NT),
lim ‘I’(I)/ Sfxna)p(n)dugn+ o, (n)
t——+00 Nt

= Y mlz(Fttgn+ v |zn (@) @.7)

Ze3r
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Proof. Let x = [g] and gy > 0 be such that ¢ € CC(N;g). For simplicity of no-
tation, we write du,, = d o+, throughout the proof. By Lemma 2.2, we can
choose R > 0 and a nonnegative pg ¢, € C.(Ng) such that

HenN,v,(Pg,e0) >0 forallne N:(;.

Given any ¢ > 0, choose a nonnegative function g, € C.(A;M,) satisfying
fAM ge(am)dadm = 1. Then

/N+ f(xnag)g(n)djny, (n)

1
=f f(xna,)¢(n)<4
N+ ﬂgnN,vz(pg,so)

Xf pg,so(h)qg(am)dadmdugnzv,uz(h)> d iy, (n)
NA

=/ < f(xnay)
Nt \JNa

@ (n)pg.eo(h)ge (am)
MgnN,v,y (Pg,eo)
We now define CT>8 € CC(gNjONRAgMg) C C.(G) and &, € C.(I'\G) by

() pg,s (h)qe (am)
C‘Iv)g(g()) = {O ngnN,\Q(Pg,SO)

dadmdpgy,, (h))duv. (n). 2.8)

if go = gnham,
otherwise,
and ®.([go]) := ZyeF ée(ygo). Note that the continuity of CTDS follows from

Lemma 2.2. We now assume without loss of generality that f > 0 and define, for
all ¢ > 0, functions fgi as follows: for all z e I'\G,

fF@) = sup f(zb) and [ (z):= inf f(zb).
beNF P, beN; P,

Since u € inta™, for every ¢ > 0, there exists fo(R, €) > 0 such that
aleRa[ C N, forallt >1y(R,¢).
Then, since supp(®;) C gNF NRA: M, we have
f(xna,)ig (gnham) < f;g (xnhama,)®, (gnham) 2.9)

for all nham € NTNAM and t > to(R, €). We now use f3+8 to give an upper
bound on the limit we are interested in; f5, is used in an analogous way to provide
a lower bound. Entering the definition of ®, and inequality (2.9) into (2.8) gives

lim sup W (r) - f(xna)g(n)dwy, (n)

t——+00

<limsup ¥ (¢) / . / f; (xnhama,)®, (gnham)dmdadgnn, v, (h)
N+ JINAM

t——+00

dﬂvl (n)
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<limsup \D(t)egl‘wl_‘pzc’i“/ / f3t(xnhama,)&>g(gnham)
N+ JNAM

t—+00

x W17V g da d g v, () dpay, (n)

=limsup\IJ(t)e£W1_¢'2°i”/ fiE(Tgolan) P4 (g0) d(go)
G

t—>—+00

= limsup W (¢r)e? V1= ¥2ell f . f5 (Lgolan) @ ([go]) dm([go)),
r

t—>—+00

where ||-|| is the operator norm on a* and Lemma was used in the second to
last line of the above calculation. By the standing assumption (2.6), we have

lim sup W (r) f(xnaz)d)(n) ditg v, (n)

t—+00

ses"wlﬂ”wl” > miz(f5mlz (@)
Ze3r

= I =20ll N " |2 ()M (De),

Ze3r
where Z C G is a [-invariant lift of Z. Using Lemma 2.4, forall 0 < e < 1,
M| 7 (D)
- [ (/;\JAM &)E12(gnham)e(wl_w)i)(loga) dadmdpgnn v, (h)> duy, (n)

< ol [ P07y (81)
- N+ MHgnN,v, (,Og,ao)

X (./NA Pg.e0(Mge(am)dadmdigny v, (h)> dpy, (n)

< eEllvi— 201H o lzn (),

where we have used the facts that Z is invariant under the right translation
of the identity component M° of M, and suppv, = A as well as the identity
1;(gnha) = ]lZN(gn)]lA(gnh+) (we remark that suppv, = A is not necessary
for the upper bound since 15 (gnha) <15, (gn), but needed for the lower bound).
Since ¢ > 0 was arbitrary, taking ¢ — 0 gives

lim sup W (z) f(xnaz)fﬁ(n)d,uul () < > mlz(Hikn | zv(@).

t—400 Ze3r

The lower bound given by replacing f; with f5_ in the above calculations com-
pletes the proof. (]

PROPOSITION 2.8. Forany x =[g] € T\G, f € C.(T'\G) and ¢ € C.(NT),

lim W(r)e®~ '/”)(m)/ fxna)g(n) dugn+ », (n)
+

t—400
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= Z Moy lzn+ () gn+ v 1z (@).

Ze3r

Proof. For gy > 0, set By, = Py, Njo. Given xg € I'\G, let &9(xp) denote the max-
imum number r such that the map G — I'\G given by h > xoh for h € G is
injective on B,. By using a partition of unity if necessary, it suffices to prove that,
for any xp € I'\G and g¢ = €9 (xp), the claims of the proposition hold for any non-
negative f € C(xoBg,), nonnegative ¢ € C (N;(;), and x = [g] € xoBg,. Moreover,
we may assume that f is given as

fagh=)_ f(yg) foralligeq,

yell

for some nonnegative f € C.(8oBs,). For simplicity of notation, we write uy, =
Mgn+.2, - Note that, for x = [g] € [g0]Bx,,

fN | fUghangm du, () =3 fN | frgnangmdp,(n.  (210)

yell

Note that f(ygna,) = 0 unless ygna; € goBg,. Together with the fact that

supp(¢p) C N;g, it follows that the summands in ( ) are nonzero only for
finitely many elements y € ' N gQBgoa_tNg‘;g_l.

Suppose yg N a; N goBe, # ¥. Then yga, € goPe, N, and there are unique

elements p; ,, € Py, and n;, € N such that
Y8ar = 8opPt,yNe,y € gOP80N+~

Let I'; denote the subset I' N go(Psy N 1)a,” ! g~ L. Note that although I'; may pos-
sibly be infinite, only finitely many of the terms in the sums we consider will be
nonzero. This together with Lemma 2.3 gives

/ fglna)e (n)dus, (n)
N+

-y / Fygnand () dus, (n)
N+

yell

=y f fygai(a; 'na))p(n) dus, (n)
N+

vel;

= ¢~ oga) 3 /  Frgamtana) dpgay+ 5, ()
N

yely

= ¢ 1oz - fN  F@opyneym(amar ) dpgan+ s, (1)
yely

= ¢~¢1loza) §° /N T opryme(aing yna; Y ditg,p, v+, ().
yely
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Since supp(f) C 80Bs,, we have

> fN _ F@opeymdtan ynar ) digyp, , v+, (1)

yerl;
-1 -1 -1 7
= > (swp p@ny o @na'y)- / F(8opeyn) digyp, ,n+ 2y ().
VEFT HEN;{) N+
Since u belongs to int L, there exist 7o > 0 and « > 0 such that
a,NrJrafl C Nr“:,w for all » > 0 and ¢ > 19.

Therefore, for all n € N and t > 19, we have

¢an ya; (@na; ) <ot o lang a7, (2.11)
where

¢ (n):= sup ¢p(nb) forallne Nt e>0.
beN;F

We now have the following inequality for ¢ > #;:

ewlaogan/m FUgna)$ () dus, (n)

<Y ¢f wlamn ) /N L FGopeym) divgyp, N+ (). (212)
yel; €0

By Lemma 2.2, we can now choose R > 0 and p € CC(N;{) such that p(n) >0
foralln € N* and KgopN+,v; (p) > 0 for all p € Pg. Define Fe Cc(goPgoN;g)
by

Flg) = :W fN:B ]F(gopv)dligopNtx. (v) if g=gopn € goPey Ny,
0 if g ¢ goPey Ny

We claim that, for all p € Py, and Z € 3r such that gop~ € A,

/ F(gopn) djigy pr+my 1 2(n) = / F(gopn) ditggp+ oy | 2(n)
N+ NF

R

= /N L (FLzye)(@opm) ditggpns 1, (). (213)
€0

Indeed, by the assumption suppv; = A and the fact Q N ZNT = Z, we have the
identity 1z(gopn) d g pn+ v, () = Lzn+(80p) ditg, pn+,v, (1) and hence

/ F(gopn)dugopN+,v1|Z(n)
N+

=/+F(gopn)le(gOpn)d/'LgopN+,v1 (n)
N

:/ p(n)Lzn+(gop)
N

+  HgogpN+,v (o)

( /N | F(gopv)diig,pv+ 1, (v)) ditgypn+u, ()
£0
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p(n) x
= — (f:EZN"')(gOpv)dﬂgopN‘*',kl(v) dﬂggpN‘*’,w(”)
Nt /-’Lg(]pNJr,vl (10) N;E)

=/+(lezm)(gopv)dMgomel(v)-
Ng
Summing up (2.13) for all Z € 3r and using suppv; = A, we get

/ F(gopn) gy .0, (1)
N+

=y / F(gopn) digypn+ v, |2(n)
N+

Ze3r
= Z +(J?TLZNJr)(gOPVl)dMgopN+,;x1(n)-
2631" NgO

Hence we can write

/N . F(gopm) ditgpn+ 5, ()
€0

=f ﬁ(gopn)dugopzv+,ul(n)+/ ft(gopn)dugopzvtm(n)
N+ Ng-

€0
for some / that vanishes on Uze 3. ZN *. Returning to ( ), we now give an
upper bound. We observe:

o1 (logar) fN £ Ugnag () dyis, ()

<Y ¢ wlamn jah) fN | F(goprym)dis, (n)
£0

vely

=Y ) wlan; a7 f (F 4 ) (80pryn) digp, , vty ()
N
yely R

= 3 [ F R aop e ani gy e 0.
vel R

Similarly as before, we have, for all t > 7y and n € N,
O g ya; ) = o (am;ynm) a7
-1, -1
< O rregreer @nyyna; ). (2.14)

Hence ( ) is bounded above by

A

> fN LF A1) Q0Prym b ey oan @i ynar Y diigyp, v+, ()
vel " 'R

> / (F+ ) (opeynsyar ' nan)
N

vel;
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X B seprect M A3 Bgop, N+ 0 (1),
where 0; ,, (n) = n,’yat_lna,. By Lemma 2.3,

d(Ory)y tgop,, Nty () = 10D ay (n).

—1
goPr.ynrya, NT,v|

Since g()p,,ynl,,,a,*1 = y g, it follows that, for all ¢ > ¢y,

e(wl—wo(logat)/m fglnane(n)du;, (n)

<> f F D (8na0@ gy emor (D g+ v, (1)
yely N

S ‘//\\H— (Z(ﬁ + ﬁ)(ygnat)>¢?—R+80)eat (n) dﬂ«w (n)

yell
Define functions F and & on I'\G by

F(lgh:=) F(yg) and h(gh:=) h(yg).

yel yel

Then, for any & > 0 and for all # > o such that (R + gp)e™*" <e¢,
W(r)e@1-vosad / f(glnan)d () dps, (n)
N+

=w¥(@) /N+(F + ) ([glnan)d; (n) dpy, (n).

By Proposition 2.7, letting ¢ — 0 gives
lim sup W (1)@ ¥ oga) / F (g nand ) dyus, ()
t—+00 N+

< D miz(F 4+ | zn ().

Ze3r

Note that m* = m by Lemma 2.1. Now, by Lemma and the fact rﬁ(ﬁ) =0,

we have

mlz(F +h) = @|;(F + h) = m|;(F) = m*|; (F)

= / (/ Flz(goham”) dugohamN+,v1 (n)>
P\JNT
x e~ V20iloga) gy, iy diLgoN v, ()

- | ( / (fﬂzm(gohamn)dugohammm(n))
P\JN+
x e V200D gy dadpign vy (h)

=My |5 n+ (F) =1l zy+ ().
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This gives the desired upper bound. Note that we have used the assumption
supp v, = A in the fourth equality above to apply (2.13). The lower bound can be
obtained similarly, finishing the proof. O

With the help of Proposition 2.7, we are now ready to give the following.

Proof of Theorem 2.5. By the compactness hypothesis on the supports of f;, we
canfindeg > 0andx; e '\G,i =1, ..., £, such that the map G — I'\ G given by
g — x;g is injective on R, = P NEO, and U, 1 Xi Ry /2 contains both supp fi
and supp f>. We use continuous partitions of unity to write f; and f> as fi-

nite sums f] = Zle fii and fo = Zi-:l f2,j with supp f1; C xiRg,/> and
supp f2,; C xjRey 2. Writing p = ham € NAM and using Lemma 2.4,

dmj ,, (hamn) = dppamy+ 2, (We V228V dmdadpy 5, (h).
We have

/F i faodn @
=> /R friCxjpnag) fo,; (e pn) dthamn+ 2, (7)
x e~ V2eilogd) gy g dun s, (h)
=> /N i ( - FriGjpnay) fo.;(cj pn) d tpamn+ 2, (n))

x e~ V22108 D g dadpy 5, (h). (2.15)

Applying Proposition 2.8, it follows:

lim \I,(t)e(wflh)(logaz)/ fl(xat)fZ(x)de,,Az(x)

11— 00
_Z Z My v lzn+(f1, 1)2/ M pN+oy |ZN (f2,i (xjP*))
j Ze3r Moot
% ¢~ V2oilloga) 7., dadpn ,(h)
Z m,. vz|ZN+(f1)Z[ Mx,‘pNﬂvl(fZ,i]lZN(xij)
Ze3r MofoMo

x e V20108 D gy da dpu 5, (h)
= m, u2|2N+(f1)val 20 (f2,ilzN)

Ze3r

= Y munlzns(FOms Lz (),

Ze3r

where the second last equality is valid by Lemma 2.4. This completes the proof.
O
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3. Local Mixing for Anosov Groups

Let I' < G be a Zariski dense Anosov subgroup with respect to P. For any u €
int L1, there exists unique

Ille/fMEDF‘

such that ¥ (u) = Y- (u) [7. Prop. 4.4]. Let vy, denote the unique (I', ¥)-PS mea-
sure [7. Thm. 1.3]. Similarly, vy.; denotes the unique (I", ¥ o 1)-PS-measure.
In this section, we deduce (r := dim a) the following.

THEOREM 3.1 (Local mixing). For i =1,2, let ¢; € a* and Ay, be any (', ¢;)-
conformal measure on F. For any u € int Ly, there exists k,, > 0 such that, for
any f1, f» € C.('\G), we have

lm D72 pe1—vu) () /F\G Si(xexp(tu)) fo(x) dmiww)th (x)

t——+00

=Ku Y Mgy gl vt (FOMS, o 1Z8 (f2).
Z€e3r

Theorem is a consequence of Theorem 2.5, since the measure m = Moy,
satisfies hypothesis (2.6) by the following theorem of Chow and Sarkar.

> Vi 0

THEOREM 3.2 ([3]). Let u € int L. There exists k,, > 0 such that, for any f1, f» €
C.(T'\G), we have

lim ¢=1/2 / filxexp(tw) f2(x) dmo,, v, (X)
t——+00 F\G u u
=k Y Mgy gt Z(FDMugy g 2(F2)-

Ze3r

Let m, denote the K-invariant probability measure on F = G/P. Then m, co-
incides with the (G, 2p)-conformal measure on F where 2p denotes the sum of
positive roots for (g, at). The corresponding BMS measure dx = dmy, m, is
a G-invariant measure on I"'\G. The measure dm]liii =dmp,,v,, Was defined
and called the N M -invariant Burger—-Roblin measure in [4]. Similarly, the N M-
invariant Burger—Roblin measure was defined as dmBR*. In these terminologies,

vy
the following is a special case of Theorem

CoroLLARY 3.3 (Local mixing for the Haar measure). For any u € int Lt and for
any f1, f» € Cc(T'\G), we have

lim = D/2eCp=vw () / fi(xexp(tu)) fo(x) dx
NG

t—>+00
BR BR
=i ) mon lzns (FOmpR* 1z (),
Ze3r

where Kk, is as in Theorem
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In fact, we get the following more elaborate version of the corollary by combining
the proof of [4, Theorem 7.12] and the proof of Corollary

THEOREM 3.4. Let u € int Lr. For any f1, f» € C.(I'\G) and v € ker v,

lim ¢ D/2eQ@p— V) tutviv) / fi(xexp(tu +v/1v)) fo(x) dx
G

—4o0
-1 2 BR BR
=reue™ O mER zns (OmERFzn (f2),
Ze3r

where I :keryr, — R is given by

2 2 2
vl — (v, u)g
2
llell
for some inner product (-, - and some ¢ > 0. Moreover the left-hand sides of the

equalities are uniformly bounded for all (t, v) € (0, 00) x ker ¥, with tu + /tv €
+
a’.

I1(v):=c 3.D

4. Proof of Theorem

Let I' < G be a Zariski dense Anosov subgroup with respect to P.

The u-balanced Measures

Let Q={[g]l e '\G: gdE € A}. Following [2], given u € int L, we say that a
locally finite Borel measure mg on I'\ G is u-balanced if

, i mo(O1 N Oy exp(tu)) dt

lim sup == <00

T—+o0 [ mo(O2 N Oaexp(tu)) dt

for all bounded M -invariant Borel subsets O; C I'\G with QNintO; £ @, i =
1,2.
As an immediate corollary of Theorem 3.1, we get the following.

COROLLARY 4.1. Let ¢ € a*. For any pair (Ay, Ayoi) of (I', @) and (', ¢ o i)-
conformal measures on JF respectively, the corresponding BMS-measure m;,,,
is u-balanced for any u € int L.

Agoi

Proof. Let Oy, O, be M-invariant Borel subsets such that Q Nint O; # @ for each
i =1,2.Let f1, f2 € C.(I'\G) be nonnegative functions such that f; > 1 on O
and f, <1 on O3 and 0 outside O5. Since int O, N Q # ¥, we may choose f> so
that ml’ﬁwu Ao (f2) > 0. For simplicity, we set mg = m;, o hgoi” By Theorem and
using the fact that mg is A-quasi-invariant, we obtain that, for any u € int L,

lim su m0(01 NnO; exp(tu))
o0 Mo(O2 N Oy exp(tue))
<1 J f1(x) f1(x exp(—tu)) dmo(x)
< limsup
t—>+o00 | f2(x) fa(x exp(—tu)) dmo(x)
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— fim ff1(X)f1 (x exp(tu)) dmo(x)
e [ 200 falx exp(tu)) dmo(x)

_ lim sup 10 DR [ f (x) fi (x exp(tu)) dmo(x)
1400 10 TD2e@TVIW [ £ (x) f(x exp(u)) dmo (x)
mxw Vi m(fl)

VV/ »y (fZ)

@oi

This shows that mg is u-balanced. O

Recall Theorem from the

THEOREM 4.2. Let rank G < 3. For any € D}, any (I, ¥)-conformal measure
on F is necessarily supported on A. Moreover, the PS measure vy, is the unique
(T, ¥r)-conformal measure on F.

Proof. Let u € int L denote the unique unit vector such that v (u) = ¥ (u), that
is, ¥ = ¥,. Let Ay be any (I', ¥)-conformal measure on F. We claim that Ay
is supported on A. The main ingredient is the higher rank Hopf-Tsuji—Sullivan
dichotomy established in [2]. The main point is that all seven conditions of The-
orem 1.4 of [2] are equivalent to each other for Anosov groups and u € intLr,
since all the measures considered there are u-balanced by Corollary 4.1. In this
proof, we only need the equivalence of (6) and (7), which we now recall.
Consider the following u-directional conical limit set of I":

= {g+ € A : y; exp(tju) is bounded for some t; - +oo and y; € I'}. (4.1)

Note that A, C A.For R >0, wesetI', r:={y eI :||u(y) —Ru| < R}. Ap-
plying the dichotomy [2, Thm. 1.4] to a u-balanced measure my, v,,;, we deduce
the following.

PrOPOSITION 4.3. The following conditions are equivalent for Ay :

ey )"//(Au) =1;
() 2 er, e VW) = oo for some R > 0.

On the other hand, if rank G < 3, we have
Z eV W) — 5o
yeru.R

for some R > 0 [2, Thm. 6.3]. Therefore, by Proposition 4.3, we have A (A,) =1
and hence Ay is supported on A in this case. This finishes the proof of the first
part of Theorem |.2. The second claim follows from the first one by [7. Thm.
1.3]. O
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