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Abstract. In the late seventies, Sullivan showed that, for a convex
cocompact subgroup ! of SO◦(n,1) with critical exponent δ > 0, any
!-conformal measure on ∂Hn of dimension δ is necessarily supported
on the limit set $ and that the conformal measure of dimension δ ex-
ists uniquely. We prove an analogue of this theorem for any Zariski
dense Anosov subgroup ! of a connected semisimple real algebraic
group G of rank at most 3. We also obtain the local mixing for gener-
alized BMS measures on !\G including Haar measures.

1. Introduction

Let (X,d) be a Riemannian symmetric space of rank one and ∂X be the geomet-
ric boundary of X. Let G = Isom+ X denote the group of orientation preserving
isometries and ! < G a nonelementary discrete subgroup. Fixing o ∈ X, a Borel
probability measure ν on ∂X is called a !-conformal measure of dimension s > 0
if, for all γ ∈ ! and ξ ∈ ∂X,

dγ∗ν
dν

(ξ) = es(βξ (o,γ o)),

where βξ (x, y) = limz→ξ d(x, z) − d(y, z) denotes the Busemann function.
Let δ > 0 denote the critical exponent of !, that is, the abscissa of the con-

vergence of the Poincare series
∑

γ∈! e−sd(γ o,o). The well-known construction
of Patterson and Sullivan [8; 10] provides a !-conformal measure of dimension δ

supported on the limit set $, called the Patterson–Sullivan (PS) measure. A dis-
crete subgroup ! < G is called convex cocompact if ! acts cocompactly on some
nonempty convex subset of X.

Theorem 1.1 (Sullivan [10]). If ! is convex cocompact, then any !-conformal
measure on ∂X of dimension δ is necessarily supported on $. Moreover, the PS-
measure is the unique !-conformal measure of dimension δ.
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In this paper, we extend this result to Anosov subgroups, which may be regarded
as higher rank analogues of convex cocompact subgroups of rank one groups. Let
G be a connected semisimple real algebraic group and P be a minimal parabolic
subgroup of G. Let F := G/P be the Furstenberg boundary and F (2) be the
unique open G-orbit in F × F under the diagonal action of G. In the whole
paper, we let ! be a Zariski dense Anosov subgroup of G with respect to P .
This means that there exists a representation ) : * → G of a Gromov hyperbolic
group * with ! = )(*), which induces a continuous equivariant map ζ from the
Gromov boundary ∂* to F such that (ζ(x), ζ(y)) ∈ F (2) for all x '= y ∈ ∂*. This
definition is due to Guichard and Wienhard [5], generalizing that of Labourie [6].

Let A < P be a maximal real split torus of G and a := Lie(A). Given a linear
form ψ ∈ a∗, a Borel probability measure ν on F is called a (!,ψ)-conformal
measure if, for any γ ∈ ! and ξ ∈ F ,

dγ∗ν
dν

(ξ) = eψ(βξ (e,γ )), (1.1)

where β denotes the a-valued Busemann function (see (2.1) for the definition).
Let $ ⊂ F denote the limit set of !, which is the unique !-minimal subset (see
[1; 7]). A (!,ψ)-conformal measure supported on $ will be called a (!,ψ)-PS
measure. Finally, a !-PS measure means a (!,ψ)-PS measure for some ψ ∈ a∗.

Fix a positive Weyl chamber a+ ⊂ a and let L! ⊂ a+ denote the limit cone
of !. Benoist [1] showed that L! is a convex cone with nonempty interior using
the well-known theorem of Prasad [9] on the existence of an R-regular element
in any Zariski dense subgroup of G. Let ψ! : a → R ∪ {−∞} denote the growth
indicator function of ! as defined in (2.2). Set

D-
! := {ψ ∈ a∗ : ψ ≥ ψ!,ψ(u) = ψ!(u) for some u ∈ L! ∩ inta+}. (1.2)

Since ! is Anosov, for any ψ ∈ D-
! , there exist a unique unit vector u ∈ intL! ,

such that ψ(u) = ψ!(u), and a unique (!,ψ)-PS measure νψ . Moreover, this
gives bijections among

D-
! - {u ∈ intL! : ‖u‖ = 1} - {!-PS measures on $}

(see [4; 7]). When G has rank one, D-
! = {δ}. Therefore the following generalizes

Sullivan’s theorem 1.1. We denote the real rank of G by rankG, that is, rankG =
dima.

Theorem 1.2. Let rankG ≤ 3. For any ψ ∈ D-
! , any (!,ψ)-conformal measure

on F is necessarily supported on $. Moreover, the PS measure νψ is the unique
(!,ψ)-conformal measure on F .

Our proof of Theorem 1.2 is obtained by combining the rank dichotomy theorem
established by Burger, Landesberg, Lee, and Oh [2] and the local mixing prop-
erty of a generalized Bowen–Margulis–Sullivan measure (Theorem 3.1), which
generalizes our earlier work [4]. Indeed, our proof yields that under the hypoth-
esis of Theorem 1.2, any (!,ψ)-conformal measure on F is supported on the
u-directional radial limit set $u (see (4.1)) where ψ(u) = ψ!(u).



Uniqueness of Conformal Measures 245

We end the Introduction by the following:
Open Problem: Is Theorem 1.2 true without the hypothesis rank G ≤ 3?

2. Local Mixing of Generalized Bowen–Margulis–Sullivan Measures

Let G be a connected semisimple real algebraic group and ! < G be a Zariski
dense discrete subgroup. Let P = MAN be a minimal parabolic subgroup of G

with fixed Langlands decomposition so that A is a maximal real split torus, M

is the maximal compact subgroup centralizing A, and N is the unipotent radical
of P .

In [4, Prop. 6.8], we proved that local mixing of a BMS-measure on !\G/M

implies local mixing of the Haar measure on !\G/M . In this section, we provide
a generalized version of this statement, where we replace the Haar measure with
any generalized BMS-measure and also work on the space !\G, rather than on
!\G/M . We refer to [4] for a more detailed description of a generalized BMS-
measure, while only briefly recalling its definition here.

Let a = Lie(A) and fix a positive Weyl chamber a+ < a so that logN consists
of positive root subspaces. We also fix a maximal compact subgroup K < G so
that the Cartan decomposition G = K(expa+)K holds. Denote by µ : G → a+

the Cartan projection, that is, for g ∈ G, µ(g) ∈ a+ is the unique element such
that g ∈ K expµ(g)K . Denote by L! ⊂ a+ the limit cone of !, which is the
asymptotic cone of µ(!), that is, L! = {lim tiµ(γi ) ∈ a+ : ti → 0,γi ∈ !}. The
Furstenberg boundary F = G/P is isomorphic to K/M as K acts on F transi-
tively with K ∩ P = M .

The a-valued Busemann function β : F × G × G → a is defined as follows:
for ξ ∈ F and g,h ∈ G,

βξ (g,h) := σ (g−1, ξ) − σ (h−1, ξ), (2.1)

where the Iwasawa cocycle σ (g−1, ξ) ∈ a is defined by the relation g−1k ∈
K exp(σ (g−1, ξ))N for ξ = kP , k ∈ K .

The growth indicator function ψ! : a+ → R ∪ {−∞} is defined as a homoge-
neous function, that is, ψ!(tu) = tψ!(u) for all t > 0 such that for any unit vector
u ∈ a+,

ψ!(u) := inf
u∈C,open cones C⊂a+

τC, (2.2)

where τC is the abscissa of convergence of
∑

γ∈!,µ(γ )∈C e−t‖µ(γ )‖ and the norm
‖ · ‖ on a is the one induced from the Killing form on g.

Denote by w0 ∈ K a representative of the unique element of the Weyl group
NK(A)/M such that Adw0 a+ = −a+. The opposition involution i : a → a is de-
fined by

i(u) = −Adw0(u).

Note that i preserves intL! .
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The Generalized BMS-Measures mν1,ν2

For g ∈ G, we consider the following visual images:

g+ = gP ∈ F and g− = gw0P ∈ F .

Then the map

gM 0→ (g+, g−, b = βg−(e, g))

gives a homeomorphism G/M - F (2) × a, called the Hopf parametrization of
G/M .

For a pair of linear forms ψ1,ψ2 ∈ a∗ and a pair of (!,ψ1) and (!,ψ2) confor-
mal measures ν1 and ν2 respectively, define a locally finite Borel measure m̃ν1,ν2

on G/M as follows: for g = (g+, g−, b) ∈ F (2) × a,

dm̃ν1,ν2(g) = e
ψ1(βg+ (e,g))+ψ2(βg− (e,g))

dν1(g
+) dν2(g

−) db, (2.3)

where db = d0(b) is the Lebesgue measure on a. By abuse of notation, we also
denote by m̃ν1,ν2 the M-invariant measure on G induced by m̃ν1,ν2 . This is al-
ways left !-invariant, and we denote by mν1,ν2 the M-invariant measure on !\G
induced by m̃ν1,ν2 .

The Generalized BMS∗-Measures m∗
ν1,ν2

Similarly, with a different Hopf parametrization

gM 0→ (g+, g−, b = βg+(e, g))

(that is, g− replaced with g+ in the subscript for β), we define the following
measure:

dm̃∗
ν1,ν2

(g) = e
ψ1(βg+ (e,g))+ψ2(βg− (e,g))

dν1(g
+) dν2(g

−) db (2.4)

first on G/M and then the M-invariant measure dm∗
ν1,ν2

on !\G. We can check

m∗
ν1,ν2

= mν2,ν1 .w0. (2.5)

Lemma 2.1. If ψ2 = ψ1 ◦ i, then mν1,ν2 = m∗
ν1,ν2

.

Proof. When ψ2 = ψ1 ◦ i, we can check that mν2,ν1 .w0 = mν1,ν2 , which implies
the claim by (2.5). !

PS-Measures on gN±

Let N− = N and N+ = w0Nw−1
0 . To a given (!,ψ)-conformal measure ν and

g ∈ G, we define the following associated measures on gN±: for n ∈ N+ and
h ∈ N−,

dµgN+,ν(n) := e
ψ(β(gn)+ (e,gn))

dν((gn)+) and

dµgN−,ν(h) := e
ψ(β(gh)− (e,gh))

dν((gh)−).
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Note that these are left !-invariant; for any γ ∈ ! and g ∈ G, µγgN±,ν = µgN±,ν .
For a given Borel subset X ⊂ !\G, define the measure µgN+,ν |X on N+ by

dµgN+,ν |X(n) = 1X([g]n)dµgN+,ν(n);
note that here the notation |X is purely symbolic, because µgN+,ν |X is not a mea-
sure on X. Set P ± := MAN±. For ε > 0 and - = N,N+,A,M , let -ε denote the
ε-neighborhood of e in -. We then set P ±

ε = N±
ε AεMε .

We recall the following lemmas from [4].

Lemma 2.2 ([4, Lem. 5.6, Cor. 5.7]). We have:

(1) For any fixed ρ ∈ Cc(N
±) and g ∈ G, the map N∓ → R given by n 0→

µgnN±,ν(ρ) is continuous.
(2) Given ε > 0 and g ∈ G, there exist R > 1 and a nonnegative ρg,ε ∈ Cc(NR)

such that µgnN,ν(ρg,ε) > 0 for all n ∈ N+
ε .

Lemma 2.3 ([4, Lem. 4.2]). For any g ∈ G,a ∈ A,n0, n ∈ N+, we have

d(θ−1
∗ µgN+,ν)(n) = e−ψ(loga) dµgan0N+,ν(n),

where θ : N+ → N+ is given by θ(n) = an0na−1.

Lemma 2.4 ([4, Lem. 4.4 and 4.5]). For i = 1,2, let ψi ∈ a∗ and νi be a (!,ψi )-
conformal measure. Then

(1) For g ∈ G, f ∈ Cc(gN+P), and nham ∈ N+NAM ,

m̃ν1,ν2(f )

=
∫

N+

(∫

NAM
f (gnham)e(ψ1−ψ2◦i)(loga) dmda dµgnN,ν2(h)

)
dµgN+,ν1(n).

(2) For g ∈ G, f ∈ Cc(gPN+), and hamn ∈ NAMN+,

m̃∗
ν1,ν2

(f )

=
∫

NAM

(∫

N+
f (ghamn)dµghamN+,ν1(n)

)
e−ψ2◦i(loga) dmda dµgN,ν2(h).

Local Mixing

Let P ◦ denote the identity component of P and Y! denote the set of all P ◦-
minimal subsets of !\G. Although there exists a unique P -minimal subset of
!\G given by {[g] ∈ !\G : g+ ∈ $}, there may be more than one P ◦-minimal
subset. Note that #Y! ≤ [P : P ◦] = [M : M◦]. Set 4 = {[g] ∈ !\G : g± ∈ $}
and write

Z! = {Y ∩ 4 ⊂ !\G : Y ∈ Y!}.
Note that for each Y ∈ Y! we have Y = (Y ∩ 4)N , and the collection {(Y ∩
4)N+ : Y ∈ Y!} is in one-to-one correspondence with the set of (M◦AN+)-
minimal subsets of !\G.
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In the rest of the section, we fix a unit vector u ∈ L! ∩ inta+, and set

at = exp(tu) for t ∈ R.

We also fix

ψ1 ∈ a∗ and ψ2 := ψ1 ◦ i ∈ a∗.

For each i = 1,2, we fix a (!,ψi )-PS measure νi on F . We will assume that the
associated BMS-measure m = mν1,ν2 satisfies the local mixing property for the
{at : t ∈ R}-action in the following sense.

Hypothesis on m = mν1,ν2 : There exists a proper continuous function 5 :
(0,∞) → (0,∞) such that, for all f1, f2 ∈ Cc(!\G),

lim
t→+∞

5(t)

∫

!\G
f1(xat )f2(x) dm(x) =

∑

Z∈Z!

m|Z(f1)m|Z(f2). (2.6)

The main goal in this section is to obtain the following local mixing property
for a generalized BMS-measure mλ1,λ2 from that of m (note that λ1 and λ2 are
not assumed to be supported on $).

Theorem 2.5. For i = 1,2, let ϕi ∈ a∗ and λi be a (!,ϕi )-conformal measure on
F . Then, for all f1, f2 ∈ Cc(!\G), we have

lim
t→+∞

5(t)e(ϕ1−ψ1)(tu)

∫

!\G
f1(xat )f2(x) dm∗

λ1,λ2
(x)

=
∑

Z∈Z!

mλ1,ν2 |ZN+(f1)m
∗
ν1,λ2

|ZN(f2).

Remark 2.6. If ϕ2 = ϕ1 ◦ i, then we may replace m∗
λ1,λ2

with mλ1,λ2 in Theo-
rem 2.5 by Lemma 2.1. For general ϕ1,ϕ2, using identity (2.5), we get: for all
f1, f2 ∈ Cc(!\G), we have

lim
t→+∞

5(t)e(ϕ1−ψ1)(tu)

∫

!\G
f1(xa−t )f2(x) dmλ2,λ1(x)

=
∑

Z∈Z!

m∗
ν2,λ1

|ZN+(f1)mλ2,ν1 |ZN(f2).

In order to prove Theorem 2.5, we first deduce equidistribution of translates of
µgN+,ν1 from the local mixing property of m (Proposition 2.7), and then convert
this into equidistribution of translates of µgN+,λ1 (Proposition 2.8).

Proposition 2.7. For any x = [g] ∈ !\G, f ∈ Cc(!\G), and φ ∈ Cc(N
+),

lim
t→+∞

5(t)

∫

N+
f (xnat )φ(n) dµgN+,ν1(n)

=
∑

Z∈Z!

m|Z(f )µgN+,ν1 |ZN(φ). (2.7)
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Proof. Let x = [g] and ε0 > 0 be such that φ ∈ Cc(N
+
ε0

). For simplicity of no-
tation, we write dµν1 = dµgN+,ν1 throughout the proof. By Lemma 2.2, we can
choose R > 0 and a nonnegative ρg,ε0 ∈ Cc(NR) such that

µgnN,ν2(ρg,ε0) > 0 for all n ∈ N+
ε0

.

Given any ε > 0, choose a nonnegative function qε ∈ Cc(AεMε) satisfying∫
AM qε(am)da dm = 1. Then

∫

N+
f (xnat )φ(n) dµν1(n)

=
∫

N+
f (xnat )φ(n)

(
1

µgnN,ν2(ρg,ε0)

×
∫

NA
ρg,ε0(h)qε(am)da dmdµgnN,ν2(h)

)
dµν1(n)

=
∫

N+

(∫

NA
f (xnat )

φ(n)ρg,ε0(h)qε(am)

µgnN,ν2(ρg,ε0)
da dmdµgnN,ν2(h)

)
dµν1(n). (2.8)

We now define )̃ε ∈ Cc(gN+
ε0

NRAεMε) ⊂ Cc(G) and )ε ∈ Cc(!\G) by

)̃ε(g0) :=
{φ(n)ρg,ε0 (h)qε(am)

µgnN,ν2 (ρg,ε0 ) if g0 = gnham,

0 otherwise,

and )ε([g0]) := ∑
γ∈! )̃ε(γg0). Note that the continuity of )̃ε follows from

Lemma 2.2. We now assume without loss of generality that f ≥ 0 and define, for
all ε > 0, functions f ±

ε as follows: for all z ∈ !\G,

f +
ε (z) := sup

b∈N+
ε Pε

f (zb) and f −
ε (z) := inf

b∈N+
ε Pε

f (zb).

Since u ∈ inta+, for every ε > 0, there exists t0(R, ε) > 0 such that

a−1
t NRat ⊂ Nε for all t ≥ t0(R, ε).

Then, since supp()̃ε) ⊂ gN+
ε0

NRAεMε , we have

f (xnat ))̃ε(gnham) ≤ f +
3ε(xnhamat ))̃ε(gnham) (2.9)

for all nham ∈ N+NAM and t ≥ t0(R, ε). We now use f +
3ε to give an upper

bound on the limit we are interested in; f −
3ε is used in an analogous way to provide

a lower bound. Entering the definition of )ε and inequality (2.9) into (2.8) gives

lim sup
t→+∞

5(t)

∫

N+
f (xnat )φ(n) dµν1(n)

≤ lim sup
t→+∞

5(t)

∫

N+

∫

NAM
f +

3ε(xnhamat ))̃ε(gnham)dmda dµgnN,ν2(h)

dµν1(n)
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≤ lim sup
t→+∞

5(t)eε‖ψ1−ψ2◦i‖
∫

N+

∫

NAM
f +

3ε(xnhamat ))̃ε(gnham)

× e(ψ1−ψ2◦i)(loga) dmda dµgnN,ν2(h) dµν1(n)

= lim sup
t→+∞

5(t)eε‖ψ1−ψ2◦i‖
∫

G
f +

3ε([g0]at ))̃ε(g0) dm̃(g0)

= lim sup
t→+∞

5(t)eε‖ψ1−ψ2◦i‖
∫

!\G
f +

3ε([g0]at ))ε([g0]) dm([g0]),

where ‖·‖ is the operator norm on a∗ and Lemma 2.4 was used in the second to
last line of the above calculation. By the standing assumption (2.6), we have

lim sup
t→+∞

5(t)

∫

N
f (xnat )φ(n) dµgN,ν2(n)

≤ eε‖ψ1−ψ2◦i‖ ∑

Z∈Z!

m|Z(f +
3ε)m|Z()ε)

= eε‖ψ1−ψ2◦i‖ ∑

Z∈Z!

m|Z(f +
3ε)m̃|Z̃()̃ε),

where Z̃ ⊂ G is a !-invariant lift of Z. Using Lemma 2.4, for all 0 < ε 2 1,

m̃|Z̃()̃ε)

=
∫

N+

(∫

NAM
)̃ε1Z̃(gnham)e(ψ1−ψ2◦i)(loga) da dmdµgnN,ν2(h)

)
dµν1(n)

≤ eε‖ψ1−ψ2◦i‖
∫

N+

φ(n)1Z̃N (gn)

µgnN,ν2(ρg,ε0)

×
(∫

NAM
ρg,ε0(h)qε(am)da dmdµgnN,ν2(h)

)
dµν1(n)

≤ eε‖ψ1−ψ2◦i‖µν1 |ZN(φ),

where we have used the facts that Z̃ is invariant under the right translation
of the identity component M◦ of M , and suppν2 = $ as well as the identity
1Z̃(gnha) = 1Z̃N (gn)1$(gnh+) (we remark that suppν2 = $ is not necessary
for the upper bound since 1Z̃(gnha) ≤ 1Z̃N (gn), but needed for the lower bound).
Since ε > 0 was arbitrary, taking ε → 0 gives

lim sup
t→+∞

5(t)

∫

N+
f (xnat )φ(n) dµν1(n) ≤

∑

Z∈Z!

m|Z(f )µν1 |ZN(φ).

The lower bound given by replacing f +
3ε with f −

3ε in the above calculations com-
pletes the proof. !

Proposition 2.8. For any x = [g] ∈ !\G, f ∈ Cc(!\G) and φ ∈ Cc(N
+),

lim
t→+∞

5(t)e(ϕ1−ψ1)(tu)

∫

N+
f (xnat )φ(n) dµgN+,λ1(n)
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=
∑

Z∈Z!

mλ1,ν2 |ZN+(f )µgN+,ν1 |ZN(φ).

Proof. For ε0 > 0, set Bε0 = Pε0N
+
ε0

. Given x0 ∈ !\G, let ε0(x0) denote the max-
imum number r such that the map G → !\G given by h 0→ x0h for h ∈ G is
injective on Br . By using a partition of unity if necessary, it suffices to prove that,
for any x0 ∈ !\G and ε0 = ε0(x0), the claims of the proposition hold for any non-
negative f ∈ C(x0Bε0), nonnegative φ ∈ C(N+

ε0
), and x = [g] ∈ x0Bε0 . Moreover,

we may assume that f is given as

f ([g]) =
∑

γ∈!

f̃ (γg) for all g ∈ G,

for some nonnegative f̃ ∈ Cc(g0Bε0). For simplicity of notation, we write µλ1 =
µgN+,λ1 . Note that, for x = [g] ∈ [g0]Bε0 ,

∫

N+
f ([g]nat )φ(n) dµλ1(n) =

∑

γ∈!

∫

N+
f̃ (γgnat )φ(n) dµλ1(n). (2.10)

Note that f̃ (γgnat ) = 0 unless γgnat ∈ g0Bε0 . Together with the fact that
supp(φ) ⊂ N+

ε0
, it follows that the summands in (2.10) are nonzero only for

finitely many elements γ ∈ ! ∩ g0Bε0a−tN
+
ε0

g−1.
Suppose γgN+

ε0
at ∩ g0Bε0 '= ∅. Then γgat ∈ g0Pε0N

+, and there are unique
elements pt,γ ∈ Pε0 and nt,γ ∈ N+ such that

γgat = g0pt,γ nt,γ ∈ g0Pε0N
+.

Let !t denote the subset ! ∩ g0(Pε0N
+)a−1

t g−1. Note that although !t may pos-
sibly be infinite, only finitely many of the terms in the sums we consider will be
nonzero. This together with Lemma 2.3 gives

∫

N+
f ([g]nat )φ(n) dµλ1(n)

=
∑

γ∈!

∫

N+
f̃ (γgnat )φ(n) dµλ1(n)

=
∑

γ∈!t

∫

N+
f̃ (γgat (a

−1
t nat ))φ(n) dµλ1(n)

= e−ϕ1(logat )
∑

γ∈!t

∫

N+
f̃ (γgatn)φ(atna−1

t ) dµgatN+,λ1(n)

= e−ϕ1(logat )
∑

γ∈!t

∫

N+
f̃ (g0pt,γ nt,γ n)φ(atna−1

t ) dµgatN+,λ1(n)

= e−ϕ1(logat )
∑

γ∈!t

∫

N+
f̃ (g0pt,γ n)φ(atn

−1
t,γ na−1

t ) dµg0pt,γ N+,λ1(n).
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Since supp(f̃ ) ⊂ g0Bε0 , we have
∑

γ∈!t

∫

N+
f̃ (g0pt,γ n)φ(atn

−1
t,γ na−1

t ) dµg0pt,γ N+,λ1(n)

≤
∑

γ∈!t

(
sup

n∈N+
ε0

φ(atn
−1
t,γ a−1

t (atna−1
t ))

)
·
∫

N+
f̃ (g0pt,γ n)dµg0pt,γ N+,λ1(n).

Since u belongs to intL! , there exist t0 > 0 and α > 0 such that

atN
+
r a−1

t ⊂ N+
re−αt for all r > 0 and t > t0.

Therefore, for all n ∈ N+
ε0

and t > t0, we have

φ(atn
−1
t,γ a−1

t (atna−1
t )) ≤ φ+

ε0e−αt (atn
−1
t,γ a−1

t ), (2.11)

where

φ+
ε (n) := sup

b∈N+
ε

φ(nb) for all n ∈ N+, ε > 0.

We now have the following inequality for t > t0:

eϕ1(logat )

∫

N+
f ([g]nat )φ(n) dµλ1(n)

≤
∑

γ∈!t

φ+
ε0e−αt (atn

−1
t,γ a−1

t )

∫

N+
ε0

f̃ (g0pt,γ n)dµg0pt,γ N+,λ1(n). (2.12)

By Lemma 2.2, we can now choose R > 0 and ρ ∈ Cc(N
+
R ) such that ρ(n) ≥ 0

for all n ∈ N+ and µg0pN+,ν1(ρ) > 0 for all p ∈ Pε0 . Define F̃ ∈ Cc(g0Pε0N
+
R )

by

F̃ (g) =
{

ρ(n)
µg0pN+,ν1

(ρ)

∫
N+

ε0
f̃ (g0pv)dµg0pN+,λ1(v) if g = g0pn ∈ g0Pε0N

+
R ,

0 if g /∈ g0Pε0N
+
R .

We claim that, for all p ∈ Pε0 and Z ∈ Z! such that g0p
− ∈ $,

∫

N+
F̃ (g0pn)dµg0pN+,ν1 |Z(n) =

∫

N+
R

F̃ (g0pn)dµg0pN+,ν1 |Z(n)

=
∫

N+
ε0

(f̃ 1ZN+)(g0pn)dµg0pN+,λ1(n). (2.13)

Indeed, by the assumption suppν1 = $ and the fact 4 ∩ ZN+ = Z, we have the
identity 1Z(g0pn)dµg0pN+,ν1(n) = 1ZN+(g0p)dµg0pN+,ν1(n) and hence
∫

N+
F̃ (g0pn)dµg0pN+,ν1 |Z(n)

=
∫

N+
F̃ (g0pn)1Z(g0pn)dµg0pN+,ν1(n)

=
∫

N+

ρ(n)1ZN+(g0p)

µg0pN+,ν1(ρ)

(∫

N+
ε0

f̃ (g0pv)dµg0pN+,λ1(v)

)
dµg0pN+,ν1(n)
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=
∫

N+

ρ(n)

µg0pN+,ν1(ρ)

(∫

N+
ε0

(f̃ 1ZN+)(g0pv)dµg0pN+,λ1(v)

)
dµg0pN+,ν1(n)

=
∫

N+
ε0

(f̃ 1ZN+)(g0pv)dµg0pN+,λ1(v).

Summing up (2.13) for all Z ∈ Z! and using suppν1 = $, we get
∫

N+
F̃ (g0pn)dµg0pN+,ν1(n)

=
∑

Z∈Z!

∫

N+
F̃ (g0pn)dµg0pN+,ν1 |Z(n)

=
∑

Z∈Z!

∫

N+
ε0

(f̃ 1ZN+)(g0pn)dµg0pN+,λ1(n).

Hence we can write
∫

N+
ε0

f̃ (g0pn)dµg0pN+,λ1(n)

=
∫

N+
F̃ (g0pn)dµg0pN+,ν1(n) +

∫

N+
ε0

h̃(g0pn)dµg0pN+,λ1(n)

for some h̃ that vanishes on
⋃

Z∈Z!
ZN+. Returning to (2.12), we now give an

upper bound. We observe:

eϕ1(logat )

∫

N+
f ([g]nat )φ(n) dµλ1(n)

≤
∑

γ∈!t

φ+
ε0e−αt (atn

−1
t,γ a−1

t )

∫

N+
ε0

f̃ (g0pt,γ n)dµλ1(n)

=
∑

γ∈!t

φ+
ε0e−αt (atn

−1
t,γ a−1

t )

∫

N+
R

(F̃ + h̃)(g0pt,γ n)dµg0pt,γ N+,ν1(n)

=
∑

γ∈!t

∫

N+
R

(F̃ + h̃)(g0pt,γ n)φ+
ε0e−αt (atn

−1
t,γ a−1

t ) dµg0pt,γ N+,ν1(n).

Similarly as before, we have, for all t > t0 and n ∈ N+
R ,

φ+
ε0e−αt (atn

−1
t,γ a−1

t ) = φ+
ε0e−αt (atn

−1
t,γ n(n)−1a−1

t )

≤ φ+
(R+ε0)e−αt (atn

−1
t,γ na−1

t ). (2.14)

Hence (2.12) is bounded above by

≤
∑

γ∈!t

∫

N+
R

(F̃ + h̃)(g0pt,γ n)φ+
(R+ε0)e−αt (atn

−1
t,γ na−1

t ) dµg0pt,γ N+,ν1(n)

=
∑

γ∈!t

∫

N+
(F̃ + h̃)(g0pt,γ nt,γ a−1

t nat )
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× φ+
(R+ε0)e−αt (n) d((θt,γ )−1

∗ µg0pt,γ N+,ν1)(n),

where θt,γ (n) = nt,γ a−1
t nat . By Lemma 2.3,

d((θt,γ )−1
∗ µg0pt,γ N+,ν1)(n) = eψ1(logat ) dµ

g0pt,γ nt,γ a−1
t N+,ν1

(n).

Since g0pt,γ nt,γ a−1
t = γg, it follows that, for all t > t0,

e(ϕ1−ψ1)(logat )

∫

N+
f ([g]nat )φ(n) dµλ1(n)

≤
∑

γ∈!t

∫

N+
(F̃ + h̃)(γgnat )φ

+
(R+ε0)e−αt (n) dµγgN+,ν1(n)

≤
∫

N+

(∑

γ∈!

(F̃ + h̃)(γgnat )

)
φ+

(R+ε0)e−αt (n) dµν1(n).

Define functions F and h on !\G by

F([g]) :=
∑

γ∈!

F̃ (γg) and h([g]) :=
∑

γ∈!

h̃(γg).

Then, for any ε > 0 and for all t > t0 such that (R + ε0)e
−αt ≤ ε,

5(t)e(ϕ1−ψ1)(logat )

∫

N+
f ([g]nat )φ(n) dµλ1(n)

≤ 5(t)

∫

N+
(F + h)([g]nat )φ

+
ε (n) dµν1(n).

By Proposition 2.7, letting ε → 0 gives

lim sup
t→+∞

5(t)e(ϕ1−ψ1)(logat )

∫

N+
f ([g]nat )φ(n) dµλ1(n)

≤
∑

Z∈Z!

m|Z(F + h)µν1 |ZN(φ).

Note that m∗ = m by Lemma 2.1. Now, by Lemma 2.4 and the fact m̃(h̃) = 0,
we have

m|Z(F + h) = m̃|Z̃(F̃ + h̃) = m̃|Z̃(F̃ ) = m̃∗|Z̃(F̃ )

=
∫

P

(∫

N+
F̃1Z̃(g0hamn)dµg0hamN+,ν1

(n)

)

× e−ψ2◦i(loga) dmda dµg0N,ν2(h)

=
∫

P

(∫

N+
(f̃ 1ZN+)(g0hamn)dµg0hamN+,λ1(n)

)

× e−ψ2◦i(loga) dmda dµg0N,ν2(h)

= m̃λ1,ν2 |Z̃N+(f̃ ) = mλ1,ν2 |ZN+(f ).
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This gives the desired upper bound. Note that we have used the assumption
suppν2 = $ in the fourth equality above to apply (2.13). The lower bound can be
obtained similarly, finishing the proof. !

With the help of Proposition 2.7, we are now ready to give the following.

Proof of Theorem 2.5. By the compactness hypothesis on the supports of fi , we
can find ε0 > 0 and xi ∈ !\G, i = 1, . . . ,0, such that the map G → !\G given by
g → xig is injective on Rε0 = Pε0N

+
ε0

, and
⋃0

i=1 xiRε0/2 contains both suppf1
and suppf2. We use continuous partitions of unity to write f1 and f2 as fi-
nite sums f1 = ∑0

i=1 f1,i and f2 = ∑0
j=1 f2,j with suppf1,i ⊂ xiRε0/2 and

suppf2,j ⊂ xjRε0/2. Writing p = ham ∈ NAM and using Lemma 2.4,

dm∗
λ1,λ2

(hamn) = dµhamN+,λ1(n)e−ψ2◦i(loga) dmda dµN,λ2(h).

We have
∫

!\G
f1(xat )f2(x) dm∗

λ1,λ2
(x)

=
∑

i,j

∫

Rε0

f1,i (xjpnat )f2,j (xjpn)dµhamN+,λ1(n)

× e−ψ2◦i(loga) dmda dµN,λ2(h)

=
∑

i,j

∫

Nε0Aε0 Mε0

(∫

N+
ε0

f1,i (xjpnat )f2,j (xjpn)dµhamN+,λ1(n)

)

× e−ψ2◦i(loga) dmda dµN,λ2(h). (2.15)

Applying Proposition 2.8, it follows:

lim
t→∞5(t)e(ϕ1−ψ1)(logat )

∫

!\G
f1(xat )f2(x) dm∗

λ1,λ2
(x)

=
∑

j

∑

Z∈Z!

mλ1,ν2 |ZN+(f1,j )
∑

i

∫

Nε0Aε0 Mε0

µxipN+,ν1 |ZN(f2,i (xjp·))

× e−ψ2◦i(loga) dmda dµN,λ2(h)

=
∑

Z∈Z!

mλ1,ν2 |ZN+(f1)
∑

i

∫

Nε0Aε0 Mε0

µxipN+,ν1(f2,i1ZN(xjp·))

× e−ψ2◦i(loga) dmda dµN,λ2(h)

=
∑

Z∈Z!

mλ1,ν2 |ZN+(f1)
∑

i

m∗
ν1,λ2

(f2,i1ZN)

=
∑

Z∈Z!

mλ1,ν2 |ZN+(f1)m
∗
ν1,λ2

|ZN(f2),

where the second last equality is valid by Lemma 2.4. This completes the proof.
!



256 S. Edwards, M. Lee, & H. Oh

3. Local Mixing for Anosov Groups

Let ! < G be a Zariski dense Anosov subgroup with respect to P . For any u ∈
intL! , there exists unique

ψ = ψu ∈ D-
!

such that ψ(u) = ψ!(u) [7, Prop. 4.4]. Let νψ denote the unique (!,ψ)-PS mea-
sure [7, Thm. 1.3]. Similarly, νψ◦i denotes the unique (!,ψ ◦ i)-PS-measure.

In this section, we deduce (r := dima) the following.

Theorem 3.1 (Local mixing). For i = 1,2, let ϕi ∈ a∗ and λϕi be any (!,ϕi )-
conformal measure on F . For any u ∈ intL! , there exists κu > 0 such that, for
any f1, f2 ∈ Cc(!\G), we have

lim
t→+∞

t (r−1)/2e(ϕ1−ψu)(tu)

∫

!\G
f1(x exp(tu))f2(x) dm∗

λϕ1 ,λϕ2
(x)

= κu

∑

Z∈Z!

mλϕ1 ,νψu◦i |ZN+(f1)m
∗
νψu ,λϕ2

|ZN(f2).

Theorem 3.1 is a consequence of Theorem 2.5, since the measure m = mνψu ,νψu◦i

satisfies hypothesis (2.6) by the following theorem of Chow and Sarkar.

Theorem 3.2 ([3]). Let u ∈ intL! . There exists κu > 0 such that, for any f1, f2 ∈
Cc(!\G), we have

lim
t→+∞

t (r−1)/2
∫

!\G
f1(x exp(tu))f2(x) dmνψu ,νψu◦i(x)

= κu

∑

Z∈Z!

mνψu ,νψu◦i |Z(f1)mνψu ,νψu◦i |Z(f2).

Let mo denote the K-invariant probability measure on F = G/P . Then mo co-
incides with the (G,2ρ)-conformal measure on F where 2ρ denotes the sum of
positive roots for (g,a+). The corresponding BMS measure dx = dmmo,mo is
a G-invariant measure on !\G. The measure dmBR

νψ◦i
= dmmo,νψ◦i was defined

and called the N+M-invariant Burger–Roblin measure in [4]. Similarly, the NM-
invariant Burger–Roblin measure was defined as dmBR∗

νψ
. In these terminologies,

the following is a special case of Theorem 3.1.

Corollary 3.3 (Local mixing for the Haar measure). For any u ∈ intL! and for
any f1, f2 ∈ Cc(!\G), we have

lim
t→+∞

t (r−1)/2e(2ρ−ψu)(tu)

∫

!\G
f1(x exp(tu))f2(x) dx

= κu

∑

Z∈Z!

mBR
νψu◦i

|ZN+(f1)m
BR∗
νψu

|ZN(f2),

where κu is as in Theorem 3.2.
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In fact, we get the following more elaborate version of the corollary by combining
the proof of [4, Theorem 7.12] and the proof of Corollary 3.3.

Theorem 3.4. Let u ∈ intL! . For any f1, f2 ∈ Cc(!\G) and v ∈ kerψu,

lim
t→+∞

t (r−1)/2e(2ρ−ψu)(tu+√
tv)

∫

!\G
f1

(
x exp

(
tu +

√
tv

))
f2(x) dx

= κue
−I (v)/2

∑

Z∈Z!

mBR
νψu◦i

|ZN+(f1)m
BR∗
νψu

|ZN(f2),

where I : kerψu → R is given by

I (v) := c · ‖v‖2
∗‖u‖2

∗ − 〈v,u〉2
∗

‖u‖2∗
(3.1)

for some inner product 〈·, ·〉∗ and some c > 0. Moreover the left-hand sides of the
equalities are uniformly bounded for all (t, v) ∈ (0,∞)× kerψu with tu+√

tv ∈
a+.

4. Proof of Theorem 1.2

Let ! < G be a Zariski dense Anosov subgroup with respect to P .

The u-balanced Measures

Let 4 = {[g] ∈ !\G : g± ∈ $}. Following [2], given u ∈ intL! , we say that a
locally finite Borel measure m0 on !\G is u-balanced if

lim sup
T →+∞

∫ T
0 m0(O1 ∩ O1 exp(tu)) dt

∫ T
0 m0(O2 ∩ O2 exp(tu)) dt

< ∞

for all bounded M-invariant Borel subsets Oi ⊂ !\G with 4 ∩ intOi '= ∅, i =
1,2.

As an immediate corollary of Theorem 3.1, we get the following.

Corollary 4.1. Let ϕ ∈ a∗. For any pair (λϕ , λϕ◦i) of (!,ϕ) and (!,ϕ ◦ i)-
conformal measures on F respectively, the corresponding BMS-measure mλϕ ,λϕ◦i

is u-balanced for any u ∈ intL! .

Proof. Let O1,O2 be M-invariant Borel subsets such that 4∩ intOi '= ∅ for each
i = 1,2. Let f1, f2 ∈ Cc(!\G) be nonnegative functions such that f1 ≥ 1 on O1
and f2 ≤ 1 on O2 and 0 outside O2. Since intO2 ∩ 4 '= ∅, we may choose f2 so
that m∗

νψu ,λϕ◦i
(f2) > 0. For simplicity, we set m0 = mλϕ ,λϕ◦i . By Theorem 3.1 and

using the fact that m0 is A-quasi-invariant, we obtain that, for any u ∈ intL! ,

lim sup
t→+∞

m0(O1 ∩ O1 exp(tu))

m0(O2 ∩ O2 exp(tu))

≤ lim sup
t→+∞

∫
f1(x)f1(x exp(−tu)) dm0(x)∫
f2(x)f2(x exp(−tu)) dm0(x)
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= lim sup
t→+∞

∫
f1(x)f1(x exp(tu)) dm0(x)∫
f2(x)f2(x exp(tu)) dm0(x)

= lim sup
t→+∞

t (r−1)/2e(ϕ−ψu)(tu)
∫

f1(x)f1(x exp(tu)) dm0(x)

t(r−1)/2e(ϕ−ψu)(tu)
∫

f2(x)f2(x exp(tu)) dm0(x)

=
mλϕ ,νψu◦i(f1)

m∗
νψu ,λϕ◦i

(f2)
< ∞.

This shows that m0 is u-balanced. !

Recall Theorem 1.2 from the Introduction.

Theorem 4.2. Let rankG ≤ 3. For any ψ ∈ D-
! , any (!,ψ)-conformal measure

on F is necessarily supported on $. Moreover, the PS measure νψ is the unique
(!,ψ)-conformal measure on F .

Proof. Let u ∈ intL! denote the unique unit vector such that ψ(u) = ψ!(u), that
is, ψ = ψu. Let λψ be any (!,ψ)-conformal measure on F . We claim that λψ

is supported on $. The main ingredient is the higher rank Hopf–Tsuji–Sullivan
dichotomy established in [2]. The main point is that all seven conditions of The-
orem 1.4 of [2] are equivalent to each other for Anosov groups and u ∈ intL! ,
since all the measures considered there are u-balanced by Corollary 4.1. In this
proof, we only need the equivalence of (6) and (7), which we now recall.

Consider the following u-directional conical limit set of !:

$u := {g+ ∈ $ : γi exp(tiu) is bounded for some ti → +∞ and γi ∈ !}. (4.1)

Note that $u ⊂ $. For R > 0, we set !u,R := {γ ∈ ! : ‖µ(γ ) − Ru‖ < R}. Ap-
plying the dichotomy [2, Thm. 1.4] to a u-balanced measure mλψ ,νψ◦i , we deduce
the following.

Proposition 4.3. The following conditions are equivalent for λψ :
(1) λψ ($u) = 1;
(2)

∑
γ∈!u,R

e−ψ(µ(γ )) = ∞ for some R > 0.

On the other hand, if rankG ≤ 3, we have
∑

γ∈!u,R

e−ψ(µ(γ )) = ∞

for some R > 0 [2, Thm. 6.3]. Therefore, by Proposition 4.3, we have λψ ($u) = 1
and hence λψ is supported on $ in this case. This finishes the proof of the first
part of Theorem 1.2. The second claim follows from the first one by [7, Thm.
1.3]. !
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