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Abstract 

Manufacturing-as-a-Service (MaaS) can accelerate additive manufacturing (AM) process-defect modeling 

by augmenting training data to all collaborating users via a data sharing network. However, sharing process 

data may disclose product design information. This paper aims to evaluate design information disclosure 

of various thermal history-based feature extraction methods for metal-based AM anomaly detection. This 

is accomplished by evaluating the design information (i.e., printing orientation) retained, and the overall 

data usability (i.e., anomaly detection) preserved in the extracted features for various state-of-the-art feature 

extraction methods. The evaluation results indicate that there are urgent needs in privacy preserving data 

sharing for additive MaaS (AMaaS). 
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1. Introduction 

Artificial intelligence (AI) has been recognized as one of the driving forces for the research and 

development (R&D) in advanced manufacturing. However, a recent symposium highlighted a significant 

gap of the current lack of industry tools, trust, confidence, and experience with AI technologies in 

manufacturing. In addition, it is recommended to establish new Public-Private Partnerships (PPPs) to 

facilitate the collaboration between industry, academia, and government experts [1]. One of the possible 

paths to establish the PPPs is Manufacturing as a Service (MaaS), a collaborative cloud-based networked 



manufacturing platform, facilitating capacity and data sharing among geographically diverse users [2]–[6]. 

Furthermore, additive manufacturing (AM) has demonstrated its unique capacity in manufacturing R&D, 

and thus should be incorporated into the MaaS, making the expensive AM technologies accessible to small 

and medium manufacturers (SMMs). The additive MaaS (a.k.a., AMaaS) facilitates users sending designs 

to the networked machines, where process data collected and leveraged for collaborative AI modeling for 

quality control purposes, as illustrated in Figure 1. This practice augments data availability for process 

improvement and quality control that benefits all users, as an augmented training dataset improves the 

performance of the AI models. 

 

 

Figure 1: The proposed AMaaS framework and potential design information disclosure through path re-

identification. 

The benefits of AMaaS are overshadowed by the growing concerns for user data privacy. The AM 

process data can be leveraged to identify printing path information, which can be used to re-identify part 

designs [7], [8] (red arrows in Figure 1), ultimately compromising the users’ intellectual property (IP) [5]. 

This brings a serious concern, since different AMaaS users can be potential competitors. Since rapid 

prototyping is the most popular AM application in new product development [9], any unwarranted access 

to the IP can be detrimental. In the prospective AMaaS, each user can access the features extracted from 



the jointly collected process data for their own modeling purposes, which leads to potential unintended 

design information disclosure. However, there is no study that examine the design information disclosure 

of the process features extracted from AM process data.  

To fill this research gap, this paper aims to evaluate the design information disclosure of the various 

process features extracted assessing their ability to re-identify instantaneous printing directions. The rest of 

this paper is structured as follows. Section 2 introduces the proposed procedure for evaluating the level of 

design information disclosure retained and anomaly detection capacity based on different feature extraction 

methods in the literature. Section 3 presents the results and discussion, and Section 4 presents the conclusion 

and future research directions.   

2. Proposed Evaluation Procedure of State-of-the-art Feature Extraction Methods  

For metal-based AM, there is a strong correlation between thermal history and the presence of faults in 

the final parts. However, the thermal image data are usually of high volume and dimension, and thus key 

process features are extracted for anomaly detection [10]. Subsequently, various machine learning 

approaches can be applied to correlate process features to defect occurrence.  provides a summary of 

different feature extraction and anomaly detection methods for metal-based AM.  

Table 1 provides a summary of different feature extraction and anomaly detection methods for metal-

based AM.  

Table 1: Feature extraction methods for analyzing AM process signals 
Extracted Features Methods for Defect Detection Citations 

Multilinear Principal Component Analysis 

(MPCA) features 
Dual control charting [11] 

Functional Principal Component Analysis 

(FPCA) based morphological features 

Decision Tree (DT); Linear Discriminant 

Analysis (LDA); Quadratic Discriminant 

Analysis (QDA); K-Nearest Neighbors (KNN); 

and Support Vector Machine (SVM) 

[12],[13] 

Interpolated process characteristics Self-organizing Map (SOM) [14] 

Principal Component Analysis (PCA) 

based statistical descriptors 
K-means clustering [15],[16] 

Low dimensional features via variational 

autoencoder 

Gaussian Mixture Sparse representation 
[17] 

K-Mean clustering 

Melt pool geometric features DT; LDA; QDA; KNN; and SVM [12], [18] 

Tensor factorization Bayesian change detection [19] 

Integrated spatio-temporal decomposition 

and regression 
Likelihood ratio test procedure [20],[21] 

Regions of interest of spatters, SVM, Convolutional Neural Network (CNN) [22] 



plume, and melt pool 

Melt pool image morphology based on 

SIFT features 
Bag of words (BoW); SVM [23] 

Spectral intensity graph SVM [24][25] 

Multi-dimensional visual features from CT 

images and in-situ sensing data 
SVM [26] 

In-process images CNN [27] 

K-Means or U-Net autoencoder based 

image clustering 
 CNN [28] 

Summary statistics of acoustic emission 

signals 

Logistic regression and 

Artificial Neural Network (ANN) 
[29] 

Image local intensity variation and surface 

texture features 
Bayesian classifier [30],[31] 

 

Figure 2 illustrates the overview of the proposed evaluation. The thermal images are collected from the 

metal-based AM processes, and various feature extraction methods in the literature have been applied to 

extract those features. Subsequently, the extracted features are evaluated using three different types of 

classifiers, i.e., SVM, Ensemble, and Neural Network (NN) classifiers. Two inter-dependent metrics are 

evaluated.  

 

Figure 2: The proposed procedure of evaluating features extracted from thermal images 

Metric 1: Design information disclosure (DID) associated with printing path re-identification 

accuracy is computed as the classification accuracy of print orientation in the context of a multi-class 

classification of angular labels as below. 



𝐷𝐼𝐷 = Accuracy =
Number of samples with angular labels accurately classified

Total number of samples classified
 

Metric 2: Utility metric (U) associated with anomaly detection accuracy is calculated as the F1-Score 

corresponding to the anomaly detection labels, because the percentages of healthy and unhealthy thermal 

images are usually highly imbalanced [32]. This metric is calculated as below [33], [34], 

𝑈 = F1 − Score = 2 ×
Precision×Recall

Precision+Recall
  

where Recall =
TP

TP+FN
 and Precision =

TP

TP+FP
, and TP and TN represent correct predictions of anomaly 

and healthy melt pools, and FP and FN represent the incorrect prediction of an anomaly and healthy melt 

pool, respectively. 

It is worth noting that a higher DID indicates significant disclosure of design information, which is 

unfavorable. On the contrary, a higher U value means the features can accurately detect anomalies, which 

is most favorable. Therefore, the best process features should demonstrate low DID and high U.  

3. Results and Discussion 

In the case study, thermal images were collected during the fabrication of two cylindrically shaped 

specimens (Part 1 and 2), using the OPTOMEC LENS 750 directed energy deposition (DED) system. As 

visualized in Figure 2, thermal images (with size 480×752) were collected by a co-axial pyrometer camera, 

where each pixel contains a temperature measurement. The images were cropped into 201×201 to remove 

irrelevant regions. Furthermore, the printing of Part 1 contains two angular orientations (0°/180°), and the 

part was examined using X-ray CT to provide defect labels, whereas, Part 2 printing involves three angular 

orientations (60°/180°/300°) while the fabricated part was not inspected. Based on the data format needed, 

six feature extraction methods from Table 1 were selected for conducting the DID and U evaluation. 

Specifically, 2,299 thermal images from Part 1, and 1,296 from Part 2 were utilized for DID evaluation, 

where image-wise angular labels were calculated using the instantaneous printing orientation in the g-code. 

In addition, 2,299 images from Part 1 were used to evaluate U.  



For both evaluating DID and U values, the dataset was randomly split into 80% training and 20% testing 

sets. The Bayesian optimization was adopted for parameter tuning. 100 replications were conducted, and 

both DID and U were evaluated using the mean over 100 replications. The results are summarized in Table 

2. Different cell shades were used to color code different feature extraction methods to denote their average 

performance for both DID and U values. The better the metric is, the lighter the shade used.  

In general, it can be observed that there is no feature exacted that can perform well in both DID and U 

values. For DID, the best performing features are melt pool geometric features, while its U value is only 

around 77% on average. On the other hand, the VAE features perform the best in U values, whereas its DID 

metric is quite high as well. It is also noteworthy that there is a potential tradeoff between DID and U values 

in the feature extracted, where potential improvements in DID may impact the U value of the features. This 

tradeoff needs to be considered when designing the customized data sharing framework for AM users with 

different preference of design information protection.  

Table 2: DID and U values summary (standard deviations in parentheses).  

Feature  

Extraction  

𝑫𝑰𝑫 (Smaller is better) 𝑼 (Larger is better) 

SVM Ensemble NN Avg SVM Ensemble NN Avg 

PCA 
97.89 

(0.55) 

97.74 

(0.52) 

97.38 

(0.95) 

97.67 

(0.73) 

85.57 

(6.71) 

76.20 

(9.59) 

57.69 

(13.42) 

73.24 

(15.49) 

MPCA 
98.36 

(0.48) 

97.43 

(0.59) 

97.24 

(0.87) 

97.68 

(0.83) 

86.68 

(6.57) 

73.81 

(9.10) 

57.13 

(12.71) 

72.54 

(15.56) 

VAE 
96.53 

(1.47) 

95.88 

(1.51) 

95.38 

(1.44) 

95.93 

(1.55) 

85.32 

(10.29) 

77.82 

(13.19) 

87.52 

(9.40) 

83.55 

(11.83) 

Spherical 
83.61 

(1.32) 

82.08 

(1.47) 

79.04 

(3.30) 

81.60 

(2.92) 

37.69 

(10.22) 

51.85 

(11.29) 

40.57 

(12.77) 

43.39 

(13.00) 

FPCA  
81.54 

(1.34) 

80.39 

(1.27) 

77.84 

(3.39) 

79.92 

(2.95) 

40.54 

(12.49) 

47.63 

(11.69) 

41.38 

(13.03) 

43.19 

(12.81) 

Geometric  

Features 

65.74 

(1.67) 

64.62 

(1.45) 

63.54 

(2.95) 

64.63 

(2.31) 

75.23 

(7.44) 

80.39 

(7.12) 

75.18 

(8.6) 

76.94 

(8.13) 

 

4. Conclusion 

In this paper, a new framework is developed for evaluating the design information disclosure and utility 

of feature extraction methods for AM anomaly detection based on thermal images. Specifically, six state-

of-the-art feature extraction methods are compared using three different classification models. Each feature 



extraction method was evaluated based on its performance in design information disclosure in printing 

orientation and retaining utility in anomaly detection. From the results, it can be observed that the process 

feature extraction method plays a key role in both utility and design information disclosure risks. Thus, the 

proposed framework may serve as a useful tool to evaluate privacy-preserving performance in data sharing 

mechanisms used in AMaaS. The computational results have highlighted significant gaps and limitations 

in the state-of-the-art AM feature extraction methods in the context of data sharing on the AMaaS platform. 

There are a few potential future research directions. First, the evaluation data set can be further enlarged 

to include more angular orientation levels in the experiments, which can extend the multi-class 

classification component for angular levels to an angular regression component. Second, to simultaneously 

achieve low DID and high U values, AM design de-identification techniques can be established to create a 

utility-aware, privacy-preserving features extraction to be used in data sharing framework of the AMaaS 

platform [35]. Third, this evaluation could be further extended by incorporating more machine learning 

based feature extraction methods.  
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