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Abstract
Manufacturing-as-a-Service (MaaS) can accelerate additive manufacturing (AM) process-defect modeling
by augmenting training data to all collaborating users via a data sharing network. However, sharing process
data may disclose product design information. This paper aims to evaluate design information disclosure
of various thermal history-based feature extraction methods for metal-based AM anomaly detection. This
is accomplished by evaluating the design information (i.e., printing orientation) retained, and the overall
data usability (i.e., anomaly detection) preserved in the extracted features for various state-of-the-art feature
extraction methods. The evaluation results indicate that there are urgent needs in privacy preserving data

sharing for additive MaaS (AMaaS).
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1. Introduction

Artificial intelligence (AI) has been recognized as one of the driving forces for the research and
development (R&D) in advanced manufacturing. However, a recent symposium highlighted a significant
gap of the current lack of industry tools, trust, confidence, and experience with Al technologies in
manufacturing. In addition, it is recommended to establish new Public-Private Partnerships (PPPs) to
facilitate the collaboration between industry, academia, and government experts [1]. One of the possible

paths to establish the PPPs is Manufacturing as a Service (MaaS), a collaborative cloud-based networked



manufacturing platform, facilitating capacity and data sharing among geographically diverse users [2]-[6].
Furthermore, additive manufacturing (AM) has demonstrated its unique capacity in manufacturing R&D,
and thus should be incorporated into the MaaS, making the expensive AM technologies accessible to small
and medium manufacturers (SMMs). The additive MaaS (a.k.a., AMaaS) facilitates users sending designs
to the networked machines, where process data collected and leveraged for collaborative Al modeling for
quality control purposes, as illustrated in Figure 1. This practice augments data availability for process
improvement and quality control that benefits all users, as an augmented training dataset improves the

performance of the Al models.
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Figure 1: The proposed AMaaS framework and potential design information disclosure through path re-
identification.

The benefits of AMaaS are overshadowed by the growing concerns for user data privacy. The AM
process data can be leveraged to identify printing path information, which can be used to re-identify part
designs [7], [8] (red arrows in Figure 1), ultimately compromising the users’ intellectual property (IP) [5].
This brings a serious concern, since different AMaaS users can be potential competitors. Since rapid
prototyping is the most popular AM application in new product development [9], any unwarranted access

to the IP can be detrimental. In the prospective AMaaS, each user can access the features extracted from



the jointly collected process data for their own modeling purposes, which leads to potential unintended
design information disclosure. However, there is no study that examine the design information disclosure
of the process features extracted from AM process data.

To fill this research gap, this paper aims to evaluate the design information disclosure of the various
process features extracted assessing their ability to re-identify instantaneous printing directions. The rest of
this paper is structured as follows. Section 2 introduces the proposed procedure for evaluating the level of
design information disclosure retained and anomaly detection capacity based on different feature extraction
methods in the literature. Section 3 presents the results and discussion, and Section 4 presents the conclusion
and future research directions.

2. Proposed Evaluation Procedure of State-of-the-art Feature Extraction Methods

For metal-based AM, there is a strong correlation between thermal history and the presence of faults in
the final parts. However, the thermal image data are usually of high volume and dimension, and thus key
process features are extracted for anomaly detection [10]. Subsequently, various machine learning
approaches can be applied to correlate process features to defect occurrence. provides a summary of
different feature extraction and anomaly detection methods for metal-based AM.

Table 7 provides a summary of different feature extraction and anomaly detection methods for metal-
based AM.

Table 1: Feature extraction methods for analyzing AM process signals
Extracted Features Methods for Defect Detection Citations
Multilinear Principal Component Analysis
(MPCA) features

Dual control charting [11]

Decision Tree (DT); Linear Discriminant
Functional Principal Component Analysis Analysis (LDA); Quadratic Discriminant
(FPCA) based morphological features Analysis (QDA); K-Nearest Neighbors (KNN);
and Support Vector Machine (SVM)
Interpolated process characteristics Self-organizing Map (SOM) [14]
Principal Component Analysis (PCA)

[12],[13]

based statistical descriptors K-means clustering [151,[16]
Low dimensional features via variational Gaussian Mixture Sparse representation [17]
autoencoder K-Mean clustering
Melt pool geometric features DT; LDA; QDA; KNN; and SVM [12],[18]
Tensor factorization Bayesian change detection [19]
Integrated spatio-temporal decomposition Likelihood ratio test procedure [201.21]

and regression
Regions of interest of spatters, SVM, Convolutional Neural Network (CNN) [22]




plume, and melt pool
Melt pool image morphology based on

SIFT features Bag of words (BoW); SVM [23]

Spectral intensity graph SVM [24][25]
Multlidlmens10na¥ Vls.ual feat‘ures from CT SVM [26]

images and in-situ sensing data
In-process images CNN [27]
K-Means or U-Net autoc?ncoder based CNN 28]
image clustering
Summary statistics of acoustic emission Logistic regression and [29]
signals Artificial Neural Network (ANN)
Image local intensity variation and surface Bayesian classifier [30L.[31]

texture features

Figure 2 illustrates the overview of the proposed evaluation. The thermal images are collected from the
metal-based AM processes, and various feature extraction methods in the literature have been applied to
extract those features. Subsequently, the extracted features are evaluated using three different types of
classifiers, i.e., SVM, Ensemble, and Neural Network (NN) classifiers. Two inter-dependent metrics are

evaluated.
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Figure 2: The proposed procedure of evaluating features extracted from thermal images

Metric 1: Design information disclosure (DID) associated with printing path re-identification

accuracy is computed as the classification accuracy of print orientation in the context of a multi-class

classification of angular labels as below.



Number of samples with angular labels accurately classified

DID = A =
ccuracy Total number of samples classified

Metric 2: Utility metric (U) associated with anomaly detection accuracy is calculated as the F1-Score

corresponding to the anomaly detection labels, because the percentages of healthy and unhealthy thermal

images are usually highly imbalanced [32]. This metric is calculated as below [33], [34],

PrecisionxRecall
U=F1—-Score=2X ———

Precision+Recall

.. TP
and Precision = -

TP
here Recall =
where TP+FN P+FP

, and TP and TN represent correct predictions of anomaly

and healthy melt pools, and FP and FN represent the incorrect prediction of an anomaly and healthy melt
pool, respectively.

It is worth noting that a higher DID indicates significant disclosure of design information, which is
unfavorable. On the contrary, a higher U value means the features can accurately detect anomalies, which
is most favorable. Therefore, the best process features should demonstrate low DID and high U.

3. Results and Discussion

In the case study, thermal images were collected during the fabrication of two cylindrically shaped
specimens (Part 1 and 2), using the OPTOMEC LENS 750 directed energy deposition (DED) system. As
visualized in Figure 2, thermal images (with size 480X 752) were collected by a co-axial pyrometer camera,
where each pixel contains a temperature measurement. The images were cropped into 201x201 to remove
irrelevant regions. Furthermore, the printing of Part 1 contains two angular orientations (0°/180°), and the
part was examined using X-ray CT to provide defect labels, whereas, Part 2 printing involves three angular
orientations (60°/180°/300°) while the fabricated part was not inspected. Based on the data format needed,
six feature extraction methods from Table 1 were selected for conducting the DID and U evaluation.
Specifically, 2,299 thermal images from Part 1, and 1,296 from Part 2 were utilized for DID evaluation,
where image-wise angular labels were calculated using the instantaneous printing orientation in the g-code.

In addition, 2,299 images from Part 1 were used to evaluate U.



For both evaluating DID and U values, the dataset was randomly split into 80% training and 20% testing
sets. The Bayesian optimization was adopted for parameter tuning. 100 replications were conducted, and
both DID and U were evaluated using the mean over 100 replications. The results are summarized in Table
2. Different cell shades were used to color code different feature extraction methods to denote their average
performance for both DID and U values. The better the metric is, the lighter the shade used.

In general, it can be observed that there is no feature exacted that can perform well in both DID and U
values. For DID, the best performing features are melt pool geometric features, while its U value is only
around 77% on average. On the other hand, the VAE features perform the best in U values, whereas its DID
metric is quite high as well. It is also noteworthy that there is a potential tradeoff between DID and U values
in the feature extracted, where potential improvements in DID may impact the U value of the features. This
tradeoff needs to be considered when designing the customized data sharing framework for AM users with
different preference of design information protection.

Table 2: DID and U values summary (standard deviations in parentheses).

Feature DID (Smaller is better) U (Larger is better)
Extraction Ensemble SVM | Ensemble NN Avg |

PCA 85.57 76.20 57.69 73.24
(6.71) (9.59) (13.42) | (15.49)
86.68 73.81 57.13 72.54
MPCA 657 | 9100 | a271) | (15.56)
VAE 85.32 77.82 87.52 83.55
(10.29) (13.19) (9.40) | (11.83)

83.61 82.08 79.04 | 81.60
(132) | (147) | 3.30) | 2.92)

81.54 80.39 77.84 | 79.92
(134) | (127 | 3.39) | (2.95)

Geometric | 65.74 64.62 63.54 | 64.63
Features (1.67) (1.45) (2.95) | (2.31)

Spherical

FPCA

4. Conclusion
In this paper, a new framework is developed for evaluating the design information disclosure and utility
of feature extraction methods for AM anomaly detection based on thermal images. Specifically, six state-

of-the-art feature extraction methods are compared using three different classification models. Each feature



extraction method was evaluated based on its performance in design information disclosure in printing
orientation and retaining utility in anomaly detection. From the results, it can be observed that the process
feature extraction method plays a key role in both utility and design information disclosure risks. Thus, the
proposed framework may serve as a useful tool to evaluate privacy-preserving performance in data sharing
mechanisms used in AMaaS. The computational results have highlighted significant gaps and limitations
in the state-of-the-art AM feature extraction methods in the context of data sharing on the AMaaS platform.
There are a few potential future research directions. First, the evaluation data set can be further enlarged
to include more angular orientation levels in the experiments, which can extend the multi-class
classification component for angular levels to an angular regression component. Second, to simultaneously
achieve low DID and high U values, AM design de-identification techniques can be established to create a
utility-aware, privacy-preserving features extraction to be used in data sharing framework of the AMaaS
platform [35]. Third, this evaluation could be further extended by incorporating more machine learning
based feature extraction methods.
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