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Abstract
1.	 Plant phenology has been shifting dramatically in response to climate change, 

a shift that may have significant and widespread ecological consequences. Of 
particular concern are tropical biomes, which represent the most biodiverse and 
imperilled regions of the world. However, compared to temperate floras, we 
know little about phenological responses of tropical plants because long-term 
observational datasets from the tropics are sparse.

2.	 Herbarium specimens have greatly increased our phenological knowledge in 
temperate regions, but similar data have been underutilized in the tropics and 
their suitability for this purpose has not been broadly validated. Here, we com-
pare phenological estimates derived from field observational data (i.e. plot 
surveys) and herbarium specimens at various spatial and taxonomic scales to 
determine whether specimens can provide accurate estimations of reproductive 
timing and its spatial variation.

3.	 Here, we demonstrate that phenological estimates from field observations and 
herbarium specimens coincide well. Fewer than 5% of the species exhibited sig-
nificant differences between flowering periods inferred from field observations 
versus specimens regardless of spatial aggregation. In contrast to studies based 
on field records, herbarium specimens sampled much larger geographic and cli-
matic ranges, as has been documented previously for temperate plants, and ef-
fectively captured phenological responses across varied environments.
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1  |  INTRODUC TION

Shifts in plant phenology—the timing of life-history events—are 
among the most iconic biological responses to climatic change and 
have widespread consequences for individual taxa and critical eco-
system processes (Keenan et al.,  2014; Polgar & Primack,  2011; 
Richardson et al., 2013; Willis et al., 2008). Of particular concern are 
tropical biomes, which represent the most biodiverse and imperilled 
regions of the world (Jenkins et al., 2013; Kreft & Jetz, 2007; Mora 
et al., 2013; Raven et al., 2020). However, there is comparatively lit-
tle information on the phenological responses of tropical plants to 
climate (Abernethy et al., 2018; Cook et al., 2012; Davis & Ellison, 
2018;  Davis, Lyra, Park, Asprino, et al., 2022; Pau et al.,  2011). 
Along these lines, most of our knowledge regarding the patterns, 
cues and mechanisms of plant phenology derives from temperate 
biomes in North America, western Europe and northeast Asia (Davis, 
Lyra, Park, Asprino, et al., 2022; Wolkovich et al., 2014). Our under-
standing of tropical plant phenology has been especially limited by 
the overall paucity of long-term observational data and the over-
whelming diversity of tropical species and their varied phenologi-
cal behaviours (Abernethy et al., 2018; Davis & Ellison, 2018; Davis, 
Lyra, Park, Asprino, et al., 2022). Tropical systems comprise diverse 
climates, from aseasonal rainforests to seasonally dry forests and 
grasslands. Moreover, various reproductive phenological strategies 
coexist in the tropics, including near complete synchrony and total 
asynchrony; sub- and supra-annual flowering; and short bursts of 
activity as well as continuous reproduction (Augspurger,  1983; 
Bronstein & Patel, 1992; Frankie et al., 1974; Galetto et al., 2000; 
Medway,  1972; Newstrom et al.,  1994; Sakai,  2002; Van Schaik 
et al., 1993). Although these strategies may differ among and within 
species, tropical biomes as a whole do not exhibit a regular marked 
and reliable annual resting season in terms of plant reproductive ac-
tivity as is common in temperate systems (Borchert, 1996; Boulter 
et al., 2006; Davis & Ellison, 2018; Davis, Lyra, Park, Asprino, et al., 
2022; Mendoza et al.,  2017; Morellato et al.,  2013; Staggemeier 
et al., 2020; Zalamea et al., 2011). This has contributed to a ‘tem-
perate phenological paradigm’, which we recently argued has been 
a major obstacle for understanding tropical phenology (Davis, Lyra, 
Park, Asprino, et al., 2022). To better understand such patterns in 

the tropics, we require more and better long-term records with 
greater spatiotemporal and taxonomic sampling.

Herbarium collections comprise large geographical, temporal 
and taxonomic depth and have been used to great effect in tem-
perate zone investigations of phenology (Davis et al., 2015; Gallinat 
et al., 2018; Park et al., 2019; Park, Breckheimer, et al., 2021; Willis, 
Ellwood, et al., 2017; Willis, Law, et al., 2017; Zohner & Renner, 2014). 
Herbarium specimens also have shown promise in studies of tropical 
plant phenology but have seen comparatively little use and have yet 
to be applied broadly (Borchert, 1996; Boulter et al., 2006; Davis & 
Ellison, 2018; Davis, Lyra, Park, Asprino, et al., 2022; Fava et al., 2019; 
Lima et al., 2021; Zalamea et al., 2011). On this front, Davis, Lyra, 
Park, Asprino, et al., (2022) recently demonstrated the likely utility 
of applying massive herbarium data for resolving tropical phenol-
ogy, especially in Brazil. Several promising findings were identified in 
this effort, namely, that (i) phenological variation is great across the 
tropics, (ii) certain biomes are much more sampled than others (e.g. 
Caatinga, Cerrado, Amazonia and Atlantic Forest), herbarium-based 
phenological observations are most abundant after only 1960 and 
that (iii) precipitation is a likely crucial factor for phenological cueing. 
In addition, the ongoing digitization and online mobilization of her-
barium specimens have made them more widely available than ever 
before, and the onset of Digitization 2.0 sensu Hedrick et al. (2020)—
the analysis solely of digitized collections—has enabled the efficient 
extraction of phenological information from specimens at a mas-
sive scale (Davis et al., 2020; Hedrick et al., 2020; Park et al., 2019;  
Willis, Law, et al., 2017).

Here, we harness a recently published dataset (Davis, Lyra, 
Park, Asprino, et al., 2022; Davis, Lyra, Park, Zhang, et al., 2022) of 
high-resolution phenological data scored from open access, digi-
tized specimens from Brazil and contrast these with direct field ob-
servation records from the literature to examine the phenological 
patterns of 24 phylogenetically diverse species across four major 
tropical Brazilian biomes. To determine if herbarium specimens ad-
equately represent flowering times in the tropics, we explicitly test 
whether phenological data inferred from herbarium specimens dif-
fer from data collected from field surveys. In summary, we demon-
strate that herbarium specimens provide reliable information in the 
tropics across a broad range of taxa, thus expanding their utility for 

4.	 Synthesis. Herbarium specimens are verified to be a vital resource for closing the 
gap in our phenological knowledge of tropical systems. Tropical plant reproduc-
tive phenology inferred from herbarium records is widely congruent with field 
observations, suggesting that they can and should be used to investigate phe-
nological variation and their associated environmental cues more broadly across 
tropical biomes.

K E Y W O R D S
Brazil, citizen science, climate, field survey, herbaria, natural history collections, neotropics, 
phenology
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the assessment of this key climate response trait where biodiversity 
risk is greatest.

2  |  MATERIAL S AND METHODS

We searched the literature and collected field observational phe-
nological data for 24 species spanning diverse angiosperm clades 
(Bignoniaceae, Chrysobalanaceae, Fabaceae and Malpighiaceae; 
Table S1). These species were chosen for their broad representation 
in the neotropics and availability of digitized images of herbarium 
specimens. After discarding studies with missing data (i.e. gaps in 
phenological observations), we were left with observational data 
from nine studies (23 species) across Brazil. Phenological observa-
tions were available as presence/absence information of flower-
ing/fruiting events per month/species. These field observations 
spanned four diverse biomes: Amazonia, Atlantic Forest, Caatinga 
and Cerrado. Amazonia comprises the largest tropical rainforest in 
the world, with factors such as altitude, vegetation cover and inun-
dation patterns driving the formation of diverse communities therein 
(Ferreira-Ferreira et al., 2015). The Atlantic Forest comprises dense, 
mixed and seasonally deciduous and semi-deciduous forests as well 
as mangroves and restinga vegetation (Duarte et al., 2014). The sea-
sonally dry tropical forests in Caatinga and the neotropical savanna 
of Cerrado can experience up to 10 months of drought a year (Terra 
et al., 2018) and are included among the most endangered biomes on 
the planet (Hoekstra et al., 2004). However, Cerrado benefits from 
the presence of the headwaters of the three largest hydrographic 
basins in South America (Amazonian, São Francisco and Prata). 
Cerrado vegetation is also characterized by the marked presence of 
adaptations to fire (Terra et al., 2018).

We simultaneously gathered digitized specimen images and 
associated metadata for 4638 specimens across these 23 species 
from a variety of online aggregators, including REFLORA (Forzza 
et al., 2016), SpeciesLink (http://splink.cria.org.br/), iDigBio (https://
www.idigb​io.org/) and Tropicos (https://www.tropi​cos.org/). Each 
species was represented by at least 100 unique herbarium speci-
mens. Citizen-scientists hired through Amazon's Mechanical Turk 
service (MTurk; https://www.mturk.com/) counted the number of 
buds, flowers and fruits to assess peak flowering time using the 
CrowdCurio interface following Willis, Law, et al.  (2017). Further 
methods on data collection are presented by Davis, Lyra, Park, 
Zhang, et al., 2022 and summarized in Davis, Lyra, Park, Asprino, 
et al., 2022.

In summary, crowdworkers were required to discern and quan-
tify the different organs present on a test specimen with at least 
80% accuracy across three trials before they could participate in 
the actual tasks. To provide an estimate of reliability, each image 
set scored by a single crowdworker included a single duplicate 
image randomly selected from the others (Williams et al.,  2017). 
Species with reproductive organs that were difficult to discern 
were further examined by experts (i.e. the authors of this study). 
We estimated the consistency score for each participant based on 

the data for each image set by dividing the absolute difference in 
counts for each organ by the total count of that specimen across 
the two duplicate specimens and subtracting this value from 1 
(1—(|count1 − count2)|/(count1 + count2)) (Park et al., 2019; Williams 
et al., 2017). Consistency scores range from zero (unreliable/incon-
sistent) to one (reliable/consistent). Participants who reported no 
organs on one sheet and a non-zero number of the same organ on 
the duplicate sheet were assigned a reliability score of zero for that 
organ (i.e. the lowest reliability score). Each specimen was examined 
by at least three people and we weighted their counts of each organ 
by their consistency scores and averaged them to obtain a single set 
of quantifications per specimen. These quantifications were used to 
separately infer the start, end and length of flowering and fruiting 
periods at the municipality, state, biome and country level using the 
data collected therein. Flowering and fruiting periods were defined 
as the span of time between the earliest and latest observations 
of flowering and fruiting individuals, respectively. Although tropi-
cal systems comprise both seasonal and aseasonal climates, plant 
reproductive activity occurs year-round (Mendoza et al.,  2017; 
Morellato et al.,  2013). Given the non-resting nature of tropical 
systems, we determined the start and end of flowering and fruit-
ing periods from a circular distribution of collection dates (Davis, 
Lyra, Park, Asprino, et al., 2022; Morellato et al., 2010; Staggemeier 
et al., 2020) of specimens with at least a single flower or fruit pres-
ent (≥1) using the circular package (Agostinelli & Lund, 2022) in R 
v3.6.3 (R Core Team, 2017). Likewise, we determined the start, end 
and length of flowering and fruiting periods from a circular distribu-
tion of field observation dates.

To determine whether phenological inference from specimen 
data differed from field surveys, we compared the phenological pe-
riod of each species as observed in the field with the circular 95% 
highest posterior density interval of flowering/fruiting periods in-
ferred from herbarium collection dates within the same spatial cat-
egory (i.e. municipality, state, biome and country). Where there was 
no overlap between the 95% highest posterior density interval of 
the specimen collection dates of a species and the field observed 
phenological period in the same spatial category, we concluded that 
the two were significantly different at p < 0.05. The circular 95% 
highest posterior density interval of specimen collection dates was 
calculated using the hpd_est_circ function in the R package bpnreg 
(Cremers,  2018). We also applied linear mixed models to examine 
the effects of these two methods of phenological inference on the 
inferred length of flowering/fruiting periods at each spatial scale. 
Data source (herbarium specimen or field observation) was also in-
cluded as a fixed effect, and species identity entered the models as 
random effects. Analyses were conducted using the lme4 package 
(Bates et al., 2015) in R v3.6.3 (R Core Team, 2017). In total, com-
parisons of field survey and specimen derived phenological informa-
tion were made across 23 species spanning four biomes, six states 
and five municipalities in Brazil (Figure S1). On average, municipal-
ities were 2839 ± 4791 km2, states 532,276 ± 612,210 km2, biomes 
2,042,371 ± 1,526,713 km2 in size, and the area of Brazil is approxi-
mately 8,515,767 km2.
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Climate data, including maximum air temperature and total pre-
cipitation, were downloaded from CHELSA (https://chels​a-clima​
te.org/) at 30 arc second resolution and resampled at the munici-
pality level for each year (Karger et al., 2017). These data were used 
to compare the sampling of climate space between the two data 
categories—field versus herbarium observations of phenology—and 
to demonstrate how herbarium specimens may be used to investi-
gate the environmental drivers of tropical phenology.

3  |  RESULTS

Herbarium specimens represented a much broader sampling 
across geographic and climatic space than field observational data 
(Figure  1). No observational studies were outside the geographic 
and climatic range represented by herbarium collections of the same 
species. Most flowering herbarium specimens were collected in 
the same specific months (Figure 2a) and temporal period (i.e. the 
span of time between the earliest and latest flowering observations 
across all field surveys of the same species; Figure 2b) in which flow-
ering was observed in monthly field surveys, especially when speci-
mens were collected in the same municipality as the observations. 
The degree of overlap between flowering periods estimated from 
field surveys and specimens varied across species and spatial scale 
(Appendix S1). However, less than 5% of the species in our dataset 
exhibited significant differences between flowering periods inferred 
from observations or specimens, regardless of spatial aggregation 
(p < 0.05). Flowering periods inferred from herbarium specimens did 
not differ from those inferred from field observations in the same 

municipality. The proportion of species with significant differences 
between flowering periods inferred from field versus herbarium 
observations within the same state, biome and country were 4.8%, 
4.2% and 4.5% respectively.

The duration of flowering period inferred from specimens was 
positively correlated with field observations, especially at smaller 
spatial scales (Figure 3). Fruiting durations inferred from herbarium 
specimens were not significantly correlated with field observed dura-
tions, regardless of spatial scale (Figure S2). There was no significant 
difference in the length of flowering and fruiting periods inferred 
from field observations and herbarium specimens at the municipality 
and state levels (Table S2). However, flowering and fruiting periods 
inferred from herbarium specimens were significantly longer at the 
biome and country scales. Along these lines, species could exhibit 
phenological variation across their ranges not captured by the more 
narrow geographic focus of the field observations. For instance, our 
crowdsourcing results suggested Chamaecrista desvauxii (Collad.) 
Killip flowering phenology may differ substantially among Amazonia, 
Caatinga, Cerrado and Mata Atlântica (Figure 4). Overall similar pat-
terns were observed for fruiting phenology, but the discrepancies 
between estimates derived from herbarium specimens and field ob-
servations tended to be larger (Appendix S1).

4  |  DISCUSSION

Tropical biomes are simultaneously the most biodiverse and most 
threatened by anthropogenic change (Raven et al., 2020). To under-
stand the effects and consequences of global change on processes 

F I G U R E  1  Distribution of field versus herbarium observations of phenology. Field observations of plant phenology (purple squares) and 
herbarium specimen collection locations (yellow crosses) in geographic (a) and climatic space (b). Each biome is depicted in a different colour 
on panel (a). Shaded polygons in panel (b) are convex hulls encompassing all data points from each source, and the x and y axes refer to 
average monthly maximum air temperature and precipitation of the year/location of collection/observation respectively.
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that shape tropical ecosystems, such as plant reproductive phenol-
ogy, we require data that span vast spatial, temporal and taxonomic 
scales. Yet direct field observations of tropical phenology are rare 
(Abernethy et al.,  2018; Davis & Ellison, 2018; Davis, Lyra, Park, 
Asprino, et al., 2022). The utility of herbarium specimens to bridge 

this impasse to investigate tropical phenology has not been assessed 
broadly. Although such assessments have been attempted for tem-
perate biomes, temporal and environmental cues for phenological 
states are likely to differ between temperate and tropical regions 
(Borchert et al., 2005; Davis, Lyra, Park, Asprino, et al., 2022). Our 
results indicate that herbarium specimens are indeed informative 
for phenological research in the tropics, yet need to be explored 
cautiously.

4.1  |  Herbarium specimens provide reliable 
estimates of tropical phenology

Leaf phenology is by far the most common subject of investigations 
examining the effects of climate change on plant phenology, espe-
cially at large scales (Park, Newman, et al., 2021). However, flow-
ering and fruiting phenologies are key to the fitness and survival 
of plant species, and shifts therein can potentially lead to cascad-
ing trophic changes within ecosystems (Butt et al., 2015; Mendoza 
et al., 2017; Morellato et al., 2016; Polansky & Boesch, 2013; Ting 
et al., 2008; Willis et al., 2008). Our results demonstrate high con-
gruence between reproductive phenology inferred from field ob-
servations and digitized herbarium specimens at every scale we 
analysed. Despite the potential spatial biases of herbarium collec-
tions (Daru et al., 2018), both the geographic and climatic ranges 
represented by herbarium collections were substantially larger 
than those covered by field observations and fully encompassed 
the range of observational data. As in temperate regions, herbarium 

F I G U R E  2  Proportion of herbarium specimens with flowers collected within the same months (a) and periods (b) during which flowering 
of the same species was observed in field surveys from the same municipality, state, biome and country. Flowering period was inferred from 
a circular distribution of field observation dates of each species in each spatial category. The number of data points at each spatial scale are 
listed beneath each box and whisker plot. These species were compared across five municipalities, six states, four biomes and the entire 
country of Brazil.
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F I G U R E  3  Comparison of flowering period inferred from field 
versus herbarium observations at varying spatial scales. R2 values 
are depicted only for significant correlations indicated by solid lines 
(p < 0.05). Dashed lines indicate non-significant relationships.

r2 = 0.68

r2 = 0.21

0

100

200

300

400

0 100 200 300
specimen inferred flowering duration (days)

ob
se

rv
ed

 fl
ow

er
in

g 
du

ra
tio

n 
(d

ay
s)

municipality
state
biome
country

 13652745, 2023, 2, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2745.14047, W

iley O
nline Library on [05/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



332  |   Journal of Ecology PARK et al.

specimens represent phenological observations across a much 
wider spatial extent and variety of tropical biomes and environ-
ments than do direct field surveys (Davis et al., 2015). Furthermore, 
the herbarium specimens in our dataset comprised phenological in-
formation spanning more than 60 years, demonstrating that these 
specimens can help address the paucity of historic and long-term 
observational datasets in the tropics (see also Davis, Lyra, Park, 
Asprino, et al., 2022). Indeed, most of the field observations we 
reviewed were relatively recent (1988–2008), whereas many speci-
mens were collected before the onset of what we now recognize 
as substantial global warming. We note that although specimens 
span greater temporal scales than most field observations, they do 
not necessarily comprise regular, repeated sampling of the same 
location through time. Thus, while we may infer coarse temporal 
trends from specimens and complement the results from field ob-
servations, they do not replace the need for regularly censused, 
long-term observational investigations.

As with flowering, estimates of fruiting phenology were gener-
ally congruent between specimens and field observations, but to a 
lesser degree. We suggest four reasons for the weaker congruence 
of fruiting estimates. First, most herbarium specimens tend to be of 
plants in flower, resulting in fewer fruiting specimens from which to 
infer phenology. The comparative lack of specimens with fruit may 
result in greater uncertainty and stochasticity in specimen-derived 
estimates of fruiting phenology. Second, fruits in some tropical 
species may persist on the parental plant well beyond maturation, 
across months or even years. Thus, it can be difficult to determine 
how old a fruit is from a digitized specimen, which can greatly com-
plicate the interpretation of these scores. Third, smaller fruits may 
be confused with leaf/or flower buds during scoring (Figure 5), re-
ducing the accuracy of fruiting phenology estimates (see also Willis, 
Law, et al., 2017 and Davis et al., 2020 for variation across the scores 
of different phenophases).

4.2  |  The promise of herbarium specimens for 
determining phenological cues in the tropics

Numerous studies have documented phenological patterns in the 
tropical regions of the world, and factors such as precipitation, 

insolation and photoperiod have been suggested to influence 
these events (Borchert,  1996; Borchert et al.,  2005, 2015; Calle 
et al.,  2010). However, most of these did not attempt to test the 
environmental or physiological drivers of these patterns (Abernethy 
et al.,  2018). Herbarium specimens have been used to investigate 
the drivers of plant phenology in temperate regions, and similar 
approaches could potentially be applied to tropical systems (Davis 
& Ellison, 2018;  Davis, Lyra, Park, Asprino, et al., 2022). For ex-
ample, data from herbarium specimens of the monkey's comb, 
Amphilophium crucigerum (L.) L.G. Lohmann (Bignoniaceae) suggest 
the same climate—flowering phenology relationships as data from 
field observations (Figure 6). A. crucigerum tends to flower earlier in 
wetter (and slightly cooler) climates in both field surveys and herbar-
ium specimens. Although the general lack of observational data pre-
vents us from making more concrete inferences, this demonstrates 
the promise of using herbarium specimens to investigate environ-
mental drivers of tropical phenology.

The phenological timing of species and their responses to cli-
mate have been demonstrated to vary substantially across lat-
itude, both within and among species (Park et al.,  2019; Park, 
Newman, et al.,  2021; Xie et al.,  2022). Although these studies 
focused on temperate floras, we expect similar responses exist in 
the tropics, as the ranges of numerous taxa span multiple tropical 
biomes (Lucresia et al., 2021). For instance, Banisteriopsis pubipe-
tala (A. Juss.) Cuatrec. (Malpighiaceae) has been independently 
observed to flower from July to December in Cerrado (Batalha 
& Mantovani,  2000), while flowering appears to be restricted 
to October in Mata Atlântica (Morellato & Leitao-Filho,  1996). 
However, it is difficult to assess phenological variation across 
their ranges from existing, geographically restricted field obser-
vations. As in temperate regions, herbarium specimens collected 
from across species' ranges can be used effectively to explore how 
their phenological responses vary across space and time. Indeed, 
our results captured substantial variation in flowering time across 
the four different biomes that constitute the range of Chamaecrista 
desvauxii (Figure 4). Along these lines, the decrease in congruence 
we observe between phenological timing inferred from field obser-
vations and herbarium specimens at larger spatial scales (e.g. coun-
try) may reflect the presence of widespread phenological variation 
across species' ranges in the tropics.

F I G U R E  4  Histogram of Chamaecrista desvauxii flowering specimens collected in four biomes. Circular diagrams depict the time of 
collection in angles.
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F I G U R E  5  Specimens of Couepia grandiflora (a) and Leandra quinquedentata (b), illustrating overlap and similarity among reproductive 
organs. Images are from the Reflora virtual herbarium under CC BY-SA 4.0.

F I G U R E  6  Amphilophium crucigerum phenology and its relationship with climate. (a) Flowering phenology field observations (grey 
squares) versus herbarium specimens (yellow crosses) are depicted in climate space. Maximum air temperature and precipitation represent 
monthly averages of the year/location of collection/observation, respectively. Crosses represent specimens and grey squares represent 
surveyed plots. Grey text insets indicate the flowering periods of this species as surveyed in each plot. (b) The relationship between day of 
year flowering and mean September–October precipitation inferred from herbarium specimens. Both field observation data and specimen 
data indicated that A. crucigerum flowering begins in October and persists into the following year.
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4.3  |  Limitations, caveats and ways forward

Herbarium specimens represent a non-random, non-comprehensive 
sampling of phenological events (Davis et al., 2015; Willis, Ellwood, 
et al.,  2017) because they are rarely collected for phenological 
studies and reflect gaps and biases related to collector behaviour. 
Taxonomic challenges, including misidentified specimens and spe-
cies complexes, can mislead results of phenological investigations, 
but especially those based on digital specimen images and par-
ticularly for tropical plants, which are notoriously misidentified 
(Goodwin et al., 2015). For instance, we found disparities in pheno-
logical information inferred from specimens and field observations 
in Banisteriopsis variabilis B. Gates (Malpighiaceae) and Licania het-
eromorpha Benth (Chrysobalanaceae) (Appendix S1; see also Davis, 
Lyra, Park, Asprino, et al., 2022). As their specific epithets suggest, 
both taxa are morphologically variable and may constitute species 
complexes (Prance,  1972). However, taxonomic difficulty can af-
fect field-based studies as well, and collection-based studies have 
increasingly found ways to detect and account for such biases (Belitz 
et al., 2020; Park et al., 2019). Moreover, these instances potentially 
represent opportunities to explore cryptic species that may be de-
limited by phenology.

Inferring phenophases from digital images can be difficult for 
certain taxa. For instance, most species of Miconia and Leandra 
(Melastomataceae) and most species of Chrysobalanaceae possess 
tiny buds and flowers, often clumped and/or overlapping in spec-
imens (Figure 5). Fruits may be harder to recognize in several spe-
cies, as they can be confused with flower or leaf buds. Quantifying 
reproductive organs and assessing the phenological stage of such 
taxa can be difficult when the physical specimens are not available 
for direct examination. Thus, digital specimen-based investigations 
of phenology may not be appropriate for all taxa. Still, although time 
consuming, expert botanists are able to discern and quantify differ-
ent reproductive organs of these taxa from high-resolution digital 
images as we demonstrate here. Furthermore, advances in machine-
learning applications for phenological research are making the au-
tomatic extraction of data from digitized specimens with equal or 
better accuracy than non-expert humans increasingly feasible even 
if heuristics are applied to identify whether a specimen is mostly 
in fruit vs mostly in flower (Davis et al., 2020; Goëau et al., 2020; 
Lorieul et al., 2019).

Inferring phenological phenomena from herbarium specimens 
faces additional challenges in tropical biomes. Some species can 
reproduce multiple times during a single year, while others may re-
produce supra-annually (Bawa et al., 2003; Engel & Martins, 2005; 
Rojas-Robles & Stiles, 2009). For example, Licania octandra var. pal-
lida Prance (Chrysobalanaceae) flowered four times in 25 years of 
field observations in the Reserva Ducke (Amazon Rainforest) from 
1970 to 1994 (Ruiz & Alencar, 1999). Although the density of flow-
ering specimen collections suggest that several species may exhibit 
multiple flowering peaks throughout the year (e.g. Tabebuia aurea 
(Bignoniaceae), Hirtella racemosa (Chrysobalanaceae), Byrsonima 
crassifolia (Malpighiaceae) and Mimosa somnians (Fabaceae); 

Appendix S2), such patterns cannot always be reliably inferred from 
herbarium specimens, especially for taxa and phenological stages 
that have not been well collected. Indeed, the discrepancies be-
tween herbarium specimen versus field observational records de-
rived phenological estimates tended to be larger for fruits (Table S2; 
Appendix S1). Finally, herbarium specimens often comprise only part 
of a larger plant, and thus may not always reflect the general pheno-
logical stage of an entire individual. This issue may be exacerbated 
in tropical ecosystems due to the comparative abundance of tree 
species, although reproductive materials are often prioritized for 
collection.

Nonetheless, our study shows that tropical plant reproductive 
phenology inferred from herbarium records are widely congruent 
with field observations and demonstrates that herbarium specimens 
can be effectively used to assess patterns and mechanisms of plant 
phenological responses in the tropics. In particular, with theoreti-
cal and methodological advances that have made collections-based 
phenological studies increasingly efficient, herbarium specimens are 
positioned to be a vital resource for closing the gap in our phenolog-
ical knowledge in tropical biomes (Davis & Ellison, 2018; Davis, Lyra, 
Park, Asprino, et al., 2022). Such efforts will be critical to enhance 
our ability to predict how plant assemblages in the tropics will re-
spond to an increasingly changing climate and implement mitigation 
strategies.
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