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ABSTRACT ARTICLE HISTORY
Longitudinal data are commonly encountered in many fields. Many Recetved 18 August 2021
statistical models have been developed, among which the time- Accepted 16 March 2022
varying coefficient model has been shown to be effective for KEYWORDS

many practical problems. Long-tailed/contaminated distnbutions Basts function expansion;
are not uncommon and cannot be accommodated using non-robust network structure: '
likelihood-based estimation. Another common limitation shared by robustness: variable salection
many of the existing methods is the insufficient account for the

interconnections among covanates. In this study, we adopt a least

absolute deviation loss function to achieve robustness. For the selec-

tion of relevant covanates, a penalization approach is adopted. Sig-

nificantly advancing from the existing literature, we describe the

interconnections among covariates using a network structure and

develop novel penalties to accommodate the network connectiv-

ity and connection measures. Consistency properties are rigorously

established. Numerical studies, including both simulations and data

analysis, demonstrate the competitive practical performance of the

proposed method.

1. Introduction

Longitudinal data arise in many scientific fields. Extensive methodological, theoretical,
and numerical studies have been conducted. For detailed discussions, we refer to [1,2].
Consider a real-valued time variable f. At time f, denote Y(f) as the response variable and
X(H) = (X%D,.... X" (1) e RP*! as the covariate vector with X'® = 1. For simplic-
ity of notation, assume that the support of ¢ is [0, 1]. For a dataset with sample size N,
denote the mth measurement of (t, Y(t), X(1)) for the ith subject as (fim, Yi(tim), Xi(tim)),
where 1 < m < M;. With a slight abuse of notation, we also denote Y;, = Yj(t;;) and
Xim = X;(t;m). A large number of statistical models have been developed for longitudinal
data. Among them, the time-varying coefficient model has been shown to be very useful
for many practical problems. The model postulates that

Yim = X; B(tim) + €im» i=1,...,Nym=1,..., M, (1)
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where B(t) = (folt),... ,ﬁp{t}]T is the vector of time-varying coefficients and &, is the
error term. In practice, it is usually assumed that the components of g(t) are smooth.
Estimation, inference, and computation of this model have been studied in quite a few
publications. For reference, we refer to [3,4].

Literature review suggests that, despite extensive research, many of the existing methods
still have limitations. Most of the existing time-varying coefficient models are based on the
least-squares method and cannot accommodate long-tailed distributions/contamination.
However, in practical data analysis, long-tailed distributions/contamination in the
response variable are not uncommon and can be caused by special data-generating mecha-
nisms, data mixture, human errors, as well as many other factors. Specific examples such as
long-tailed pene expression distributions and the empirical distributions of stock returns
are presented in [5,6], respectively. There is a demand for robust estimation for time-
varying coefficient models. In more recent studies, with the cost of data collection going
down, more and more variables have been collected. For example, hundreds of financial
ratios, macroeconomic indices and investor sentiment indices have been selected in finan-
cial studies [7]. However, only a few of them are related to the phenomenon of interest.
To improve the stability of estimation and also to identify the most relevant variables so
as to create more interpretable models, regularized estimation and variable selection are
often needed. There has been extensive literature on regularized estimation/variable selec-
tion with parametric models. With semi-parametric and nonparametric modelling, which
is the case in this study, relevant studies include [8,9] and others. For longitudinal data, the
most relevant studies may be [10] and others. However, it is noted that most of the existing
studies have adopted non-robust loss functions, and research on ‘robust loss function +
regularized estimation/variable selection’ is still much limited. Another common limita-
tion shared by many of the existing studies is the lack of attention to the interconnections
among covariates. Statistically, it is usually true that covariates are correlated. From a mech-
anistic perspective, some covariates can be interconnected. In some studies [11], it hasbeen
suggested that accommodating the interconnections among covariates can improve model
interpretability, estimation, as well as selection of relevant variables. However, in the con-
text of time-varying coefficient model for longitudinal data, there is still a lack of a method
that can sufficiently account for such interconnections.

In this study, we consider the time-varying coefficient model for longitudinal data. Our
goal is to develop a more effective data analysis method that can fill the aforementioned
knowledge gaps. This study may advance from the existing literature in the following
perspectives. First, to accommodate long-tailed distributions/contamination, we propose
adopting a robust loss function. For the selection of relevant variables and regularized esti-
mation, we adopt a penalization strategy. It is noted that although the strategy of ‘robust
loss function + penalization’ may seem ‘straightforward’, it has not been investigated for
model (1). Significantly advancing from a large number of existing literature, we propose
describing the interconnections among covariates using a network structure and accom-
modating the most essential network properties in estimation. Although the proposed
strategy has roots in some recently published studies on parametric models [11,12], the
special characteristics of longitudinal data and nonparametric modelling bring significant
new challenges. Overall, in terms of methodology, this study provides a practically use-
ful new venue for analysing longitudinal data with long-tailed distributions/contamination
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and multiple covariates. On the other hand, as the model/estimation strategy includes mul-
tiple others (parametric longitudinal models, varying coefficient models for cross-sectional
observations, etc.) as special cases, our theoretical investigation can provide important
insights beyond this study.

The rest of the article is organized as follows. The proposed analysis, its theoretical
properties, and computational algorithms are described in Section 2. Numerical studies,
including simulation in Section 3 and data analysis in Section 4, demonstrate its satis-
factory performance. The article concludes with a discussion in Section 5. Additional
technical details and numerical results are provided in Appendix.

2. Methods
2.1. Penalized estimation
‘We propose the penalized objective function

1 N M
LN ==

=1 m=I

+ P(B, 1), (2)

P
Yim — Eﬂk{tim}xgﬁ
k=0

where the first term is the least absolute deviation (LAD)-based loss and can accommeodate
long-tailed distributions/contamination. The main advancement is the development of the
penalty P(8, 1). For & = (A, A;) with &; = 0 and 2, = 0, we propose the penalty

p I
1
P(B,3) = A1 ) Wk“ﬁk{'}"'l'i-‘&f > lail(B(t) — spPi()’ dt
k=0 0 1gjckep

= Py(-) + Pa(-),

where || B ()| = {ful BL(t) dni/2, ay is a measure of the connection between the jth and
kth variables, Sik = sign(a;). We assume that ajx for j,k=1,...,p can be derived from
prior knowledge. If not, when the observed time points are the same for all subjects, we
can calculate a by aj = rj"kﬂlrjﬂ = 1) with

g TG - X0 —Xw)
o T, 0® —x®p TV, 8 X9y

for j.k=1,....p, j{ﬂ} = lfN{Zfi, Xﬁi}, and 7 is the 95% gquantile of the distribution
of the sample correlation coefficient under the assumption that the jth and kth vari-
ables are uncorrelated. When the observed time points are subject-specific, we suggest to
synchronize the data through preprocessing following [13,14].

The first penalty takes a Lasso form and penalizes the integrated £;-norms of the
time-varying coefficients. Similar penalties have been considered in the literature [15].
Motivated by adaptive penalization, weights are imposed. Significantly different from the
literature, the weights are not determined by initial estimates but by the network connec-
tivity. Specifically, we define wy = 1 (for the intercept) and wy = IHE#,: lajx| + &) for
k= 1,...,p.& is a small positive constant. This is motivated by the observation that highly
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connected nodes are more likely to be important for outcome variables [12]. Using the con-
nectivity to gauge variable selection has been considered in the context of thresholding with
parametric models [12] and demonstrated to be successful.

In the second penalty, aj; is the adjacency measure. For parametric models, the Lapla-
cian penalization has been developed [11], which promotes adjacent nodes to have similar
regression coefficients. The proposed penalty has a similar spirit. Different from the exist-
ing literature, it is imposed on functions. When two nodes are positively correlated, the
penalty encourages similarity in their corresponding functions. When two nodes are neg-
atively correlated, the penalty encourages their sum to be small, leading to shrinkage on
both functions and/or opposite signs.

The network structure may also change over time owing to the time-dependent nature
of the longitudinal data. That is, a3 and other downstream measurements are functions of
t. Another possibility is to use aj(f) and s;(f) in the penalty. However, we propose using
the averages to simplify the calculation. Both P, and P; have shrinkage properties. A, and
A> are data-dependently chosen to avoid double penalization.

Basis function expansion: Suppose that the coefficient functlnn Bi(-) can be formed by
a linear combination of basis functions, that is, f;(t) = ZE " Bg(t)yxe, where By’s are the
known basis functions, y's are the unknown regression me:lﬁ::lents and K, is the number
of knots. For basis functions, we use natural cubic splines, which has been a popular choice
in the literature. Although it is possible to have data-driven knots, to simply computation,
we use equally spaced knots. Without loss of generality, for all time-varying coefficients,
we use the same number of knots (denoted as K} and hence the same basis functions. As
suggested by Fan et al. [16], we set K, = [NV/?] + 2, where [}] denotes an mteger part of
b. Denote B(t) = (By(f), ..., B, (1), »e = (41 - .- i) - and @ = [ BHB(H)T dt.
Then following [15], we have || 8:(-)]| = {yﬂ—ﬁyy'” and

1 1
Elz Z |ﬂ;kif (Bi(1) — sigPr(D))’ dt = E-"‘uz Z Il (v — Sjk}'E}TE)(}'j — Sk Vk)-
1=j<k=p I=j=k=p

Then objective function (2) can be rewritten as

N M; P K,
1
Q=75 |¥m sz‘“fmr.mrm + A1 Zwﬂn oy
i=1 m=1 k=0 =1 k=0
A
+ ?1 D lapl(y —sin) O — spn, (3)
I=j<k=p

where y = {}.-DT, —_— PPT}T. An estimate of f;(t) can be obtained hyﬁk{f} - Z}El Vi B (1),
where j1;'s are the minimizers of (3).

2.2. Asymptotic properties

Denote A as the adjacency matrix composed of u‘%‘s. Let D = diag(d,, ... ,dP}, where dj -
Z‘L | lajkl|. Define L = D — A, which is semi-positive definite. Then

YL@y o= Y laply;—siv) OG5 — sy,
1=j<k=p
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where Y¥_o= “"IT! sauy PT :l'T- Db“ﬂﬂl.lsi.}", ¥ = {}'rﬂT:* ?IB}T- Note that

Uin = XB(ti) s ... X2 B(ti) )T = Xim @ Bltim).

Based on the discussions above, the objective function can be rewritten as

N M P
1 T T Az T
QU == Z;] |Yim — Uga? | + 21 g“’k{}"k o'+ r (L8O o

Denote the true value as 8*(f) = (85 (1), .. .ﬁ;{t}]T. Denote A = {k: Bf (1) £0,0 <
k = p} as the set of important variables. Define Xj,,7 as the subvector of X;,, indexed
by T < [0,1,...,p}. Let I¢ and |T| denote the complement and cardinality of set T,
respectively. Let || - ||; be the L, norm for vectors and C'"'([0, 1]) be the space of r-times
continuously differentiable functions defined on [0, 1].

First consider the oracle estimator

p° =argmin Qu(y), stlmlz=0k¢ A (4)

Then we can obtain F’{ﬂ = (ﬁgif], T E‘E{E}}T, where EE{I} = B{t}TFf. The following
conditions are assumed.

(C1) There exists a positive integer M such that max; M; < M < oo.

(C2) The cardinality of A is fixed. For k € A, f}(-) € cfo, 1]).

(C3) Let T=N"'"Ku XN, ¥M {(XimAX], 1) ® (B(tim)B(tim) ")}. There exist posi-
tive constants Iy < D, such that Dy < Agin(Tl) < Aqnax(I1) < D3, where Amin and
Amax denote the smallest and largest eigenvalues, respectively. Moreover, |Xim|oo <
D with D); being a positive constantfori =1,...,Nandm=1,..., M;.

(C4) Denote the density function and distribution function of €;, conditional on
(Xim, tim) as ﬁm{‘lem:- tim) and Fin (- | Xim, tim ), fE'SPBCti.‘.fE]}'. F(0| Xim, tim) = 0.5.
There exist positive constants ¢; and ¢; such that for any u satisfying |u| < ¢,
fim (1] Xim, tim)’s are uniformly bounded away from 0 and oo, and

I-Fl'm{m-xl'mr tim) — Fim(0|Xim, fim) — uﬂm{mxim: tim)] < 5'2”2-

Similar conditions have been assumed in the literature (see, e.g. [17,18]). The following
theorem establishes the consistency of F’{I}.

Theorem 2.1: Assume that (C1)-(C4) hold. In addition,
Ky — 0o, Kylog(K,)/N —0, X Tajw* —0, and 2,—0,
=
as N — oo. Thenfu{t} satisfies

@) n YN, TM (Bo(tim) — B (tim))? = OplKn/N + K2 + 22(maxge g wi)?), for
ke A;
(b) B2(t)=0,fork ¢ A



6 (& KFANGETAL

The proof is given in Appendix. Hereafter, we set L* = diag{1, L} whichisa(p+ 1) x
{p + 1) matrix, and

1 1/2
Ked

where L* is the (k+ 1,k 4+ 1)th element of L*. The following additional condi-

; (k- 1pk4-1)
tions are ne

(C5) bB(i1,A2) = 0, Nb(A1,Az2) — oo.
(C6) (N"V2K)? + K" + A1 maxgeq wi) " minpeq f; BE2(1) dt — oo.

Conditions (C5) and (C6) are needed for variable selection consistency. Condition {C6)
requires that the smallest signal does not decay too fast, which is similar to that in [19].

Theorem 2.2: Assume that (C1)-(C6) and conditions in Theorem 2.1 hold. If logp +
log K, = o(NB (A1, 22)) andN—”lK,!,’u + K7+ Ay maxgeq4 wi = o(b(Ay, 2)), then with
asymptofic probability one, ¥° is the minimizer of the proposed penalized objective func-
tion (3).

This theorem establishes that the proposed estimator enjoys the same asymptotic prop-
erties as the oracle estimator ¥ in (4) with probability approaching one. It is worth noting
that this result holds under high dimensions without restrictive conditions on the errors,
which are commonly imposed in the literature. Proofs are presented in Appendix.

2.3. Computation

In a neighbourhood of an estimator y'*), the objective function (3) can be approximated

by

N Mi Eﬂ k

3> (Yim — Tho T x}m}fru.-m}m}f

i1 m—1 &+ |Yim — ﬁ:ﬂ EEE xr"[m}ﬂi'ltﬁ":'}’ﬁ}l

P
A
+a1 ) wily @)Y + E* > laly; — s T O — s,
k=0 1<j<k<p

(5)

1
gy T
Qaly; ¥ }—N

where ¢ is a small positive number to avoid zero in the denominator.

Define U; = (Uy, ..., Uing) With Ui = (X B(tim) "> ., Xi. B(tim) ) . Then we
have U = ‘:U'j, . U‘N] S1m1lar}y, let Y = {F“, T FlM!, PRI YN|, ST Y[MN-}T. Fur-
thermore, define Z—' — diag(|€'?| + &), wheree® = ¥ — U p**). Then function (5) can
be rewritten as

P
Qu(y; ¥y ) = % (Y = UTF)T Z (Y - UT}') + 1 E wi(y, Oy
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A
+§ D el — spm) T O — saw). (6)
I=j<k=p

Lety =1 ® @2y and U = L1 ® @120, Then function (6) can be rewritten as

1 oo ;. £
Sy _=Frls T A =T oa1f2
QulP; ¥ ]—N(l’ UT7) Z(Y—-0T7)+n ) w70
k=0
A - N . -
5 D 1Al — iR T — s (7)
1=j=k=p

Define . — diag(0, L) @ Ik, with L defined in the above subsection. Then function (7) can
be rewritten as

- P

@y == (T-077) (F-077)+u Y m@ w0 ®
k=0

where ¥ = (Z'2Y)7,0] , ;. )" and U = (UZ', /i;NJZL'?). This objective func-

tion can be solved using afgurithm for group Lasso [20]. Overall, the proposed computa-

tional algorithm proceeds as follows.

Step 1 Initialize '™ and s = 0.

Step 2 Given y'*, for each k, update 4 to };j::""” by optimizing (8).5s = s+ 1.

Step 3 Repeat Step 3 until convergence.

In all our numerical examples, convergence is achieved with a small number of itera-
tions. With fast convergence, the proposed algorithm is computationally much affordable.
For example, for one simulation replicate with p = 500 (more details described in the next
section), the analysis takes 2.4 min on a laptop with standard configurations.

The proposed method involves two tuning parameters A, A3, which have similar inter-
pretations as in the existing penalization studies. We choose tuning parameters using
V-fold cross-validation. This is computationally feasible as only simple updates are
involved in the proposed algorithm.

3. Simulation

In the simulation, the data are generated from (1) with sample size N = 200. The number
of repeated measurements for each subject is M; = 10, fori = 1,...,N. The index vari-
able f is generated from uniform[0, 1]. We consider two error distributions with (Error 1)
N0, 1) and (Error 2) 0.7 N'(0, 1)4-0.3 Cauchy(0, 1). Here the normal error distribution
can serve as a benchmark, and the Cauchy contamination has been commonly considered
in the literature. It is noted that the contamination rate is considerably higher than in some
existing studies. We set p = 50 and 500, and penerate covariates from multivariate normal
distributions with marginal means 0 and variances 1. Covariates form clusters of size 10.
Those in the same clusters are correlated, leading to the network structure, and different
clusters are uncorrelated. The following specific examples are considered.

Example I: Covariates in the first three clusters have correlation coefficients g, at any
time {. Those in the other clusters have an auto-regression correlation structure, with
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covariates i and j having correlation coefficients p!; A at any time t. Set p; = 0.7,0.5
and p, = 0.3, representing different levels of interconnections. For the time-varying
coefficient functions, set By(f) = o (t) = 0.06t, Bz (1) = Ba(t) = 0.08t, Bs(t) = fe(t) =
0.12t, (1) = fe(t) = 0.16t, Bg(f) = fp(1) = 0.20¢, and the others are zero.

Example II: Covariates in the first cluster have correlation coefficients 0.7, and those
in the other clusters have correlation coefficients 0.5. Set 8,(f) = 0.1log(1 + 51), §,(1) =
0.1t + 0.0612, B3(f) = 0.14 exp(t — 0.1), Ba(t) = 0.08 cos(£) /(1 + sin(t)) + 0.12¢, Bs(5) =
0.14sin(/2t) + 0.12, Bs(t) = 0.08 sin(t) — 0.02 cos(t) + 0.02, B(t) = —0.06t + 0.14
(t + 1) log(1 + 1), Bx(f) = 0.24t, Bo(t) = —0.16 cos(2m /3(t — 2.5)), Pro(t) = 0.1(t — 1)*
+ 0.14£, 11 (t) = Pr2(t) = 0.128, f13(t) = Pralt) = 0.108, B15(t) = Prslt) = 0.08¢, By17(1)
= () = 0.09¢, Bro(t) = Panlt) = 0.12t, and the others are zero.

Example IIl: Covariates in the first two cluster have correlation coefficients 0.7,
and those in the other clusters have correlation coefficients 0.5. Set f;,(t) = 0.06¢ +
0.041og(1 + £), B2a(t) = 0.06¢ + 0.03 sin(7t/2), P23 (1) = 0.09f + 0.01£2, Bas(f) = 0.09f +
(0.05¢ — 0.03)2, Bas(t) = 0.08t + 0.01log(1 + 50), Bas(t) = 0.08¢ + 0.02 exp(t — 0.1), Bz
{f} e ﬁm“’} = ﬂ.lﬂf, ﬁ:gﬂ‘} = ﬂ;uﬁ‘] =0 l,?.f, and the others are zero.

Under Examples 1 and II, important variables have higher connectivity, satisfying the
assumed model structure. Under Example I1I, important variables have lower connectivity.
This example can test the performance of the proposed method under mis-specification.

To better pauge the performance of the proposed method, we also consider four direct
competitors. The main characteristics of the five methods are summarized in Table 1.
Method M4 also has a robust LAD loss. Only penalty P, is applied. Compared with this
method the merit of accounting for network adjacency can be established. Methods M1 and
M2 are parallel to M4 and M5, but with a non-robust LS ( least-squared) loss. Compared
with these two methods the merit of robustness can be established. In addition, we also con-
sider method M3, which has an LAD robust loss with penalty P}(-) = &, E€=1 | Bl
Compared with this method the merit of accounting for network connectivity can be estab-
lished. We acknowledge that there are other potential alternatives. The four alternatives we
consider have analysis frameworks most comparable to the proposed.

To compare different methods, we consider AUC (area under the ROC curve). Using
the AUC for comparison can effectively ‘remove’ the impact of tuning parameter selection,
which can differ across methods. In addition, with tunings selected using cross-validation,
we consider the integrated model error ME = f{ﬁ{t} — Bt T (B — BY1)) df, where
ﬁ{ t) and S°(t) are the estimated and true functions, the numbers of true positive (TP) and
false positive (FP).

Since the simulation results are qualitatively similar for p = 50 and p = 500, we present
only the case with p = 500, while the results for p = 50 are relegated to Appendix 2. The

Table 1. Summary of all methods.

Method Lioss function Penalty
M1 15 Loss Pyi-)
Mz LS Loss Py} + P2l
M3 LAD Loss Py
M4 LADY Loss Pyi-)

M5 LAD Loss Pri-) + Pa(-)
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Table 2. Results of Example | for p = 500.

Ermor 1 Emor 2
Method ME P FF AUC ME TP FP AUC
m= 0.7
M1 0.7 0.00 1.00 1.0 0.57 000 000 0.98
{0.05) (148} {1.48) {00 {0,000 (000 (000} 10.07}
M2 0.08 1006 1.00 1.00 .57 200 1.0 .98
{0.01) (0000 (1.48) (0.0 (0.1 (2.97) (148) {007}
M3 037 900 250 0.80 0.40 B8.00 2100 0.89
0143 (1.48) {2.22) (.07 10.14) (1.48) (223} {0L05)
M4 0.38 Q.00 0.00 1.00 0.42 9.00 1.0 1.00
{0.14) (148} (0,000 {00 10.16) (1.48) (1.48) {0.000
M5 0.08 1000 1.00 1.00 0.09 10,00 1.0 1.00
{0.01) (100000 (1.48) (0000 {002 (0.00) (1.48) {0.00)
m = ﬂj
M1 0.14 Q.00 1.00 1.00 0.57 000 00 097
(0.0 (1.48} {1.48) {000y (0.000 (0.000 (0.00) {0.02)
M2 0.09 1000 200 1.00 0.57 0.00 00 097
{0.02) (000} {1.48) {000 {0,000 (000 (000 10.02}
M3 0.14 E00 3.00 003 0.7 8.00 400 0.m
{0.05) (1.48) (1.48) (0.06) (0,05 (1.48) (297) {0.07)
M4 015 Q.00 1.00 0.99 0.7 000 200 0.99
{0.05) (1.48) {1.48) (000) 10.05) (1.48) (1.48) {0,000
M5 008 10,00 200 1.00 Q.10 10.00 200 1.00
{0.07) (0000 {1.48) {0000 0,02 (0.00) (1.48) {0000

Note: In each cell, madian (median absolute deviation0.6745).

results are summarized in Tables 2 and 3. Under Examples I and II, M5 has the best perfor-
mance in both identification and estimation with the mixture error distribution and M2
has the best performance with the normal error distribution, as expected. Accounting for
network adjacency improves the performance of the model. The accuracy of g°(f)'s esti-
mation is improved significantly from M1 to M2 and M4 to M5. For example, with gy = 0.5
and p = 500, the MEs of M4 and M5 are 0.17 and 0.10, respectively, with the mixture error
distribution under Example 1. Improvement in TP and FP is also observed. For example,
with p = 500, the (TP, FP, AUC) of M4 and M5 are equal to (18, 4, 0.96) and (20, 2, 0.99),
respectively, with the normal error distribution under Example II. Performances of non-
robust M2 and M1 are inferior with the mixture error distribution, while the performances
of M4 and MS5 are still reasonable. For example, with p; = 0.7 and p = 500, the MEs of
M1, M2, M4 and M5 are (.57, 0.57, 0.42 and 0.09, respectively, with the mixture error dis-
tribution under Example 1. Under Example I11, which is not favourable for the proposed
method, M5 is still observed to have competitive performance.

4. Real data analysis

To demonstrate the effectiveness of our proposed method in selecting the variables with
time-varying effects as well as estimating the corresponding time-varying effects, in this
section, we present a real data analysis based on China stock market. As we know, a large
body of financial literature shows that the stock returns could be predictable in the long
run [21-23]. However, the conclusions are quite mixed regarding the variables which can
sipnificantly predict stock returns, since various techniques, variables and different time
periods of data were employed; therefore, different conclusions were derived by different
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Table 3. Results of Examples il and Il for p = 500.

Error 2
Method ME TP FP AUC ME TP FP ALC
Exampie Il
M1 0.40 10.00 5.00 0.08 1.86 200 000 0.63
{0.10E) (1.48) 14.45) (003} {0.21) (297 (0D {0.08}
M2 027 20,00 4.00 1.00 1.62 .00 200 0.74
{0.07) (0.00) 14.45) (0.01) 10.63) (5.03) (2.97) (0.08)
M3 0.59 17.00 7.00 092 0.69 17.00 .00 0.90
{0.14) {148} 14.45) (0.0 10.18) (1.48) (5.03) {0.04)
M4 067 18.00 4.00 0.06 077 17.00 450 0.95
{0.17) (148} 14.45) (0.03) 10.19) (1.48) 371 {0.04)
M5 027 20,00 200 000 0.27 20000 300 0.98
{0.07) (0.0 (2.97) ([0.01) (0.01) (000 (297) (0.0}
Exampie Ili
M1 0.16 0.00 7.00 0.08 0.36 0.00 000 0.47
{0.0:4) (1.48} 4.45) (0.03) {0000 (0,000 (000 {0.11)
M2 0.01 10.00 0.00 1.00 0.36 0.00 0,00 0.55
{0100} (00000 10.00) 01y {000} (0.00) (0D {0.17)
M3 0.13 000 4.00 0.97 0.16 8.00 3.00 0.9z
{0.04) (1.48) 14.45) (0.05) 10,05} (1.48) (223 (0.05)
M4 0.16 000 7.00 0.95 0.19 8.00 00 0.91
{0.05) {148} (2.97) (0050 10.06) (1.48) (297) {0.06)
M5 0.01 10,00 0.00 0.00 0.01 10000 000 0.08
110,00 {0.00) {0,000 (0.01) 10.01) (000 (000 {0.02)

Note: In each cell, madian (median absolute deviation0.6745).

researchers. The empirical evidence from the literature in asset pricing demonstrates that
most of the predictive models based on cross-section data may be unstable or even spu-
rious. In particular, Welch and Goyal [23] shows that the predictability of these variables
becomes weak in the late of the sample period, especially for the longitudinal dataset.

In this paper, we obtain the data from the Wind database, which is one of the most
widely used and authoritative database in China. The sample period is from 2004 to 2013.

Table 4. Financial ratios.

Notation Financial ratios Hotation Financial ratios

X Foat A-Shares X Return on total assats

Xz A-Shares total Xn Return on aquity

Xy How of equity Kz Met profit margin on sales
Xy A-Shares of the total shares capital ratio A Maln business ratio

X Big shareholders shareholding ratio X Total asset cash racovery
X Shareholding of the top 10 shareholders Az Assat-liability ratio

X7 Number of shareholders Xz Curment assets ratio

Xy Average annual turmover rate Xz Curment liabilities ratio

Xo Annual volume Xz Current ratio

X Annual turmover A Qubck ratio

A Price/earn ratio Az iCash ratio

X2 Price/book value ratio Xn Long-term debt ratio

X2 Price cash flow ratio Az Curment asset tumover rate
X14 Price to sales ratho Az Inventory tumover rate
Xig Aggregate market value K Total asset turniowver

Xs Free float markat capitablzation Aas Accounts payable turnover rate
X7 Met asset value per share Xz Total assets

X Met operating cash flow per share Aaz Dividends per share

X Met cash flow per share
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The response variable is the yearly stock returns of listed firms in China, and the covari-
ates include 37 firm financial ratios, which are displayed in Table 4. After removing missing
measurements, we obtain 389 subjects and each has 10 observations from 2004 to 2013. All
covariates are standardized before model fitting. The histogram given in Figure 1 shows
that the stock returns have a long-tailed skewed distribution, which suggests that a robust
model should be used here. In addition, Figure 2 pives the network correlation between
the financial ratios. From this figure, we can see that there exist significant network mod-
ules among these variables, which suggests the necessity of considering interconnections
among covariates when analysing the data. By analysing this data set, we aim to find the
significant financial ratios and their time-varying effects.

To evaluate the performance of our method in variable selection and prediction, we ran-
domly split the data into a training set, which includes two-thirds of the data, and a testing
set, which includes the remaining one-third of the data. Here, we compare our proposed
model (M5) with the other four alternatives (M1-M4). By computing the median of square

o .
o

Density
0.3 0.4 0.5

0.2

0.1

0.0

Figure 1. The histogram of stock returns.
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error of 100 replications, the results are (.869, 0.867, 0.861, 0.857 and 0.854 correspond-
ing to M1, M2, M3, M4 and M5, respectively. It is easy to see that our proposed method
has the smallest prediction error among all the competing methods as we expected. More-
over, Figure 3 provides the estimated coefficients of nine selected financial ratios using
M5, that is, the float A-Shares, the A-Shares total, the A-Shares of the total shares capital
ratio, the number of shareholders, the average annual turnover rate, the annual volume, the
annual turnover, the aggregate market value, and the free-float market capitalization. More
detailed results are available from the authors upon request. These results are consistent
with much literature [24,25). Meanwhile, Figure 3 also shows that there exist significant
time-varying effects of financial ratios on the stock returns. We can also find such support-
ing evidence from [23] for the US stock market, which suggests that the predictability of
factors varies with time. To complement the estimation and identification analysis, we also
evaluate the stability of analysis by computing the observed occurrence index (QOOI) [26].
For each variable selected using M5 based on the whole data, we compute its probability
of being selected out of the 100 resampling and refer to this probability as the OOIL. The
median value of OOI is 0.94. Satisfactory stability provides certain support for this analysis.

Xi4
P Xiz
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X13
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X35
o
& Ju
XM
X265
@ X K3 wag
%27 o e @
@
P e
&
K4 KI5 X23
e 0 )
N6
o X34

O
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& & g O L I
rég G;n b AL ] Xi6
¢ o .8
o

Figure 2. The network of the financial ratios: each node in the graph corresponds to a financial ratio. The
absence of an edge between two nodes means the average value of the absolute correlation coefficients
between them at all time points is less than 0.187 (determined using the Fisher transformation). The size
of a node is proportional to its degree.
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Figure 3. The estimated functions of coefficients (+1 pointwise standard deviation).

In summary, our proposed model is an effective method to select significant covariates
and has better prediction performance than other alternative models. The proposed model
is robust for long-tailed skewed distribution and the effects are time-varying.

5. Conclusion

Longitudinal data from long-tailed/contaminated distributions occur in many areas
of modern science. In this study, we propose a network-adaptive robust penalization
approach for time-varying coefficient models. The strategy of ‘robust loss function +
penalization’ has been adopted to accommodate long-tailed distributions/contamination
and select the relevant variables. An important contribution is that interconnections among
covariates are described using a network structure and the most essential network proper-
ties of covariates are accommodated in estimation. Consistency properties are rigorously
established. Numerical studies, including both simulations and data analysis, demonstrate
the competitive practical performance of the proposed method.



14 (&) KFANGETAL

There are several potential extensions to the method presented in this article. Beyond
LAD-based loss, there are quite a few other robust techniques. It may be of interest to con-
duct time-varying coefficient models on other techniques. To accommodate the adjacency
measures in the estimation, similarity in shapes instead of the values of coefhcient functions
of adjacent nodes can also be considered in further studies.
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Appendices

Appendix 1. Proofs of Theorems 2.1 and 2.2

Here we present the proofs for the results presented in Section 2.3. We first present some lemmas
that are necessary to prove the theorems.

Lemma A.1: Assume that Condition (C2) holds. Then there exists a spline approximation B(t)" Yi
to B (1) for k € A, such that B (f) = B(t) T yf — Re(t) and sup;cjg,1) |Re(8)] = O(K;").

Lemma A.l follows directly from Corollary 6.21 of [27]. Multiple published papers involving
splines have also used this lemma in their theoretical investigations (see, e.g. [10,18,28]).

Proof of Theorem 2.1: Let Upys = Xim_4 ® B(tim), where & represents the active set of Uppy.
Denote its corresponding coefficient as y g. In addition, let 4_ = .4 — {0}. Similarly, we can define
the corresponding active set S_ and regression coefficient y 5 . Objective function (3) in Section 2
is

N M

1 T T iz, AT

EE Z IYim — Uims¥s| + 41 Zwkf}‘k ey + SVs a4 @68)ys .
i=1 m=1 ked

Note that this function is strictly convex. Dlenote the minimizing solution as ¥ 5. Recall that Y, =
Xy, aB% (tim) + €im. Set & = Fi — 3 for k € A. Denote Riy = (Xim ® B(tim)) ' p* — X, B* (tim).



16 (&) KFANGETAL

Then |¥im — ;ﬂ;?ﬂ = |€im — ULFSES — Binl. We have
N M
Onts) = 5 22 leim — Uihsts — Riml ~ leim — Rinl
=1 m=1

+aa Y we [l + 80700 + 8012 — T Oy )
ke

1
+sho|lrs +8s 1T La s 8Os +8s 1-7E Laa @Op%
= Tnt + Tz + T3 (A1)

Obviously, Ou(€ ) < On(0) = 0. Let ||& 5ll2 = 8,K;'" with 8, being a scalar.
For Ty, we have

N M

Tt == 3 3 E{leim — Ulhsts — Rinl — leim = Ri

i=1 m=1

ZZ I(€im -:n}—-]um,ﬁ;,g

r—I m=1
N M

1
+ 523 eim— U8~ Rl = e~ Rinl —2] 1 < 00— 3| U s

i=1 m=1
—E [IEIm — Upn,s€5 — Rim| — l€im — Rm!] ]
= il iy 8, (A2)
By applying the identity [29]

¥
k-t =2 (10 - 3)+2 [ <0~ 1 0z
0

and Condition (C3) for T:l:11]1 we have

N M;
T = —E 3 {|em — U5t = Rin| = enl} ~ Elcin — Kol = eml}

Note that ||£5/l2 = 8K, . By Condition (C1) and Lemma A.1, we have sup; ,, |Rim| = O(K;").
Combining Conditions (C3), (C4) and the Cauchy-Schwarz inequality, we have that there exists a
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positive constant Dy,
N Ml N MI
T.ﬂ'{” Es— Z memlxw tim)Uin s U sks +— Z Ef.,.m:xm tim) Rim U 5k 5
:—I m=1 r—l m=1

> D42 — O(8,K; ).

Similarly, as §; — Oand K, — 00, we can derive that T,Lll'll = D{T'ill’lll by Condition (C4) and some
complicated calculations. Therefore, for a suﬂicienﬂ}r large N,

T == D432 — [0GK ). (A3)
Calculating the first and second moments of lel shows that
Till D_;.{N“”i K,,ﬂﬁ ). (A4)
Following arguments similar to those used in Lemma 3.2 of [30], we have
sup [T = 0,(N~1K). (A5)
IEslz=1

Similar results can also be seen in [31]. Combining (A2), (A3), (A4), and (A5), we have that

S K — |ap (NI (A6)

T > %Dq.ﬁl [0x(NY2K,
For Ty, note that for k = 4,

G + 807007 +E01T — (T Oy T| = (&) BE) .

Then, we obtain that
Tz = —|O(A18n max wi)l. (A7)
As for Ty, similar to the derivation of Ty, together with i; — 0,
Tra = —|0(a280)| = —jo(1)|d;. (A8)

Therefore, combining (A1), (A6), (A7), and (A&), we can conclude that
0= OnlEs) = 10(DI8; — 10N 2Ky + K7+ Ay max w)] By — Jo(N Ko

holds with probability approaching 1, which implies that §, = O_;.-(N“UIK,:"Q + K"+ & maxye 4

wi ). Theorem 2.1 is established. [ |

Proof of Theorem 2.2: Recall that the proposed objective function is

|_1 m=1

r
1 A2
Quly) = E Z [¥im — Upa¥| + A1 gwmﬁemz +=rLL @6y o

By defining yx = Wy and Upy = diag{ W=, ..., W Ui with W = 82, the above objective
function reduces to
1 N M;
Q) =52 > Win— Up¥l+ 4 E WP 0T + —r_u{L ® Dy _g.
=1 m=1
Denote T as the set corresponding to X®). Then |T| = K. Following [19], we define the subgra-
dient functions of Y2 | M |V — U] 7] for k ¢ A:

N M; 1 N M 1
Gk#) =) Uimz [n:r'f.,.— Ui ¥ Eﬂl—i] —% N B, [vam+§]
i=1 m=1 i=1 m=1
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with vim = 0if Yim — ULy # 0and v, € [—1,1] otherwise.

Note that Gg(y) is a vector of length K. All Gi(y) with k ¢ A make G 4c(y), a vector of
length (p+ 1 — | ADKy. Let ¥ = (74) with 7§ = W’ Next consider the partial derivative of
Ay ELI wi-{ﬁ-_rﬁ}”z with respect to 7 at the oracle estimator ¥°. By some calculations, we have
that for j ¢ A, the resultis .y wi[—Li,. lx, |. Recall that L* = diag{1, L}. For the term A3 /2§ " (L ®
I}y _y.its derivative with respect to j; at the oracle estimatoris Az 3 o 4 LF&+1]{E+1}BUIF§‘ where
LFHIH‘:’H]' is the (k + 1, &' + 1)th element of L*.

By the second-order sufficiency of the Karush-Kuhn-Tucher (KKT) conditions, to ensure that
the minimizer is the oracle estimator, we need to check that the oracle estimator satisfies

= 172
IGRF") + 22N Y L ey ®) 78 <weN. k¢ A, 1= 1,._.,1{,.}.

Fed
Let A, =N""2K,? 4 K77 + &) maxg 4 wi. Note that [0 28], < (/i B2(t) dt}'72 + |O(K; "))
By {fy B2 dt}2 » K;" for K € A in Condition (C6) and [[F° — p*|l2 < KuOp(Ap) in

Theorem 2.1, we have

f
‘ Z Ll.‘1=+l}[lc'+lﬂ|'t':"r

172
E Liernge 081 Ve
KEed

12
f|me.,}|+‘E|La+.}m+.,|[[ f it +EUIK;’1|]~
FeAd :

Owing to the fact that A;! ming. 4 fi BEH(H) dt — oo,

1 172
=2 E | Lty | Iﬁ B () drl

with asymptotic probability one. Recall that

{k+nw+n°31, (Fe —ve)| +

iy
2 Linwsn®) 70
k=4

12
bk, h2) = lTI.Il'I llnw[ — 2ka Z lL[i'+iJ{i"-rl}] [f .Iﬂk-' {f}d!l ] '
Ked

Then it suffices to prove that the oracle estimator satisfies @ = [[G.4:(¥ oo < Nb(A1,A2)}.
In fact,

N M 1 N M . 1
Gac(y ]—EEUer [T{Ym—UI,y {ﬂ}—i]—gmgmm,s: |:FH+E:|
N M;
pi T . S o _l
_géumﬁr[r{rm UlLr*=0) 2]
N M - !
—ZEE’“& Vm+i]
i=1 m=1 =

£33 Dimse [Pr(¥om — D57 < 0) — Br(Yim — Upy* <0)]

=1 m=1

+2 D Uit | 1(¥im — Ugpp” < 0) = I(Yi — Up,y* < 0)

=1 m=1
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—Pr(Yim — Ugyp” < 0) + Pr(Yim — U, " < 0)]
=G + HI G + HELG*) + HUG). (A9)
TZTE: 1GA-(F Moo < IHEG Moo + IHE G Moo + THEL G oo + IHE () oo, which
yi t

QoY N2NRBNR with R, = 11|HE!(§“"}||,,D < Nb(hi,A2)/d,q=1,2,3,4).  (Al0)

1]

For Hﬁrifﬂ},wmm that

N M;

HUG) =3 Y Oimse [10¥in — Upy® < 0) = Iteim < 0) — Pr(¥im — Upy™* < 0)
i=1 m=1
N M; 1
+ Pricin <01+ ) ) Uimse [!{e,-m =0 - 5]
i=1 m=1
N M;
+3 ) Ums:[Pr(Yim — Ug,y* < 0) — Pr(eim < 0)]. (A11)
=1 m=1

Note that @im=I(Yim— U »* <0)— I(im < 0) — Pr(Yim — UJ y* < 0) + Pricim < 0) are
mean-zero random variables and Var(m™) = O(K;"). Applying Bernstein’s inequality, for any
given £ € S°,

N M F3
S N2B (hq, k) /144
Pr( ;mgummm > Mm,mﬂz) EﬂP(IENKf+ENI:{AhJLﬂ)'

With the condition that K" = o(b(i;, 1)), we have

y

For the term 31 | 5™ Uiy ¢ [I(€im =< 0) — 1/2], with Hoeffding’s inequality, it can be shown
that
PI- (

Moreover,

N M

E z i:riml.!! i

i=1 m=1

> Nb(iq,lg}jll) < exp (—CNb(A1, A7) (A12)

N M;

ZZ Uiimz I:H'E:'m =0y - %]

=1 m=1

> m::.l.:a.l},nz) < exp (—CNF (A1, h2)).  (Al3)

N M;
Y2 UamelPr(Yim — Uz, y* < 0) — Pricim < 0)]

i=1 m=1

Combining (A11), (A12), (A13), and (A14), it yields

= O(NK_") = o(Nb(Ai,42)). (Al4)

Pr(JHIL ") loo < Nb(A1,12)/4) < exp (—CNBA (A1, 12) +logp+logKy) — 1. (A15)

For Hﬁ! (7"), following Section 2.2 of [32], with probability one, there exist exactly | 4|K, samples
that satisfy ¥im — U 3° = 0. Therefore, with probability one,

IHZ %) oo = O(AIKy) = 0(Nb(Ay, A2)). (A16)
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Table A1. Results of Example | forp = 50.

Ermor 1 Emor 2
Method ME P FF AUC ME TP FP AUC
m= 0.7
M1 0.19 0.00 300 0oy 0.57 000 000 0.73
{0.07) (D00} 12.97) {00 {0,000 (000 (000} {0.07}
M2 0.09 1006 300 1.00 .57 1.00 1.0 077
10.02) (0000 (2.97) (0.0 {0.16] (1.48) (148) {0.07)
M3 033 900 200 093 0.35 4,00 2100 0.
00,103 (1.48) 11.48) (.07 1012 (1.48) (1.48) {0L05)
M4 0.35 Q.00 1.00 097 0.26 9.00 1.0 0.97
{0.11) (148} (1.48) {003} 10.11) (1.48) (1.48) {0.03)
M5 0.08 1000 200 1.00 0.08 10,00 200 0.90
{0.01) (100000 (1.48) (0.07) {0.01) (0.00) (1.48) {007}
m = ﬂj
M1 013 Q.00 1.00 090 0.57 000 00 0.72
{0044 (1.48} {1.48) {0.02) (0.000 (0.000 (000 {0.07)
M2 0.08 1000 1.00 1.00 0.57 0.00 00 0.73
{0.03) (0.00) {1.48) {Q:01) {0,000 (000 (000 {0.08)
M3 0.14 E00 1.00 0.0z 0.16 .00 200 0.9z
10.04) (1.48) (1.48) (0.07) (0,06 (1.48) (148) {006}
M4 0.14 Q.00 0.00 097 0.16 000 100 0.96
{0.04) (1.48) (0,000 (004 10.06]) (1.48) (1.48) 10.03)
M5 008 10,00 1.00 0.99 Q.08 10,00 200 0.98
{0.02) (D000 {1.48) {0.07) 0.0 (0.00) (297} {0.02}

Note: In each cell, madian (median absolute deviation0.6745).

Note that for any £ € 5S¢

N M
33 Oimse [ Pr(Yim — Up¥” < 0) = Pr(¥im — Upy* < 0)]
=1 m=1
N M
2 ¥ UTamellzlF’ — #*llz = Op(NAn).
i=1 m=1

For Hﬂl (?o}. by condition A, = o(b(A, A2)), we have

Pr{|HEHF Mo < Nb(A1,h2)/4} — 1. (A17)
Following similar techniques as in Lemma A.3 of [19], we can obtain

Pr{IHEN G Mo < Nb(A1,32)/4) — L. (A18)
Combining (A10), (A15), (A16), (A17) and {A18), we can conclude that Pr{Q2} — 1 as N — po.
These results complete the proof. ]

Appendix 2. Additional simulation results forp = 50
This section presents simulation results for p = 50.
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Table A2. Results of Examples Il and Il forp = 50.

Emror 1 Error 2
Method ME P FP AUC ME TP FP AUC
Exampie il
M1 0.40 19.00 1.00 .98 227 250 000 057
{008} (1.48) 11.48) (0032} {0.71) (297 (0D {0.09)
M2 0.26 20,00 0.00 1.00 1.36 10.00 1.00 0.67
10.01) (0.00) (000 (0.0 10.64) (3.0 (1.48) {0.09)
M3 051 1800 200 004 0.60 18.00 210 093
10.70) {148} {1.48) (0.0 10.15) (1.48) (148} {0.04})
M4 058 18.00 1.00 0.06 0.67 18.00 1.0 0.9%
011 (148} {1.48] (0n0) {017} (1.48) (1.48) {004}
M5 027 2000 0.00 1.00 0.27 20,00 00 1.00
{0.01) (0.0 {0L00) [0.07) {0.01) (000 (000 {000}
Example il
M1 076 Q.00 7.00 no8 0.36 0.00 00 0.47
0.0 (1.48} {4.45) (0.03) {0000 (0,000 (000} (011}
M2 0.01 1000 0.00 1.00 0.26 0.00 0.0 0.55
{000 (00000 10.00) (0.07) {000} (0.0 (0D 017}
M2 013 000 4.00 047 0.16 .00 300 0.9z
0.0 (1.48) 14.45) (.05} 10,05} (1.48) (223 (0.05)
M4 0.16 0.00 7.00 094 0.19 3.00 .00 oM
{0.05) (1.48) {2.97) (0.05) 10.06} (1.48) (297} {0.06)
M5 001 10,00 0.00 0.90 0.01 10.00 000 0.08
(0.0} {0.00) {0,007 (00T} 10.01) (000 (000 {0.02}

Note: In each cell, madian (median absolute deviation0.6745).



