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ABSTRACT
With the ever-increasing abundance of biomedical articles, improv-
ing the accuracy of keyword search results becomes crucial for
ensuring reproducible research. However, keyword extraction for
biomedical articles is hard due to the existence of obscure keywords
and the lack of a comprehensive benchmark. PubMedAKE is an
author-assigned keyword extraction dataset that contains the title,
abstract, and keywords of over 843,269 articles from the PubMed
open access subset database. This dataset, publicly available on
Zenodo, is the largest keyword extraction benchmark with sufi-
cient samples to train neural networks. Experimental results using
state-of-the-art baseline methods illustrate the need for developing
automatic keyword extraction methods for biomedical literature.
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1 INTRODUCTION
The rapid growth of biomedical literature makes searching for
specific articles dificult. As a motivating example, PubMed Central
(PMC) is a popular digital repository for biomedical and life science
journals and contains more than 7.5 million articles [12]. PMC
is often used to retrieve articles for systematic reviews and is a
crucial component for evidence-based medicine [42]. While PMC
uses Medical Subject Headings (MeSH), a controlled vocabulary
thesaurus, to index articles and make finding similar documents
easier, there are two major limitations: (1) users must be familiar
with the subject headings and (2) the terms may not fully reflect
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the authors’ intentions. An alternative to the MeSH terms is to use
author-assigned keywords to summarize the articles. Although the
majority of theMeSHterms’meanings are covered or closely related
to author keywords [6], the majority of the MeSH terms do not
match the author keywords. Using the PubMedAKE, we evaluated
the partial match between MeSH terms and author keywords, and
the MeSH terms only achieved an F1 score of 0.048.

Author-assigned keywords are often used as a proxy for expert
annotations and serve as the reference evaluation for many auto-
matic keyphrase extraction benchmark datasets including emails,
computer science articles, and news articles [17, 22, 27, 28]. De-
spite the lack of consistency and standardization across articles, the
author-assigned keywords are often correlated with the standard-
ized descriptors assigned by professional indexers [21]. As such,
considerable research in automatic keyphrase extraction has been
done in the general domain towards summarizing articles using
author-assigned keywords to express the crucial aspects of the con-
tent [4, 42]. There are various datasets for evaluating automatic
keyphrase extraction that encompasses scientific articles, emails,
news articles, and social media including a large curated set of 17
benchmark datasets1. Although there are several abstract-based
datasets in the benchmark, only KP20k [17] has suficient samples
to train a neural network. While state-of-the-art keyphrase extrac-
tion models achieve reasonable performance on paper abstracts,
scientific articles, and news articles, their performance generally
suffers when applied to biomedical literature [18, 19, 20].

The task of identifying author keywords in biomedical literature
has been done previously [18, 20], yet they rely on three small-scale
datasets. Table 1 summarizes the existing abstract-based keyphrase
datasets and the PubMed-based keyphrase datasets. Moreover, ex-
isting works predominantly focus solely on extractive keyphrase
detection, or identification of words present in the title or abstract,
and ignore abstractive keyphrase extraction, or identification of
words not present in the title or abstract. Finally, the lack of a
stan-dardized biomedical article dataset is problematic as there
is an abundance of subject-specific terminologies that prevents
existing state-of-the-art keyphrase extraction algorithms to
generalize to this domain. Therefore, the goal of this work is to
create a new standardized extractive and abstractive dataset,
PubMedAKE, for evaluating author keyphrase extraction on
PubMed articles.

Our approach is to construct an author-assigned keyword dataset
using the entire PubMed Open Access Subset. PubMedAKE has two
key differences compared to the existing PubMed keyphrase extrac-
tion datasets. First, we identify both the extractive and abstractive
author-assigned keyphrases. Second, we do not restrict the dataset

1https://github.com/boudinfl/ake-datasets

4470

https://doi.org/10.1145/3511808.3557675
https://doi.org/10.1145/3511808.3557675
https://github.com/boudinfl/ake-datasets


CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Figure 1: A flow chart of the data extraction methodology.

Dataset Train Test      # words      # kp      % abs

KP20k [28] 527090 20000 176.0 5.3 42.6
PubMed�† [38] - 1320 5323.0 5.4 16.9
NamedKeys� [20] - 3049 206.5 14.3 0.0
WWW [13] - 1330 163.5        4.8        52.0
Inspec [22]                   1000           500 134.6        9.8        22.4
Biomedical�¶ [7] - 1799                - 5.31        57.8

PubMedAKE 505959      168653 216.9 5.2 41.6

Table 1: Statistics of existing scholarly keyphrase datasets
and our proposed dataset. †, �, and ¶ denote full-text (instead
of abstract), articles from PubMed, and not publicly released.
The table summarizes the average number of keyphrases
(# kp) and words (# words) per document and the ratio of
abstractive keyphrases (% abs).

to contain only articles with a specific topic or number of key-
words. Figure 1 illustrates the process used to create PubMedAKE,
which contains 843,629 article abstracts. PubMedAKE does not con-
tain the contents of the entire article, which can provide a more
holistic view of the article [37], but may result in worse keyphrase
extraction performance [31]. It is important to highlight that Pub-
MedAKE serves as the largest keyphrase extraction dataset to
date, a 49% increase over KP20k [28].

2 DATASET CONSTRUCTION
PubMedAKE is constructed from all the non-commercial use articles
in the PubMed Open Access Subset, which consisted of 1.4 million
files. Each XML file is individually parsed using a customized ver-
sion of the PubMed parser [1] to extract the title, abstract, and
keyphrases. An article is excluded from the dataset if there is no
title, abstract, or author-assigned keyphrases. Figure 1 provides an
overview of the dataset construction process.

2.1 Title and Abstract Extraction
The title is obtained using the <article-title> XML tag. The text
is then standardized by ignoring any special formatting tokens by
replacing any tabs with the space character and removal of any bold
and italic symbols. The abstract is parsed in the same manner by
first extracting all paragraphs inside the <abstract> XML tag and
then ignoring the same special formatting characters. Tabs and new
line characters are normalized using the space representation, while

Jiasheng Sheng, Zelalem Gero, & Joyce C. Ho

Figure 2: A histogram of the number of keywords in Pub-
MedAKE. The x axis ranges between 1 to 25 keywords as there
are a limited number of articles with more than 25 keywords,
with a maximum of 564.

bold and italic symbols are stripped from the text. The entire title
and abstract are then normalized using ASCII lowercase encoding.

2.2 Keyword Extraction
The list of keywords are extracted by identifying all the keyword
groups (i.e., <kwd-group> or<keyword-group> tags). The keywords
are then identified within these groups using the <kwd> tag. It is
important to note that there might be multiple keyword groups
in one XML document. Thus, our process finds all such groups
and extracts the keywords correspondingly. Any special formatting
tokens including the newline character, the tab character, any italic
labels, or any bold labels are stripped from the keyword. The key-
word list is then filtered into two sets: (1) extractive keyphrases, or
those that appear inside the abstract, and (2) abstractive keyphrases,
or those that do not appear inside the abstract.

2.3 Data Release
PubMedAKE contains 843,629 articles that have at least one key-
word, a title, and an abstract. The dataset is stored in the Javascript
Object Notation (JSON) format, a common format for existing key-
word benchmarks [17, 20]. Each document is indexed using the
PubMed id (e.g., "PMC24102982") which serves as a seamless refer-
ence to the original XML file (e.g., PMC24102982.xml). Each object
then contains the following key / value pairs: (1) the title (“title"), (2)
the abstract contents (“abstract"), (3) the extractive keywords (“key-
words_in") and (4) the abstractive keywords (“keywords_not_in").

Figure 2 shows the distribution of both the extractive and abstrac-
tive keywords in PubMedAKE. It is important to note that unlike
existing studies [20], there is no threshold range for the number
of keywords. Thus, the minimum and the maximum number are 1
and 564. The average number of keyphrases per article is 3 and 2
for extractive and abstractive, respectively. Each article contains
approximately 14 words in the title and 217 words in the abstract.

A random partition of 6:2:2 was used to obtain the train, vali-
dation, and test sets of PubMedAKE. tra in . j son ,  validate. json ,
tes t . j s o n  contains 505959, 168653, and 168634 documents, respec-
tively. This dataset is the largest benchmark and 49% larger than the
KP20k dataset [28]. Given the distribution of keywords, we also cre-
ated a selected set, PubMedAKE����� that contains between 5 and
25 extractive keywords. The smaller dataset, small_train. json ,
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small_validate.json ,  smal l_test . json contains 82011, 27336,
and 27336 articles respectively. The entire curated dataset is avail-
able on Zenodo2.

The code that is used to create PubMedAKE, demonstrate the
abstractive and extractive keyphrase extraction tasks, and evaluate
the algorithms is available on GitHub under the BSD-2-Clause
license3. The GitHub repository also details the data structures
and examples of the extracted keywords. A small sample of 1000
articles is directly available in the GitHub repository to facilitate
algorithmic development.

3 BENCHMARK EVALUATION
Consistent and strong baseline models are necessary to compare
new keyphrase extraction algorithms. There are a variety of state-
of-the-model algorithms that exist in the general domain keyphrase
extraction algorithms. Yet, not all the same baseline models are used,
nor do experiments differentiate between extractive and abstractive
tasks. As an example, the large-scale evaluation of keyphrase extrac-
tion models on nine benchmark datasets combined both together
[17]. Here, we separate model assessment into extractive keyphrase
and abstractive keyphrase evaluation.

Existing works can be categorized as either unsupervised or
supervised approaches. Within the supervised approaches, models
are typically classified into whether or not they rely on a neural
network. The neural network based models have yielded better
performance and include using an encoder-decoder architecture [14,
15, 28, 41] or a long short term memory network with a conditional
random field [3, 18, 35, 36]. Within the unsupervised approaches,
the popular approaches are either graph-based [9, 10, 16, 30, 40, 43]
or statistical-based [5, 11, 34].

3.1 Evaluation Metrics
While the best metric for assessing keyphrase extraction perfor-
mance is debatable, a common strategy is to compare the top �
extracted keyphrases against the ground truth keywords. Thus, we
assess models based on precision, recall, and F1 on the top 5, 10, and
15 extracted keyphrases. Precision captures the ratio between the
correctly identified keywords out of the total number of extracted
keyphrases while recall captures the ratio between the correctly
identified keyphrases out of the true author-assigned keywords.
The f-measure is then the harmonic mean of recall and precision.

A common post-processing step is to use stemming to evaluate
the keywords. Word stemming reduces the word to its most basic
format and is used across many applications of natural language
processing studies [2, 39]. With stemming, both the author-assigned
keywords and the extracted keywords are post-processed using the
Porter stemmer [33] in the NLTK python package [26].

Exact match serves as a lower bound on the model performance
as partial matches are considered incorrect. For example, if the
phrase is “cancer therapy", a model that identifies “cancer" will
obtain the same score as another model that fails to identify “can-
cer". Thus we also evaluate the algorithms using partial match-
ing, an alternative performance measure. The partial matching
score is assessed by measuring the number of matching tokens

2https://doi.org/10.5281/zenodo.6330817
3https://github.com/GarfieldLeo/PubMedAKE
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in the extracted keyphrases with ground truth keyphrases [32].
For an extracted keyphrase� and a set of ground truth keyphrase
����� = {�1,�2, · · · ,��}, the (partial match) score for� is
calculated with the below formula:

�����(�) = argmax 
2 · ������(�,�)

, (1)
������� � �

where ������(�,�) is the number of common tokens between �
and�. The operator |�|� is the number of tokens in phrase �.
Thus,
instead of a binary score, partial matching gives credit for matching
tokens for an extracted keyphrase�.�����(�) yields a floating
point number between 0 and 1, with 1 denoting an exact match.

3.2 Extractive Keyphrase Evaluation
Supervised extractive keyphrase models often require a significant
number of samples and can be quite computationally expensive
to train. Moreover, many supervised keyphrase extraction algo-
rithms compare to their unsupervised counterparts. Thus, we fo-
cus on benchmarking the unsupervised models available in the
open-source python-based keyphrase extraction toolkit [8]. The
pke module contains both graph-based models (e.g.,TextRank [30],
SingleRank [43], TopicRank [10], TopicalPageRank [40], Position-
Rank [16], and MultipartiteRank [9]) and statistical models (e.g.,
Tfidf [34], YAKE [11] and KPMiner [5]).

For evaluation purposes, we select Tfidf, YAKE, KPMiner, Tex-
tRank, SingleRank, TopicalPageRank, PositionRank, and Multipar-
titeRank and compare the results in the extractive keywords (i.e.,
keywords inside the abstract). Table 2 summarizes the results on
the test dataset for the 8 unsupervised algorithms. As can be seen,
the precision, recall, and F1 score for all the methods are extremely
low across the top 5, 10, and 15 extracted keywords. Extracting
more keywords decreases the precision while increasing the recall.
However, improving recall does not always yield a better F1 score.

The second and third set of columns in Table 2 illustrate the
impact of stemming and partial matching with stemming, respec-
tively. Stemming and partial matching both provide a noticeable
boost in performance. Although the trends in precision, recall, and
F1 score remain the same (e.g., extracting more keyphrases does
not yield better F1 scores) across the three evaluation measures,
it is important to note that results are substantially higher under
partial matching with approximately a two-fold increase. The re-
sults also demonstrate the dificulty associated with biomedical
keyword extraction as the F1 score solely on the extractive dataset
is the same as other work that considers the entire gold standard
(i.e. abstractive and extractive keywords) [17].

3.3 Abstractive Keyphrase Extraction
While existing studies have focused predominantly on extractive
keyphrase extraction for PubMed, PubMedAKE also provides ab-
stractive keyphrases from PubMed articles. Abstractive keyphrase
extraction focuses on generating unseenkeyphraseswith a given ab-
stract,which is a form of text generation. Manystudiesusesequence
to sequence with encoder-decoder architecture for keyphrase gen-
eration [29], and then enforce the generated keyphrases to be based
on the document topic [44]. Since we were unable to reproduce

4472

https://doi.org/10.5281/zenodo.6330817
https://github.com/GarfieldLeo/PubMedAKE


CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Jiasheng Sheng, Zelalem Gero, & Joyce C. Ho

Exact matching Exact matching w/ stems Partial matching w/ stems

Method @5

Tfidf P 0.0544
R 0.0856
F1      0.0665

KPMiner P 0.0761
R 0.0311
F1      0.0442

Yake P 0.0206
R 0.0579
F1      0.0305

TextRank P 0.0123
R 0.0343
F1      0.0181

SingleRank P 0.0172
R 0.0481
F1      0.0253

TopicalRank P 0.0303
R 0.0848
F1      0.0446

PositionRank P 0.0268
R 0.0751
F1      0.0395

MultipartiteRank      P 0.0322
R 0.0902
F1      0.0475

@10 @15

0.0409 0.0328
0.1290 0.1551
0.0621 0.0541
0.07338      0.0736
0.0320 0.0320
0.0446 0.0447
0.0185 0.0168
0.1039 0.1413
0.0315 0.0301
0.0112 0.0111
0.0663 0.0933
0.0201 0.0199
0.0169 0.0160
0.0945 0.1345
0.0286 0.0286
0.0219 0.0173
0.1223 0.1457
0.0370 0.0310
0.0223 0.0194
0.1247 0.1630
0.0378 0.0347
0.0241 0.0198
0.1353 0.1665
0.0410 0.0354

@5 @10 @15

0.1253      0.0923      0.0737
0.1974      0.2909      0.3484
0.1533      0.1402      0.1217
0.1936      0.1865      0.1857
0.0793      0.0808      0.0809
0.1125      0.1128      0.1127
0.0889      0.0787      0.0703
0.1480      0.2619      0.3512
0.1110      0.1209      0.1172
0.0458      0.0457      0.0456
0.0761      0.1483      0.2113
0.0572      0.0699      0.0751
0.0654      0.0653      0.0622
0.1089      0.2173      0.3098
0.0817      0.1004      0.1036
0.1258      0.0891      0.0702
0.2095      0.2961      0.3478
0.1572      0.1369      0.1168
0.1027      0.0859      0.0753
0.1712      0.2859      0.3744
0.1284      0.1321      0.1254
0.1336      0.0983      0.0798
0.2224      0.3270      0.3966
0.1669      0.1512      0.1329

@5 @10 @15

0.1817      0.1256      0.0976
0.2862      0.3957      0.4614
0.2222      0.1907      0.1612
0.3052      0.2916      0.2903
0.1250      0.1264      0.1265
0.1774      0.1764      0.1762
0.1622      0.1235      0.1021
0.2547      0.3879      0.4809
0.1982      0.1974      0.1684
0.1455      0.1105      0.0951
0.2416      0.3585      0.4406
0.1816      0.1689      0.1564
0.1610      0.1213      0.1014
0.2682      0.4040      0.5051
0.2012      0.1866      0.1689
0.2090      0.1446      0.1125
0.3480      0.4810      0.5578
0.2612      0.2224      0.1872
0.1834      0.1336      0.1091
0.3055      0.4446      0.5427
0.2292      0.2054      0.1818
0.2154      0.1496      0.1179
0.3587      0.4977      0.5819
0.2691      0.2301      0.1949

Table 2: Precision (P), recall (R), and F1 score (F1) for the baseline unsupervised methods at 5, 10, 15 keywords extracted with
exact matching, stemming, and partial matching with stems.

Exact matching w/ stems      Partial matching w/ stems

@5 @10 @15 @5 @10 @15

P 0.0143      0.0102      0.0034 0.0209      0.0196      0.0156
R 0.0120      0.0293      0.0571 0.0238      0.0473      0.0502
F1      0.0131      0.0151      0.0064 0.0223      0.0277      0.0238

Table 3: Precision (P), recall (R), and F1 score (F1) for the
baseline abstractive keyphrase extraction methods with 5,
10, 15 number of keywords extracted with stemming and
partial matching with stems.

various abstractive keyphrase extraction algorithms, we only imple-
mented a simple baseline method to showcase the use of abstractive
keyphrases in PubMedAKE.

The baseline abstractive method first creates a summarized ver-
sion of the article and then uses the unsupervised keyphrase ex-
traction algorithms to extract keyphrases. We used the built-in
summarizer from HuggingFace’s Transformers package [45], an
open-source Python library that contains state-of-the-art natural
language processing models, to summarize the title and abstract
using 50 to 200 words. The summarizer is a generative summarizer,
which means it creates new sentences and words from the input
text. After obtaining the generated text summary, the text is put
into the MultipartiteRank algorithm to extract keyphrases. We note
that MultipartiteRank has the highest F1 score in the extractive
baseline evaluation (see Table 2).

The performance of the baseline abstractive method yields poor
results as shown in Table 3. There is almost a 10-fold decrease in
performance from extractive to abstractive for the same unsuper-
vised algorithm. This suggests that the abstractive keyphrase is
an extremely dificult task. We hypothesize that to obtain better
results, algorithms need to be trained on biomedical-specific data as
the HuggingFace transformer model is trained on general domain
text. As shown in previous studies, general state-of-the-art models
often do not transfer well to biomedical text mining tasks [18, 19,

20, 23, 25]. By releasing PubMedAKE, future studies can develop
biomedical-specific abstractive keyphrase algorithms as training
data is abundant.

4 CONCLUSION AND FUTURE WORK
Keywords extraction is an ever-growing research area, and it is an
especially hard task to perform on biomedical articles. As noted
by previous studies, named entities, nouns, and noun phrases are
peculiar and hard to identify [18, 19, 20, 24]. We constructed Pub-
MedAKE, the largest keyword dataset, using all the non-commercial
use articles in the PubMed Open Access Subset. The experiments
demonstrate that existing state-of-the-art algorithms fail to match
their performance on PubMedAKE when compared to general do-
main literature. The hope is to facilitate further research not only
in biomedical literature but keyword extraction algorithms.

The experimental results also highlight several areas for future
work. The evaluation metric is one direction that needs consider-
able attention. Even with word stemming and partial matching,
precision, recall, and F1 score only focuses on keywords themselves
instead of the meanings of keywords. This is important as identi-
fying the keywords “high blood pressure" should be considered a
match with “hypertension" as they convey similar meanings. Tun-
ing the extraction algorithms for biomedical-specific nomenclature
is also essential. For example, BioBERT can improve the extraction
results but may require further extensions to achieve compara-
ble performance to the general domain. Moreover, summarizing
biomedical articles can be considerably different than the general
domain as articles often have predefined abstract structures (e.g.,
Introduction, Methods, Results, Conclusions).
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