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Given a graph G and collection of subgraphs T (called tiles), we consider
covering G with copies of tiles in T so that each vertex v 2 G is covered with
a predetermined multiplicity. The multinomial tiling model is a natural prob-
ability measure on such configurations (it is the uniform measure on standard
tilings of the corresponding “blow-up” of G).

In the limit of large multiplicities, we compute the asymptotic growth rate
of the number of multinomial tilings. We show that the individual tile densi-
ties tend to a Gaussian field defined by an associated discrete Laplacian. We
also find an exact discrete Coulomb gas limit when we vary the multiplicities.

For tilings of Zd with translates of a single tile and a small density of de-
fects, we study a crystallization phenomenon when the defect density tends
to zero, and give examples of naturally occurring quasicrystals in this frame-
work.

1. Introduction. The study of random tilings is a cornerstone area of combinatorics,
probability, and statistical mechanics. In its simplest form, the random tiling model is the
study of the set of tilings of a region (for example a subset of the plane) with translated
copies of a finite collection of shapes, called prototiles. However even the simplest cases can
lead to hard problems. For example the mere existence of a tiling of a region in R2 with a
prescribed set of polyominos is an NP-complete problem [19], even if the prototiles consist
in just the 3⇥ 1 and 1⇥ 3 rectangles [2]. Enumerating tilings is of course even harder.

However in the few cases where we can analyze random tilings, like random domino
tilings (tilings with 2⇥ 1 and 1⇥ 2 rectangles) or lozenge tilings (tilings with 60� rhombi),
we find very rich behavior, with beautiful enumerative properties [12, 25, 9, 10, 21], phase
transitions [16], limit shapes [15], conformal invariance [13], and Gaussian scaling limits
[14]. Beyond these and other dimer models there are almost no other cases we can analyze
in detail. There are other cases where enumeration is sometimes possible, like the 6-vertex
model [20], but for these models very little is known about correlations, although they are
sometimes predicted in physics to be Gaussian in the scaling limit and/or conformally invari-
ant —such models were in fact the inspiration for conformal field theory.

We study here a variant of the random tiling problem: the multinomial tiling problem,
which is tractable in the sense that we can give generating functions for enumerations, which
in turn yield, in the limit of large multiplicity, asymptotic expressions for growth rates and
Gaussian behavior for random tilings. This setting is quite general and works for tilings in
arbitrary graphs, not just plane regions. Furthermore we find all of the phenomena discussed
above: phase transitions, limit shapes, crystallization phenomena, and conformal invariance
(which we study in a subsequent paper [17]).

It comes as an additional surprise that in certain situations our random tilings form qua-
sicrystals. Quasicrystals are non-periodic crystalline structures; they were first found in na-
ture by Schechtman et al [23]. Their physical and mathematical framework is still discussed,
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but examples of quasiperiodic tilings were first found by Berger [3] and familiar examples
like Penrose tilings are now well understood [7]; they are sets of tiles which tile the plane
but only in nonperiodic fashion, and with the “repetitivity” property that each local pattern of
tiles recurs within a finite distance of any point. Our quasicrystals are a type of random tiling
with the property that the statistical correlations between tile densities are quasiperiodic: the
correlations are superpositions of plane waves with irrationally-related periods (see Section
6.2.3). For other examples of random quasicrystals, see for example [11, 8].

Let G = (V,E) be a finite graph and let T = {t1, . . . , tk} be a collection of subsets of V ,
called tiles. (For the first part of the paper it is convenient to ignore the edges and think of
(G, T ) as a hypergraph, since the edges E play no role; however later the structure of G as a
graph will be relevant as well.)

Let N= {Nv}v2G be nonnegative integers associated to vertices of G. Define a new graph
GN, the “N-fold blowup” of G, to be the graph obtained by replacing each vertex v of G
with Nv vertices, and each edge uv with the complete bipartite graph KNu,Nv

. Now each tile
t 2 T can be lifted to a subset of GN in many ways: if t has vertices v1, . . . , vj then it has
Nv1 · · ·Nvj -many lifts.

We consider tilings of GN with lifts of copies of tiles in T . A tiling is a partition of the
vertices of GN into disjoint sets each of which is a lift of a single tile of T . Let ⌦(N) be the
set of all tilings; we call these N-fold tilings.

Let w : T ! R>0 be a positive real weight assigned to each tile. An N-fold tiling m is
assigned a weight w(m) :=

Q
t2T wm(t)

t where m(t) is the number of copies of t used. The
partition function for N-fold tilings is defined to be

(1) Z(w,N) =
X

m2⌦(N)

w(m).

We let µ = µ(N,w) be the natural probability measure on ⌦(N), giving an N-fold tiling a
probability proportional to its weight.

We note that µ is not the same as the uniform measure on tilings of G covering each vertex
Nv times; each such “multiple tiling” of G can be typically lifted to a tiling of GN in many
ways.

1.1. Results. We compute a generating function for Z(w,N) (Theorem 2.1), and the
asymptotic growth rate of Z(w,N) as minv2G Nv !1, see (7). This computation involves
solving a nonlinear system of equations (6); however the solution is realized as the minimum
of a convex function (Theorem 3.1).

In Theorem 5.1 we show that in the N!1 limit the tile occupation fractions tend to a
Gaussian field governed by a discrete Laplacian operator � on G, the tiling laplacian.

For transitive graphs, when we vary the multiplicities, we obtain a Coulomb gas: defects
in multiplicity interact via Coulombic potentials arising from � (see Section 5.4).

Under certain conditions on transitive graphs, our random multinomial tilings also undergo
a crystallization phenomenon, where the correlations between distant tiles no longer decay;
the tiling freezes into a periodic or quasiperiodic state. This occurs on Z2, for example, tiled
with translates of the L-triomino and a small density of singleton monomers (Section 6.2.1).
As the density of monomers tends to zero the correlation length of the system tends to infinity,
and the system freezes. There is a spontaneous symmetry breaking, since there are three
distinct crystalline states (corresponding to the three distinct—up to translation—periodic
tilings of the plane with L triominos).

For certain other polyominos we get similar freezing phenomena, and others we don’t;
the behavior depends on the presence and type of zeros of the underlying characteristic
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polynomial p(z,u) on the unit torus T2 ⇢ C2. If the zeros on T2 are isolated and simple,
we show that the resulting tiling will be a quasicrystal (Section 6.2.3). However there is a
plethora of nongeneric behavior for the roots of p as the tile type varies, yielding a similarly
wide variety of behaviors for random tilings (Section 6.3).

Acknowledgments: We thank Jim Propp, Robin Pemantle, and Wilhelm Schlag for helpful
conversations. R.K. was supported by NSF DMS-1940932 and the Simons Foundation grant
327929.

2. Combinatorics. It is convenient to generalize our definition of tile, to allow the ver-
tices of a tile to have multiplicity larger than one. The vertices of a tile t then form a multiset
of vertices of G, that is, a subset in which each vertex v has a nonnegative integer multiplicity
tv . We identify a tile with its multiset. A lift of a tile t to GN corresponds to a choice, for each
v 2 G, of tv distinct vertices of GN lying above v.

2.1. Generating function. We associate a variable xv to each vertex v 2 G. To each tile
t 2 T is associated the monomial xt =

Q
v2G

xtv
v

tv!
. (Here the factor tv! accounts for the in-

distinguishability of the vertices of the same type in a lift of t.) Let P = P (x1, . . . , xV )
be the polynomial P =

P
t2T wtxt. We call P the tiling polynomial. The function

F (X1, . . . ,XV ) := logP (eX1 , . . . , eXV ) is called the free energy (see Section 3.2 below).

THEOREM 2.1. Let xN =
Q

v x
Nv
v and N! =

Q
vNv!. Then

Z(w) :=
X

N�0

Z(w,N)
xN

N!
= exp(P )

where the sum is over all vectors of nonnegative multiplicities and Z(w,N) denotes the
partition function for N-fold tilings from (1). If we fix the total number K of tiles, then the
corresponding generating function is

ZK(w) :=
X

N�0

Z(w,N,K)
xN

N!
=

PK

K!

where Z(w,N,K) =
P

m2⌦(N,K)w(m) and ⌦(N,K) now denotes the set of all tilings with
K tiles in total.

PROOF. Suppose we use tile t with multiplicity Kt. Label the abstract copies of tile t with
labels ` 2 {1, . . . ,Kt}. To place those tiles in GN, at each vertex v of t, we must choose Kt

subsets of size tv (one of each label `) out of the Nv vertices of GN lying over v. Taking
into account all tiles, this is a multinomial coefficient at vertex v: it is Nv!Q

t(tv!)
Kt

total choices.
We take the product of these over all vertices, and then need to divide by

Q
tKt!, the set

of choices of initial labellings. In total, the number of tilings with tile multiplicities Kt and
vertex multiplicities N is

Q
vNv!Q

tKt!
Q

v,t(tv!)
Kt

.

Multiplying by
Q

t(wt
Q

xtvv )Kt , the tile weights (and factors of x), dividing by N!, this is

Y

t

(wt
Q

v
xtv
v

tv!
)Kt

Kt!

and summing over the Kts gives the result.
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2.2. Feasible multiplicities. For a given graph G = (V,E) and tiling set T , not all mul-
tiplicities N 2 (Z�0)V are feasible. The set of feasible multiplicities MZ = MZ(T,G)
is (just by definition) the set of nonnegative integer linear combinations of the vectors
vt =

P
v2V tvev , where {ev}v2V are the standard basis vectors for ZV .

In other words we have MZ =D((Z�0)T ) where D :RT !RV is the linear map defined
by D(et) =

P
v2V tvev . In the standard basis the matrix of D (which we also denote D) is

called the incidence matrix of the tiling problem: D = (Dv,t) where Dv,t = tv , the multiplic-
ity of v in t. Feasible multiplicities MZ are certain integer points in a real polytopal cone
MR ⇢RV defined by MR =D((R+)T ).

Typically not all integer points in MR are in MZ. For example if all tiles have size � then
necessarily N sums to a multiple of �. More generally if � is a homomorphism from ZV to
some abelian group, with the property that �(D(et)) = 0 for all tiles t then we must have
�(N) = 0 as well in order for N to be feasible. In the language of tilings such a � is called a
“coloring" condition.

As a typical example of a coloring condition, suppose we wish to tile Z2 or a sub-
graph of it with translates of bars of length 3: translates of {(0,0), (1,0), (2,0)} and
{(0,0), (0,1), (0,2)}. Let � : ZZ2 ! R be a homomorphism defined on basis vectors by
�(e(x,y)) = cos(2⇡x/3). Note that � applied to the translate of any tile is zero:

�(e(x,y) + e(x+1,y) + e(x+2,y)) = 0 = �(e(x,y) + e(x,y+1) + e(x,y+2)).

We conclude that �(N) = 0 for any feasible multiplicity. The same argument with
�0(e(x,y)) = cos(2⇡y/3) gives another linear constraint on N. In fact there is a four-
dimensional space of such constraint functions �, defined by their values on e(x,y) for

(x, y) 2 {(0,0), (1,0), (0,1), (1,1)}.

2.3. Homology. The incidence map D : RT ! RV is generally neither surjective nor
injective. Letting D⇤ be its transpose with respect to the standard basis, we have RV ⇠=
Im(D)� ker(D⇤) and RT ⇠= Im(D⇤)� ker(D). These are orthogonal decompositions with
respect to the standard inner products. The map D is an isomorphism from Im(D⇤) to Im(D),
and likewise D⇤ is an isomorphism from Im(D) to Im(D⇤)

We define H1(T,R) :=RV / Im(D)⇠= ker(D⇤). Over the integers we define H1(T,Z) :=
ZV / Im(D) to be the cokernel of the map D. Colorings � are then elements of H1, that is,
they are functions � on vertices which sum to 0 for each tile: (D⇤�)(t) =

P
v tv�(v) = 0.

If all tiles have the same size �, then H1(T,Z) contains a copy of Z/�Z; the corresponding
coloring functions are constant functions f : V ! Z/�Z.

For the above example with bars of length 3, consider tilings of an n⇥n grid, n� 3. Then
H1(T,R)⌘ R4: an element of H1(T,R) is determined by its values on the lower left 2⇥ 2
square in the grid, which can be arbitrary reals.

The existence of nontrivial integer constraints has an effect on the long-range behavior of
random tilings, see Section 6 below.

2.4. Laplacian. The tiling laplacian � : RV ! RV is the operator � =DCD⇤, where
C is the diagonal matrix of tile weights wt. It has matrix �= (�u,v)u,v2V with

(2) �u,v =
X

t2T
wttutv.

Equivalently, for f : V !R we have

(�f)(v) =
X

u

(
X

t

wttutv)f(u).

The Laplacian controls the covariances between tile densities, see Section 5.2 below.
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2.5. Gauge equivalence. Tile weight functions w,w0 on T are said to be gauge equiva-
lent if there is a positive function f : V ! R+ such that for all t 2 T , w0

t = wt
Q

u2t f(u).
We call f a gauge transformation.

Note that if w0 is gauge equivalent to w, then the gauge transformation f : G ! R+ from
w to w0 may not be unique: the set of functions f satisfying

Q
v2t f(v) = 1 for all t is by

definition the kernel of D⇤, written multiplicatively (that is, log f 2H1(T,R)).

LEMMA 2.1. For fixed multiplicities N, gauge equivalent weight functions give the same
probability measure on multinomial tilings.

PROOF. Suppose w0 is gauge equivalent to w, that is w0
t =wt

Q
v f(v)

tv . An N-fold tiling
m for weights w0 has weight

Y

t

(w0
t)
m(t) =

Y

t

 
wm(t)
t

Y

v

f(v)tvm(t)

!

=

 
Y

t

wm(t)
t

!
Y

v

f(v)
P

t tvm(t)

=

 
Y

t

wm(t)
t

!
Y

v

f(v)Nv .

In particular its weight for w0 is equal to its weight for w multiplied by a constant independent
of m.

3. Asymptotics. In this section, we compute the asymptotic growth of Z(w,N) as N!
1. In many cases, this leads to an essentially unique closed expression.

3.1. Fixing the number of tiles. Given the multiplicities N, it is convenient to also fix the
total number of tiles K: otherwise we have to sum over possibly many K values, and larger
K values typically dominate entropically, resulting in a distribution skewed towards having
only the smallest tiles.

If all tiles have the same size �, then the total number of tiles K is fixed and determined
by the multiplicities N: we have K =

P
vNv/�. More generally, we proceed as follows. We

adjoin a new “dummy" vertex v0 to G, connected to all other vertices. Let G̃ = G [ {v0} be
this new graph. We add to each tile a number of copies of the dummy vertex v0 so that all
tiles now have the same size �. Let x0 be a variable associated to the new vertex v0, and let
P0 be the new tiling polynomial; it is a homogenization of P , replacing a monomial z by
xm
0

m! z, where m+deg(z) = �. The number � is the degree of P0, and the size of every tile.
Let N0 be an arbitrary multiplicity at v0, and M =

P
vNv be the total multiplicity of the

other vertices (not including v0). For tileability we need M +N0 to be a multiple of �:

(3) M +N0 =K�.

Note then that given the remaining multiplicities, the choice of N0 is linearly related to the
number of tiles K .

We assume for the rest of the paper, unless explicitly stated, that all tiles have the same
size �. Notationally we can then use G instead of G̃ and P instead of P0.
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3.2. Critical gauge and growth rate. In this section we define the critical gauge and
use it to compute the growth rate of Z . The critical gauge also allows us to compute tile
probabilities and, eventually, the full correlation field between tiles (see Section 5 below).

For each v 2 V let ↵v 2 R+ be fixed. Let ~↵ = (↵v)v2V . We suppose ~↵ 2 MR(G), that
is, ~↵ is in the real cone of feasible multiplicities. Take Nv !1 simultaneously for each v,
in such a way that each N is feasible: N 2MZ(G), and Nv

K ! ↵v . The quantity ↵v is the
(asymptotic) fraction of tiles covering v, and

(4)
X

v

↵v = �.

From the second part of Theorem 2.1, we have
K!

N!
Z(w,N) = [xN]PK ,

where the notation on the right-hand side denotes the coefficient of xN in PK .
We can obtain an expression for the growth of this coefficient as N!1 as above, using

a standard Legendre transform argument.

THEOREM 3.1. For any ~↵ 2 MR(G) and weight function w there is a unique gauge-
equivalent weight function w0 with the property that for all v the sum of weights of tiles
containing vertex v (counted with multiplicity) is ↵v , that is

(5)
X

t

w0
ttv = ↵v.

The corresponding gauge transformations f : V ! R>0 are exactly those which solve the
“criticality equations”

(6)
xv(P )xv

P
= ↵v

with xv = f(v). The growth rate of K!
N!Z(w,N) is

(7) �(w, ~↵) := lim
K!1

1

K
log

K!

N!
Z(w,N) = logP (x)�

X

v

↵v logxv

for any solution x to (6).

We call �(w, ~↵) the exponential growth rate of the multinomial tiling model. We call w0

of this theorem the critical weight function, or weight function in the critical gauge.
As discussed in the proof below, positive solutions to (6) always exist but are not in general

unique. However two positive solutions differ only by a gauge equivalence in H1(T,R), and
as a consequence give rise to the same weight function w0 and growth rate �. See Section 3.4
below for an example with nonuniqueness.

PROOF. We assign positive real values (to be determined) to the variables xv and let w0
t =

wt
Q

v2t xv . Define Xv = logxv and F (X1, . . . ,XV ) := logP (eX1 , . . . , eXV ). Then F is a
smooth function of the Xi’s. Its gradient is

rF = (
x1Px1

P
, . . . ,

xV PxV

P
).

However xvPxv =
P

twttv
Q

u x
tu
u =

P
t tvw

0
t, so F has gradient lying in Im(D):

rF =
1

P
D(

X

t

w0
tet).



THE MULTINOMIAL TILING MODEL 7

Moreover we claim that F is convex. If we interpret P (x1, . . . , xV ) (after scaling so that
P (1) = 1) as the probability generating function for a RV -valued random variable Y , then
the Hessian matrix HF of F , that is HF = ( @2 logP

@Xu@Xv
)u,v2V , is the covariance matrix of Y ,

hence positive semidefinite.
Recalling that RV has an orthogonal decomposition RV = Im(D)� ker(D⇤), and noting

that the support of Y is contained in Im(D) and spans Im(D), we see that F is strictly
convex on Im(D), as these are directions where the variance is positive, and F is constant on
directions in ker(D⇤), that is, those orthogonal to Im(D).

Let S(~↵) be the Legendre dual of F : for ~↵ 2MR ⇢ Im(D), we define

(8) S(↵1, . . . ,↵V ) = max
X1,...,XV

�
� logP (eX1 , . . . , eXV ) + ↵1X1 + · · ·+ ↵V XV

 
.

Then S is strictly convex on MR and defined on all of MR \ {
P

v ↵v = �}. From (8) we
have

↵v =
@

@Xv
logP (eX1 , . . . , eXV )

so that the criticality equations are satisfied with xv = eXv . Comparing with (7) we see that
�S(~↵) = �(w, ~↵) is the growth rate function.

The maximizing Xv are unique up to a global additive constant and up to translations in
kerD⇤; these translations correspond precisely to gauge transformations not changing the
tile weights. The additive constant allows us to scale all weights so that P (1) = 1. After
this scaling (6) says precisely that the sum of weights of tiles containing v (counted with
multiplicity) is ↵v .

Since � is concave, a solution to (6) can be found from the maximization of the concave
function in (8).

The Legendre duality allows us not only to compute the growth rate. For each ~↵ there is a
probability distribution on tiles whose probability distribution function is P̃ (x1, . . . , xV ) :=
P (eX1x1,...,eXV xV )

P (eX1 ,...,eXV ) , with the property that monomials of P̃K concentrate near N, that is, the
expectation of the vertex densities is N/K . For this distribution tile t has probability propor-
tional to w0

t, and the expectation of Y is ~↵. Thus we have

COROLLARY 3.2. For the critical gauge w0, tile probabilities are proportional to tile
weights, that is, the expected number of tiles of type t is Kw0

t, where K is the total number
of tiles.

One consequence of this corollary is that there is, for any choice of tile probabilities (sat-
isfying the necessary condition of summing to ↵v at vertex v for each v), a choice of tile
weights wt, unique up to gauge, for which the multinomial tiling model (in the large-K
limit) has those tile probabilities.

3.3. Example. Consider tilings of G1 = {1,2,3,4,5}⇢ Z with tiles consisting of single
vertices and pairs of adjacent vertices: the tiles are T = {1,2,3,4,5,12,23,34,45}. We add
a dummy vertex v0 to all singleton tiles and let G = G1 [ {v0}. Suppose Ni =N for i 6= v0,
and all tile weights are 1. Then

P = x0(x1 + x2 + x3 + x4 + x5) + x1x2 + x2x3 + x3x4 + x4x5.

We have N0 + 5N = 2K . Let ↵=N/K and ↵0 =N0/K (note ↵0 + 5↵= 2= �).
The feasible range of ↵ is ↵ 2 [15 ,

1
3 ]: when ↵ = 1/5, K = 5N and we need to use only

singleton tiles, and when ↵= 1/3, K = 3N and we need to use the maximum proportion of
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FIG 1. Tile probabilities for ↵ 2 [1/5,1/3]. x0x1 in blue, x0x2 in orange, x0x3 green, x1x2 red, x2x3
purple.

long tiles (which is two long tiles for every singleton tile); moreover the singleton tiles must
be x1, x3 or x5.

Solving the criticality equations (6) we find the tile probabilities

x0x1 =
1

4
(1 + 3↵�

p
1� 10↵+ 41↵2)

x0x2 =
1

2
(1� 3↵)

x0x3 =
1

2
(1� 7↵+

p
1� 10↵+ 41↵2)

x1x2 =
1

4
(�1 + ↵+

p
1� 10↵+ 41↵2)

x2x3 =
1

4
(�1 + 9↵�

p
1� 10↵+ 41↵2)

and the remaining probabilities are given by symmetry.
Tile probabilities are plotted in Figure 1.

3.4. Example. Here is an example with nontrivial homology. Consider tilings of a cy-
cle of length 4: {1,2,3,4} with dimers {12,23,34,41}. Then P = x1x2 + x2x3 + x3x4 +
x4x1 = (x1 + x3)(x2 + x4). The space Im(D) ⇢ RV is the orthocomplement of the vec-
tor (1,�1,1,�1), so H1(T,R) has rank 1 and is generated by this vector. The feasible
~↵ are those which satisfy

P
v ↵v = 2 and are in Im(D), that is, satisfy the conditions

↵1 + ↵3 = 1= ↵2 + ↵4. The criticality equations are
x1x2 + x1x4

P
= ↵1,

x1x2 + x2x3
P

= ↵2,
x2x3 + x3x4

P
= ↵3,

x1x4 + x3x4
P

= ↵4,

which reduce to
x1

x1 + x3
= ↵1,

x2
x2 + x4

= ↵2.

Solutions are not unique: given any solution we can multiply x1, x3 by a constant t and divide
x2, x4 by t to get another solution. We have

F (X1, . . . ,X4) = log((eX1 + eX3)(eX2 + eX4)).
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This leads to the growth rate

�(~↵) =�↵1 log↵1 � ↵2 log↵2 � ↵3 log↵3 � ↵4 log↵4

=�↵1 log↵1 � ↵2 log↵2 � (1� ↵1) log(1� ↵1)� (1� ↵2) log(1� ↵2)

= h(↵1) + h(↵2)

where h(p) is the Shannon entropy h(p) =�p log p� (1� p) log(1� p).

4. Dimers. A special case of the multinomial tiling model is the multinomial dimer
model, where tiles are simply all pairs of adjacent vertices (also known as “dimers"). A 1-
dimer tiling is then a perfect matching, also known as dimer cover of G.

4.1. Bipartite graphs. For the dimer model, when G is bipartite, V =B [W , there is an
equivalent but perhaps more efficient method of computing Z(w,N). From (5) we need to
look for a gauge function x : V !R>0 such that

(9) ↵b =
X

w⇠b

wwbxwxb

and likewise for white vertices. However we can use (9) to define xb:

xb =
↵bP

w⇠bwwbxw
.

Then we only have equations involving the remaining half of the variables: those at the white
vertices xw. These equations are

(10) ↵w =
X

b⇠w

↵b
wwbxwP
w⇠bwwbxw

.

In the standard case where Nv ⌘N , all the ↵w,↵b are equal and the saddle point equations
correspond to the property that the sum of (critical) edge weights at each vertex is 1. This is
just a restatement of Corollary 3.2 in this setting, since the sum of edge probabilities at each
vertex is 1 for a random dimer cover.

4.2. Aztec Diamond Example. The Aztec diamond of order n is a diamond-shaped sub-
region of Z2 of horizontal diameter 2n � 1; see Figure 2, left panel for the n = 4 Aztec
diamond. It is known to have 2n(n+1)/2 single-dimer covers (see [9] and [10]). Consider
N-fold dimer covers with Nv ⌘N and wt ⌘ 1. The critical edge weights sum to 1 at each
vertex, and are defined by this property and the property of being gauge equivalent to w,
that is, around each square face the critical weights a, b, c, d satisfy ac= bd. Surprisingly, the
critical weights in this example are rational. The critical weights for n= 4 are shown on the
left, and for general n (scaled by n(n� 1)) on the right in Figure 2.

We can work out the growth rate � in this case as follows. Since P = 1, and ↵v =
1

k(k+1)
is a constant, we have

� =� 1

k(k+ 1)

X

v

logxv =� 1

k(k+ 1)
log

Y
xv.

This product is the weight of any single dimer cover. The “all horizontal" dimer cover has
dimers of weight 1

k(k+1) times: k2 for the top row, k(k � 1) and (k � 1)k for the next row,
and generally k(k � i+ 1), (k � 1)(k � i+ 2), . . . , (k � i+ 1)k for the i row, for i from 1
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FIG 2. Aztec diamond of order k = 4 (left) in critical gauge. On right, critical gauge edge weights for general k,
multiplied by k(k+ 1). The weight on an edge is a quadratic function of its x, y coordinates and its parity.

to k, then repeating for the bottom half of the diamond. The total product of edge weights of
the dimer cover is

(kk · (k� 1)k�1 · · ·22 · 1)4

(k(k+ 1))k(k+1)

This yields for the exponential growth rate the remarkable value � = 1+O( logkk2 ).
Associated to a multinomial dimer cover with constant Nv ⌘ N of a subgraph of Z2 is

a height function h on the dual graph. The height function is defined to be zero on a fixed
face, and the change in height across an edge wb (when crossing the edge so that the white
vertex is on the left) is �N/4 plus the number of dimers on that edge. In [4], see also [5], the
authors prove a limit shape phenomenon for single dimer covers: the (rescaled by n) height
function for a random dimer cover of AD(n) converges with probability one as n!1 to a
nonrandom piecewise analytic function on the rescaled diamond |x|+ |y| 1. For the N -fold
dimer cover discussed above we get a similar, but analytic, limit shape. In the N !1 limit
it is just the function h(x, y) = x2�y2. This follows from a short calculation using the above
edge probabilities . The limit shape phenomenon for multinomial tilings is discussed more
generally in [18].

4.3. Path example. For fixed n > 0 take G to be the (bipartite) n⇥n honeycomb graph of
Figure 3, with edge weights 1. There are

�2n
n

�
single dimer covers: dimer covers correspond

bijectively to monotone lattice paths from (0,0) to (n,n). The bijection is obtained by taking
a dimer cover and shrinking all horizontal edges of G to points.

Let us consider N-dimer covers of Gn, where Nv ⌘N and wt = 1. Index the white vertices
xi,j as in the figure. The criticality equations (10) are

(11)
xi,j

xi,j + xi�1,j + xi,j�1
+

xi,j
xi,j + xi+1,j + xi+1,j�1

+
xi,j

xi,j + xi,j+1 + xi�1,j+1
= 1

and boundary conditions xi,j = 0 for i < 0 or j < 0 or (i, j) = (n,n).
In the limit n!1, there is a solution to (11) given by

xi,j = (i+ j)!

✓
i+ j

i

◆
.
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(0,0)

(1,0)

(0,1)

FIG 3. 3⇥ 3 honeycomb graph.
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FIG 4. Edge probabilities (left). Corresponding random walk probabilities (right).

However we don’t know if this solution is the only one up to gauge (since the graph is infinite,
unicity does not necessarily hold).

The edge probabilities for this solution are (for horizontal, NE, SE edges respectively out
of a white vertex (i, j))

i+ j

i+ j + 1
,

j + 1

(i+ j + 1)(i+ j + 2)
,

i+ 1

(i+ j + 1)(i+ j + 2)

for the (horizontal, resp. NE, resp. SE) edge at (i, j).
These edge probabilities give a unit flow on N⇥N from (0,0) to 1, see Figure 4 left panel;

the value on an edge represents the flow from left to right along that edge. The value on an
edge is the probability that a certain monotone random walk uses that edge. The transition
probabilities of this random walk are shown on the right in Figure 4; this random walk is the
Polya urn1.

1An urn starts out with one red and one green ball. A ball is selected at random and replaced along with
another ball of the same color. This process is then repeated many times. The resulting distribution of the number
of red balls after k steps is uniform on [1, k].
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4.4. Example in higher dimensions. For a higher dimensional multinomial dimer exam-
ple, consider the infinite subgraph of Z3 in the slab 0 x+ y + z  n where n is even, and
w ⌘ 1. To get a finite graph we can quotient by a cofinite sublattice of {x + y + z = 0}.
Such a graph has a higher proportion of white vertices than black vertices (assuming the ori-
gin is white); the density ratio is (n+ 1)/n. Take Nw constant, and Nb a different constant
with Nw/Nb = n/(n+ 1). Then a critical gauge is given up to scale by: for w = (x, y, z),
xwb = n� x� y� z if b=w+ ei and xwb = x+ y+ z if b = w� ei (here e1, e2, e3 are the
standard basis vectors).

There are analogous examples in all dimensions d� 1.

5. Multiplicities and fluctuations.

5.1. Changing multiplicities. We compute the change in growth rate � (from equation
(7)) under a small change in the multiplicities ↵v ! ↵v + d↵v . This will be used below
to compute tile covariances. Since

P
v ↵v = �, the sum of changes is necessarily zero:P

v d↵v = 0.
Recall the incidence matrix D = (Dv,t)v2V,t2T , defined by Dv,t = tv . Differentiating (5)

we find for each vertex u:
X

t

wttuxt(
X

v

tv
dxv
xv

) = d↵u,

or
X

v,t

Du,twtxtDt,v
dxv
xv

= d↵u.

Thus

(12)
X

v

�u,v
dxv
xv

= d↵u,

where �=DCD⇤ is the tiling laplacian for the critical weights. Equation (12) says that as
a function of v, dxv

xv
is harmonic with respect to the laplacian � at all vertices u for which

d↵u = 0.
Equation (12) will have a solution if and only if d~↵ is in the image of �, which is the

same as Im(D), since the laplacian is invertible on Im(D), mapping it to itself (and � is
zero on kerD⇤). The solution is unique up to an element of ker� = kerD⇤ = H1(T,R);
as discussed in Section 2.5 these correspond to gauge transformations not changing the tile
weights.

5.2. Covariance of tile densities. Let Xt be the random variable counting the number of
occurrences of tile t in an N-fold tiling. We wish to compute the covariance Cov(Xt,Xt0) =
E[XtXt0 ]�E[Xt]E[Xt0 ] for two tiles t, t0.

Note that Xt is itself a sum of {0,1}-valued random variables, Xt =
PMt

i=1X
i
t , where the

sum runs over all Mt =
Q

v

�Nv

tv

�
possible lifts of the tile t to GN. It suffices to compute the

covariance Cov(Xi
t ,X

j
t0).

5.2.1. The case t 6= t0. Assume first that t 6= t0. By the symmetry of GN, if t and t0 are
disjoint this is independent of i and j: Cov(Xi

t ,X
j
t0) = Cov(X1

t ,X
1
t0). (If t, t0 overlap, see

below.) We have
E[X1

t X
1
t0 ] = Pr(X1

t = 1,X1
t0 = 1)

= Pr(X1
t0 = 1|X1

t = 1)Pr(X1
t = 1)

= Pr⇤(X1
t0 = 1)Pr(X1

t = 1),
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where the star denotes the probability measure on the graph GN⇤ where we have reduced the
multiplicities of vertices v by tv . We thus have

E[XtXt0 ] =MtMt0E[X1
t X

1
t0 ] = E[Xt]

Mt0

M⇤
t0
E⇤[Xt0 ] = E[Xt]E⇤[Xt0 ],

since Mt0 =M⇤
t0 when t, t0 are disjoint.

When t and t0 overlap, the number of disjoint lifts of t and t0 is

Mt,t0 :=
Y

v

✓
Nv

tv, t0v

◆
=
Y

v

✓
Nv

tv

◆✓
Nv � tv

t0v

◆
=Mt

Y

v

✓
Nv � tv

t0v

◆
.

Thus
(13)

E[XtXt0 ] =Mt,t0E[X1
t X

1
t0 ] =Mt,t0E[X1

t ]E⇤[X1
t0 ] = E[Xt]

Mt,t0

Mt
E⇤[X1

t0 ] = E[Xt]E⇤[Xt0 ],

since the number of lifts of t0 in GN⇤ is exactly
Y

v

✓
Nv � tv

t0v

◆
=

Mt,t0

Mt
.

Thus in either case, if t 6= t0,

Cov(Xt,Xt0) = E[Xt](E⇤[Xt0 ]�E[Xt0 ]).

5.2.2. The case t= t0. Finally, if t= t0 are the same tile, then we have a slightly different
computation. We have Xt =X1

t + · · ·+XMt

t so

E[X2
t ] =MtE[X1

t ] +
X

i 6=j

E[Xi
tX

j
t ].

Here in the sum we only get a contribution from disjoint lifts, so if X1
t and X2

t are disjoint,
this is

E[X2
t ] = E[Xt] +Mt,tE[X1

t X
2
t ].

Thus from the computation in (13), with t= t0

E[X2
t ]�E[Xt]

2 = E[Xt] +E[Xt](E⇤[Xt]�E[Xt]).

5.2.3. Computation of E⇤. We can now compute E⇤[Xt0 ] from the methods of section
5.1. We need to change ↵v =

Nv

K to Nv�tv
K�1 . Thus

d↵v =
↵vK � tv
K � 1

� ↵v =
↵v � tv
K � 1

.

Recalling E[Xt0 ] =Kwt0xt0 , we have (using (12), and ignoring lower order terms)

E⇤[Xt0 ]�E[Xt0 ] = (K � 1)wt0(xt0 + dxt0)�Kwt0xt0

= (K � 1)wt0xt0(1 +
X

u

t0u
dxu
xu

)�Kwt0xt0

=wt0xt0(�1 + (K � 1)
X

u

t0u
dxu
xu

)

=wt0xt0(�1 + (K � 1)
X

u,v

Dt0,u�
�1
u,vd↵v)
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=wt0xt0(�1 +
X

u,v

Dt0,u�
�1
u,v(↵v �Dv,t))

=wt0xt0(�1� (D⇤��1D)t0,t +
X

u,v

Dt0,u�
�1
u,v↵v).(14)

Now note that
X

v

�u,v =
X

v,t

Du,twtxtDt,v = �
X

t

Du,twtxt = �↵u,

so ��1
u,v↵v =

1
�1u and thus

P
u,vDt0,u��1

u,v↵v = 1. The last sum in (14) cancels the �1 and
we have

E⇤[Xt0 ]�E[Xt0 ] =�wt0xt0Kt0,t,

where K=D⇤��1D, and so for t 6= t0 at critical gauge

Cov(Xt,Xt0) =�Kwtw
0
tKt0,t.

Likewise when t= t0,

Var(Xt) =Kwt(1�wtKt,t).

Combining these two cases we have

(15) Cov(Xt,Xt0) =Kwt(I �CK)t0,t

where I is the identity matrix. Note that CK= (CK)2 is a projection matrix from RT onto
the subspace C Im(D⇤), with kernel ker(D). Thus I �CK is the complementary projection.

5.3. Gaussian fluctuations. For the multinomial tiling model with multiplicities N, as
above let Xt be the random variable representing the multiplicity of tile t. We consider a
limit K ! 1 as in Section 3. Scaling P to 1, we can consider P to be the probability
generating function (pgf) of a single tile. Then PK is the pgf of placing K i.i.d. tiles. The
tile multiplicities under this process have a multinomial distribution, exactly analogous to
rolling a |T |-sided biased die K times. Each tile multiplicity is a binomial B(K,wt) random
variable. These multiplicities tend in the limit of large K to Gaussian random variables which
are independent except for the constraint that their sum is K . When we impose the constraints
on the multiplicities Nv this is an additional linear constraint (which implies the first). The
resulting random variable is also a multidimensional Gaussian: a multidimensional Gaussian
conditioned to lie in an affine subspace is again a multidimensional Gaussian.

A multidimensional Gaussian is determined by its covariance matrix. The covariance can
be obtained from the original covariance matrix and the constraint matrix: just take the pos-
itive definite quadratic form defining the Gaussian and restrict it to the affine space to get a
new positive definite quadratic form, whose inverse restricted to that space is the covariance.
In our case we have already computed the covariance matrix above in (15).

THEOREM 5.1. In the limit of large K the joint distribution of the Xt tends to a multi-
dimensional Gaussian with mean E[ ~X] =K ~w (where ~w is the vector of critical tile weights)
and covariance matrix Cov(Xs,Xt) =Kws(I �CK)t,s.

Examples are explored in Section 6.
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5.4. Coulomb gas. In this section we assume for simplicity that G is regular, T and w
are symmetric under a transitive group of automorphisms of G, and Nv ⌘N . We also assume
tv 2 {0,1} for all tiles and vertices. We have K = nN/�, and ↵v = �/n for all v. Under these
conditions the critical vertex weights are xv ⌘ x where x is a constant.

Suppose that we take a small perturbation of the multiplicities Nv =N + qv where qv
N =

o(1). We call qv the d-charge at v. It can be positive or negative; we’ll take the sum of
d-charges to be zero. Each ↵v is then of the form ↵v = �/n+ d↵v where d↵v =

�qv
nN .

How does � change under this perturbation? To first order from (7) we have

d�(~↵) =
X

v

Pxv

P
dxv �

X

v

↵v
dxv
xv

�
X

v

logxvd↵v =�
X

v

logxvd↵v = 0

since logxv is constant. To second order we have

�(~↵+ d~↵)� �(~↵) =

X

v

(
Pxvxv

P
�

P 2
xv

P 2
)
dx2v
2

+
X

u 6=v

(
Pxuxv

P
� PxuPxv

P 2
)dxudxv �

X

v

d↵vdxv
xv

+
X

v

↵v

x2v

dx2v
2

.

Substituting xv = x,Pxv = ↵v/x,P = 1, Pxvxv = 0 and ↵v = �/n gives

=
X

v

(
�

n
� �2

n2
)
dx2v
2x2

+
X

u 6=v

(
X

t

wttutv �
�2

n2
)
dxu
x

dxv
x

�
X

v

d↵v
dxv
x

which we can write as

=
d~xt

x

✓
1

2
�� �2

2n2
J

◆
d~x

x
� d~↵t · d~x

x

where J is the all-1’s matrix. But
d~xt

x
J
d~x

x
= d~↵��1J��1d~↵= 0

(since ��1 has constant row and column sums, ��1J��1 is a multiple of J ). Using (12)
we are left with

THEOREM 5.2. Under the above conditions on G,N, T,w the second derivative of �(~↵)
in direction d~↵ (of sum 0) is

d2� =�1

2
d~↵��1d~↵.

If we fix the d-charges but allow them to move from vertex to vertex, considering � as a
function of position of these charges, we see that d-charges interact with a potential defined
by ��1. This is the Coulomb potential associated with �.

5.4.1. Example: dimer case. Consider for example the case of the multinomial dimer
model on a bipartite graph G. Define the charge q̃v of a vertex of d-charge qv to be q̃v =
d(v)qv where d(v) = 1 for a white vertex and d(v) =�1 for a black vertex. Then note that
�̃u,v = d(u)�u,vd(v) is the standard graph laplacian.

Suppose we fix the charges q̃v , but not their locations. We can interpret � as a function
of charge positions as a potential energy which causes like charges to repel and opposite
charges to attract. That is, � is larger when like charges are farther apart and opposite charges
are closer. The force of repulsion/attraction is naturally given by the gradient of the Green’s
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function �̃�1 (that is, the gradient of the potential). For G = Z2, for example this is a “1/r”
force for distant particles, where r is the vector between them. For G = Z3 it is a “1/r2" force
for distant particles. These conclusions are consistent with standard electrostatics in R2 and
R3, when the charges are far apart (compared to the lattice spacing). In 2d these results agree
with corresponding results obtained for the single dimer model by Ciucu [6].

6. Crystallization. In this section we restrict our graphs G to be Zd or a quotient graph
Zd/nZd (eventually for n large). As we shall see, the behavior of a random tiling can depend
on n in such a way that the limit n!1 might not exist.

For fixed finite G the Gaussian approximation (Theorem 5.1) only holds in the large-K
limit, so for a sequence of growing graphs in order to have a Gaussian limit we should assume
that K is growing much faster than the size of G; in other words limits should be taken first
in K then in |G|.

We consider tilings with tiles T which are translates of one or more “prototiles”. In the
simplest case we have only two prototiles t, t0, where t0 is a single vertex. Then a N-fold
tiling of G with T is a tiling of GN with lifts of translates of t which has a number of holes
(which are locations which are covered by lifts of translates of t0). We are interested in what
happens when the fractional density of holes goes to zero. Depending on the shape of t, the
system will crystallize.

Let us explain what we mean by this crystallization. While there are several different
definitions of what it means to be a crystal (see e.g. [22]), we define here a crystal as a
structure with long-range order. By long range order for our random tilings we mean that
tile correlations do not decay with distance: (some) pairs of distant (in G) tiles have scaled
multiplicities whose scaled covariances (covariances divided by

p
K) are bounded below by a

positive constant independently of their distance in G. See Theorem 6.1 below for a statement
about the concrete form of the covariances. Depending on the tile shapes, correlation patterns
of highly correlated tiles may be either periodic or aperiodic. If aperiodic, we call the system
a quasicrystal.

Before giving a general result, we work out some explicit examples, which are of interest in
their own right, and which illustrate the general situation. First in dimension one we consider
the case of triominos with no holes (Section 6.1.1) and then with a positive fraction of holes
(Section 6.1.2). In Section 6.2.1 we consider the L triomino in Z2. Further examples in Z2

with more interesting behavior are studied in Sections 6.2.3 and 6.3.

6.1. Examples in one dimension.

6.1.1. Example: bars of length 3. Consider tilings of the cycle G = Z/nZ with translates
of the triomino t = {0,1,2}, that is T = {t0, . . . , tn�1} with ti = {i, i+1, i+2} with cyclic
indices. We choose constant multiplicities Nv ⌘ N . Then the total number of tiles is K =
Nn/3 and the fraction of tiles per vertex is ↵= 3/n. Since the graph is regular, for the critical
gauge we have xv ⌘ x, and P = nx3 = 1, so the weight per tile is wt = x3 = 1/n. The tile
laplacian � satisfies, for a function f 2RV ,

(�f)(j) =
1

n
(3f(j) + 2f(j � 1) + 2f(j + 1) + f(j + 2) + f(j � 2))

with cyclic indices.
It is convenient to use the Fourier transform to invert �. For z an nth root of 1 let Uz be

the subspace of CV consisting of z-periodic functions

Uz = {f 2CV | f(x+ 1) = zf(x)}.
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Here Uz is the eigenspace for translation by 1 on G with eigenvalue z. The operator � pre-
serves each Uz and its action on Uz is multiplication by

�z =
1

n
(1 + z + z2)(1 + z�1 + z�2).

The matrix D can likewise be written in a Fourier basis, if we identify a tile ti with the
location of its left endpoint i. The action of D on Uz is then multiplication by 1 + z + z2,
and that of D⇤ is multiplication by 1 + 1/z + 1/z2. We see that K = D⇤��1D is simply
multiplication by n on subspaces Uz for which z2 + z + 1 6= 0, and 0 on subspaces Uz for
which z2 + z + 1= 0.

Suppose that n is not a multiple of 3. Then K is a scalar, equal to multiplication by n. The
covariance matrix is identically zero: Cov(Xt,Xt0) = 0. This is not surprising since the tile
multiplicities Xi are not random: we necessarily have Xi =N/3 for all i.

Suppose that n is a multiple of 3. Then 1
nK is a projection matrix P3 onto the span of the

subspaces Uz where z2 + z + 1 6= 0. The covariance matrix is Cov(Xt,X 0
t) =

K
n (I � P3),

where I�P3 is the projection onto the (two-dimensional) span of the Uz where z2+ z+1=
0. That is, in the standard basis on RV ,

(16) Cov =
K

n2

0

BBBBB@

2 �1�1 2
�1 2 �1�1
�1�1 2 �1
2 �1�1 2

. . .

1

CCCCCA
.

Pairs of tiles t, t0 at distance a multiple of 3 are perfectly correlated: we have a crystal. This
is also not surprising since the multiplicity at j determines Xj as a function of Xj�1,Xj�2:
we have Xj�2 +Xj�1 +Xj =N , which implies Xj =Xj+3 for all j.

6.1.2. Example: bars of length 3 and singletons. Let us consider a variant of the above
model, where we also allow singleton tiles, with weight 1. As discussed in Section 3.1 we
include a dummy vertex v0 in G, with multiplicity 2 for all singleton tiles; we can then use
the multiplicity N0 of the dummy vertex to control the number of singleton tiles. We have
N0 + nN = 3K , and ↵0 =N0/K and ↵=N/K satisfy ↵0 + n↵= 3. Also

P0 =
x20
2

X
xi +

X
xixi+1xi+2 =

n

2
x20x+ nx3

where we replaced xi with x by circular symmetry. A short calculation shows that the critical
weights w0,w are w0 =

↵0

n and w = 2�↵0

2n .
In this case the laplacian can be partially diagonalized. We write

RG =

 
M

zn=1

Uz

!
�U0

where Uz is as above and U0
⇠=R is the space of functions on v0. The laplacian � preserves

each Uz for z 6= 1,0, and acts by multiplication by

�z =w0 +w(1 + z + z2)(1 + z�1 + z�2)

on these Uz . The laplacian does not preserve U1 but does preserve the sum U1 �U0. On the
space U1�U0, with basis given by e1 = (1,1, . . . ,1,0) and e0 = (0,0, . . . ,0,1), the laplacian
acts as the matrix

(17)
✓
w0 + 9w 2w0

2nw0 4nw0

◆
.
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More generally, for a tile of size A, the matrix would be
✓

w0 +A2w (A� 1)w0

(A� 1)nw0 (A� 1)2nw0

◆

where n = |G|; we’ll use this below. Likewise the kernel K = D⇤��1D has a similar de-
composition into the subspaces Uz and U1 � U0. On Uz, z 6= 1,0 it acts as multiplication
by

(1 + z + z2)(1 + z�1 + z�2)

w0 +w(1 + z + z2)(1 + z�1 + z�2)
.

On U1 � U0, if we take a single triomino Xt it corresponds to the vector 3p
n
e1 + 0e0. Thus

the contribution to the covariance is 1
wn , which is 9

n times the 1,1 entry in the inverse of (17).
Now using Theorem 5.1,

(18) Cov(Xs,Xt) =Kw�s=t �
Kw

n
� Kw2

n

X

zn=1

z 6=1

zs�t(1 + z + z2)(1 + z�1 + z�2)

w0 +w(1 + z + z2)(1 + z�1 + z�2)
.

Here the second term �Kw
n is the component of �Kw2(D⇤��1D)s,t on the subspace U1,

that is �Kw2( 1
nw ).

The covariance (18) only depends on s� t; without loss of generality assume t= 0. Now
(18) simplifies to

(19) Cov(X0,Xs) =
Kw0

n

X

zn=1

z 6=1

zs

w0/w+ (1+ z + z2)(1 + z�1 + z�2)
.

As long as w0/w⌧ 1, to leading order this sum is localized on the region where z is close
to one of the primitive cube roots of 1. If 1

n2 ⌧ w0

w ⌧ 1 and n is large, we can approximate
the sum with an integral. Writing z = ei(2⇡/3+2⇡j/n), and "=w0/w, and letting u= 2⇡j/n,
the contribution near e2⇡i/3 is, up to a multiplicative 1 + o(1) factor,

Kw0 exp(
2⇡is
3 )

2⇡

Z 1

�1

eisudu

"+ 3u2
=

Kw0 exp(
2⇡is
3 )

2
p
3"

e�|s|
p

"/3.

The integral near the other primitive cube root of 1 contributes the complex conjugate, and
we get

(20) Cov(X0,Xs)⇠
Kw0 cos(

2⇡s
3 )

p
3"

e�|s|
p

"/3.

We see the onset of the 3-periodic correlations between the Xs as "! 0.
Note that the variances and covariances here are much larger than in the w0 = 0 case: here

they are of order

Kw0p
"

=K
p
ww0 =

K
p

↵0(2� ↵0)

2n
,

which is (for constant ↵0) a factor of n larger than that for the pure triomino case above.
For smaller ", write " = �/n2; in this case expanding near the primitive cube roots of 1

gives

Cov(X0,Xs)⇠
K� cos(2⇡s3 )

n2

X

j2Z

1

� + 12⇡2j2

=
K
p
� cos(2⇡s3 )

2n2
p
3

coth(

p
�

2
p
3
) =

K cos(2⇡s3 )

n2
(1 +

�

36
+O(�2)),



THE MULTINOMIAL TILING MODEL 19

where for the last line we used the Mittag-Leffler expansion for the hyperbolic cotangent
function

⇡ coth(⇡z) =
1

z
+ 2

1X

n=1

z

z2 + n2
.

6.1.3. Quasiperiodic example in dimension 1. On Z/nZ let t be the tile with character-
istic polynomial p(z) = 2/z + 1 + 2z. It has two roots of modulus 1 which are not roots of
unity. We tile with t and t0 the singleton, and as before let "= w0/w. The covariance func-
tion is given by the analogue of (19) where the denominator is replaced by w0/w + |p(z)|2.
For 1/n2 ⌧w0/w⌧ 1 we get

Cov(X0,Xs)⇠
Kw0

2⇡i

Z

S1

zs

"+ p2
dz

z
.

The integral can be localized near the two roots e±i✓0 of p. Letting z = ei(✓0+x) we get

Cov(X0,Xs)⇠ 2Kw0Re


eis✓0

2⇡

Z

R

eisxdx

"+ 2p0(✓0)2x2

�
=

Kw0 cos(s✓0)e�|s|
p
"a

p
"a

where a= 2p0(✓0)2 = 32sin2(✓0).
For a similar example without multiplicity, we can take p(z) = 1+ z + z3 + z5 + z6.

6.2. Examples in higher dimensions.

6.2.1. Example: L triomino. For a 2d example, consider tilings of the torus Z2/nZ2 with
translates of the triomino t = {(0,0), (1,0), (0,1)}, and constant multiplicities N⌘N . Let �
be the sublattice of Z2 generated by (1,1) and (3,0). Translates of t by � tile Z2. Translates
of this tiling by the three cosets of � in Z2 give three distinct periodic tilings.

We have K =Nn2/3, ↵ = 3/n2. The graph is regular, so for the critical gauge we have
xv ⌘ x, and wt = 1/n2.

For z,u two nth roots of 1, define Uz,u to be the subspace of CV ⇠= Cn2 consisting of
(z,u)-periodic functions, that is, functions f : Z2/nZ2 ! C such that f(i+ 1, j) = zf(i, j)
and f(i, j + 1) = uf(i, j).

The action of � on Uz,u is multiplication by

�z,w =
1

n2
(1 + z + u)(1 + z�1 + u�1).

If we index tiles according to the location of their lower left vertex, then the matrix D cor-
responds to multiplication by 1 + z + u, and D⇤ by 1 + z�1 + u�1. Then K=D⇤��1D is
multiplication by n2 of spaces Uz,u for which 1 + z + u 6= 0, and zero on spaces Uz,u where
1 + z + u= 0.

If n is not a multiple of 3, then there are no subspaces Uz,u where 1 + z + u= 0, and so
K= n2I is a scalar multiple of the identity, and Cov is the zero matrix: all tile multiplicities
are determined and constant. If n is a multiple of 3, then Cov = K

n2 (I�P) where I�P is the
projection onto the span of U!,!2 �U!2,! (here ! = e2⇡i/3). The covariance between tiles is
2K/n4 if they lie in the same translate of � and �K/n4 if they do not. Again this is a perfect
crystal; the tiles differing by translates in � are perfectly correlated.

Let us now allow a small fraction of singleton tiles: N0+n2N = 3K , and ↵0 =N0/K . As
before w0 =

↵0

2n2 and w = 2�↵0

2n2 . The laplacian � still preserves each Uz,u for (z,u) 6= (1,1),
and on Uz,u acts by multiplication by

�z,w =w0 +w(1 + z + u)(1 + z�1 + u�1).
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On U1,1 �U0 it acts as the matrix
✓
w0 + 9w 2w0

2n2w0 4n2w0

◆
.

We have

Cov(X(0,0),X(s,t)) =Kw�s=t=0 �
Kw

n2
� Kw2

n2

X

zn=1=un

(z,u) 6=(1,1)

zsut(1 + z + u)(1 + z�1 + u�1)

w0 +w(1 + z + u)(1 + z�1 + u�1)

=
Kw0

n2

X

zn=1=un

(z,u) 6=(1,1)

zsut

w0/w+ (1+ z + u)(1 + z�1 + u�1)
.

Now assume w0/w ⌧ 1 and is fixed as n!1. The sum is then localized to the region
near (z,u) = (!,!2) or (!2,!). Near the first point write z = ei(2⇡/3+x) and u= ei(4⇡/3+y),
and take "=w0/w. The contribution near this point is

⇠
Kw0 exp(

2⇡i(s+2t)
3 )

(2⇡)2

ZZ

R2

ei(sx+ty)dxdy

"+ x2 � xy+ y2
.

The integral here for (s, t) 6= (0,0) is a Bessel-K function (see the appendix Section 8),

=
Kw0 exp(

2⇡i(s+2t)
3 )

⇡
p
3

B(
2p
3

p
"(s2 + st+ t2)).

Summing over both roots, and taking " small we have

Cov(X(0,0),X(s,t)) =
Kw0 cos(

2⇡
3 (s+ 2t))

⇡
p
3

✓
log

1

"
� log

2(s2 + st+ t2)

3
� 2�E +O(")

◆

where �E is the Euler gamma.
For the variance, that is, when (s, t) = (0,0),

Var(X0,0)⇠
Kw0

(2⇡i)2

ZZ
dzdu

(1 + u)(z � r1)(z � r2)

where r1, r2 are the roots of the denominator which is a quadratic polynomial in z. Let r1 be
the root inside the unit circle; then using residues this is

=
Kw0

2⇡i

Z

S1

du

(1 + u)(r1 � r2)

=
Kw0

2⇡

Z 2⇡

0

d✓p
3 + 6"+ "2 + (4+ 4") cos✓+ 2cos(2✓)

and splitting the integral into parts near ✓ = 2⇡/3,4⇡/3 and the remainder, we arrive at

=
Kw0

⇡
p
3
(log

9

"
)(1 + o(1)).

See Figure 5 for a plot of the covariances for small ".
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FIG 5. Covariances for the L polyomino for "= 0.001 (left) and in the limit "= 0 (right). Here values
are scaled to the range from 1 (orange) to �1 (dark blue) with 0 being white.

6.2.2. Examples in Z2 with simple zeros.. The above example of the L triomino can be
generalized. Consider the case of tiling with a polyomino t in Z2 and a small density of
singletons t0. The characteristic polynomial p(z,u) of a polyomino t is defined as

p(z,u) =
X

(i,j)2t

ziuj .

As in the previous section we have

Cov(X0,0,Xs,t) =
Kw0

n2

X

zn=1=wn

(z,u) 6=(1,1)

zsut

w0/w+ p(z,u)p(1/z,1/u)

⇠ Kw0

(2⇡)2

ZZ

(S1)2

zsut

"+ p(z,u)p(1/z,1/u)

dz

iz

du

iu
.(21)

Suppose now that p(z,u) has a finite number of roots {(zi, ui)}i=1,...,k on T2 = S1 ⇥ S1.
A root (z,u) is simple if zPz

uPu
62 R; this means the zero set of p intersects the unit torus

transversely at that point. We suppose for the moment that all roots (zi, ui) are simple.
For w0/w a small constant the integral (21) can be localized near each root. Near a simple

root (z0, u0) the integral is approximated by

Kw0zs0u
t
0

(2⇡)2

Z

R2

ei(sx+ty) dxdy

"+ ax2 + bxy+ cy2

where the quadratic form in the denominator is

ax2 + bxy+ cy2 = |z0Pz(z0, u0)x+ u0Pu(z0, u0)y|2.
Since the root is simple this quadratic form is positive definite, and the integral is defined and
finite (for (s, t) 6= (0,0)). This integral is a (linear image of a) Bessel-K function (see section
8). Summing over all roots, the covariance is a superposition of these Bessel-type functions.

We also need the s = t = 0 case, that is, the variance, which we cannot get using Bessel
functions. We have

Var(X0,0) =
Kw0

(2⇡)2

ZZ
1

"+ p(z,u)p(1/z,1/u)

dz

iz

du

iu
.
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FIG 6. The key polyomino and its (quasiperiodic) covariance function in the limit "! 0.

Localize to a ball B of radius M
p
" around a simple root (z0, u0) (where M is a large

constant). Let z = z0eis
p
" and u= u0eit

p
". The contribution from this ball is

Kw0

(2⇡)2

Z

B

dsdt

1 + as2 + bst+ ct2 +O("1/2)
=

Kw0

2⇡

✓
1p

4ac� b2
log

1

"
+O(1)

◆
.

This is then summed over all roots.

THEOREM 6.1. Suppose t is a polyomino whose characteristic polynomial has only sim-
ple roots {(zj , uj)}j=1,...,k on T2, and consider tilings of Z2 with translates of t and the
singleton t0. Fix a small "=w0/w, then the covariance function is, up to a 1 + o"(1) factor,

Cov(X0,0,Xs,t) =Kw0

kX

j=1

zsju
t
j

(2⇡)2

Z

R2

ei(sx+ty) dxdy

"+ |zjPz(zj , uj)x+ ujPu(zj , uj)y|2
.

6.2.3. Quasiperiodic example in dimension 2. This is an example with simple roots
which are not roots of unity. Consider the “key" polyomino (Figure 6) with

p(z,u) = 1+ z + z2 + z3 + z4 + z5 + z6 + u(1 + z + z4 + z6).

It has 2 simple roots on T2, (z0, u0), (z̄0, ū0), and z0, u0 have arguments ✓,� which are not
rationally related to each other, that is, there are no integers m1,m2 such that zm1

0 um2

0 = 1
except m1 = 0=m2 (this requires a short Galois theory argument, see the appendix, Section
9).

This implies that the resulting covariance function Cov(X0,0,Xs,t) is a quasiperiodic func-
tion of (s, t) in the "! 0 limit: specifically, to leading order

(22) Cov(X0,0,Xs,t) =Kw0C(log
1

"
) cos(s✓+ t�)

⇣
1 + o"(1)

⌘

for a constant C . See Figure 6 for a numerical plot.
A simpler quasiperiodic example, if we allow multiplicities, is the tile with p(z,w) =

2 + 3z + 4u. It also has 2 simple roots (with arguments corresponding to the angles of the
2,3,4-triangle). The covariance formula is again of the form (22) where ✓,� are these angles.

6.3. Other examples. Not all polyominos have roots on T2. For example the tile of Figure
8 has the property that its characteristic polynomial has no roots on T2.
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FIG 7. Quasiperiodic covariance function (when "= 0) for the 2,3,4-weighted L polyomino.

FIG 8. A (nonconnected) polyomino with no crystal structure.

As a consequence its covariance function Cov(X0,0,Xs,t) decays exponentially in |s|+ |t|
even for w0 = 0. This example is however somewhat special since its characteristic polyno-
mial p(z,u) = (1+ z+ z3)(1+ u+ u3) is a product of two 1d polynomials. A genuinely 2d
example which does not factor is not easy to find. Here is one:

p(z,u) = 1+ z + z2 + z3 + z7 + z9 + z12 + z13 + z17 + u.

For polyominos with multiplicity, an easy example is the one with p(z,u) = 3+ z + u.
The third class of polyominos in Z2 has characteristic polynomials with roots on T2 which

are either not simple or not isolated. And generally for d-dimensional polyominos with d > 2
the roots on Td are not typically isolated. It is harder to formulate a general theory encom-
passing all these cases. We will simply illustrate with a few examples.

6.3.1. The square polyomino. We consider the square polyomino with p(z,u) = (1 +
z)(1 + u). We evaluate the integral (21). We first perform a contour integral over u. Assume
t� 0.

Kw0

(2⇡i)2

Z
zsut

"+ (1+ z)(1 + u)(1 + 1
z )(1 +

1
u)

du

u

dz

z
=

Kw0

(2⇡i)2

Z
zsut

"zu+ p2
dudz

=
Kw0

(2⇡i)2

Z
zsut

(1 + z)2(u� r1)(u� r2)
dudz.

Roots r1, r2 of the denominator are real with product 1; choose |r1|< 1< |r2|. We get

=
Kw0

2⇡

Z 2⇡

0

zsrt1
(1 + z)2(r1 � r2)

d✓ =
Kw0

2⇡
p
"

Z
cos(✓s)rt1p

8 + "+ 8cos✓
d✓.
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FIG 9. Covariances for the square polyomino, when "= .001 (left), and in the limit "! 0 (right).

This is an elliptic function. For small " the integral concentrates near ✓ = ⇡, and is to leading
order, for constant s, t,

Kw0
(�1)s+t

2⇡
p
"

✓
log

16p
"
� 2hs � 2ht +O(")

◆

where hm = 1+ 1
3 +

1
5 + · · ·+ 1

2m�1 .
We thus have

Cov(X0,0,Xs,t) =Kw0
(�1)s+t

2⇡
p
"

✓
log

16p
"
� 2h|s| � 2h|t| +O(")

◆
.

6.3.2. The + polyomino. We consider the polyomino with p(z,u) = 1 + z + 1/z + u+
1/u. We need to compute (Kw0/n times) the Fourier series of 1

"+|p|2 . Let z = ei✓ and u= ei�.
The polynomial p= 1+2cos✓+2cos� vanishes on a whole curve on T2, where ✓ runs over
the range ✓ 2 [⇡/3,5⇡/3]. For small " the integral concentrates near this curve. Let (✓0,�0)
be a point on the curve. For ✓ fixed, the denominator has the form "+a(✓)(���0)2+O(��
�0)3 where a(✓) = 3� 4cos✓� 4cos2 ✓.

The contribution for this slice is (with x= �� �0, and to leading order)

1

2⇡

Z

R

dx

"+ a(✓)x2
=

1

2
p

"a(✓)
.

We thus have to leading order (for fixed (s, t) as "! 0)

Cov(X0,0,Xs,t) =
Kw0

2⇡
p
"

Z 5⇡/3

⇡/3

cos(s✓+ t�)d✓p
3� 4cos✓� 4cos2 ✓

where cos�+ cos✓ = 1/2.
Multiplied by

p
" these covariances still tend to zero as |s|+ |t|!1, although the decay

is slow, of order 1/(s2 + t2)1/4. See Figure 10 for a numerical plot.

7. Further directions. Because tilings are so diverse, there are many directions for fur-
ther research. Here are some ideas.



THE MULTINOMIAL TILING MODEL 25

FIG 10. Covariances for the “plus" polyomino, in the limit "! 0.

1. How is the covariance function for a 3D polyomino different? Typically the characteristic
polynomial intersects the unit 3-dimensional torus T3 in a 1-dimensional set. Is there an
analogue of Theorem 6.1?

2. Find interesting examples with multiple tiles in Z2.
3. For tilings of a planar domain with copies of the L polyomino and a small density of

monomers, understand the influence of the boundary on the tiling. Can one create situ-
ations where there is coexistence of the multiple phases? That is, for the three possible
sublattices, one might find a subregion where one is prevalent, abutting on another subre-
gions where another sublattice is prevalent.

4. What behavior do we expect for the Coulomb gas for a general tiling problem? What
about the L triomino?

5. Wang tiles (squares with colored edges, tiled so that adjacent tiles share the same color)
can be used to emulate any Turing machine. What is the multinomial-tiling analog of such
a computation?

6. What is the natural multinomial analogue of the random partition model? What is the limit
shape of a random such partition in that model (in the appropriate limit)?

8. Appendix: The Bessel-K function. For material in this section see [1]. The Bessel-K
function, or modified Bessel function of the second kind, B(s), can be defined for s 2R\{0}
by the integral

B(s) =
1

2⇡

ZZ

R2

eisx dxdy

1 + x2 + y2
.

For z 2C, B(|z|) is the Green’s function for the massive laplacian, that is, it satisfies

(I ��)B(|z|) = �0

where �0 is the point measure.
The function B(s) has a logarithmic singularity at the origin, with expansion

B(s) = log
1

s
+ log 2� �E +O(s2 log s).
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An integral of the form

1

2⇡

Z

R2

ei(sx+ty) dxdy

"+ ax2 + bxy+ cy2

where the quadratic form ax2+ bxy+ cy2 is positive definite, can be converted into a Bessel-
K integral with a linear change of coordinates, yielding

=
1q

c� b2
4a

B

 s
"(cs2 � bst+ at2)

ac� b2/4

!
.

9. Appendix: Irrationality of arguments. Let (z,u) be a root on T2 of

p(Z,W ) = 1+Z +Z2 +Z3 +Z4 +Z5 +Z6 +U(1 +Z +Z4 +Z6).

We prove here that there are no integers (m1,m2) 6= (0,0) for which zm1um2 = 1.
Note that u= s(z) :=� 1+z+···+z6

1+z+z4+z6 , so

� 1 + z + z4 + z6

1 + z + · · ·+ z6
= 1/u=� 1 + z�1 + · · ·+ z�6

1 + z�1 + z�4 + z�6

from which we find that z satisfies the irreducible (over Q) polynomial

q(z) = z10 + 2z9 + 3z8 + 4z7 + 5z6 + 3z5 + 5z4 + 4z3 + 3z2 + 2z + 1= 0.

We can use this along with p(z,u) = 0 to eliminate z and get a polynomial equation for u,
which is the irreducible polynomial

8u10 + 56u9 + 150u8 + 145u7 � 83u6 � 255u5 � 83u4 + 145u3 + 150u2 + 56u+ 8= 0.

Since u,1/u are not algebraic integers, neither is any power of u, so we can’t have
zm1um2 = 1 for integers m1,m2 unless m2 = 0. However z is not itself a root of 1. This
completes the proof.
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