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Abstract

Studies on the conditional relationships between PM, s
concentrations among different regions are of great
interest for the joint prevention and control of air pol-
lution. Because of seasonal changes in atmospheric
conditions, spatial patterns of PM, s may differ through-
out the year. Additionally, concentration data are both
non-negative and non-Gaussian. These data features
pose significant challenges to existing methods. This
study proposes a heterogeneous graphical model for
non-negative and non-Gaussian data via the score
matching loss. The proposed method simultaneously
clusters multiple datasets and estimates a graph for
variables with complex properties in each cluster. Fur-
thermore, our model involves a network that indi-
cate similarity among datasets, and this network can
have additional applications. In simulation studies, the
proposed method outperforms competing alternatives
in both clustering and edge identification. We also
analyse the PM, s concentrations’ spatial correlations
in Taiwan’s regions using data obtained in year 2019
from 67 air-quality monitoring stations. The 12 months
are clustered into four groups: January-March, April,
May-September and October-December, and the corre-
sponding graphs have 153, 57, 86 and 167 edges respec-
tively. The results show obvious seasonality, which is
consistent with the meteorological literature. Geograph-
ically, the PM,s concentrations of north and south
Taiwan regions correlate more respectively. These
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1304 ZHANG ET AL.

results can provide valuable information for developing
joint air-quality control strategies.

KEYWORDS

generalized h-score matching, heterogeneity, penalization, PM, 5 data

1 | INTRODUCTION

Air pollution remains a widespread public concern in many countries and regions globally. One
particularly harmful air pollutant is ambient fine particulate matter with an aerodynamic diam-
eter of 2.5 pm or less ( PM, s), which can seriously endanger human health. According to Cohen
et al. (2017), 4.2 million deaths worldwide in the year 2015 can be attributed to PM,s. Some
diseases and symptoms are closely linked to PM, 5 exposure (Tseng et al., 2019; Wang et al.,
2021; Xu et al., 2021; Zhang et al., 2021). Therefore, solving the problem of excessive PM, s
concentration is vital for people’s health. Recent studies have focussed on generating histori-
cal predictions of PM, 5 concentrations with a high spatiotemporal resolution (Wei et al., 2021a,
2021b), supporting insightful analyses of PM, 5 over medium- or small-scale areas. Other studies
on air pollution meteorology have explored spatial correlations of PM, s concentrations in dif-
ferent areas. These correlations can provide useful information on spatial patterns of PM, s and
help develop joint prevention and control strategies on atmospheric pollution for more effective
air-quality improvement (Wang et al., 2016; Zhang et al., 2018).

This study focusses on spatial correlations of PM, s concentrations between different regions
in Taiwan. The Pearson correlation is a classical tool to measure the relationships between
regions with respect to PM, s concentration (Jin et al., 2017; Zhang et al., 2018). However, this
method has limitations. First, the results may be deceptive because of confounders. The left
panel of Figure 1 presents the graph of three Taiwanese regions (Jiayi, Shanhua and Tainan)
obtained through Pearson correlation. The figure shows an edge between Jiayi and Tainan,
but the high Pearson correlation between these two regions may arise from the connection

Shanhua Shanhua

Tainan Tainan

FIGURE 1 Subgraphs in January for Jiayi, Shanhua and Tainan. The left and right panels present the
subgraphs of the Pearson correlation and proposed method respectively.
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between Jiayi and Shanhua and between Shanhua and Tainan. This is because, since the north-
east wind prevails in January (Hsu & Cheng, 2019), Jiayi spreads its PM, s downstream and
indirectly affects Tainan through Shanhua. Second, the Pearson correlation coefficient describes
the marginal relationship between two regions’ PM, s concentrations. Due to the pollutants’
ability to move through air (Guan et al., 2021; Lv et al., 2015), studies covering a wide geo-
graphic area are preferred. For example, Chu et al. (2015) and Wu et al. (2019) conducted
an air-quality analysis of Taiwan, and Xie et al. (2018) and Chang et al. (2019) analysed
how inter-city transport contributes to PM, s concentrations in the Yangtze River Delta and
Beijing-Tianjin—Hebei region of mainland China. Considering the limitations of the Pearson cor-
relation, we use the graphical model to describe the regions’ conditional dependence with respect
to PM, s concentrations. Under this model, the conditional correlation measures the associa-
tion between two regions, with the other regions’ air pollutant levels fixed. This graph analysis
strategy can avoid misleading confounders and include all regions of interest from a global
perspective.

Graphical models are informative and powerful tools to explore conditional dependence rela-
tionships. Specifically, nodes of a graph represent regions, and edges imply their conditional
dependencies with respect to PM, ;s concentrations. Representative methods of graphical mod-
els include neighbourhood selection (Meinshausen & Bithlmann, 2006), graphical lasso (GL)
(Friedman et al., 2008), SPACE (Peng et al., 2009) and CONCORD (Khare et al., 2015). Although
these approaches are useful, most of them assume that data are homogeneous. They face chal-
lenges in the analysis of PM; 5 data. Figure 2 presents the histograms of hourly PM, 5 concentra-
tion records for three regions (Annan, Xindian and Dayuan) in January and June 2019, showing
obvious differences in concentration distribution. Moreover, due to changes in temperature, air
pressure and atmospheric circulation patterns, the conditional dependence relationships of PM; s
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FIGURE 2 Histograms of PM, s concentration records of three regions in January (upper) and June
(lower) in 2019. The solid curves indicate the density functions of a truncated Gaussian distribution with
parameters estimated from data.
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concentration change from winter to summer. As to be shown in Section 4, the dependence among
regions is stronger in winter than in summer. Thus, records may be derived from several distinct
subpopulations. There are two primary families of graphical models for heterogeneous data. The
first targets the cases in which prior knowledge of class membership is available. Joint estimation
methods have been proposed to encourage a common structure (Danaher et al., 2014; Lee & Liu,
2015). However, for many data, population structures are complex and unknown. As such, the
second family tackles cases with unknown subpopulation structures. A popular approach is the
Gaussian mixture model (Hao et al., 2018), which simultaneously identifies the cluster structure
and estimates heterogeneous graphical models. However, determining the number of clusters in
mixed models is complicated. Another approach is clustering observations via penalization (Gib-
berd & Nelson, 2017; Ren et al., 2021), in which the number of clusters is selected with data-driven
approaches.

Despite promising results, these heterogeneous graphical models have two limitations.
First, most of them assume that the random variables’ joint distribution is Gaussian. How-
ever, the normality assumption fails when analysing PM, s data. The concentration records are
both non-negative and non-Gaussian, as shown in Figure 2. Second, the observations’ struc-
tural relationship is not fully utilized. For example, due to seasonal changes in atmospheric
conditions (Wu et al., 2019), the conditional dependence relationships of PM,s concentra-
tion tend to be consistent within a certain time period. To overcome these limitations, we
propose a heterogeneous graphical model for non-negative data (HGMND) based on score
matching. Relevant to this study, Hyvirinen (2005) proposed score matching to eliminate the
influence of the multiplicative normalization constant, and this technique was further devel-
oped for non-negative data by Hyvirinen (2007) and Yu et al. (2019). This study extends score
matching to a heterogeneous graphical model that can simultaneously cluster the months in
2019 and estimate the conditional dependence relationships of PM,s concentration among
67 regions in Taiwan in each cluster. Our model makes the following contributions. First,
our model is extremely flexible, as it accommodates a class of graphical models with dis-
tributions supported on the non-negative orthant. Second, the datasets’ network structure is
fully utilized as it considers more information than the existing studies. Third, the proposed
method automatically determines the number of clusters. The analysis results are of great value
to understand the spatial and temporal patterns of PM, s for better air pollution prevention
and control.

The remainder of the paper is organized as follows. Section 2 presents the model
development and computational algorithm. Simulation studies in Section 3 demonstrate
the satisfactory practical performance of the proposed method. The conditional depen-
dence relationships of PM, 5 concentration among 67 regions of Taiwan in the 12 months
of 2019 are clustered and estimated in Section 4. Section 5 concludes this article with
discussions.

2 | MATERIALS AND METHODS

To explore the conditional relationships between PM, s concentrations of different regions in Tai-
wan, we collect data on hourly concentration records from 67 air-quality monitoring stations in
Taiwan in year 2019. In this section, we first briefly summarize the dataset and split it into mul-
tiple datasets according to month. Each dataset is considered homogeneous, while heterogeneity
exists across datasets. In each dataset, the records of PM, s concentration in the 67 regions are
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ZHANG ET AL. | 1307

considered as observations of a 67-dimension random vector. A non-negative exponential family
is introduced to describe each dataset’s population distribution. Then, the conditional relation-
ships among all regions in each dataset are represented by a parameter matrix. We simultaneously
cluster the datasets and estimate the parameter matrices by minimizing a generalized h-score
matching loss with #; and group fused penalties. A common parameter matrix is shared within
each cluster. More details are provided in the following subsections.

21 | Datasummary

Data that support the findings of this study are openly available at https://github.com/zjq-ruc/
HGMND. There are 8,760 observations at each station. The PM, s concentration records at each
station are representative of a small region around the station. The data are preprocessed in the
following manner. Outliers, whose concentration values are no less than twice the average of the
previous and next hours in the same region, are set as missing. The missing values are imputed by
the average concentrations of the corresponding region, month and hour. The processed data are
used for downstream analysis. Table 1 presents the summary of the data. These PM, 5 concentra-
tions show obvious seasonality. The warmer months, April to September, have less PM; 5 than the
colder months. For example, in January, the monthly average PM, 5 concentration is 24.85 pg/m°,
which is much higher than that in June at 9.76 pg/m?>. Moreover, 14 days in January have a 24-h
average PM, s concentration of over 25 pg/m’, which is a standard of air quality suggested by the
World Health Organization.

2.2 | Model

To accommodate heterogeneity across months, we split data into M = 12 monthly datasets. In
the mth dataset, we assume that the joint density Pr(y™; ®'™ 5™ of the PM, 5 concentration

vector Y™ = (Yl(m), ,Y;’”))T € IR? is proportional to
(mnyb _ 1
exp {‘;_a(v(’”))”eﬂ'"ky“"b“ A b } 1™ € R, @
where y™ = (y(lm), e ;’"))T corresponds to a value of Y; matrix @' = (H;.(m)) e RP*P and

vector 5™ = (;1;('”)) € RP are the true parameters; a, b > 0 are known constants; (y'™)% =
(y(lm)a, ., y;,m)a)T; 1, is a p-dimension vector with all elements equal to 1; I(-) is the indicator
function; and R‘i = [0, c0)? is the non-negative orthant.

Density (1) corresponds to a pairwise graphical model. The conditional dependence rela-
tionship between Yl(m) and Y™ is determined by 0;('") (Yu et al., 2019). In other words, the
PM, 5 concentrations of the Ith and jth regions, conditional on those of the other regions, are
independent if and only if 0;.(’") = 0. As such, determining the conditional dependence relation-
ships concentrations among the p regions can be formulated as a problem of a sparse estimation
of ®™. When a, b = 1, density (1) corresponds to a truncated Gaussian distribution with
Y™ ~ TN(u™, ). It is proportional to exp {—1/2(/"™ — u™)T(E")~L M — M)} 1™ e
RP), where =™ = (@'™)~! is positive definite, and ™ ==y’  Additionally, when
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a =1/2 and b = 0, if we define () —1)/b=1ogy and R’ =(0,c0)?, the density corre-
sponds to a class of multivariate gamma distributions (Yu et al., 2019). In this study, we set
a, b = 1 and assume that the PM, s concentrations follow truncated Gaussian distributions.
As shown in Figure 2, the truncated Gaussian distributions’ marginally fitted density func-
tions fit the histograms well. The other values of a and b can be considered in follow-up
studies.

2.3 | Estimation

We consider the following objective function:

M
L{®}, {n}) = Y J@™, ™) + P({®}; B), )

m=1

where {®} = {0™ m=1, ... ,M} and {5} = (™, m =1, ... ,M} are the parameters of the
joint density in the form of (1) to approximate the true density. The first part of (2) is the
sum of M loss functions, with J(@™, 4™) for the mth dataset. The second term P({®}; E) is a
penalty function on {®} based on network Gy(V, E) among the M datasets. Network Gy (V,E)
is set to describe the similarity between the M datasets. In particular, V is the node set, and E
is the edge set. Each dataset corresponds to one node in V, and the edge (m;, m;) in E indi-
cates that the conditional dependence relationships among variables in the m;th dataset are
close to those in the m,th dataset. Network Gy(V, E) is derived based on prior knowledge. As
the conditional dependence relationships among the PM, 5 concentrations of different regions
are similar in adjacent months, Gy(V,E) is set as a chain network while analysing the PM, s
concentration data.

To define the loss functions, we first introduce notations. We define hy®™) =
(hl(y(lm)), ,hp(y;m)))T. h'/2(y™) is the element-wise square root on vector h(y™),
where hy, ... ,h, : Ry > R, are known positive functions that are absolutely continu-
ous in every bounded sub-interval of R,. Let hjf(x) = dh;j(x)/dx for any x € R,. We denote

yg"” = (yg"), ,yg)”))T as the ith PM, s concentration records of Y, n,, as the number of obser-

vations in the mth dataset, and Y™ = (y(lm), ,y%))T as the data matrix. Furthermore, we
define @™ = (@7, y™)T. Motivated by the generalized h-score matching loss (Yu et al., 2019),
we define the loss function J(©", ™) as

J@O™ 5my = %Vec((l)(’”))TF(Y(’”))Vec(CI)(m)) — g(Y™)Tvec(®™), )

where TI'(Y'™) e RP+Dpx(p+p — diag(l“(lm), ...,T") is block-diagonal with the jth
(p+ 1) x (p + 1) block

1@ [ E T e )

(m) _
Fj - (M) (< M\ a-+b—2 ((M\aT (M) 1, (M)\2b—2

N
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forj=1, ..., p. Furthermore, g(Y"™) = vec((g/"",g")") € R®*?, where g™ € RP and g €

RP. The jth column of g™, g(l';.’), and jth entry of g/, g!"”

2 8y are given by

1 & m)\a— a—. a
& =— Y (Hoyoy + @— Dieey? ) o)

mi=1

+ahy(y ) e,

m_ 1A (M) e (M)\b—1 (M) < (M)\b—2
&, —a;—h,’.(yi, T = (0 = Diy(y ™

where ¢; € RP is a vector with 1 at the jth position and 0 elsewhere. Both T'(Y"™) and
g(Y"™) are independent of ®™ and #™. Thus, loss J(©"™, ™) is quadratic and convex in
vec(®™), as T'(Y'™) is positive semidefinite. The details for deriving I'(Y"™) and g(Y™) are
as follows.

Loss function J(©"™, 5™ is the empirical version of the generalized h-score matching loss
J(O™ 4y which takes the form

1O, ™) = /

RP

+

-V logPr(y(m); @(M)’ n(Wt)) ° h1/2(y(rn))” %dy(m)’ 4)

% Pr(y(m); @T(m)7 ”T(m)) v logPr(y(’"); @T(m), if(m)) o h1/2(y(m))

where o is the Hadamard product operator, and V is the gradient operator; that is, for any
function f(y™), Vf™) = (of ™)/ 6yj(.m)) € RP. Loss J(©"™, ™) compares the gradients of the
model log-density logPr(y™; @™, 4™) and true log-density logPr(y; '™ 4*m) with weight
h'/2(y). The generalized h-score matching loss is an extension of the score matching loss,
which is formed by the expected squared Euclidean distance between the gradients of the model’s
log-densities and true distribution. Due to discontinuities at the boundary of R”, partial integra-
tion underlying the score matching estimator may fail (Hyvirinen, 2007; Yu et al., 2019). To tackle
this issue, h functions are introduced. Following Yu et al. (2019), we set hj(x) = (zx — x*/20)I(0 <
x <cr)+1/2¢r?I(x > cr) for j = 1, ..., p, where 7 and ¢ are two parameters. In numerical
study, we set 7 = 1 and ¢ = 5. Loss J(©@"™, 4™) is uniquely minimized when @™ = @™ and
n™ = n'™_ As the loss depends on only the gradient of log Pr(y™; @™, ™), it gets rid of the
intractable normalization constant. Detailed procedures for deriving (3) from (4) are presented in
Appendix A.
We propose the following penalty:

M
P(O}:E) =4 310 |+, Y, (1077 ",

m=1 (my,m,)EE
where @™~ = @™ — diag(HiT), ,9;';’)), @™ =3, ” |91(jm)|, | - || represents the Frobenius
norm, and 4, 4, are non-negative tuning parameters. The penalty function comprises two terms.
The first term results in sparse estimates for e m=1,..,M. Larger values of 4; lead to

sparser estimates. In other words, there are more regions whose PM, 5 concentrations are condi-
tional independent. The fused group lasso term penalizes the difference between two connected
datasets’ conditional relationships. The fused group lasso can help borrow strength across the M
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ZHANG ET AL. | 1311

datasets when estimating ®™. Furthermore, it can help identify the cluster structure of s,
Specifically, if O™~ = @)~ we conclude that the conditional relationships of PM; 5 concen-
trations in the m;th month and those in the m,th month are the same, and that the m;th and
m,th months belong to the same cluster. Tuning 4, controls the degree of heterogeneity among
the estimates of ®™s. The values of ®" are all different if 1, = 0, while they are the same if
Ay = 0. A similar penalty can be found in Gibberd and Nelson (2017), which is suitable for only
the chain network. Other related studies have used the fused 1asso, 42 ¥, . \er |@m)~ — @M,
instead of the group fused lasso to cluster datasets (Monti et al., 2014); however, the clustering
performance is poor.

Remark 1. We can adapt our objective function to a class of pairwise graphical models with dis-
tributions supported on R? with minor changes. We only need to replace the generalized
h-score matching loss with the original score matching loss. A exact form of the loss can be
found in Lin et al. (2016) and Yu et al. (2019).

2.4 | Computation

We minimize objective function (2) with an alternating direction method of multipliers (ADMM)
algorithm. We rewrite objective function (2) as

M
Loy, (nh) = % D vee(@ ™) T (Y™ )vec(@™) - g(Y™) vec(@™)
m=1

M
+/112|Z(m)_| + A, Z ||Z(m1)— —Z(mZ)_Hp,

m=1 (my,m,)€EE

subject to Z™ =0"™, form=1, ... ,M.

The scaled augmented Lagrangian for this objective function is
1 M
QO (1} {Z). (U] = 5 } vec(@"™) TT(Y™)vec(@™) — g(¥™) vee(@™)
m=1

M
DN N YV VA A

=1 (my,my)€EE

m=
M

83 (fom -z wf - o)

where {Z} ={Z™ m=1, ... , M} and {U} ={U™, m=1, ... ,M}. {U} indicates dual vari-

ables, and p serves as a penalty parameter. In this study, we set p to 1, which leads to reason-

able performance and fast convergence. Denote {A«)} = {Ag;'), m=1, ... ,M} for matrices (or

E:;l) ’s at the tth iteration. Following the approach of Boyd et al. (2011), we consider
o M (m) (m) - M (m) (m)

two convergence criteria: r; = Zm:1||®(:')1 - Z(t';' 2 <er=10"andr, = zmzluz(t’f - Z(["il)Hf, <

€, = 1073, The proposed algorithm is summarized in Algorithm 1. Details on updating {®},

{nw},and {Z} are given in Appendix B.

vectors) A
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1312 ZHANG ET AL.

Algorithm 1: Outline of the ADMM algorithm for HGMND

Input: YO . YD) X, A,
Output: HGMND estimates O™, m =1,..., M.
1 Initialize: @Eg)l) = Z((g;) = U((g;) =0, a p X p matrix with all zeroes, m =1,..., M,
and t = 0.
2 while not convergent do
s | Lett=1t+1,
4 | Update {O} and {ng}:
(O} {no)) = g min Q({B} {nh {Zu-n} {Wi-n}): O

O}{n}

5 | Update {Zy)}:

{Zw} = ar%zf?in Q({G(t)}» w12}, {Ut—1}>; (6)
6 Update {Uy}: form=1,..., M do
(m) _ 77(m) (m) (m)
T U =Uu-1ytOun —Zy -
8 end
9 end

Following Monti et al. (2014), we select the tuning parameters with an AIC-type criterion:

M
AIC(A1, 1) = Y vee(@ ™) TT(Y™)vec(@"™) — g(¥™) vec(d™)

m=1
Almy) , A(my) A(my)
+ D 16 #6716, #0),
1 (my m,)€E
m,<m,

where é(m), 9;;”1), and 9;}”2) denote the estimated parameters. We conduct a grid search to select
A1 and ;. It takes <2 min to run each optimization on a 5 X 5 searching grid under the setting
of truncated Gaussian distribution, with n, = 100, p = 50, M = 20 and K = 2, using a six-core
2.2GHz CPU using R.

3 | EVALUATION WITH SYNTHETIC DATA

Simulation studies are conducted to assess the proposed method. We set M datasets, which
belong to K clusters, and randomly generate n,, observations of Y™ from Equation (1). To mimic
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seasonal changes in the conditional dependence relationships of PM,s concentrations, we
consider a chain network. We suppose that there exist K — 1 changepoints (cp) {71, ... ,7x-1} C
{1, ... ,M} in the chain network. For each k € {1, ..., K —=1},0'™) = @™ if ;| < my, m, <
7, where 75 = 0. Other networks can also be considered, and more examples are provided in
Appendix C. ®'"™s in each cluster are the same and generated as follows. We first generate
K graphs with the p features belonging to p/10 equally sized unconnected subgraphs. An edge
between two nodes in each subgraph is generated with a probability of 0.1. For a given graph
structure, the elements in ®"™ not corresponding to the edges are set to zero, and those that cor-
respond to the edges are generated randomly from a uniform distribution of [-1, —0.5]U[0.5,1]. To
ensure positive definiteness, we set the diagonal entries as 0};(’") =01+ Zl# |9;(m) |forj=1, ...,p.
Next, we scale ©'"™ as follows. Let =™ = @7™~1 and T*™ is the correlation coefficient matrix
corresponding to =™, Then, we set ©'™ = 2*"™~1 For each dataset, 7™ is generated from a
multivariate Gaussian distribution. As shown in Figure 2, the truncated Gaussian densities fit the
histograms of PM, 5 concentrations well. Thus, we first seta =1 and b = 1. In addition to the trun-
cated Gaussian densities, the multivariate gamma distribution may also be appropriate to describe
the PM, 5 data; thus, we also consider a = 1/2 and b = 0. For data matrix Y™ = (yﬁjm)) € R™*P we

(m

scale each element of the jth column by \/ Zfz”‘l (yij
genscore InR.

Four measures are calculated to assess performance. The Rand index (RI) is used to mea-
sure the accuracy of clustering, while the F; score, true positive rate (TPR) and false positive rate
(FPR) are used to measure the sparsity recovery performance: F; = M~ Y™ _ 2TP"™ /(2TP™ 4
FN™ 4+ FP™), TPR = M~'¥M_ TP(™ /(TP 4+ FN™), and FPR =M~'YM_ FP™ /(TN 4
FP™), where TP", TN FP'™ and FN are the numbers of true positives, true negatives, false
positives and false negatives, respectively, for dataset m. We compare the proposed method with
five existing methods: graphical lasso (GL), independent fused graphical lasso (IFGL), group fused
graphical lasso (GFGL), rank-based group fused graphical lasso (rGFGL), and logarithm-based
group fused graphical lasso (IGFGL). GL (Friedman et al., 2008) separately analyses the M
datasets. IFGL (Monti et al., 2014) and GFGL (Gibberd & Nelson, 2017) jointly estimate the inter-
action matrices with different penalties. These three methods make a Gaussian assumption and
adopt the negative log-likelihood as the loss. The last two methods, rGFGL and IGFGL, are almost
the same as GFGL except for the construction of sample covariance matrices. rtGFGL uses a
rank-based method (Xue & Zou, 2012), while IGFGL takes a logarithm of data before estimation.
All numerical results are based on 100 replicates.

Then, we set M = 10, 15, 20, 30, K = 2, 3, p = 20, 50, n,, = 30, 50, 100, and cp = {5}, {10} {10,
20}, {15, 20}, {5, 10}. Detailed combinations of M, K, p, n,, and cp are shown in Tables 2
and 3. We set 7™ ~ ./ (0,,0.1? I) for the truncated multivariate normal distributions and
n'™ ~ N (2,,0.1% I,) for the multivariate gamma distributions, where 0, and 2, are two
p-dimension vectors with all Os and 2s respectively. I, is the p X p identity matrix. Results are
provided in Tables 2 and 3. The observed patterns for the two distribution types are very simi-
lar. HGMND, GFGL, rGFGL and IGFGL, which use a group fused term to jointly analyse the M
datasets, have better performance on RI than IFGL and GL. In terms of the sparsity recovery per-
formance, HGMND performs better than the other five methods with higher F; score in most
settings. For example, when M = 10,K = 2,cp = {5}, n, = 50, p = 20, HGMND’s F; score value
is 0.588, which is larger than 0.546, 0.557, 0.493, 0.440 and 0.270 for GFGL, rGFGL, IGFGL, IFGL
and GL respectively. As expected, the sparsity recovery performance improves as n,, increases
and p decreases.

)2 /(ny, — 1). Data are generated with package
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4 | PM,s DATA ANALYSIS

In this section, we first cluster the 12 months and estimate a graph for each cluster with the
proposed method. Then, we analyse the results. Finally, we compare the proposed and alternative
methods.

4.1 | Graph clustering and estimation

Motivated by the exploratory analysis, we apply the proposed method based on a truncated mul-
tivariate Gaussian assumption and a chain network. To better illustrate our results, we add a map
of Taiwan from http://www.tianditu.gov.cn in the background of our estimated graphs. Figure 3
presents the clustering of months and graphs illustrating the conditional dependence relation-
ships across the 67 regions. Looking back on the right panel of Figure 1, PM, 5 concentrations in
Tainan and Jiayi are independent given the pollution levels of the other regions, whereas those
of Tainan and Shanhua as well as Shanhua and Jiayi are conditionally dependent. This result
illustrates the proposed method’s ability to avoid misleading confounders, as is mentioned in
Introduction. Besides, the graphs show obvious seasonality. For example, the graphs for June to
September are highly different from those for October to December. Figure 4 shows the num-
ber of edges selected in each graph and node degree distributions in January and June. We find
that the estimated graphs for the colder days have more edges. This seasonality has been stud-
ied in the literature. As Wu et al. (2019) indicated, air quality in Taiwan is poorer during the
cold dry season, which corroborates our results. The relationship between the number of edges
and average daily precipitation per week is also examined in Figure 4. The figure shows that
clusters of the months correspond to the changes in average daily precipitation per week. Thus,

2019-6

FIGURE 3 Monthly estimated graphs for the 67 regions in 2019, where months in the same cluster share
the same colour of edges, while graphs with different edge colours mean that the corresponding months are in
different clusters. [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Number of estimated edges for each month and node degree distribution. Left panel: The
points denote the number of selected edges per month, with one type of shape denoting one cluster. The red
dotted line represents the average daily precipitation per week. Right panel: Frequency of degrees for the nodes of
January and June. [Colour figure can be viewed at wileyonlinelibrary.com]

the heterogeneous structure of PM, 5 concentrations can be highly attributed to the changes in
climatic conditions.

From a geographical perspective, on the colder days, the northern and southern areas are
more connected, likely because air movement can influence pollution levels in neighbouring
cities (Lv et al., 2015). Figure 5 presents the estimated graph for January 2019, with the 67 regions
divided into five districts by the environmental protection administration that monitors air qual-
ity. The right panel shows that the numbers of estimated edges within the same district are mostly
larger than those between districts, which is the same in other months. This implies that the
proposed method can identify urban agglomerations in PM, 5 analysis. Moreover, the northern
area—districts 1 and 2—are rarely connected to the southern area—districts 3-5. This result is
consistent with Wu et al. (2019), as the atmospheric condition in southern Taiwan differs from
that in the north.

Therefore, based on these results, we suggest that Taiwan should put more effort into formu-
lating joint prevention and control strategies for PM; 5 on cold and dry days, in the period from
January to March and October to December. Meanwhile, more efforts should be made to com-
prehensively consider groups of closely connected regions, which may have higher consistency
in pollution emissions owing to similarities in pollution source types, emission levels and other
factors. For example, in January, in the coastal industrial complex of southern Kaohsiung City,
regions near the stations of Fengshan, Fuxing, Qianjin, Qianzhen, Renwu, Xiaogang and Zuoying
are highly connected with node degrees of 8 to 10, and each of them also has an annual PM, 5 con-
centration over 20 pg/m>. Air pollution prevention and control strategies for industrial production
activities can be implemented jointly in these regions for more effective air-quality improvement.

4.2 | Comparison with alternative methods

GFGL, rGFGL, IGFGL and two naive methods are adopted for comparison. The first naive method
connects the closest 10% pairs of regions with respect to the geographical distance. The second
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FIGURE 5 Left panel: Estimated graph for January 2019. Nodes in different districts have different
colours, and nodes with larger degrees have larger sizes. Right panel: Number of edges between districts. The
diagonal elements indicate the number of estimated edges within each district. [Colour figure can be viewed at
wileyonlinelibrary.com]

naive method obtains the graph for each month by conducting hard thresholding on the sample
Pearson correlation matrices (Bickel & Levina, 2008).

The two naive methods yield poor results (Figure 6). The first method obtains the same graph
for all 12 months and does not use the PM, 5 data at all. For the second method, as mentioned in
Section 1, Pearson correlation reveals the marginal relationship between the two variables. The
thresholding method leads to very dense graphs with almost all pairs of regions connected. To
further control the sparsity level of the graphs induced by Pearson correlations, we attempt to
remove the edges corresponding to small absolute values in the sample correlation matrices and
ensure that the graphs have the same numbers of edges as those obtained by the proposed method.
However, there still exist some edges connecting regions far apart that are difficult to explain, such
as the graph for July. This is possibly because, in July, under the influence of easterly winds and the
Central Mountain Range, which extends from the northeast to the southwest of the island, local
circulation is produced in the southwestern area and its coastal waters. Thus, Pearson correlations
of the southwestern region may be confounded. However, only adjacent regions are connected
by the proposed method, showing the method’s ability to restrict confounders when studying
conditional relationships. Additionally, the proposed method’s results reveal the seasonality of
the PM, 5 data with much higher interpretability, while the two naive methods do not model the
clustering structure of the PM, 5 data.

It is difficult to assess clustering and edge identification accuracy in real data analysis. We use
a random sampling approach to compare the proposed method with the remaining three meth-
ods, GFGL, rGFGL and 1IGFGL. To measure stability, we sample 60% of the observations from
each of the 12 datasets and compare the corresponding results with those based on the complete
datasets. Specifically, we compute the RI and probability that each identified edge is identified
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FIGURE 6 Results of alternative methods. Left panel: Graph based on geographical distance. Middle
panel: Graph for January with the hard-thresholding method. Right panel: Graph for July after removing edges
that correspond to small absolute values in the sample correlation matrix. [Colour figure can be viewed at
wileyonlinelibrary.com]|

again. According to the literature (Huang & Ma, 2010), this can be a measure of stability. This
procedure is repeated 100 times. The average values of RI for HGMND, GFGL, rGFGL and IGFGL
are 0.96, 0.89, 0.94 and 0.93 respectively. HGMND yields more stable clustering results. Further-
more, HGMND is much more stable for selecting edges with the average values of identified
edge probabilities equal to 0.94, compared with 0.86, 0.86 and 0.78 for GFGL, rGFGL and IGFGL
respectively.

5 | CONCLUSIONS

Research on the spatial pattern of PM, 5 is critical for socioeconomic and epidemiological stud-
ies (Huang et al., 2019; Su et al., 2020). In Taiwan, PM, 5 is one of the most serious air pollutants
that causes significant health risks for residents. Therefore, Taiwan’s air quality needs to be
improved urgently. Accordingly, determining the conditional relationships among PM, 5 con-
centrations across regions is important for joint air pollution prevention and control. However,
since PM, 5 concentrations are non-negative, non-normal and heterogeneous, classical methods
are not suitable. To tackle this issue, we extend the generalized h-score matching loss based on
group fused lasso to simultaneously cluster datasets and estimate graphs of variables with com-
plex distributions. Furthermore, we consider the network among datasets, which adds additional
information to the model. Simulations show that the proposed approach has satisfactory per-
formance. Finally, the proposed method is used to cluster the months of 2019 and estimate the
conditional dependence relationships of PM, 5 concentration records among 67 regions in Tai-
wan in each cluster. We find that the graphs have significant seasonality, and various regions
have closer links in winter than in summer. Geographically, north and southwest Taiwan have
dense internal connections, while not many external connections exist between them. We sug-
gest putting more effort in developing joint air pollution prevention and control strategies among
the more connected regions. Furthermore, although motivated by PM, s concentrations, the
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proposed method is suitable for broader applications. It only requires the data to be non-negative
and heterogeneous.

This study can be extended in multiple directions. First, the hourly PM, s concentration
records for the 67 regions are intensive and can be considered as data for 67 functions at dif-
ferent hours. A functional graphical model for non-negative data can be developed in future
research. Second, since air quality is sensitive to climate change and modern transportation
and production greatly contribute to air pollution, covariates such as climate conditions and
socioeconomic factors can be included for better estimation of the conditional relationships.
Third, adding geographic location adjacency information to the model is another aspect worth
exploring. Location information is critical for air pollutant diffusion. A model with this infor-
mation can be used to study the transboundary contributions of PM, s in neighbouring regions
as well as their changes over time. Fourth, analysis of the PM, 5 data involves the non-centred
truncated Gaussian assumption. Therefore, it may be worthwhile to apply more complex dis-
tributions, and testing methods can be studied to determine distribution. Finally, many types
of air pollutants, such as PM, s, PM;g, and sulphur dioxide can be regarded as a system. We
may study the conditional relationships among different regions for this system in follow-up
research.
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APPENDIX. A

Appendix A provides details for deriving (3) from (4). Based on Yu et al. (2019), we assume that
the following two conditions hold.

(C1) For any y(_';l) € RP~1, 4™ e RP, and an arbitrary p X p symmetric matrix @,

i dlog Pr(y™: ©, 5™) "~ +co
Pr(y™; @7, Ty ") y T )im) oo,
ay. ¥ =0
J

Yj—+oo

(m) _ ,(m) (m)  (m) (MNT
Wherey_j =) Vi Y Y )", and f(y)|
forj=1, ...,pandm=1, ..., M.
(C2) For any 7™ € RP and an arbitrary p x p symmetric matrix @,

lil'nyj—>+oo f(y) - hmyj—>0+ f(y)

yj—>0+

E||V log Pr(Y™; @™, 5™)oh(Y™)||2 < +co,
E || D{V log Pr(Y"™; 0", ™)oh(Y ™)} || ; < +co,

where D{(f(™), ... . fLO"NT} = (QAG™) /W™, ..., of,("™)/9ys™)T, and the expecta-
tion is taken under Pr(y(™; @™, ™) For a vectorv = (vy, ... ,v,)T € R2, |||l = b Il
and |||, = (ZF_vH/2

i=1"1i
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Under conditions (C1) and (C2), J(©"™, #(™) can be written as

dlog Pr(y™; @™ n(m)
(m)
ayj

p
J©™, 7™ = / Pr(y™: 7, ") ) S B ™)
RY J=1

9? log Pr(y™; @™, ™)
(m)2

dyj

+ ™)

dlog Pr(y™; @™ 5(m)

6yj(.m)

+ %hj(yj(.m))< > dy™ + const,

where const is a constant independent of O™ and 7™, and

dlog Pr(y™; @™ »m) _ _
- _ Z(e(m) +0.(l””))(y§m))a(yj(.m))a 1 +’1;m)(y;m))b 17

ayj('m 25
92 log Pr(y™; @™ 5tm) a-1%w m) | pm)\ o (ma s (M)\a—2 M), (m)x2a—2
oy\™? ) Z(alj + 0 )(yl YT —a8,m )
J =1

+ (b =D ")
The corresponding empirical version can be written as

dlog Pr(y\"™; @™, ™)
J(®(m) (m)) =_ZZ ( (m) (‘; —
AR
J

mi=1 j=1

(
+ iy, e Sh0y )

. 0?logPr(y,"; 0. 1™) 1 ) < 9log Pr(y™: @™, ™) ) 2

+ const,

where const is omitted, and we still use the notation J(©@, ™).
Then, we have

J@™, ymy = %Vec((I)(”‘))TF(Y(”‘))Vec(d)(m)) — g(Y™)Tvec(@™).

Here, we omit the const term.

APPENDIX. B

Appendix B presents details on updating {®«}, {ne}, and {Z}. Since (5) is separable for
m =1, ..., M, we provide only the details on updating ®"™ and 5 with the superscript -™
omitted for notational simplicity. For any matrix A and sets S; and S, we denote (4)s, s, as the
submatrix of A, where the columns and rows are restricted to sets S; and S,
respectively. We define C; ={1,...,p} and C;={p+1}. We denote I'jj;= (F;m))cl,cl,
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Iy = (F;m))cl,cz, I'ynj= (F;m))cz,cz, 'y =diag(Ti1, .. ,Tip), Tz = diag(Ta, ... ,T2p), and
'y, = diag(I'x1, ... ,122p). In other words, I'11, I'i2, and I'», are block-diagonal matrices.
At the tth iteration, after simple calculations, we have

N =T, <g2 - FIZVeC((:)(t))>,
and Oy, is the minimizer of the profiled loss:

A .1 _
O = arg mmzvec(G))TFupvec(@) — (vec(g) — Flezzlgz)Tvec(G))
e

+ §||Vec(®) —vec(Zo-1) = Un-)||»
where Iy, =iy — [R5 T],. In other words, vec(®) = [Ty1p + p Le] M vec(gr) — [ol5 8 +

p vec(Z -1y — Uy-1))], and Ipz is a p? x p? identity matrix.
In the tth iteration,

(Zo} = arg min Z”@(”” Zm 4 U(’")l)H +/112 |z, + 2 |lzm- — zm
E

®
m,m,)e

|F'

(A1)
Since we do not penalize the diagonal elements, they are easy to update via

Zgy =00 A UM =1, p, m=1, ... M,
Noting that Z™ is symmetric, we only need to deal with the upper-triangle elements. We vectorize
the upper triangle of Z™ by row, in symbols 2™ = (Zl(jm) || j > 1) € RP?®-D/2 and then construct
Z=[zV, ..., zM]T € RM*(P-1/2 The same operations are performed on {©} and {Uy} to
form @ and Uy respectively.
We can rewrite Equation (A1) as

—_ - 1 —_ —_
H(Z: i, 4) =l A-Z 7+ Al Z |l + 42 || DZ ||, (A2)
Ry(2) R,(2)

where A = Oy, + U1y, 41 = A1/p, A2 = A2/p, and || DZ |l,1= Y15 I((DZ)|l; (DZ), is the Ith
row of matrix DZ. Matrix D = (Dy) is determined by network Gy (V, E). It has M columns and
the same number of rows as the size of E. On the Ith row of D, which corresponds to the edge
(my, my) € E, the m;th entry of this row is set to —1 and the m,th is 1, for m; < m,. We denote

1 =
proxg (A) = arg mIHEIIA—ZII§+ AlZ][1 (A3)
z

.1 -
proxg (A) = arg m1n5|| A-7Z ||12p + A2 || DZ ||21. (A4)
z

Problem (A3) can be solved with a soft-thresholding operator (Tibshirani, 1996), while problem
(A4) can be solved with a group least-angle regression algorithm (Yuan & Lin, 2006) after variable
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transformation (Gibberd & Nelson, 2017). We obtain the solution Proxg g, (A) to Equation (A2)
using the Dykstras iterative projection algorithm. The details are given in Algorithm 2.

Algorithm 2: Dykstras iterative projection algorithm

Input: A.
Output: proxp , p, (A).
1 Initialize: Z() = A, P) =0, Q) = 0, and ¢2 = 0.
2 while not convergent do
3 to =to 4+ 1;
4| V1) = proxp, (Zg,—1) + P,-1);
5 | Puy)y=Pu,—1) T Zg,—1) — Vi,-1);
6 | Zg,) =proxg, (V-1 + Qu-1);
7| Q) = Qua—1) + Vie—1) — Zty)-

s end

APPENDIX. C

Appendix C provides an example that considers two spatial networks among M datasets.
Figure C1 presents the network structure and true clustering structure. We set M = 20, 30;
K =2, 3; p=20, 50; and n,, = 50,100. Details about the combinations of M, K, p, n,,, and cp are

® © @ ®O®

5] [5]
[ o B e

FIGURE C1 Two spatial networks among datasets for M = 20 (left panel) or M = 30 (right panel).
Different shapes denote different clusters.
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shown in Table C1. Furthermore, we set ném) ~ N (2p,0.1* I) for both the truncated multivariate
normal distributions and multivariate gamma distributions. The results are provided in Table C1.
Results similar to those in Section 3 are obtained. HGMND is competitive in clustering and sparse

structure estimation.
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