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Abstract
Gene expressions have been extensively studied in biomedical research. With
gene expression, network analysis, which takes a system perspective and
examines the interconnections among genes, has been established as highly
important and meaningful. In the construction of gene expression networks, a
commonly adopted technique is high-dimensional regularized regression. Net-
work construction can be unadjusted (which focuses on gene expressions only)
and adjusted (which also incorporates regulators of gene expressions), and the
two types of construction have different implications and can be equally impor-
tant. In this article, we propose a variable selection hierarchy to connect the
unadjusted regression-based network construction with the adjusted construc-
tion that incorporates two or more types of regulators. This hierarchy is sensible
and amounts to additional information for both constructions, thus having the
potential of improving variable selection and estimation. An effective com-
putational algorithm is developed, and extensive simulation demonstrates the
superiority of the proposed construction over multiple closely relevant alterna-
tives. The analysis of TCGA data further demonstrates the practical utility of the
proposed approach.
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1 INTRODUCTION

Gene expressions have been extensively studied in
biomedical research. The significance of gene expres-
sion analysis has been well established through a large
number of studies [20, 23, 25] and does not need to
be reiterated here. Early gene expression studies are
individual-gene-based and treat genes as “exchangeable.”
Genes are functionally and statistically interconnected.
Accordingly, pathway- and network-based analyses have
been developed [18, 22, 31], which can accommodate the

interconnections among genes. The power of gene expres-
sion network analysis has been well demonstrated. In this
article, we focus on gene expression network construc-
tion, which has its own important implications and can
also serve as the basis for downstream analysis such as
clustering, regression, and others.

Gene expression network construction can be roughly
classified as unconditional and conditional [9]. In an
unconditional construction, when evaluatingwhether two
genes are interconnected, the other genes are “ignored.”
In contrast, in a conditional construction, information on
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all the other genes is accounted for. The two types of
construction serve different purposes. In this article, we
conduct conditional construction, which can be statisti-
cally more challenging. There are quite a few methods
for constructing conditional networks [4, 11, 21, 37]. The
“simplest” method may be the Gaussian Graphical Model
(GGM) [11]. Under the joint normality assumption, net-
work construction amounts to a sparse estimation of the
precision matrix. Graphical modeling methods have also
been developed to relax the normality assumption. A lim-
itation of the GGM methods is that operation of large
matrices is needed. We refer to the literature [7] for com-
prehensive discussions on the available conditional con-
structions.

In the literature, a family of methods that has attracted
broad interest is based on regression [21, 36]. With
such methods, for a gene expression, its network con-
nections with the other gene expressions are obtained
by regressing this specific gene expression on the oth-
ers. Regression-based constructions may enjoy multiple
advantages. For example, they can take advantage of many
existing regression methods and software. Second, they
enjoy lucid interpretations. Third, they can be directly
extended to other data distributions. For example, SNP
networks can be constructed by replacing linear regres-
sion (for gene expressions)with logistic regression. Fourth,
they can be conducted in a highly parallel manner (one
gene expression at a time), leading to significantly reduced
computer time. Last but not least, regression-based con-
struction can have direct connections to, for example,
GGM [11].

Network construction can be unadjusted and adjusted.
In an unadjusted construction, only gene expressions are
considered (that is, one gene expression ∼ the other gene
expressions). Gene expressions are regulated, and mul-
tiple types of regulators have been identified that can
regulate gene expressions, including SNPs, methylation,
microRNAs, and others [26, 27, 33]. Here we note that
we use the terminology “regulator” (or regulate) in a
somewhat loose sense. In an adjusted construction, regu-
lators are incorporated (that is, one gene expression ∼ the
other gene expressions + regulators). Here we note that
some studies have also used the terminology “condition-
al” to refer to adjusted construction (see, e.g., conditional
GGM [35]). We use “adjusted” as opposed to “condition-
al” to distinguish from the aforementioned conditional
analysis. An adjusted network reflects the interconnec-
tions among genes after removing the effects attributable
to one type or multiple types of regulators. It is noted that,
under the GGM and other frameworks, both unadjusted
and adjusted constructions have also been conducted. The
unadjusted and adjusted networks have different impli-
cations and serve different purposes, and we refer to the

literature for relevant discussions. In the past decade, we
have witnessed a significant growth inmulti-omics studies
[17, 19, 32].With this growth,manymulti-omics data anal-
ysis methods have been developed. Accordingly, adjusted
network construction is getting increasingly popular and
important, and we focus on it in this study.

In studies, such as The Cancer Genome Atlas (TCGA),
multiple types of regulators are measured along with gene
expressions [24]. When constructing an adjusted gene
expression network with such data, the common prac-
tice in the literature is to focus on either a single type
of regulator (often with some ad hoc justifications) or all
available regulators [5, 13, 16]. To the best of our knowl-
edge, there has been a lack of study that jointly considers
multiple adjusted networks that involve different sets of regu-
lators. To fill this knowledge gap, in this article, we propose
a biologically sensible hierarchy that can link the sparsity
structures of multiple adjusted networks. To fix ideas, con-
sider a study with two types of regulators (along with gene
expressions). The proposed hierarchy links the adjusted
network involving both types of regulators (the “child” net-
work) with those involving only a single type of regulator
(the “parent” networks). By incorporating this hierarchy
and simultaneously estimating three networks (one child
and two parent networks), our analysis has the potential to
improve estimation for all networks. We note that, beyond
gene expression network construction, the proposed hier-
archy and estimation strategy may also be applied to other
types of omics data and other regression analysis settings,
enjoying much broader applicability.

2 METHODS

Denote n as the number of iid samples and p as the num-
ber of gene expressions. Denote Y as the n× p matrix
of gene expression measurements. In a regression-based
unadjusted network construction, to identify the edges for
node (gene expression) i, we regress Y ⋅, i (the ith column
of Y) onto Y, under the constraint that the ith coeffi-
cient is fixed at zero. To obtain a sparse network (which is
usually the case for gene expressions) and regularize esti-
mation,we often apply regularization techniques. For such
a purpose, penalization has been a popular choice. With
a penalized estimation, a nonzero coefficient suggests an
edge (i.e., an interconnection between the correspond-
ing gene expressions). We refer to published literature for
more information on this analysis.

We now consider regression-based adjusted network
construction.Assume that there are two types of regulators
(for example, methylation and microRNA). Note that the
proposed analysis can be directly extended to more than
two types of regulators - as such, it can be broadly applied
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to multi-omics analysis. DenoteW and X as the n× q and
n× r matrices of regulator measurements, respectively.
To further simplify notations, assume that all measure-
ments have been properly centered (as such, no intercepts
are needed) and scaled. Consider node (gene expression)
i(= 1, … , p). For the network construction that incorpo-
ratesW only, the lack-of-fit function is:

(2n)−1‖‖
‖
Y⋅,i − Y𝜃(1) −W𝛾

(1)‖
‖
‖

2

2
,

where ∥ ⋅ ∥2 denotes the 𝓁2 norm, 𝜃(1) is the length p
vector of regression coefficients with the constraint that
𝜃

(1)
i = 0, and 𝛾 (1) is the length q vector of regression coeffi-
cients. The nonzero components of 𝜃(1) correspond to the
gene expression network edges. Similarly, for the network
construction that incorporates X only, the loss function is:

(2n)−1‖‖
‖
Y⋅,i − Y𝜃(2) − X𝜂(1)‖‖

‖

2

2
,

where 𝜃

(2) and 𝜂

(1) are the vectors of regression coeffi-
cients under the constraint that 𝜃(2)i = 0. Now, for the net-
work construction that incorporates both W and X, the
lack-of-fit function is:

(2n)−1‖‖
‖
Y⋅,i − Y𝜃(3) −W𝛾

(2) − X𝜂(2)‖‖
‖

2

2
,

where the implications of notations and constraints are
similar to the above.

Consider gene expressions i and j. Their intercon-
nection can be attributed to: (i) co-regulation by W, (ii)
co-regulation by X, and (iii) co-regulation by other mech-
anisms and a direct interconnection between the two gene
expressions. The child network (that incorporates both
W and X) only contains type (iii) interconnections. In
contrast, the parent network that incorporates onlyW con-
tains both types (iii) and (ii) interconnections; and the
parent network that incorporates onlyX contains both the
type (iii) and (i) interconnections. As such, the edge set of
a child network is expected to be a subset of that of a parent
network; note that this should hold for both parents. That
is, the sparsity structures of the child and parent networks
have a hierarchical structure.

Remarks. Under the GGM paradigm, a similar hierar-
chy has been proposed for linking an unadjusted network
with an adjusted one [34]. It has been argued that this type
of hierarchy is highly sensible and can assist estimation.
The proposed hierarchy shares some similar spirit with
the existing one. On the other hand, this study advances
from the existing literature in multiple important ways.
First, regression-based construction is conducted, which
can be more easily extendable and may demand weaker
data assumptions. Second, the existing analysis has been

designed to accommodate a single type of regulator. In this
study, we consider accommodating multiple types of reg-
ulators; this advancement is nontrivial. Third, with two or
more types of regulators, there are multiple parents, and
hence the proposed hierarchy is more complicated than
the existing one.

It has been argued that counter examples can be devel-
oped under which the hierarchy is violated [34]. How-
ever, as discussed in the literature, such models may only
be mathematically, but not biologically, sensible. In addi-
tion, scenarios under which the hierarchy is violated are
expected to be limited.

With the hierarchy linking the three networks, for gene
expression i(= 1, … , p), we propose the following joint
estimation:

argmin
𝜃
(k)∶𝜃(k)i =0

(2n)−1
∑

k=1,2

‖
‖
‖

̃Y (k)
⋅,i − Y𝜃(k)‖‖

‖

2

2

+ (2n)−1‖‖
‖

̃Y (3)
⋅,i − Y

(

𝜃

(1)
⊙ 𝜃

(2)
⊙ 𝛿

)‖
‖
‖

2

2

+ 𝜆1

(

∑

k=1,2

∑

𝑗

|𝜃
(k)
𝑗

|

)

+ 𝜆2

(

∑

𝑗
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𝑗
|

)

+ 𝜆3

(

∑

k=1,2

∑

𝑗

|𝛾
(k)
𝑗

| +
∑

k=1,2

∑

𝑗

|𝜂
(k)
𝑗

|

)

. (1)

Here, ̃Y (1)
⋅,i = Y⋅,i −W𝛾

(1), ̃Y (2)
⋅,i = Y⋅,i − X𝜂(1) and ̃Y (3)

⋅,i =
Y⋅,i −W𝛾

(2) − X𝜂(2),⊙ is the component-wise product, 𝛿 is
a vector of unknown regression coefficients, and 𝜆1, 𝜆2,
𝜆3 are tuning parameters. The edges of the two parent
networks correspond to the nonzero components of the
estimates of 𝜃(1) and 𝜃

(2). The edges of the child network
correspond to the nonzero components of the estimate of
𝜃

(1)
⊙𝜃

(2)
⊙𝛿. In addition, the nonzero estimates of 𝛾 (1)

and 𝜂

(1) can reveal the interconnections between gene
expressions and regulators.

2.1 Rationale

We apply Lasso penalization for identifying important
interconnections and regularizing estimates and note that
it can be replaced by other penalties. For the child
network, the regression coefficients are decomposed as
𝜃

(1)
⊙𝜃

(2)
⊙𝛿. This guarantees that, if a coefficient in a

parent network is zero, then its counterpart in the child
network is automatically zero. And, if a coefficient in the
child network is nonzero, then its counterparts in both
parent networks are nonzero. A similar decomposition
strategy has been popular in genetic interaction analysis to
ensure a variable selection hierarchy [38]. However, this is
the first time it is used in regression-based network analy-
sis. For genetic interaction analysis, hierarchy can also be
ensured using other penalization strategies, for example,
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composite penalization [38]. However, our exploration
suggests that, with two parents, such strategies are
unlikely to be applicable.

In this article, we mainly focus on methodological and
numerical developments. Heuristic discussions on theo-
retical properties are provided in Appendix 1.

2.2 Computation

The proposed approach has a “least squares lack-of-fit +
Lasso” form and is computationally highly feasible. We
adopt an iterative algorithm and optimize one vector of
unknown regression coefficients at a time. With each vec-
tor, we adopt the coordinate descent technique to opti-
mize under the Lasso penalization. We repeat the iter-
ations until the estimates from two consecutive itera-
tions are close enough. More details on the computational
algorithm are available from the authors. Convergence
properties for a least squares lack-of-fit and Lasso penalty
have been well studied in the literature [10]. Convergence
is satisfactorily achieved in all of our numerical stud-
ies with a moderate number of iterations. For the tuning
parameters 𝜆1, 𝜆2, 𝜆3, we conduct a three-dimensional grid
search and use BIC to select the optimal tunings. To reduce
computer time, the p gene expressions are analyzed in a
parallel manner, and their tuning parameters are individ-
ually selected. It is also possible to jointly select so that
all gene expressions share the same tuning. To facilitate
implementation, anR code is developed andmade publicly
available at github.com/shuanggema/HierNetwork.

3 SIMULATION

Simulation is conducted to gauge the performance of the
proposed approach and compare it against the following
alternatives: (a) SepLasso (separate Lasso), which takes a
similar Lasso penalized regression strategy as the proposed
approach and conducts the three sets of network con-
struction separately; (b) GLasso (graphical Lasso), which
is perhaps the most popular approach for network con-
struction and can be realized using the R package glasso
[12]. This approach constructs the three networks sep-
arately; (c) FGL (fused graphical Lasso [15]), which is
based on the graphical Lasso approach and applies a fusion
penalty to promote similarity between the three networks;
(d) GGL (group graphical Lasso [15]), which is also based
on the graphical Lasso approach and applies a group Lasso
penalty that achieves the same sparsity structure for the
three networks. Both FGL and GGL are realized using R
package JGL [6]; (e) SSGL (spike-and-slab group Lasso),
which fuses theBayesian spike and slab techniquewith the

group Lasso approach. It is realized using the R package
SSGL [1]; (f) SepBoost, which conducts separate network
constructions using the generalized boosted regression
technique, an extension of the AdaBoost algorithm and
gradient boostingmachine. This approach is realized using
the R package gbm [14]; and (g) SepThreshold, which
combines the nearest positive definite and thresholding
techniques. Specifically, for each network, it computes the
nearest positive definitematrix of the empirical covariance
matrix and thresholds its inverse matrix. This approach is
realized using the R packageMatrix [2]. For SepLasso, tun-
ing parameter selection is conducted in a similar way as
for the proposed approach. For SepThreshold, it follows
[3]. For the other alternatives, it is conducted using the
defaults in the packages. We note that there may be other
approaches that can also be applied to analyze the simu-
lated data. However, to the best of our knowledge, there
is a lack of approaches that can jointly construct three
networks in a way comparable to the proposed. Compar-
ing the separate constructions can directly establish the
merit of joint analysis under the proposed hierarchy, while
the graphical Lasso-based approaches are state-of-the-art
and perhaps the most popular for network construction.
In particular, FGL, GGL, and SSGL also conduct joint
estimation. For evaluating the performance of identifying
edges, we use the true positive rate (TPR), the true discov-
ery rate (TDR), and the Matthews correlation coefficient
(MCC). It is noted that, with the proposed and alternative
approaches, three networks are estimated, corresponding
to three 𝜃

(k)’s. As such, there are three TPR and TDR
measures. In addition, we also consider the number of
hierarchies that are violated (N_VIO).

3.1 Settings

We consider two types of regulators and generate gene
expressions from the regression model:

Y = W𝜶 + X𝜷 + 𝜺.

Similar linear regression models have been adopted in
the literature [28]. We set sample size n = 200 and dimen-
sions of gene expressions p = 40, 60, and 100. We consider
the setting with q= r = p, noting that, in practice, the three
dimensions are often of the same order. For coefficient
matrices 𝛼 and 𝛽, we consider a block-diagonal structure,
with blocks having sizes 20× 20. For 𝛼, for each block, ele-
ments {6: 12}× {6: 12} (that is, those in rows 6 to 12 and
columns 6 to 12) are randomly generated from a uniform
distribution with support [0.4, 1]. The rest of the elements
are 0. For 𝛽, we consider three scenarios: (Scenario 1)
elements {6: 12}× {6: 12} are randomly generated from a
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uniform distribution with support [−1,−0.4]; (Scenario 2)
the same as Scenario 1, with elements {8: 14}× {8: 14} being
nonzero; and (Scenario 3) the same as Scenario 1, with ele-
ments {10: 16}× {10: 16} being nonzero. Under Scenario 1,
the two types of regulators have the strongest overlapping
effects, while under Scenario 3, the overlapping effects are
the weakest. The n× p designmatricesW andX are gener-
ated from a p-dimensional standard normal distribution.
Our exploration suggests that correlations amongW and
Xmay have a limited impact on performance. The “resid-
ual” matrix 𝜀 is generated from Np(0, (ΘE)−1). As noted in
the literature [28], 𝜀may include “random errors” as well
as regulatory effects not included inW and X.

The design of the precision matrix ΘE should ensure
hierarchy. It reflects the conditional dependence relation-
ships among gene expressions after accounting for the two
types of regulators. We set the “region” of the nonzero
off-diagonal elements ofΘE to be the overlapping nonzero
regions of 𝛼 and 𝛽. Further,we consider the following three
popular network structures and two signal strength levels.

1. Power law structure: Each nonzero block of ΘE is
generated by a power law degree distribution, and
each node is connected to two other nodes. For the
elements corresponding to connections, their values
are generated from a uniform distribution with sup-
port {[−0.5,−0.2] ∪ [0.2, 0.5]} or {[−1,−0.5] ∪ [0.5, 1]},
which represents two signal strengths.

2. Nearest neighbor structure: For each node in each
nonzero block of ΘE, m other nodes in the same
nonzero block are randomly selected as its neigh-
bors. The neighboring nodes are connected, and we
consider m = 3, 2, 1 for Scenarios 1–3, respectively.
The nonzero elements are randomly generated from
a uniform distribution with support {[−0.4,−0.2] ∪
[0.2, 0.4]} or {[−0.8,−0.6] ∪ [0.6, 0.8]}, corresponding
to two signal levels.

3. Banded structure: LetAR(𝜌) represent an autoregressive
matrix, whose (i, j) th element is 𝜌|i−j|. The nonzero ele-
ments ofΘE are set as their counterparts ofAR−1(𝜌).We
set 𝜌 = 0.6 and− 0.6.

For all three structures, the diagonal elements of the
precision matrices are set as 1. To ensure positive def-
initeness of the first two structures, the diagonal ele-
ments within the blocks are further adjusted as 𝜃E,ii =
∑

i≠𝑗 |𝜃E,ij| + 0.1. Two hundred replicates are generated
under each simulation setting.

3.2 Results

Simulation results for the power law structure are sum-
marized in Tables A1 and A2 for the low and high

signal levels, respectively. Results for the other two
structures are summarized in Table B1–B4 in Appendix B.
Overall, it is observed that the proposed approach has
competitive performance. For all approaches, when p
increases, performance in general deteriorates, which is as
expected. Signal level has some impact on performance;
however, not as prominent. Under simulation Scenario 1
where the two types of regulators have highly overlapping
effects, the alternatives, especially FGL,may have superior
performance, while the proposed approach has accept-
able performance. Consider, for example, Table A1, Sce-
nario 1, and p = 60. The mean MCC values, which reflect
the overall identification performance, are 0.611 (GLasso),
0.520 (SepLasso), 0.810 (FGL), 0.804 (GGL), 0.542 (SSGL),
0.317 (SepBoost), 0.287 (SepThreshold), and 0.742 (pro-
posed). When the overlapping effects of the two types
of regulators diminish, the superiority of the proposed
approach gets more prominent. Consider, for example,
Table A1, Scenario 3, and p = 100. The mean MCC values
are 0.384 (GLasso), 0.309 (SepLasso), 0.429 (FGL), 0.435
(GGL), 0.328 (SSGL), 0.193 (SepBoost), 0.142 (SepThresh-
old), and 0.507 (proposed). Under all the simulation set-
tings, the hierarchy is satisfied. However, the alternative
approaches, especially GLasso, SepLasso, SSGL, SepBoost,
and SepThreshold, can lead to serious violations of the
hierarchy. In addition, in Figure B1 (Appendix B), we also
plot the ROC curves (which are generated based on a
sequence of tuning parameter values) for a representative
setting. This figure can provide a “global view” of identifi-
cation performance. Similar plots for the other settings are
available from the authors.

4 DATA ANALYSIS

Lung cancer is the leading cause of cancer death world-
wide, and non-small cell lung cancer (NSCLC) accounts
for approximately 85% of all lung cancer cases [8, 30].
Lung adenocarcinoma (LUAD) is a major subtype of
NSCLC. Extensive gene expression research has been con-
ducted on NSCLC and LUAD in particular. In some of
the published studies [34], network analysis has been
conducted.

Here we analyze The Cancer Genome Atlas (TCGA)
data on LUAD. TCGA is a collaborative effort organized
by NIH and has published high-quality genetic data on
more than 30 cancer types. It is especially noted that
gene expression analysis, including network analysis, has
been conducted with the TCGA LUAD data [29]. We refer
to the literature for details on the collection and pro-
cessing of TCGA gene expression data. For our analysis,
Level 3 preprocessed data is downloaded from cBioPortal
(www.cbioportal.org/). Data is available on 20,082 gene
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expressions and 481 samples. Network analysis concerns
the interconnections among genes, which are “localized”,
that is, for any specific gene, the number of interconnected
genes is expected to be limited. In addition, network anal-
ysis involves a much larger number of parameters than
“ordinary” analysis. Thus, we first use the KEGG (Kyoto
Encyclopedia of Genes and Genomes, www.genome.jp/
kegg/) pathway information to identify 67 genes that have
functions relevant to lung cancer. The list of genes is
available from the authors. For regulators, we identify 66
methylation loci and also select 67 microRNAs based on
marginal screening. We note that, although seemingly not
large, the number of unknown parameters is in fact much
larger than the sample size.

Data analysis results are summarized in Figure A1. For
the three networks, the proposed approach identifies 61,
60, and 46 edges. The hierarchy is satisfied. More detailed
results on the interconnections are available from the
authors. In Figure A2, we examine the distribution of the
degree of edges. It is observed that the networks roughly
satisfy the power law property, and the biological impli-
cation of this finding is worth further investigation. Data
is additionally analyzed using the alternative approaches.
The differences are summarized in Figures A3 andA4. It is
observed that the alternatives lead to significantly different
findings. In addition, they violated the hierarchy multiple
times.

5 DISCUSSION

Gene expression regulatory networks, both unadjusted
and adjusted, have been established to have important
implications. As there are often a large number of param-
eters to be estimated but limited sample sizes, the exist-
ing gene expression regulatory networks still have room
for improvement, and there is still a strong demand for
novelmethods. In this article, we have focused on adjusted
networks, developed an assisted strategy, linked multiple
adjusted networks with a novel variable selection hier-
archy, and effectively and cost-effectively improved esti-
mation accuracy. Simulation has demonstrated improved
practical performance. And in the analysis of TCGA
data, networks different from the competing alterna-
tives have been obtained. Overall, this study can deliver
a new and effective tool for gene expression network
analysis.

Network analysis is not limited to gene expression data,
and the proposed analysis can be directly extended to other
omics data and data in other domains as long as there
exist similar regulating relationships. In addition, it can
be extended to data with other distributions and other
regression models (e.g., SNP data and logistic regression).

Regression-based network analysis has been
commonly conducted. It has been shown that, for
example, it is connected to GGMunder certain conditions.
It may be of interest to extend this work to GGM-based
analysis. The proposed variable selection hierarchy is con-
ceptually sensible and shares some similar spirit with the
existing ones. However, mathematically, it is possible to
construct counterexamples under which it fails. It may
be of interest to identify the sufficient conditions under
which it holds. However, this may demand considerable
mathematical investigation and will be deferred to future
research.
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APPENDIX A: HEURISTIC DISCUSSIONS ON
THEORETICAL PROPERTIES

In this article, the focus is on methodological and numer-
ical developments. It is conjectured that, following the lit-
erature, certain consistency properties can be established.
For simplification, we assume that p, q, and r have the
same order, which canmatch practical settings. As in [21],
the following assumptions may be needed. (a) Dimen-
sionality. There exists 𝛾 > 0 such that p = O (n𝛾 ), as n →
∞. (b) Nonsingularity. For all the networks, the condi-
tional variance of any gene expression (conditional on
the other gene expressions and regulators when applica-
ble) is bounded below. (c) Sparsity I. For all the networks
and for all the gene expressions, the maximum numbers
of edges are bounded by O(n𝜅) where 0≤ 𝜅 < 1. (d) Spar-
sity II. For all the networks and any gene expression, the
l1 norm of regression coefficients corresponding to the
neighboring edges is bounded. (e) For all the networks and
all the gene expressions, the absolute partial correlations

F IGURE A1 Data analysis: gene expression networks constructed using the proposed method. Left: incorporating microRNA only;
Middle: incorporating methylation only; Right: incorporating both microRNA and methylation

corresponding to the edges are bounded below by n−(1−𝜉)/2,
where 𝜉 is a constant. (f) The neighborhood stability con-
dition in [21] holds. Additional assumptions on the tuning
parameters (as polynomials of n) are needed. It is noted
that, in the existing network/regression analysis literature,
there are alternative assumptions.

By the design of the penalty, the hierarchy in the spar-
sity structures automatically holds. It has been recognized
that Lasso-based penalizations sometimes do not lead to
consistent estimation. However, variable selection consis-
tency may still hold. For a specific network and node i,
considerEi, its true set of connecting edges, and ̂Ei, the esti-
mate ofEi. The goal is to show that both ̂Ei ⊆ Ei andEi ⊆ ̂Ei
hold with a high probability (at least 1 − O (exp(−cn𝜑)),
where c, 𝜑 are positive constants). It is conjectured that
the probability of ̂Ei ⊆ Ei can be established by combining
LemmaA.2 of [21], the Bonferroni inequality, Assumption
(a), and the Bernstein’s inequality. Additionally, the prob-
ability of Ei ⊆ ̂Ei can be established also following Lemma
A.2 of [21]. Overall, it is expected that sparsity struc-
tures can be consistently identifiedwith probability at least
1 − O (exp(−cn𝜑)).

F IGURE A2 Data analysis: degree of nodes estimated by the
proposed method
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F IGURE A3 Data analysis: gene expression networks constructed using the alternative methods. Left: incorporating microRNA only;
Middle: incorporating methylation only; Right: incorporating both microRNA and methylation. From top to bottom: GLasso, SepLasso, FGL,
and GGL. Solid lines: edges identified by the alternative method but not by the proposed method. Dotted lines: edges not identified by the
alternative method but by the proposed method
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F I GURE A4 Data analysis: gene expression networks constructed using the alternative methods (cont.). Left: incorporating
microRNA only; Middle: incorporating methylation only; Right: incorporating both microRNA and methylation. From top to bottom: SSGL,
SepBoost, and SepThrehold. Solid lines: edges identified by the alternative method but not by the proposed method. Dotted lines: edges not
identified by the alternative method but by the proposed method
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TABLE A1 Simulation results for the power law networks with low signal strengths. In each cell, mean (sd) based on 200 replicates

Method TPR1 TDR1 TPR2 TDR2 TPR3 TDR3 MCC N_VIO

Scenario 1 p = 40

GLasso 0.691 (0.045) 0.957 (0.022) 0.663 (0.083) 0.937 (0.044) 0.327 (0.070) 0.702 (0.130) 0.720 (0.031) 11.7 (16.9)

SepLasso 0.695 (0.047) 0.576 (0.030) 0.740 (0.044) 0.562 (0.038) 0.609 (0.089) 0.376 (0.037) 0.617(0.026) 62.2 (9.7)

FGL 0.891 (0.055) 0.932 (0.043) 0.883 (0.051) 0.942 (0.034) 0.836 (0.069) 0.484 (0.029) 0.823 (0.025) 0.1 (0.4)

GGL 0.886 (0.032) 0.938 (0.026) 0.878 (0.035) 0.911 (0.030) 0.873 (0.049) 0.506 (0.016) 0.822 (0.015) 0.0 (0.0)

SSGL 0.510 (0.039) 0.605 (0.094) 0.552 (0.041) 0.590 (0.063) 0.636 (0.057) 0.516 (0.040) 0.649 (0.039) 31.9 (56.3)

SepBoost 0.989 (0.011) 0.253 (0.018) 0.994 (0.012) 0.247 (0.017) 1.000 (0.000) 0.106 (0.003) 0.377 (0.005) 31.9 (56.3)

SepThreshold 0.878 (0.038) 0.285 (0.018) 0.861 (0.044) 0.284 (0.019) 0.944 (0.032) 0.242 (0.009) 0.341 (0.059) 105.3 (79.4)

proposed 0.692 (0.060) 0.982 (0.013) 0.655 (0.023) 0.987 (0.015) 0.659 (0.060) 0.630 (0.088) 0.761 (0.077) −
p = 60

GLasso 0.476 (0.048) 0.970 (0.028) 0.475 (0.043) 0.966 (0.042) 0.473 (0.089) 0.519 (0.081) 0.611 (0.039) 32.0 (36.0)

SepLasso 0.720 (0.021) 0.418 (0.032) 0.733 (0.029) 0.489 (0.044) 0.612 (0.034) 0.266 (0.012) 0.520 (0.089) 100.5 (11.2)

FGL 0.920 (0.031) 0.847 (0.019) 0.924 (0.039) 0.866 (0.012) 0.897 (0.056) 0.454 (0.015) 0.810 (0.019) 1.9 (2.5)

GGL 0.869 (0.043) 0.914 (0.088) 0.844 (0.036) 0.931 (0.051) 0.817 (0.030) 0.466 (0.028) 0.804 (0.041) 2.2 (1.5)

SSGL 0.508 (0.043) 0.505 (0.099) 0.497 (0.044) 0.598 (0.062) 0.697 (0.057) 0.297 (0.040) 0.542 (0.040) 137.5 (80.1)

SepBoost 0.984 (0.009) 0.147 (0.007) 0.982 (0.014) 0.150 (0.006) 0.997 (0.002) 0.045 (0.001) 0.317 (0.002) 96.9 (146.2)

SepThreshold 0.794 (0.036) 0.260 (0.019) 0.806 (0.039) 0.261 (0.016) 0.879 (0.047) 0.228 (0.008) 0.287 (0.035) 222.1 (202.7)

proposed 0.695 (0.045) 0.956 (0.044) 0.740 (0.036) 0.934 (0.031) 0.561 (0.048) 0.530 (0.084) 0.742 (0.058) −
p = 100

GLasso 0.394 (0.105) 0.964 (0.023) 0.389 (0.117) 0.950 (0.052) 0.476 (0.083) 0.613 (0.090) 0.564 (0.052) 65.3 (45.8)

SepLasso 0.733 (0.030) 0.315 (0.021) 0.741 (0.042) 0.326 (0.027) 0.675 (0.034) 0.168 (0.014) 0.421 (0.075) 191.2 (38.3)

FGL 0.875 (0.015) 0.767 (0.047) 0.872 (0.019) 0.756 (0.039) 0.824 (0.058) 0.403 (0.024) 0.737 (0.022) 7.2 (4.7)

GGL 0.861 (0.048) 0.729 (0.024) 0.869 (0.054) 0.724 (0.025) 0.812 (0.038) 0.377 (0.014) 0.716 (0.033) 9.6 (3.7)

SSGL 0.317 (0.051) 0.726 (0.057) 0.291 (0.031) 0.594 (0.107) 0.655 (0.087) 0.232 (0.057) 0.444 (0.041) 205.5 (179.7)

SepBoost 0.971 (0.008) 0.080 (0.002) 0.977 (0.016) 0.079 (0.003) 0.987 (0.002) 0.024 (0.001) 0.265 (0.002) 286.6 (464.9)

SepThreshold 0.649 (0.027) 0.242 (0.012) 0.642 (0.034) 0.242 (0.013) 0.660 (0.063) 0.212 (0.011) 0.249 (0.018) 602.6 (620.6)

proposed 0.594 (0.047) 0.973 (0.029) 0.581 (0.043) 0.983 (0.022) 0.482 (0.048) 0.726 (0.084) 0.687 (0.033) −

Scenario 2 p = 40

GLasso 0.390 (0.046) 0.977 (0.023) 0.386 (0.063) 0.957 (0.040) 0.614 (0.057) 0.725 (0.020) 0.605 (0.044) 19.9 (20.0)

SepLasso 0.722 (0.073) 0.448 (0.026) 0.741 (0.022) 0.461 (0.016) 0.614 (0.114) 0.286 (0.012) 0.521 (0.098) 63.2 (10.6)

FGL 0.810 (0.037) 0.525 (0.035) 0.835 (0.043) 0.543 (0.045) 0.905 (0.044) 0.208 (0.019) 0.607 (0.016) 0.2 (0.6)

GGL 0.813 (0.019) 0.545 (0.083) 0.813 (0.021) 0.542 (0.070) 0.829 (0.029) 0.191 (0.023) 0.579 (0.039) 0.6 (0.9)

SSGL 0.500 (0.036) 0.629 (0.077) 0.375 (0.040) 0.640 (0.060) 0.786 (0.143) 0.270 (0.032) 0.505 (0.032) 47.6 (23.0)

SepBoost 0.980 (0.011) 0.193 (0.009) 0.979 (0.018) 0.191 (0.009) 1.000 (0.000) 0.072 (0.001) 0.293 (0.009) 31.5 (47.5)

SepThreshold 0.925 (0.018) 0.278 (0.016) 0.933 (0.025) 0.279 (0.015) 0.996 (0.011) 0.222 (0.010) 0.340 (0.052) 113.8 (93.4)

proposed 0.738 (0.033) 0.681 (0.018) 0.787 (0.056) 0.670 (0.022) 0.964 (0.057) 0.300 (0.043) 0.644 (0.037) −
p = 60

GLasso 0.323 (0.041) 0.970 (0.026) 0.331 (0.034) 0.962 (0.011) 0.676 (0.081) 0.601 (0.031) 0.572 (0.025) 36.4 (34.3)

SepLasso 0.689 (0.051) 0.325 (0.020) 0.715 (0.022) 0.322 (0.027) 0.586 (0.064) 0.271 (0.005) 0.450 (0.090) 140.6 (35.7)

FGL 0.792 (0.038) 0.594 (0.033) 0.782 (0.071) 0.583 (0.072) 0.834 (0.117) 0.219 (0.034) 0.588 (0.047) 4.1 (1.4)

GGL 0.793 (0.028) 0.504 (0.019) 0.803 (0.038) 0.510 (0.012) 0.829 (0.124) 0.184 (0.025) 0.549 (0.024) 4.8 (2.3)

SSGL 0.385 (0.046) 0.565 (0.075) 0.405 (0.052) 0.542 (0.071) 0.643 (0.080) 0.227 (0.033) 0.478 (0.039) 123.0 (74.1)

SepBoost 0.960 (0.012) 0.127 (0.002) 0.965 (0.017) 0.127 (0.005) 1.000 (0.000) 0.032 (0.001) 0.236 (0.008) 97.9 (150.2)

SepThreshold 0.823 (0.033) 0.259 (0.015) 0.815 (0.028) 0.258 (0.014) 0.910 (0.073) 0.167 (0.012) 0.265 (0.029) 266.3 (239.2)

proposed 0.716 (0.051) 0.654 (0.037) 0.658 (0.065) 0.581 (0.051) 0.786 (0.052) 0.264 (0.062) 0.592 (0.069) −
(Continues)
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TABLE A1 (Continued)

Method TPR1 TDR1 TPR2 TDR2 TPR3 TDR3 MCC N_VIO
p = 100

GLasso 0.218 (0.025) 0.957 (0.030) 0.223 (0.028) 0.971 (0.009) 0.343 (0.071) 0.571 (0.027) 0.432 (0.024) 73.8 (54.4)

SepLasso 0.661 (0.023) 0.199 (0.006) 0.685 (0.032) 0.204 (0.017) 0.623 (0.085) 0.173 (0.009) 0.347 (0.074) 231.5 (30.3)

FGL 0.821 (0.020) 0.476 (0.065) 0.787 (0.077) 0.456 (0.059) 0.799 (0.085) 0.160 (0.024) 0.523 (0.042) 7.2 (2.7)

GGL 0.816 (0.057) 0.499 (0.023) 0.819 (0.057) 0.478 (0.026) 0.798 (0.118) 0.170 (0.019) 0.539 (0.023) 11.2 (2.8)

SSGL 0.230 (0.034) 0.534 (0.109) 0.242 (0.017) 0.516 (0.108) 0.557 (0.037) 0.219 (0.055) 0.386 (0.052) 104.0 (83.4)

SepBoost 0.934 (0.017) 0.096 (0.003) 0.935 (0.018) 0.097 (0.003) 1.000 (0.000) 0.024 (0.001) 0.208 (0.004) 287.7 (467.5)

SepThreshold 0.632 (0.053) 0.238 (0.012) 0.659 (0.032) 0.222 (0.013) 0.706 (0.073) 0.108 (0.012) 0.229 (0.018) 599.2 (582.2)

proposed 0.790 (0.067) 0.474 (0.071) 0.779 (0.053) 0.486 (0.059) 0.900 (0.042) 0.193 (0.060) 0.547 (0.015) −

Scenario 3 p = 40

GLasso 0.417 (0.095) 0.495 (0.079) 0.420 (0.104) 0.482 (0.071) 0.970 (0.054) 0.307 (0.021) 0.441 (0.039) 16.4 (18.4)

SepLasso 0.757 (0.038) 0.346 (0.022) 0.737 (0.052) 0.338 (0.018) 0.817 (0.070) 0.142 (0.009) 0.404 (0.106) 91.9 (25.2)

FGL 0.839 (0.033) 0.382 (0.037) 0.832 (0.053) 0.376 (0.062) 0.733 (0.067) 0.049 (0.005) 0.460 (0.041) 0.3 (0.7)

GGL 0.859 (0.071) 0.400 (0.054) 0.861 (0.069) 0.394 (0.023) 0.767 (0.090) 0.053 (0.017) 0.460 (0.029) 0.6 (0.9)

SSGL 0.471 (0.053) 0.518 (0.089) 0.440 (0.048) 0.510 (0.082) 0.833 (0.144) 0.120 (0.031) 0.422 (0.045) 38.5 (24.4)

SepBoost 0.973 (0.026) 0.192 (0.009) 0.981 (0.018) 0.191 (0.011) 1.000 (0.000) 0.018 (0.000) 0.251 (0.007) 32.6 (49.3)

SepThreshold 0.906 (0.024) 0.273 (0.013) 0.925 (0.036) 0.254 (0.014) 1.000 (0.000) 0.010 (0.001) 0.270 (0.047) 123.3 (111.0)

proposed 0.621 (0.059) 0.626 (0.050) 0.613 (0.074) 0.543 (0.051) 0.618 (0.033) 0.262 (0.064) 0.542 (0.031) −

p = 60

GLasso 0.385 (0.079) 0.399 (0.099) 0.576 (0.086) 0.585 (0.110) 0.933 (0.049) 0.146 (0.042) 0.410 (0.033) 43.6 (44.6)

SepLasso 0.757 (0.038) 0.296 (0.022) 0.737 (0.052) 0.288 (0.018) 0.817 (0.070) 0.092 (0.009) 0.354 (0.106) 131.0 (25.2)

FGL 0.816 (0.056) 0.360 (0.026) 0.823 (0.036) 0.351 (0.020) 0.700 (0.074) 0.046 (0.006) 0.436 (0.013) 3.2 (2.7)

GGL 0.828 (0.027) 0.364 (0.015) 0.822 (0.026) 0.362 (0.013) 0.711 (0.061) 0.045 (0.005) 0.442 (0.008) 3.6 (1.7)

SSGL 0.418 (0.052) 0.420 (0.062) 0.429 (0.053) 0.429 (0.065) 0.722 (0.144) 0.186 (0.031) 0.375 (0.034) 106.4 (62.2)

SepBoost 0.965 (0.014) 0.137 (0.009) 0.957 (0.015) 0.127 (0.009) 1.000 (0.000) 0.014 (0.000) 0.214 (0.008) 98.2(147.3)

SepThreshold 0.803 (0.058) 0.205 (0.014) 0.814 (0.036) 0.184 (0.013) 0.994 (0.018) 0.007 (0.000) 0.191 (0.024) 321.8 (303.1)

proposed 0.635 (0.077) 0.504 (0.079) 0.624 (0.078) 0.433 (0.085) 0.537 (0.030) 0.176 (0.043) 0.519 (0.032) −

p = 100

GLasso 0.361 (0.066) 0.568 (0.107) 0.427 (0.063) 0.439 (0.086) 0.956 (0.099) 0.171 (0.069) 0.384 (0.052) 108.2 (60.9)

SepLasso 0.742 (0.017) 0.206 (0.012) 0.713 (0.017) 0.202 (0.010) 0.693 (0.095) 0.082 (0.005) 0.309 (0.110) 233.4 (34.3)

FGL 0.791 (0.032) 0.354 (0.016) 0.798 (0.052) 0.347 (0.019) 0.733 (0.069) 0.046 (0.011) 0.429 (0.022) 10.5 (4.3)

GGL 0.818 (0.015) 0.346 (0.017) 0.782 (0.040) 0.338 (0.020) 0.689 (0.038) 0.041 (0.002) 0.435 (0.019) 8.3 (4.5)

SSGL 0.293 (0.034) 0.491 (0.086) 0.291 (0.038) 0.468 (0.084) 0.800(0.114) 0.124 (0.023) 0.328 (0.033) 123.6 (127.5)

SepBoost 0.933 (0.012) 0.077 (0.006) 0.928 (0.020) 0.077 (0.005) 1.000 (0.000) 0.009 (0.000) 0.193 (0.005) 287.1 (433.7)

SepThreshold 0.645 (0.040) 0.135 (0.013) 0.630 (0.043) 0.175 (0.012) 0.640 (0.018) 0.012 (0.000) 0.142 (0.019) 589.6 (594.8)

proposed 0.714 (0.038) 0.508 (0.038) 0.768 (0.064) 0.534 (0.027) 0.836 (0.026) 0.092 (0.007) 0.507 (0.016) −
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TABLE A2 Simulation results for the power law networks with high signal strengths. In each cell, mean (sd) based on 200 replicates

Method TPR1 TDR1 TPR2 TDR2 TPR3 TDR3 MCC N_VIO

Scenario 1 p = 40

GLasso 0.533 (0.090) 0.985 (0.033) 0.535 (0.094) 0.969 (0.028) 0.518 (0.107) 0.501 (0.061) 0.634 (0.079) 20.9 (12.0)

SepLasso 0.715 (0.017) 0.574 (0.079) 0.730 (0.050) 0.545 (0.065) 0.709 (0.093) 0.380 (0.035) 0.621 (0.090) 81.9 (13.8)

FGL 0.879 (0.069) 0.928 (0.030) 0.865 (0.084) 0.903 (0.034) 0.864 (0.125) 0.483 (0.046) 0.810 (0.059) 0.0 (0.0)

GGL 0.854 (0.025) 0.899 (0.051) 0.860 (0.029) 0.878 (0.046) 0.799 (0.069) 0.448 (0.022) 0.781 (0.026) 0.0 (0.0)

SSGL 0.524 (0.035) 0.662 (0.111) 0.492 (0.036) 0.588 (0.061) 0.705 (0.049) 0.201 (0.036) 0.570 (0.048) 99.2 (31.5)

SepBoost 0.975 (0.020) 0.192 (0.009) 0.969 (0.022) 0.192 (0.008) 0.892 (0.062) 0.087 (0.003) 0.274 (0.009) 31.4 (47.9)

SepThreshold 0.860 (0.027) 0.313 (0.023) 0.890 (0.023) 0.309 (0.019) 0.986 (0.024) 0.138 (0.012) 0.303 (0.058) 88.4 (56.1)

proposed 0.785 (0.061) 0.880 (0.050) 0.806 (0.059) 0.906 (0.057) 0.651 (0.047) 0.511 (0.056) 0.764 (0.064) −

p = 60

GLasso 0.414 (0.087) 0.981 (0.019) 0.388 (0.101) 0.979 (0.021) 0.297 (0.076) 0.788 (0.062) 0.558 (0.054) 31.6 (32.8)

SepLasso 0.728 (0.035) 0.393 (0.039) 0.718 (0.025) 0.428 (0.021) 0.685 (0.066) 0.259 (0.021) 0.499 (0.076) 132.4 (27.2)

FGL 0.865 (0.019) 0.911 (0.059) 0.861 (0.022) 0.919 (0.071) 0.850 (0.058) 0.482 (0.053) 0.797 (0.039) 2.7 (1.5)

GGL 0.875 (0.037) 0.827 (0.045) 0.866 (0.049) 0.834 (0.041) 0.909 (0.055) 0.443 (0.030) 0.765 (0.033) 3.8 (1.3)

SSGL 0.397 (0.039) 0.586 (0.073) 0.360 (0.056) 0.498 (0.049) 0.803 (0.061) 0.130 (0.023) 0.464 (0.031) 179.6 (83.7)

SepBoost 0.946 (0.022) 0.147 (0.008) 0.940 (0.021) 0.148 (0.008) 0.761 (0.049) 0.055 (0.003) 0.241 (0.006) 98.0 (148.4)

SepThreshold 0.794 (0.020) 0.204 (0.018) 0.799 (0.019) 0.214 (0.015) 0.865 (0.063) 0.132 (0.013) 0.251 (0.044) 173.4 (131.5)

proposed 0.626 (0.105) 0.881 (0.066) 0.693 (0.094) 0.882 (0.082) 0.443 (0.099) 0.522 (0.074) 0.685 (0.083) −

p = 100

GLasso 0.318 (0.077) 0.945 (0.033) 0.262 (0.044) 0.952 (0.024) 0.402 (0.060) 0.564 (0.099) 0.541 (0.066) 44.4 (48.4)

SepLasso 0.695 (0.025) 0.330 (0.027) 0.687 (0.054) 0.318 (0.025) 0.596 (0.031) 0.177 (0.010) 0.414 (0.081) 253.8 (36.3)

FGL 0.904 (0.069) 0.844 (0.077) 0.896 (0.048) 0.832 (0.079) 0.885 (0.050) 0.438 (0.031) 0.773 (0.055) 7.2 (3.2)

GGL 0.805 (0.039) 0.843 (0.030) 0.798 (0.032) 0.856 (0.029) 0.779 (0.071) 0.458 (0.039) 0.741 (0.031) 10.3 (5.4)

SSGL 0.381 (0.063) 0.456 (0.057) 0.367 (0.047) 0.445 (0.059) 0.709 (0.061) 0.145 (0.023) 0.396 (0.016) 316.4 (124.2)

SepBoost 0.909 (0.020) 0.117 (0.009) 0.911 (0.019) 0.117 (0.008) 0.700 (0.061) 0.034 (0.002) 0.210 (0.005) 290.0 (437.5)

SepThreshold 0.652 (0.036) 0.175 (0.016) 0.676 (0.033) 0.176 (0.016) 0.667 (0.063) 0.112 (0.013) 0.180 (0.012) 627.9 (618.4)

proposed 0.707 (0.055) 0.661 (0.057) 0.719 (0.071) 0.660 (0.054) 0.561 (0.083) 0.605 (0.073) 0.646 (0.078) −

Scenario 2 p = 40

GLasso 0.416 (0.090) 0.977 (0.020) 0.477 (0.062) 0.983 (0.030) 0.672 (0.058) 0.719 (0.014) 0.578 (0.046) 17.7 (17.8)

SepLasso 0.711 (0.035) 0.422 (0.021) 0.675 (0.030) 0.421 (0.021) 0.671 (0.132) 0.281 (0.016) 0.490 (0.075) 88.7 (25.1)

FGL 0.824 (0.022) 0.565 (0.017) 0.829 (0.019) 0.555 (0.014) 0.952 (0.016) 0.224 (0.013) 0.610 (0.015) 0.2 (0.9)

GGL 0.774 (0.043) 0.560 (0.014) 0.754 (0.048) 0.536 (0.031) 0.872 (0.059) 0.214 (0.027) 0.560 (0.021) 0.4 (1.0)

SSGL 0.433 (0.048) 0.620 (0.077) 0.400 (0.027) 0.586 (0.077) 0.750 (0.086) 0.220 (0.041) 0.512 (0.046) 75.5 (29.0)

SepBoost 0.989 (0.007) 0.181 (0.011) 0.984 (0.015) 0.186 (0.010) 1.000 (0.000) 0.030 (0.000) 0.248 (0.007) 30.2 (46.3)

SepThreshold 0.898 (0.035) 0.292 (0.016) 0.894 (0.025) 0.273 (0.020) 0.989 (0.000) 0.123 (0.000) 0.285 (0.051) 101.5 (76.1)

proposed 0.707 (0.057) 0.744 (0.057) 0.700 (0.058) 0.709 (0.043) 0.964 (0.101) 0.351 (0.103) 0.653 (0.071) −

(Continues)
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TABLE A2 (Continued)

Method TPR1 TDR1 TPR2 TDR2 TPR3 TDR3 MCC N_VIO
p = 60

GLasso 0.316 (0.077) 0.951 (0.042) 0.337 (0.064) 0.979 (0.029) 0.565 (0.070) 0.717 (0.055) 0.534 (0.063) 34.1 (31.3)

SepLasso 0.714 (0.034) 0.324 (0.015) 0.715 (0.059) 0.311 (0.022) 0.695 (0.092) 0.180 (0.015) 0.410 (0.076) 149.2 (29.7)

FGL 0.849 (0.037) 0.587 (0.059) 0.806 (0.050) 0.545 (0.041) 0.943 (0.078) 0.225 (0.043) 0.597 (0.031) 2.2 (2.3)

GGL 0.800 (0.065) 0.533 (0.044) 0.788 (0.079) 0.524 (0.042) 0.867 (0.123) 0.195 (0.028) 0.528 (0.040) 5.0 (3.7)

SSGL 0.348 (0.043) 0.597 (0.057) 0.330 (0.039) 0.516 (0.052) 0.762 (0.104) 0.161 (0.021) 0.392 (0.036) 165.1 (96.8)

SepBoost 0.978 (0.014) 0.143 (0.009) 0.981 (0.012) 0.149 (0.009) 1.000 (0.000) 0.020 (0.000) 0.218 (0.006) 97.9 (145.4)

SepThreshold 0.786 (0.024) 0.180 (0.017) 0.791 (0.030) 0.171 (0.015) 0.881 (0.050) 0.079 (0.011) 0.204 (0.034) 214.3 (169.7)

proposed 0.678 (0.047) 0.684 (0.042) 0.675 (0.033) 0.669 (0.038) 0.833 (0.077) 0.299 (0.079) 0.610 (0.068) −

p = 100

GLasso 0.379 (0.095) 0.901 (0.030) 0.375 (0.068) 0.942 (0.029) 0.314 (0.031) 0.706 (0.037) 0.477 (0.064) 46.0 (41.4)

SepLasso 0.678 (0.029) 0.262 (0.017) 0.689 (0.019) 0.249 (0.016) 0.651 (0.043) 0.124 (0.006) 0.353 (0.073) 270.4 (31.4)

FGL 0.794 (0.036) 0.454 (0.020) 0.805 (0.039) 0.463 (0.026) 0.848 (0.070) 0.166 (0.011) 0.522 (0.017) 8.2 (4.6)

GGL 0.772 (0.013) 0.470 (0.025) 0.781 (0.037) 0.474 (0.036) 0.838 (0.072) 0.175 (0.019) 0.487 (0.029) 9.7 (3.3)

SSGL 0.327 (0.024) 0.525 (0.100) 0.358 (0.010) 0.474 (0.090) 0.643 (0.052) 0.137 (0.037) 0.336 (0.035) 250.5 (168.9)

SepBoost 0.968 (0.021) 0.118 (0.009) 0.959 (0.016) 0.118 (0.009) 1.000 (0.000) 0.020 (0.000) 0.206 (0.005) 290.0 (474.3)

SepThreshold 0.664 (0.031) 0.158 (0.015) 0.694 (0.042) 0.160 (0.014) 0.691 (0.090) 0.018 (0.001) 0.181 (0.014) 563.4 (562.7)

proposed 0.743 (0.042) 0.641 (0.055) 0.678 (0.067) 0.597 (0.053) 0.886 (0.085) 0.265 (0.056) 0.567 (0.045) −

Scenario 3 p = 40

GLasso 0.326 (0.078) 0.503 (0.052) 0.388 (0.058) 0.654 (0.075) 0.939 (0.058) 0.147 (0.014) 0.422 (0.050) 10.1 (12.3)

SepLasso 0.762 (0.064) 0.405 (0.020) 0.787 (0.054) 0.391 (0.046) 0.700 (0.045) 0.185 (0.002) 0.453 (0.128) 80.7 (12.0)

FGL 0.807 (0.053) 0.461 (0.039) 0.837 (0.036) 0.464 (0.055) 0.848 (0.046) 0.171 (0.049) 0.489 (0.059) 0.7 (1.5)

GGL 0.813 (0.010) 0.489 (0.062) 0.795 (0.009) 0.479 (0.075) 0.771 (0.029) 0.160 (0.021) 0.487 (0.039) 0.5 (1.3)

SSGL 0.444 (0.049) 0.493 (0.070) 0.453 (0.054) 0.512 (0.082) 0.917 (0.111) 0.134 (0.029) 0.454 (0.042) 52.7 (28.0)

SepBoost 0.983 (0.012) 0.183 (0.010) 0.978 (0.017) 0.183 (0.010) 0.988 (0.040) 0.030 (0.000) 0.231 (0.011) 33.7 (54.9)

SepThreshold 0.900 (0.037) 0.283 (0.015) 0.899 (0.028) 0.282 (0.016) 1.000 (0.000) 0.010 (0.000) 0.244 (0.046) 113.5 (94.0)

proposed 0.701 (0.069) 0.534 (0.071) 0.720 (0.075) 0.546 (0.076) 0.917 (0.059) 0.216 (0.028) 0.547 (0.025) −

p = 60

GLasso 0.347 (0.083) 0.444 (0.068) 0.430 (0.080) 0.631 (0.068) 0.933 (0.049) 0.216 (0.080) 0.393 (0.041) 36.9 (39.6)

SepLasso 0.782 (0.042) 0.306 (0.020) 0.765 (0.043) 0.316 (0.018) 0.800 (0.092) 0.135 (0.006) 0.396 (0.106) 140.0 (27.5)

FGL 0.894 (0.053) 0.350 (0.027) 0.866 (0.046) 0.350 (0.016) 0.889 (0.036) 0.052 (0.010) 0.449 (0.025) 4.0 (2.8)

GGL 0.837 (0.042) 0.368 (0.027) 0.855 (0.056) 0.372 (0.021) 0.845 (0.068) 0.055 (0.013) 0.453 (0.025) 5.2 (3.6)

SSGL 0.500 (0.067) 0.433 (0.042) 0.448 (0.052) 0.429 (0.064) 0.944 (0.164) 0.085 (0.016) 0.364 (0.030) 129.5 (73.5)

SepBoost 0.972 (0.020) 0.142 (0.007) 0.977 (0.016) 0.149 (0.009) 1.000 (0.000) 0.025 (0.000) 0.213 (0.010) 94.4 (156.7)

SepThreshold 0.782 (0.037) 0.209 (0.015) 0.812 (0.033) 0.213 (0.014) 0.933 (0.090) 0.018 (0.001) 0.180 (0.026) 261.3 (241.8)

proposed 0.765 (0.051) 0.483 (0.054) 0.788 (0.069) 0.469 (0.056) 0.815 (0.070) 0.153 (0.041) 0.530 (0.046) −

p = 100

GLasso 0.435 (0.054) 0.522 (0.046) 0.379 (0.034) 0.526 (0.045) 0.956 (0.059) 0.152 (0.049) 0.387 (0.053) 44.3 (48.5)

SepLasso 0.739 (0.023) 0.254 (0.012) 0.731 (0.041) 0.258 (0.021) 0.746 (0.055) 0.084 (0.004) 0.345 (0.107) 249.1 (41.2)

FGL 0.835 (0.033) 0.357 (0.020) 0.806 (0.032) 0.351 (0.024) 0.743 (0.016) 0.045 (0.013) 0.424 (0.010) 8.4 (2.7)

GGL 0.809 (0.055) 0.396 (0.027) 0.791 (0.046) 0.393 (0.055) 0.803 (0.067) 0.057 (0.012) 0.435 (0.031) 10.6 (4.9)

SSGL 0.248 (0.026) 0.509 (0.083) 0.246 (0.025) 0.489 (0.083) 0.833 (0.116) 0.100 (0.025) 0.367 (0.035) 130.8 (82.6)

SepBoost 0.962 (0.018) 0.113 (0.009) 0.959 (0.015) 0.113 (0.009) 1.000 (0.000) 0.020 (0.000) 0.194 (0.05) 291.9 (440.2)

SepThreshold 0.633 (0.041) 0.142 (0.013) 0.645 (0.039) 0.132 (0.013) 0.674 (0.090) 0.013 (0.001) 0.169 (0.016) 640.1 (631.2)

proposed 0.605 (0.051) 0.521 (0.058) 0.677 (0.069) 0.512 (0.062) 0.772 (0.045) 0.157 (0.030) 0.514 (0.046) −
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APPENDIX B:ADDITIONALNUMERICALRESULTS

TABLE B1 Simulation results for the nearest-neighbor networks with low signal strengths. In each cell, mean (sd) based on 200
replicates

Method TPR1 TDR1 TPR2 TDR2 TPR3 TDR3 MCC N_VIO

Scenario 1 p = 40
GLasso 0.863 (0.057) 0.900 (0.074) 0.856 (0.065) 0.879 (0.074) 0.811 (0.076) 0.548 (0.044) 0.799 (0.037) 14.4 (12.9)
SepLasso 0.764 (0.047) 0.598 (0.034) 0.757 (0.056) 0.574 (0.030) 0.678 (0.038) 0.435 (0.027) 0.660 (0.079) 61.7 (16.8)
FGL 0.901 (0.034) 0.937 (0.011) 0.912 (0.040) 0.943 (0.009) 0.876 (0.048) 0.600 (0.021) 0.857 (0.021) 0.0 (0.0)
GGL 0.854 (0.025) 0.899 (0.051) 0.860 (0.029) 0.878 (0.046) 0.799 (0.069) 0.448 (0.022) 0.781 (0.026) 0.0 (0.0)
SSGL 0.666 (0.045) 0.570 (0.111) 0.716 (0.036) 0.513 (0.061) 0.611 (0.049) 0.452 (0.036) 0.591 (0.048) 131.1 (11.4)
SepBoost 0.954 (0.027) 0.242 (0.016) 0.956 (0.029) 0.243 (0.012) 0.975 (0.025) 0.099 (0.009) 0.303 (0.033) 30.9 (43.2)
SepThreshold 0.922 (0.029) 0.279 (0.015) 0.917 (0.030) 0.230 (0.014) 0.974 (0.036) 0.142 (0.012) 0.316 (0.057) 105.0 (79.0)
proposed 0.940 (0.053) 0.798 (0.086) 0.929 (0.068) 0.748 (0.082) 0.926 (0.047) 0.759 (0.046) 0.815 (0.054) −

p = 60
GLasso 0.865 (0.065) 0.858 (0.042) 0.866 (0.073) 0.847 (0.047) 0.823 (0.110) 0.534 (0.050) 0.788 (0.051) 28.6 (15.7)
SepLasso 0.761 (0.026) 0.500 (0.049) 0.750 (0.034) 0.495 (0.042) 0.583 (0.100) 0.328 (0.028) 0.574 (0.102) 101.5 (22.2)
FGL 0.891 (0.029) 0.886 (0.038) 0.885 (0.035) 0.877 (0.027) 0.840 (0.060) 0.553 (0.007) 0.820 (0.018) 4.5 (2.1)
GGL 0.875 (0.037) 0.827 (0.045) 0.866 (0.049) 0.834 (0.041) 0.909 (0.055) 0.443 (0.030) 0.765 (0.033) 5.0 (2.3)
SSGL 0.627 (0.039) 0.412 (0.059) 0.670 (0.040) 0.497 (0.063) 0.762 (0.099) 0.250 (0.029) 0.545 (0.033) 220.5 (70.6)
SepBoost 0.871 (0.029) 0.185 (0.015) 0.891 (0.034) 0.194 (0.018) 0.956 (0.020) 0.075 (0.008) 0.263 (0.016) 95.4 (164.5)
SepThreshold 0.825 (0.035) 0.265 (0.015) 0.798 (0.043) 0.241 (0.014) 0.867 (0.064) 0.133 (0.014) 0.291 (0.034) 212.4 (208.1)
proposed 0.873 (0.091) 0.805 (0.077) 0.852 (0.072) 0.813 (0.080) 0.786 (0.071) 0.532 (0.056) 0.771 (0.064) −

p = 100
GLasso 0.844 (0.052) 0.838 (0.011) 0.845 (0.046) 0.843 (0.023) 0.797 (0.063) 0.524 (0.023) 0.772 (0.024) 41.1 (28.6)
SepLasso 0.718 (0.013) 0.391 (0.024) 0.727 (0.023) 0.388 (0.010) 0.630 (0.028) 0.274 (0.019) 0.499 (0.063) 196.7 (30.3)
FGL 0.815 (0.015) 0.942 (0.049) 0.814 (0.027) 0.931 (0.034) 0.747 (0.061) 0.543 (0.028) 0.793 (0.018) 14.4 (4.2)
GGL 0.805 (0.039) 0.843 (0.030) 0.798 (0.032) 0.856 (0.029) 0.779 (0.071) 0.458 (0.039) 0.741 (0.031) 15.5 (6.7)
SSGL 0.539 (0.064) 0.363 (0.034) 0.549 (0.071) 0.368 (0.032) 0.821 (0.099) 0.149 (0.029) 0.462 (0.033) 458.1 (198.9)
SepBoost 0.747 (0.014) 0.177 (0.010) 0.744 (0.022) 0.171 (0.009) 0.935 (0.018) 0.060 (0.000) 0.240 (0.011) 290.6 (429.3)
SepThreshold 0.663 (0.043) 0.192 (0.012) 0.666 (0.042) 0.173 (0.012) 0.697 (0.048) 0.115 (0.011) 0.254 (0.029) 585.6 (569.6)
proposed 0.928 (0.071) 0.672 (0.061) 0.937 (0.069) 0.665 (0.045) 0.864 (0.068) 0.461 (0.044) 0.751 (0.053) −
Scenario 2 p = 40
GLasso 0.785 (0.094) 0.501 (0.042) 0.813 (0.057) 0.531 (0.064) 0.774 (0.107) 0.154 (0.021) 0.544 (0.034) 17.7 (12.5)
SepLasso 0.722 (0.086) 0.436 (0.016) 0.738 (0.077) 0.461 (0.015) 0.664 (0.108) 0.282 (0.018) 0.517 (0.094) 91.8 (9.3)
FGL 0.820 (0.103) 0.590 (0.010) 0.804 (0.083) 0.576 (0.038) 0.813 (0.048) 0.193 (0.030) 0.585 (0.045) 0.8 (0.5)
GGL 0.774 (0.043) 0.560 (0.014) 0.754 (0.048) 0.536 (0.031) 0.872 (0.059) 0.214 (0.027) 0.560 (0.021) 0.4 (0.3)
SSGL 0.793 (0.069) 0.323 (0.035) 0.864 (0.064) 0.313 (0.52) 0.758 (0.099) 0.356 (0.029) 0.442 (0.033) 132.4 (10.4)
SepBoost 0.953 (0.030) 0.231 (0.017) 0.941 (0.026) 0.226 (0.016) 0.993 (0.015) 0.061 (0.006) 0.283 (0.015) 32.4 (44.5)
SepThreshold 0.926 (0.018) 0.278 (0.014) 0.930 (0.032) 0.273 (0.013) 1.000 (0.000) 0.120 (0.001) 0.312 (0.053) 117.0 (99.3)
proposed 0.714 (0.063) 0.697 (0.066) 0.684 (0.062) 0.643 (0.056) 0.844 (0.084) 0.261 (0.059) 0.607 (0.043) −

(Continues)
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TABLE B1 (Continued)

Method TPR1 TDR1 TPR2 TDR2 TPR3 TDR3 MCC N_VIO
p = 60

GLasso 0.797 (0.033) 0.487 (0.023) 0.834 (0.028) 0.518 (0.037) 0.764 (0.108) 0.151 (0.030) 0.533 (0.031) 32.3 (27.0)
SepLasso 0.702 (0.039) 0.361 (0.011) 0.707 (0.040) 0.376 (0.030) 0.650 (0.056) 0.220 (0.005) 0.452 (0.084) 144.0 (38.4)
FGL 0.813 (0.027) 0.561 (0.025) 0.805 (0.045) 0.535 (0.036) 0.847 (0.050) 0.185 (0.012) 0.575 (0.030) 6.1 (2.2)
GGL 0.800 (0.065) 0.533 (0.044) 0.788 (0.079) 0.524 (0.042) 0.867 (0.123) 0.195 (0.028) 0.538 (0.040) 7.0 (3.2)
SSGL 0.653 (0.053) 0.357 (0.047) 0.631 (0.054) 0.342 (0.071) 0.650 (0.043) 0.267 (0.033) 0.397 (0.042) 224.5 (96.0)
SepBoost 0.895 (0.028) 0.183 (0.010) 0.887 (0.021) 0.174 (0.012) 0.969 (0.034) 0.048 (0.003) 0.250 (0.017) 91.3 (146.5)
SepThreshold 0.819 (0.049) 0.207 (0.014) 0.789 (0.036) 0.205 (0.014) 0.884 (0.055) 0.075 (0.006) 0.246 (0.053) 262.7 (248.4)
proposed 0.744 (0.076) 0.602 (0.074) 0.693 (0.081) 0.641 (0.060) 0.808 (0.070) 0.253 (0.056) 0.588 (0.079) −

p = 100
GLasso 0.778 (0.035) 0.503 (0.034) 0.775 (0.039) 0.497 (0.027) 0.776 (0.060) 0.157 (0.013) 0.493 (0.028) 57.1 (46.6)
SepLasso 0.649 (0.022) 0.288 (0.004) 0.672 (0.020) 0.298 (0.018) 0.593 (0.094) 0.165 (0.016) 0.384 (0.078) 227.5 (28.2)
FGL 0.800 (0.044) 0.528 (0.056) 0.766 (0.044) 0.502 (0.042) 0.808 (0.073) 0.169 (0.024) 0.557 (0.061) 17.1 (5.0)
GGL 0.772 (0.013) 0.470 (0.025) 0.781 (0.037) 0.474 (0.036) 0.838 (0.072) 0.175 (0.019) 0.487 (0.029) 15.5 (4.7)
SSGL 0.562 (0.058) 0.453 (0.102) 0.529 (0.028) 0.435 (0.103) 0.576 (0.056) 0.255 (0.061) 0.377 (0.042) 397.2 (189.3)
SepBoost 0.757 (0.023) 0.164 (0.007) 0.767 (0.015) 0.165 (0.006) 0.914 (0.039) 0.044 (0.003) 0.229 (0.012) 292.7 (441.0)
SepThreshold 0.650 (0.044) 0.137 (0.013) 0.638 (0.035) 0.127 (0.014) 0.685 (0.066) 0.027 (0.002) 0.178 (0.026) 619.4 (602.8)
proposed 0.732 (0.051) 0.602 (0.050) 0.722 (0.047) 0.574 (0.034) 0.787 (0.052) 0.184 (0.075) 0.551 (0.038) −
Scenario 3 p = 40
GLasso 0.669 (0.061) 0.391 (0.012) 0.690 (0.073) 0.412 (0.018) 0.700 (0.109) 0.033 (0.012) 0.396 (0.018) 15.8 (14.4)
SepLasso 0.641 (0.076) 0.458 (0.029) 0.635 (0.056) 0.447 (0.022) 0.925 (0.068) 0.230 (0.003) 0.473 (0.095) 82.8 (8.2)
FGL 0.713 (0.048) 0.442 (0.018) 0.746 (0.068) 0.464 (0.018) 0.333 (0.088) 0.017 (0.006) 0.428 (0.026) 0.8 (1.2)
GGL 0.813 (0.010) 0.489 (0.062) 0.795 (0.009) 0.446 (0.075) 0.771 (0.029) 0.160 (0.021) 0.487 (0.039) 0.6 (1.1)
SSGL 0.710 (0.049) 0.280 (0.056) 0.733 (0.056) 0.278 (0.051) 0.875 (0.056) 0.149 (0.061) 0.386 (0.037) 97.9 (15.6)
SepBoost 0.960 (0.028) 0.225 (0.013) 0.955 (0.017) 0.218 (0.009) 0.983 (0.035) 0.036 (0.002) 0.278 (0.027) 30.7 (45.7)
SepThreshold 0.901 (0.035) 0.274 (0.016) 0.924 (0.027) 0.245 (0.005) 1.000 (0.000) 0.117 (0.004) 0.263 (0.048) 120.1 (110.2)
proposed 0.679 (0.058) 0.533 (0.081) 0.643 (0.062) 0.545 (0.073) 0.619 (0.079) 0.496 (0.058) 0.576 (0.062) −

p = 60
GLasso 0.607 (0.058) 0.356 (0.029) 0.614 (0.028) 0.374 (0.014) 0.533 (0.104) 0.023 (0.006) 0.360 (0.014) 26.2 (19.3)
SepLasso 0.562 (0.032) 0.373 (0.005) 0.559 (0.043) 0.379 (0.020) 0.943 (0.108) 0.178 (0.003) 0.404 (0.076) 129.3 (24.6)
FGL 0.576 (0.020) 0.414 (0.017) 0.606 (0.019) 0.420 (0.016) 0.444 (0.093) 0.022 (0.010) 0.380 (0.012) 5.3 (2.7)
GGL 0.837 (0.042) 0.368 (0.027) 0.855 (0.056) 0.372 (0.021) 0.845 (0.068) 0.055 (0.013) 0.453 (0.025) 4.9 (2.3)
SSGL 0.608 (0.047) 0.309 (0.074) 0.578 (0.047) 0.348 (0.067) 0.750 (0.133) 0.108 (0.030) 0.353 (0.038) 204.6 (89.2)
SepBoost 0.881 (0.029) 0.184 (0.016) 0.881 (0.032) 0.186 (0.009) 0.978 (0.039) 0.028 (0.002) 0.249 (0.027) 100.2 (151.3)
SepThreshold 0.809 (0.035) 0.213 (0.016) 0.817 (0.038) 0.215 (0.009) 0.967 (0.058) 0.105 (0.010) 0.228 (0.021) 250.6 (228.6)
proposed 0.582 (0.079) 0.518 (0.077) 0.571 (0.067) 0.526 (0.068) 0.685 (0.042) 0.276 (0.079) 0.543 (0.055) −

p = 100
GLasso 0.508 (0.038) 0.395 (0.047) 0.528 (0.056) 0.386 (0.060) 0.467 (0.108) 0.022 (0.012) 0.353 (0.029) 39.0 (29.6)
SepLasso 0.462 (0.025) 0.306 (0.008) 0.459 (0.022) 0.319 (0.019) 0.810 (0.114) 0.125 (0.002) 0.330 (0.071) 234.0 (19.3)
FGL 0.520 (0.016) 0.384 (0.032) 0.502 (0.018) 0.382 (0.035) 0.367 (0.106) 0.045 (0.016) 0.343 (0.029) 12.8 (4.9)
GGL 0.809 (0.055) 0.396 (0.027) 0.791 (0.046) 0.393 (0.055) 0.803 (0.067) 0.057 (0.012) 0.435 (0.031) 11.3 (3.6)
SSGL 0.585 (0.034) 0.330 (0.085) 0.552 (0.030) 0.257 (0.067) 0.600 (0.066) 0.171 (0.017) 0.317 (0.023) 375.2.6 (205.7)
SepBoost 0.768 (0.031) 0.155 (0.009) 0.762 (0.036) 0.153 (0.009) 0.927 (0.049) 0.030 (0.002) 0.234 (0.022) 293.7 (445.5)
SepThreshold 0.644 (0.048) 0.135 (0.012) 0.632 (0.043) 0.135 (0.012) 0.705 (0.119) 0.082 (0.007) 0.177 (0.012) 639.1 (645.9)
proposed 0.533 (0.068) 0.562 (0.076) 0.495 (0.059) 0.511 (0.072) 0.644 (0.043) 0.182 (0.067) 0.505 (0.048) −
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TABLE B2 Simulation results for the nearest-neighbor networks with high signal strengths. In each cell, mean (sd) based on 200
replicates

Method TPR1 TDR1 TPR2 TDR2 TPR3 TDR3 MCC N_VIO

Scenario 1 p = 40
GLasso 0.443 (0.090) 0.978 (0.038) 0.436 (0.073) 0.967 (0.058) 0.508 (0.052) 0.661 (0.010) 0.616 (0.048) 15.2 (10.7)
SepLasso 0.705 (0.041) 0.572 (0.074) 0.695 (0.063) 0.569 (0.082) 0.611 (0.065) 0.403 (0.032) 0.618 (0.097) 73.6 (17.2)
FGL 0.665 (0.096) 0.912 (0.023) 0.662 (0.077) 0.935 (0.017) 0.880 (0.106) 0.531 (0.032) 0.729 (0.042) 0.0 (0.0)
GGL 0.611 (0.083) 0.850 (0.055) 0.622 (0.073) 0.868 (0.047) 0.869 (0.031) 0.500 (0.026) 0.698 (0.041) 0.0 (0.0)
SSGL 0.711 (0.037) 0.382 (0.058) 0.733 (0.031) 0.347 (0.057) 0.737 (0.046) 0.358 (0.029) 0.427 (0.023) 89.2 (16.5)
SepBoost 0.901 (0.022) 0.303 (0.026) 0.887 (0.036) 0.300 (0.021) 0.980 (0.023) 0.104 (0.004) 0.257 (0.016) 33.2 (50.9)
SepThreshold 0.868 (0.041) 0.320 (0.024) 0.876 (0.032) 0.326 (0.024) 0.990 (0.016) 0.248 (0.013) 0.350 (0.062) 88.3 (52.4)
proposed 0.605 (0.048) 0.903 (0.055) 0.617 (0.045) 0.916 (0.054) 0.823 (0.065) 0.530 (0.037) 0.679 (0.069) −

p = 60
GLasso 0.169 (0.066) 0.957 (0.037) 0.185 (0.060) 0.962 (0.039) 0.455 (0.053) 0.604 (0.040) 0.412 (0.064) 36.5 (24.2)
SepLasso 0.730 (0.047) 0.491 (0.031) 0.724 (0.064) 0.461 (0.038) 0.673 (0.041) 0.347 (0.030) 0.469 (0.070) 130.0 (29.5)
FGL 0.493 (0.060) 0.843 (0.046) 0.502 (0.071) 0.854 (0.062) 0.885 (0.053) 0.540 (0.063) 0.626 (0.011) 4.8 (2.9)
GGL 0.501 (0.084) 0.885 (0.042) 0.507 (0.086) 0.894 (0.050) 0.888 (0.048) 0.551 (0.045) 0.643 (0.058) 3.9 (2.3)
SSGL 0.600 (0.050) 0.411 (0.102) 0.582 (0.036) 0.383 (0.098) 0.573 (0.056) 0.357 (0.063) 0.369 (0.058) 234.6 (105.5)
SepBoost 0.783 (0.039) 0.275 (0.022) 0.771 (0.032) 0.274 (0.024) 0.971 (0.029) 0.081 (0.005) 0.232 (0.015) 95.7 (147.4)
SepThreshold 0.774 (0.028) 0.259 (0.023) 0.770 (0.029) 0.246 (0.017) 0.873 (0.036) 0.139 (0.013) 0.269 (0.047) 266.1 (220.4)
proposed 0.658 (0.055) 0.708 (0.037) 0.673 (0.070) 0.717 (0.041) 0.824 (0.057) 0.603 (0.041) 0.614 (0.061) −

p = 100
GLasso 0.192 (0.041) 0.949 (0.033) 0.182 (0.033) 0.978 (0.028) 0.316 (0.041) 0.633 (0.042) 0.396 (0.038) 57.9 (43.6)
SepLasso 0.663 (0.021) 0.385 (0.027) 0.689 (0.026) 0.387 (0.032) 0.652 (0.031) 0.262 (0.012) 0.483 (0.058) 266.1 (45.6)
FGL 0.396 (0.032) 0.872 (0.033) 0.395 (0.039) 0.882 (0.029) 0.859 (0.053) 0.530 (0.036) 0.575 (0.029) 15.4 (7.5)
GGL 0.359 (0.045) 0.853 (0.026) 0.379 (0.022) 0.857 (0.014) 0.856 (0.064) 0.518 (0.031) 0.559 (0.034) 12.1 (6.5)
SSGL 0.582 (0.103) 0.312 (0.052) 0.581 (0.096) 0.331 (0.054) 0.762 (0.086) 0.116 (0.031) 0.297 (0.046) 427.1 (179.2)
SepBoost 0.607 (0.011) 0.254 (0.012) 0.596 (0.029) 0.243 (0.012) 0.950 (0.032) 0.062 (0.003) 0.212 (0.017) 288.9 (461.4)
SepThreshold 0.672 (0.037) 0.192 (0.019) 0.662 (0.031) 0.191 (0.016) 0.743 (0.045) 0.116 (0.011) 0.182 (0.023) 601.3 (676.7)
proposed 0.391 (0.053) 0.898 (0.040) 0.358 (0.057) 0.907 (0.049) 0.722 (0.068) 0.497 (0.044) 0.543 (0.037) −
Scenario 2 p = 40
GLasso 0.324 (0.070) 0.978 (0.028) 0.315 (0.072) 0.965 (0.031) 0.871 (0.048) 0.664 (0.030) 0.572 (0.064) 17.3 (10.9)
SepLasso 0.739 (0.079) 0.418 (0.021) 0.674 (0.069) 0.406 (0.015) 0.672 (0.051) 0.275 (0.016) 0.483 (0.076) 87.3 (25.8)
FGL 0.829 (0.049) 0.583 (0.066) 0.812 (0.059) 0.575 (0.050) 0.863 (0.098) 0.196 (0.023) 0.588 (0.060) 0.2 (0.6)
GGL 0.804(0.040) 0.489 (0.039) 0.799 (0.049) 0.489 (0.039) 0.860 (0.076) 0.171 (0.017) 0.547 (0.039) 0.2 (0.6)
SSGL 0.592 (0.033) 0.283 (0.052) 0.623 (0.034) 0.282 (0.047) 0.708 (0.067) 0.252 (0.029) 0.367 (0.046) 89.0 (14.2)
SepBoost 0.900 (0.034) 0.275 (0.015) 0.890 (0.024) 0.276 (0.015) 0.950 (0.030) 0.063 (0.003) 0.233 (0.025) 31.4 (48.6)
SepThreshold 0.892 (0.044) 0.286 (0.027) 0.907 (0.038) 0.288 (0.017) 1.000 (0.000) 0.121 (0.012) 0.284 (0.052) 105.8 (80.5)
proposed 0.744 (0.073) 0.670 (0.088) 0.768 (0.079) 0.663 (0.080) 0.846 (0.087) 0.242 (0.040) 0.618 (0.065) −

p = 60
GLasso 0.325 (0.045) 0.968 (0.033) 0.326 (0.058) 0.955 (0.048) 0.819 (0.031) 0.583 (0.059) 0.551 (0.069) 35.5 (27.4)
SepLasso 0.725 (0.028) 0.381 (0.015) 0.720 (0.049) 0.353 (0.019) 0.758 (0.077) 0.228 (0.011) 0.464 (0.071) 158.2 (19.6)
FGL 0.773 (0.056) 0.568 (0.022) 0.762 (0.062) 0.552 (0.036) 0.839 (0.043) 0.198 (0.012) 0.567 (0.023) 7.2 (5.1)
GGL 0.805 (0.046) 0.479 (0.045) 0.807 (0.081) 0.481 (0.035) 0.831 (0.116) 0.154 (0.023) 0.531 (0.045) 5.5 (4.5)
SSGL 0.562 (0.052) 0.264 (0.052) 0.557 (0.053) 0.317 (0.057) 0.786 (0.098) 0.131 (0.031) 0.324 (0.032) 195.1 (81.0)
SepBoost 0.810 (0.013) 0.218 (0.012) 0.818 (0.031) 0.234 (0.012) 0.986 (0.020) 0.068 (0.003) 0.213 (0.017) 97.8 (155.1)
SepThreshold 0.780 (0.022) 0.233 (0.011) 0.790 (0.021) 0.224 (0.017) 0.915 (0.052) 0.118 (0.012) 0.229 (0.031) 245.2 (204.0)
proposed 0.758 (0.085) 0.639 (0.066) 0.701 (0.062) 0.572 (0.053) 0.830 (0.064) 0.234 (0.046) 0.587 (0.063) −

(Continues)
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TABLE B2 (Continued)

Method TPR1 TDR1 TPR2 TDR2 TPR3 TDR3 MCC N_VIO

p = 100
GLasso 0.333 (0.037) 0.956 (0.039) 0.335 (0.031) 0.974 (0.025) 0.743 (0.035) 0.643 (0.052) 0.530 (0.024) 70.3 (47.4)
SepLasso 0.653 (0.041) 0.294 (0.011) 0.625 (0.041) 0.281 (0.017) 0.593 (0.095) 0.159 (0.011) 0.373 (0.077) 261.0 (39.1)
FGL 0.774 (0.035) 0.561 (0.021) 0.769 (0.039) 0.561 (0.027) 0.817 (0.064) 0.177 (0.019) 0.545 (0.022) 15.6 (7.1)
GGL 0.779 (0.032) 0.513 (0.043) 0.766 (0.033) 0.506 (0.032) 0.800 (0.078) 0.164 (0.007) 0.528 (0.020) 13.8 (6.7)
SSGL 0.456 (0.041) 0.309 (0.042) 0.455 (0.036) 0.308 (0.047) 0.621 (0.070) 0.155 (0.038) 0.295 (0.032) 322.3 (165.3)
SepBoost 0.664 (0.017) 0.188 (0.020) 0.654 (0.026) 0.187 (0.016) 0.971 (0.025) 0.049(0.003) 0.189 (0.013) 288.6 (449.9)
SepThreshold 0.642(0.034) 0.149(0.013) 0.661(0.042) 0.151(0.013) 0.721(0.085) 0.028 (0.004) 0.162 (0.010) 611.6 (611.3)
proposed 0.778 (0.073) 0.506 (0.050) 0.789 (0.064) 0.462 (0.059) 0.906 (0.055) 0.155 (0.035) 0.546 (0.057) −
Scenario 3 p = 40
GLasso 0.353 (0.098) 0.617 (0.076) 0.334 (0.113) 0.552 (0.075) 0.917 (0.044) 0.094 (0.006) 0.386 (0.035) 14.4 (7.7)
SepLasso 0.591 (0.085) 0.332 (0.012) 0.575 (0.077) 0.333 (0.010) 0.975 (0.055) 0.132 (0.004) 0.353 (0.073) 95.1 (9.5)
FGL 0.628 (0.095) 0.430 (0.034) 0.648 (0.060) 0.456 (0.058) 0.417 (0.044) 0.023 (0.009) 0.399 (0.013) 0.1 (0.4)
GGL 0.630 (0.033) 0.431 (0.050) 0.588 (0.038) 0.406 (0.029) 0.750 (0.053) 0.039 (0.018) 0.380 (0.021) 0.0 (0.0)
SSGL 0.584 (0.054) 0.245 (0.044) 0.618 (0.041) 0.246 (0.059) 0.875 (0.067) 0.153 (0.029) 0.335 (0.032) 77.9 (9.9)
SepBoost 0.939 (0.032) 0.240 (0.009) 0.928 (0.030) 0.218 (0.009) 0.983 (0.035) 0.047 (0.003) 0.222 (0.023) 32.1 (44.6)
SepThreshold 0.901 (0.046) 0.275 (0.025) 0.924 (0.029) 0.266 (0.017) 1.000 (0.000) 0.096 (0.007) 0.232 (0.043) 123.7 (108.1)
proposed 0.634 (0.061) 0.505 (0.059) 0.610 (0.067) 0.485 (0.066) 0.832 (0.047) 0.316 (0.062) 0.539 (0.027) −

p = 60
GLasso 0.358 (0.106) 0.548 (0.052) 0.208 (0.077) 0.473 (0.074) 0.778 (0.104) 0.067 (0.058) 0.367 (0.031) 28.6 (19.4)
SepLasso 0.553 (0.027) 0.279 (0.017) 0.545 (0.052) 0.276 (0.019) 0.900 (0.108) 0.077 (0.004) 0.300 (0.079) 149.2 (24.9)
FGL 0.549 (0.032) 0.424 (0.010) 0.544 (0.040) 0.430 (0.026) 0.389 (0.055) 0.021 (0.015) 0.368 (0.018) 3.6 (2.2)
GGL 0.574 (0.028) 0.392 (0.020) 0.565 (0.048) 0.384 (0.018) 0.667 (0.034) 0.031 (0.017) 0.362 (0.033) 3.3 (1.9)
SSGL 0.509 (0.037) 0.300 (0.051) 0.509 (0.052) 0.288 (0.048) 0.817 (0.041) 0.149 (0.012) 0.301 (0.034) 124.8 (75.5)
SepBoost 0.870 (0.026) 0.199 (0.016) 0.866 (0.036) 0.209 (0.012) 0.972 (0.039) 0.031 (0.003) 0.198 (0.017) 97.9 (155.5)
SepThreshold 0.801 (0.031) 0.207 (0.013) 0.795 (0.041) 0.196 (0.009) 0.983 (0.053) 0.090 (0.007) 0.181 (0.023) 303.9 (271.8)
proposed 0.565 (0.052) 0.583 (0.061) 0.508 (0.042) 0.504 (0.065) 0.676 (0.063) 0.216 (0.042) 0.506 (0.025) −

p = 100
GLasso 0.311 (0.116) 0.532 (0.060) 0.273 (0.124) 0.453 (0.088) 0.680 (0.058) 0.036 (0.026) 0.319 (0.025) 46.8 (32.0)
SepLasso 0.402 (0.023) 0.211 (0.016) 0.397 (0.041) 0.200 (0.010) 0.910 (0.089) 0.028 (0.003) 0.217 (0.047) 247.3 (55.6)
FGL 0.446 (0.031) 0.407 (0.023) 0.443 (0.020) 0.408 (0.030) 0.609 (0.050) 0.030 (0.006) 0.335 (0.024) 10.2 (7.7)
GGL 0.468 (0.021) 0.363 (0.033) 0.490 (0.028) 0.373 (0.028) 0.534 (0.048) 0.022 (0.008) 0.325 (0.017) 10.3 (7.3)
SSGL 0.395 (0.037) 0.269 (0.051) 0.374 (0.064) 0.251 (0.029) 0.600 (0.118) 0.098 (0.014) 0.278 (0.023) 393.0 (135.6)
SepBoost 0.729 (0.030) 0.166 (0.015) 0.737 (0.026) 0.166 (0.008) 0.957 (0.055) 0.024 (0.003) 0.183 (0.018) 291.8 (433.9)
SepThreshold 0.635 (0.031) 0.136 (0.012) 0.623 (0.053) 0.136 (0.012) 0.625 (0.127) 0.022 (0.005) 0.161 (0.016) 623 (616.4)
proposed 0.682 (0.068) 0.492 (0.035) 0.663 (0.061) 0.463 (0.040) 0.650 (0.026) 0.112 (0.038) 0.465 (0.033) −
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TABLE B3 Simulation results for the banded networks with low signal strengths. In each cell, mean (sd) based on 200 replicates

Method TPR1 TDR1 TPR2 TDR2 TPR3 TDR3 MCC N_VIO

Scenario 1 p = 40
GLasso 0.536 (0.212) 0.972 (0.032) 0.519 (0.202) 0.929 (0.060) 0.609 (0.161) 0.318 (0.053) 0.604 (0.126) 15.7 (7.4)
SepLasso 0.705 (0.056) 0.323 (0.037) 0.737 (0.060) 0.375 (0.053) 0.973 (0.047) 0.170 (0.014) 0.427 (0.068) 79.0 (17.4)
FGL 0.878 (0.044) 0.973 (0.019) 0.881 (0.053) 0.989 (0.025) 0.975 (0.024) 0.324 (0.011) 0.820 (0.013) 0.0 (0.0)
GGL 0.911 (0.034) 0.889 (0.029) 0.919 (0.031) 0.876 (0.051) 0.986 (0.017) 0.289 (0.012) 0.787 (0.010) 0.0 (0.0)
SSGL 0.633 (0.030) 0.455 (0.099) 0.679 (0.053) 0.410 (0.090) 1.000 (0.000) 0.233 (0.055) 0.460 (0.051) 91.6 (34.3)
SepBoost 0.952 (0.026) 0.241 (0.021) 0.953 (0.025) 0.253 (0.020) 0.984 (0.025) 0.123 (0.012) 0.357 (0.027) 33.3 (44.5)
SepThreshold 0.880 (0.033) 0.310 (0.011) 0.853 (0.036) 0.303 (0.019) 1.000 (0.000) 0.111 (0.012) 0.337 (0.052) 134.7 (69.4)
proposed 0.951 (0.061) 0.897 (0.042) 0.986 (0.064) 0.807 (0.045) 0.958 (0.031) 0.279 (0.028) 0.794 (0.047) −

p = 60
GLasso 0.575 (0.145) 0.729 (0.012) 0.577 (0.148) 0.736 (0.054) 0.695 (0.153) 0.227 (0.042) 0.546 (0.163) 27.7 (13.9)
SepLasso 0.711 (0.018) 0.306 (0.051) 0.716 (0.033) 0.297 (0.011) 0.957 (0.038) 0.126 (0.019) 0.405 (0.053) 133.7 (17.8)
FGL 0.901 (0.053) 0.917 (0.014) 0.891 (0.038) 0.886 (0.020) 0.926 (0.024) 0.273 (0.030) 0.793 (0.032) 3.6 (1.7)
GGL 0.891 (0.051) 0.803 (0.038) 0.887 (0.042) 0.902 (0.026) 0.973 (0.039) 0.295 (0.018) 0.732 (0.026) 3.7 (1.7)
SSGL 0.640 (0.046) 0.341 (0.041) 0.634 (0.051) 0.339 (0.039) 1.000 (0.000) 0.173 (0.024) 0.415 (0.029) 187.3 (68.5)
SepBoost 0.870 (0.034) 0.187 (0.010) 0.866 (0.039) 0.188 (0.013) 0.960 (0.032) 0.095 (0.012) 0.307 (0.024) 98.0 (165.6)
SepThreshold 0.783 (0.020) 0.245 (0.016) 0.776 (0.034) 0.251 (0.020) 0.914 (0.082) 0.115 (0.009) 0.310 (0.038) 312.5 (206.2)
proposed 0.934 (0.062) 0.792 (0.049) 0.950 (0.066) 0.803 (0.048) 0.963 (0.014) 0.255 (0.058) 0.759 (0.051) −

p = 100
GLasso 0.387 (0.110) 0.927 (0.072) 0.398 (0.131) 0.913 (0.084) 0.467 (0.140) 0.320 (0.130) 0.502 (0.021) 47.2 (19.6)
SepLasso 0.705 (0.043) 0.261 (0.027) 0.704 (0.030) 0.275 (0.050) 0.924 (0.034) 0.121 (0.012) 0.391 (0.049) 242.1 (22.0)
FGL 0.912 (0.042) 0.830 (0.023) 0.909 (0.043) 0.804 (0.020) 0.959 (0.028) 0.268 (0.008) 0.733 (0.016) 11.9 (4.1)
GGL 0.873 (0.044) 0.788 (0.009) 0.880 (0.032) 0.779 (0.015) 0.926 (0.012) 0.265 (0.026) 0.715 (0.015) 12.6 (5.2)
SSGL 0.584 (0.078) 0.281 (0.035) 0.544 (0.063) 0.265 (0.033) 1.000 (0.000) 0.111 (0.019) 0.365 (0.033) 340.8 (177.1)
SepBoost 0.756 (0.025) 0.179 (0.013) 0.744 (0.024) 0.168 (0.009) 0.947 (0.028) 0.077 (0.006) 0.286 (0.018) 290.1 (445.7)
SepThreshold 0.664 (0.041) 0.176 (0.015) 0.655 (0.037) 0.175 (0.015) 0.775 (0.102) 0.108 (0.008) 0.271 (0.012) 602.1 (588.2)
proposed 0.823 (0.032) 0.811 (0.056) 0.835 (0.034) 0.802 (0.058) 0.833 (0.017) 0.183 (0.052) 0.712 (0.036) −
Scenario 2 p = 40
GLasso 0.344 (0.112) 0.961 (0.045) 0.348 (0.114) 0.991 (0.029) 0.887 (0.181) 0.418 (0.023) 0.543 (0.052) 19.0 (13.1)
SepLasso 0.740 (0.025) 0.263 (0.029) 0.741 (0.029) 0.260 (0.043) 0.968 (0.032) 0.077 (0.003) 0.348 (0.072) 87.2 (10.5)
FGL 0.827 (0.040) 0.581 (0.025) 0.806 (0.036) 0.610 (0.024) 0.657 (0.057) 0.096 (0.022) 0.568 (0.025) 0.2 (0.6)
GGL 0.789 (0.029) 0.506 (0.027) 0.777 (0.045) 0.488 (0.037) 0.550 (0.041) 0.067 (0.020) 0.511 (0.036) 0.0 (0.0)
SSGL 0.607 (0.046) 0.388 (0.075) 0.552 (0.042) 0.395 (0.074) 1.000 (0.000) 0.172 (0.032) 0.423 (0.042) 84.2 (30.1)
SepBoost 0.946 (0.019) 0.218 (0.015) 0.952 (0.018) 0.222 (0.016) 0.988 (0.026) 0.090 (0.005) 0.309 (0.027) 30.8 (47.0)
SepThreshold 0.869 (0.030) 0.275 (0.010) 0.891 (0.039) 0.285 (0.015) 1.000 (0.000) 0.100 (0.008) 0.310 (0.043) 134.7 (69.4)
proposed 0.527 (0.069) 0.780 (0.061) 0.512 (0.061) 0.788 (0.048) 0.688 (0.041) 0.478 (0.032) 0.612 (0.048) −

p = 60
GLasso 0.362 (0.068) 0.968 (0.046) 0.358 (0.077) 0.946 (0.062) 0.833 (0.184) 0.406 (0.014) 0.532 (0.084) 39.1 (28.8)
SepLasso 0.722 (0.050) 0.225 (0.014) 0.717 (0.040) 0.245 (0.024) 0.967 (0.031) 0.076 (0.004) 0.341 (0.061) 129.2 (21.6)
FGL 0.803 (0.029) 0.570 (0.023) 0.783 (0.039) 0.547 (0.020) 0.676 (0.043) 0.093 (0.016) 0.547 (0.023) 6.9 (4.0)
GGL 0.777 (0.040) 0.488 (0.034) 0.781 (0.039) 0.478 (0.035) 0.425 (0.052) 0.052 (0.021) 0.476 (0.037) 6.5 (3.4)
SSGL 0.585 (0.050) 0.307 (0.048) 0.552 (0.044) 0.316 (0.051) 1.000 (0.000) 0.102 (0.019) 0.387 (0.028) 229.8 (91.3)
SepBoost 0.896 (0.020) 0.185 (0.012) 0.900 (0.021) 0.181 (0.016) 0.950 (0.045) 0.060 (0.007) 0.286 (0.021) 95.6 (144.6)
SepThreshold 0.804 (0.025) 0.214 (0.013) 0.766 (0.041) 0.228 (0.018) 0.954 (0.054) 0.073 (0.008) 0.270 (0.028) 322.3 (245.5)
proposed 0.600 (0.052) 0.605 (0.056) 0.597 (0.054) 0.733 (0.041) 0.292 (0.043) 0.412 (0.045) 0.582 (0.041) −

(Continues)
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TABLE B3 (Continued)

Method TPR1 TDR1 TPR2 TDR2 TPR3 TDR3 MCC N_VIO
p = 100

GLasso 0.290 (0.110) 0.906 (0.072) 0.311 (0.131) 0.909 (0.084) 0.650 (0.053) 0.397 (0.010) 0.498 (0.019) 86.2 (47.7)

SepLasso 0.712 (0.026) 0.197 (0.014) 0.692 (0.032) 0.197 (0.009) 0.949 (0.032) 0.063 (0.002) 0.315 (0.053) 275.7 (13.0)

FGL 0.782 (0.073) 0.555 (0.021) 0.742 (0.056) 0.533 (0.058) 0.550 (0.168) 0.078 (0.024) 0.513 (0.032) 16.9 (9.1)

GGL 0.733 (0.028) 0.423 (0.017) 0.825(0.026) 0.500 (0.016) 0.417 (0.053) 0.048 (0.010) 0.446 (0.019) 15.7 (8.9)

SSGL 0.562 (0.066) 0.283 (0.073) 0.547 (0.064) 0.395 (0.068) 1.000 (0.000) 0.087 (0.031) 0.353 (0.038) 448.9 (222.1)

SepBoost 0.782 (0.038) 0.147 (0.012) 0.768 (0.027) 0.147 (0.010) 0.884 (0.071) 0.049 (0.003) 0.260 (0.016) 292.8 (441.8)

SepThreshold 0.658 (0.035) 0.159 (0.015) 0.664 (0.028) 0.160 (0.014) 0.713 (0.054) 0.035 (0.008) 0.227 (0.010) 580.2 (563.6)

proposed 0.758 (0.048) 0.526 (0.058) 0.739 (0.051) 0.481 (0.044) 0.192 (0.037) 0.459 (0.049) 0.536 (0.037) −
Scenario 3 p = 40

GLasso 0.409 (0.067) 0.628 (0.099) 0.295 (0.051) 0.571 (0.082) 0.987 (0.013) 0.173 (0.091) 0.378 (0.031) 12.7 (7.3)

SepLasso 0.768 (0.034) 0.277 (0.038) 0.746 (0.021) 0.253 (0.011) 0.973 (0.024) 0.036 (0.003) 0.326 (0.111) 83.2 (17.5)

FGL 0.821 (0.031) 0.461 (0.033) 0.811 (0.035) 0.449 (0.034) 0.982 (0.021) 0.055 (0.007) 0.505 (0.019) 0.0 (0.0)

GGL 0.860 (0.038) 0.382 (0.025) 0.831 (0.058) 0.369 (0.019) 0.983 (0.017) 0.045 (0.004) 0.445 (0.015) 0.0 (0.0)

SSGL 0.625 (0.036) 0.421 (0.075) 0.600 (0.050) 0.437 (0.072) 1.000 (0.000) 0.130 (0.016) 0.422 (0.042) 62.5 (25.0)

SepBoost 0.967 (0.037) 0.228 (0.019) 0.944 (0.031) 0.212 (0.009) 0.975 (0.040) 0.082 (0.004) 0.279 (0.029) 29.8 (46.8)

SepThreshold 0.907 (0.035) 0.264 (0.015) 0.911 (0.028) 0.252 (0.014) 1.000 (0.000) 0.060 (0.006) 0.268 (0.041) 127.4 (107.7)

proposed 0.783 (0.059) 0.569 (0.039) 0.728 (0.044) 0.559 (0.066) 0.987 (0.051) 0.235 (0.070) 0.585 (0.033) −
p = 60

GLasso 0.350 (0.069) 0.559 (0.106) 0.338 (0.093) 0.545 (0.092) 0.973 (0.016) 0.125 (0.050) 0.349 (0.065) 23.2 (14.4)

SepLasso 0.749 (0.013) 0.227 (0.016) 0.741 (0.039) 0.230 (0.023) 0.966 (0.026) 0.034 (0.002) 0.312 (0.100) 119.7 (30.7)

FGL 0.813 (0.033) 0.408 (0.039) 0.835 (0.034) 0.415 (0.031) 0.966 (0.024) 0.052 (0.005) 0.467 (0.022) 4.0 (2.9)

GGL 0.857 (0.042) 0.353 (0.020) 0.843 (0.046) 0.355 (0.014) 0.984 (0.016) 0.042 (0.002) 0.422 (0.018) 4.4 (3.3)

SSGL 0.525 (0.036) 0.421 (0.075) 0.550 (0.052) 0.417 (0.066) 1.000 (0.000) 0.091 (0.016) 0.392 (0.040) 175.5 (73.3)

SepBoost 0.905 (0.025) 0.178 (0.011) 0.895 (0.034) 0.179 (0.015) 0.992 (0.026) 0.027 (0.002) 0.256 (0.023) 98.1 (169.6)

SepThreshold 0.780 (0.038) 0.216 (0.014) 0.798 (0.032) 0.225 (0.014) 0.967 (0.056) 0.037 (0.003) 0.232 (0.026) 347.2 (289.7)

proposed 0.770 (0.045) 0.564 (0.033) 0.730 (0.042) 0.528 (0.046) 0.988 (0.026) 0.179 (0.015) 0.530 (0.028) −
p = 100

GLasso 0.347 (0.066) 0.573 (0.109) 0.357 (0.072) 0.467 (0.083) 0.889 (0.140) 0.100 (0.130) 0.333 (0.040) 43.8 (20.9)

SepLasso 0.734 (0.025) 0.219 (0.013) 0.731 (0.013) 0.224 (0.021) 0.928 (0.045) 0.034 (0.001) 0.315 (0.101) 214.8 (13.7)

FGL 0.818 (0.016) 0.361 (0.049) 0.824 (0.026) 0.399 (0.051) 0.965 (0.017) 0.046 (0.009) 0.439 (0.032) 10.7 (5.3)

GGL 0.849 (0.032) 0.360 (0.020) 0.840 (0.033) 0.361 (0.016) 0.964 (0.024) 0.043 (0.003) 0.404 (0.021) 12.2 (7.6)

SSGL 0.444 (0.055) 0.447 (0.087) 0.467 (0.031) 0.449 (0.073) 1.000 (0.000) 0.075 (0.019) 0.340 (0.034) 300.0 (167.3)

SepBoost 0.777 (0.021) 0.147 (0.008) 0.762 (0.025) 0.147 (0.008) 0.920 (0.071) 0.024 (0.002) 0.241 (0.014) 293.2 (442.1)

SepThreshold 0.642 (0.032) 0.132 (0.010) 0.649 (0.032) 0.138 (0.014) 0.805 (0.096) 0.023 (0.002) 0.207 (0.019) 586.9 (579.2)

proposed 0.703 (0.021) 0.565 (0.033) 0.713 (0.025) 0.469 (0.032) 0.970 (0.015) 0.156 (0.026) 0.512 (0.019) −
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TABLE B4 Simulation results for the banded networks with high signal strengths. In each cell, mean (sd) based on 200 replicates

Method TPR1 TDR1 TPR2 TDR2 TPR3 TDR3 MCC N_VIO

Scenario 1 p = 40
GLasso 0.465 (0.256) 0.973 (0.021) 0.462 (0.254) 0.988 (0.026) 0.583 (0.261) 0.278 (0.064) 0.565 (0.126) 16.6 (8.8)
SepLasso 0.739 (0.041) 0.317 (0.041) 0.759 (0.065) 0.299 (0.032) 0.341 (0.119) 0.037 (0.008) 0.314 (0.179) 99.0 (22.8)
FGL 0.785 (0.051) 0.989 (0.025) 0.785 (0.039) 0.971(0.020) 0.267 (0.171) 0.094 (0.059) 0.689 (0.037) 0.0 (0.0)
GGL 0.801 (0.033) 0.904 (0.066) 0.789 (0.031) 0.909 (0.056) 0.267 (0.109) 0.088 (0.035) 0.661 (0.044) 0.0 (0.0)
SSGL 0.642 (0.054) 0.493 (0.104) 0.727 (0.053) 0.507 (0.090) 0.642 (0.123) 0.193 (0.016) 0.445 (0.041) 77.5 (37.9)
SepBoost 0.864 (0.025) 0.333 (0.023) 0.868 (0.029) 0.343 (0.021) 0.985 (0.020) 0.102 (0.002) 0.277 (0.014) 32.0 (48.9)
SepThreshold 0.915 (0.032) 0.290 (0.017) 0.922 (0.020) 0.295 (0.016) 1.000 (0.000) 0.122 (0.004) 0.340 (0.071) 73.9 (51.6)
proposed 0.881 (0.061) 0.895 (0.035) 0.879 (0.071) 0.872 (0.027) 0.583 (0.048) 0.171 (0.063) 0.731 (0.045) −

p = 60
GLasso 0.416 (0.153) 0.967 (0.012) 0.413 (0.149) 0.990 (0.019) 0.479 (0.214) 0.264 (0.042) 0.526 (0.114) 33.0 (19.5)
SepLasso 0.725 (0.042) 0.263 (0.039) 0.707(0.013) 0.307 (0.051) 0.116 (0.041) 0.013 (0.003) 0.284 (0.102) 126.5 (28.5)
FGL 0.817 (0.040) 0.934 (0.016) 0.816 (0.036) 0.923 (0.015) 0.334 (0.040) 0.112 (0.033) 0.649 (0.017) 4.0 (2.9)
GGL 0.810 (0.049) 0.823 (0.020) 0.821 (0.045) 0.817 (0.022) 0.333 (0.044) 0.097 (0.025) 0.634 (0.017) 4.4 (2.9)
SSGL 0.548 (0.083) 0.444 (0.067) 0.552 (0.079) 0.433 (0.066) 0.667 (0.189) 0.114 (0.008) 0.383 (0.021) 212.9 (115.6)
SepBoost 0.756 (0.020) 0.210 (0.014) 0.739 (0.020) 0.210(0.015) 0.984 (0.016) 0.102 (0.008) 0.235 (0.014) 96.4 (149.9)
SepThreshold 0.870 (0.024) 0.229 (0.016) 0.816 (0.020) 0.228 (0.016) 0.836 (0.095) 0.097 (0.005) 0.267 (0.040) 246.1 (174.4)
proposed 0.845 (0.066) 0.826 (0.050) 0.846 (0.077) 0.807 (0.029) 0.540 (0.060) 0.151 (0.053) 0.679 (0.051) −

p = 100
GLasso 0.383 (0.163) 0.973 (0.024) 0.392 (0.167) 0.993 (0.014) 0.358 (0.191) 0.265 (0.029) 0.521 (0.104) 59.2 (29.2)
SepLasso 0.681 (0.010) 0.286 (0.024) 0.669 (0.031) 0.292 (0.013) 0.020 (0.018) 0.002 (0.002) 0.279 (0.112) 212.3 (14.8)
FGL 0.746 (0.026) 0.870 (0.010) 0.758 (0.027) 0.868 (0.016) 0.111 (0.024) 0.037 (0.017) 0.618 (0.016) 14.9 (6.0)
GGL 0.798 (0.030) 0.776 (0.017) 0.790 (0.023) 0.776 (0.014) 0.267 (0.026) 0.075 (0.013) 0.621 (0.015) 15.9 (6.5)
SSGL 0.604 (0.101) 0.355 (0.052) 0.595 (0.129) 0.340 (0.045) 0.800 (0.164) 0.036 (0.002) 0.308 (0.028) 471.7 (292.5)
SepBoost 0.581 (0.016) 0.284 (0.009) 0.583 (0.024) 0.273 (0.015) 0.974 (0.016) 0.104 (0.008) 0.205 (0.013) 284.3 (437.4)
SepThreshold 0.646 (0.022) 0.235 (0.015) 0.646 (0.017) 0.244 (0.013) 0.708 (0.095) 0.067 (0.005) 0.187 (0.047) 609.0 (590.5)
proposed 0.694 (0.055) 0.687 (0.026) 0.688 (0.059) 0.687 (0.049) 0.473 (0.017) 0.159 (0.004) 0.612 (0.036) −
Scenario 2 p = 40
GLasso 0.398 (0.085) 0.989 (0.020) 0.397 (0.088) 0.977 (0.038) 0.896 (0.153) 0.391 (0.013) 0.574 (0.066) 23.1 (17.4)
SepLasso 0.698 (0.064) 0.221 (0.027) 0.690 (0.053) 0.229 (0.029) 0.237 (0.142) 0.015 (0.009) 0.234 (0.057) 100.2 (32.5)
FGL 0.786 (0.050) 0.573 (0.035) 0.806 (0.046) 0.584 (0.038) 0.655 (0.067) 0.091 (0.024) 0.566 (0.016) 0.0 (0.0)
GGL 0.751 (0.051) 0.499 (0.033) 0.737 (0.047) 0.492 (0.029) 0.405 (0.046) 0.052 (0.032) 0.471 (0.019) 0.0 (0.0)
SSGL 0.504 (0.043) 0.409 (0.084) 0.542 (0.051) 0.461 (0.069) 0.538 (0.119) 0.138 (0.010) 0.391 (0.034) 59.4 (30.9)
SepBoost 0.911 (0.035) 0.303 (0.016) 0.912 (0.032) 0.307 (0.018) 0.989 (0.026) 0.100 (0.004) 0.259 (0.017) 31.7 (47.7)
SepThreshold 0.924 (0.037) 0.282 (0.014) 0.920 (0.040) 0.284 (0.016) 1.000 (0.000) 0.104 (0.005) 0.273 (0.055) 94.7 (72.1)
proposed 0.786 (0.057) 0.771 (0.054) 0.762 (0.056) 0.743 (0.047) 0.367 (0.053) 0.308(0.043) 0.621 (0.038) −

p = 60
GLasso 0.402 (0.083) 0.942 (0.031) 0.403 (0.084) 0.945 (0.034) 0.866 (0.211) 0.379 (0.044) 0.570 (0.068) 45.8 (26.6)
SepLasso 0.676 (0.023) 0.221 (0.025) 0.670 (0.035) 0.211 (0.026) 0.050 (0.034) 0.003 (0.002) 0.225 (0.075) 111.9 (18.8)
FGL 0.823 (0.043) 0.609 (0.028) 0.790 (0.049) 0.576 (0.038) 0.656 (0.046) 0.094 (0.048) 0.547 (0.020) 6.3 (3.1)
GGL 0.774 (0.038) 0.522 (0.034) 0.780 (0.034) 0.500 (0.035) 0.471 (0.076) 0.054(0.020) 0.443 (0.033) 8.2 (4.6)
SSGL 0.486 (0.048) 0.429 (0.066) 0.421 (0.063) 0.389 (0.059) 0.583 (0.128) 0.090 (0.007) 0.361 (0.030) 192.1 (117.1)
SepBoost 0.824 (0.013) 0.285 (0.018) 0.835 (0.028) 0.221 (0.008) 0.949 (0.035) 0.095(0.006) 0.244 (0.012) 97.9 (147.6)
SepThreshold 0.810 (0.046) 0.243 (0.016) 0.822 (0.047) 0.245 (0.015) 0.892 (0.000) 0.082 (0.005) 0.219 (0.034) 153.4 (144.6)
proposed 0.713 (0.051) 0.799 (0.037) 0.687 (0.050) 0.772 (0.055) 0.394 (0.052) 0.277 (0.041) 0.603 (0.034) −

(Continues)
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TABLE B4 (Continued)

Method TPR1 TDR1 TPR2 TDR2 TPR3 TDR3 MCC N_VIO
p = 100

GLasso 0.387 (0.110) 0.927 (0.072) 0.398 (0.131) 0.913 (0.084) 0.467 (0.140) 0.320 (0.130) 0.502 (0.021) 88.7 (33.3)

SepLasso 0.625 (0.015) 0.184 (0.014) 0.656 (0.037) 0.199 (0.011) 0.020 (0.020) 0.002(0.001) 0.214 (0.065) 232.6 (26.5)

FGL 0.798 (0.029) 0.552 (0.019) 0.776 (0.027) 0.559 (0.023) 0.550 (0.041) 0.077 (0.010) 0.532 (0.022) 17.4 (4.4)

GGL 0.762 (0.023) 0.479 (0.019) 0.760 (0.022) 0.473 (0.011) 0.550 (0.061) 0.066 (0.018) 0.433 (0.021) 18.4 (6.4)

SSGL 0.470 (0.057) 0.336 (0.088) 0.416 (0.041) 0.325 (0.089) 0.525 (0.146) 0.060 (0.006) 0.306 (0.041) 408.0 (247.0)

SepBoost 0.755 (0.032) 0.152 (0.010) 0.757 (0.021) 0.146 (0.010) 0.910 (0.065) 0.060 (0.003) 0.232 (0.016) 293.2 (441.2)

SepThreshold 0.681 (0.029) 0.146 (0.016) 0.665 (0.043) 0.145 (0.015) 0.770 (0.000) 0.104 (0.009) 0.186 (0.011) 628.0 (618.6)

proposed 0.644 (0.041) 0.687 (0.048) 0.638 (0.042) 0.677 (0.046) 0.352 (0.053) 0.104 (0.042) 0.567 (0.047) −

Scenario 3 p = 40

GLasso 0.487 (0.084) 0.530 (0.084) 0.435 (0.092) 0.568 (0.107) 0.986 (0.010) 0.229 (0.054) 0.405 (0.022) 20.1 (10.6)

SepLasso 0.781 (0.013) 0.224 (0.010) 0.803 (0.033) 0.237 (0.017) 0.700 (0.068) 0.019 (0.001) 0.281 (0.074) 119.3 (19.0)

FGL 0.888 (0.043) 0.455 (0.014) 0.910 (0.042) 0.414 (0.015) 0.980 (0.014) 0.050 (0.003) 0.514 (0.010) 0.0 (0.0)

GGL 0.885 (0.020) 0.362 (0.031) 0.912 (0.016) 0.377 (0.028) 0.974 (0.020) 0.040 (0.003) 0.493 (0.024) 0.0 (0.0)

SSGL 0.544 (0.051) 0.385 (0.071) 0.538 (0.053) 0.404 (0.081) 0.500 (0.121) 0.140 (0.016) 0.409 (0.045) 44.2 (26.3)

SepBoost 0.940 (0.017) 0.242 (0.015) 0.938 (0.029) 0.242 (0.016) 0.983 (0.053) 0.090 (0.005) 0.268 (0.018) 35.5 (46.0)

SepThreshold 0.915 (0.036) 0.276 (0.016) 0.936 (0.29) 0.279 (0.014) 1.000 (0.000) 0.071 (0.009) 0.284 (0.048) 103.6 (88.1)

proposed 0.800 (0.059) 0.588 (0.050) 0.825 (0.066) 0.584 (0.039) 0.914 (0.035) 0.222 (0.016) 0.603 (0.032) −

p = 60

GLasso 0.446 (0.079) 0.559 (0.076) 0.400 (0.074) 0.476 (0.085) 0.974 (0.016) 0.132 (0.055) 0.385 (0.011) 35.6 (18.9)

SepLasso 0.766 (0.014) 0.227 (0.010) 0.773 (0.040) 0.224 (0.011) 0.283 (0.091) 0.008 (0.005) 0.266 (0.071) 116.3 (13.6)

FGL 0.861 (0.027) 0.405 (0.034) 0.831 (0.024) 0.404 (0.026) 0.952 (0.021) 0.045 (0.004) 0.486 (0.014) 5.1(3.0)

GGL 0.852 (0.017) 0.371 (0.017) 0.846 (0.054) 0.369 (0.023) 0.958 (0.015) 0.040 (0.002) 0.454 (0.016) 5.8 (4.8)

SSGL 0.494 (0.055) 0.375 (0.074) 0.447 (0.040) 0.362 (0.068) 0.593 (0.121) 0.091 (0.012) 0.381 (0.039) 119.4 (72.6)

SepBoost 0.884 (0.023) 0.173 (0.012) 0.883 (0.013) 0.175 (0.012) 0.975 (0.040) 0.050 (0.004) 0.242 (0.017) 99.4 (149.6)

SepThreshold 0.775 (0.038) 0.208 (0.016) 0.804 (0.36) 0.211 (0.014) 0.883 (0.153) 0.081 (0.007) 0.245 (0.025) 263.6 (247.6)

proposed 0.810 (0.049) 0.531 (0.030) 0.831 (0.054) 0.493 (0.032) 0.878 (0.029) 0.220 (0.012) 0.557 (0.018) −

p = 100

GLasso 0.386 (0.077) 0.537 (0.075) 0.373 (0.071) 0.507 (0.080) 0.936 (0.031) 0.096 (0.033) 0.310 (0.031) 63.2 (28.1)

SepLasso 0.771 (0.025) 0.220 (0.010) 0.765 (0.022) 0.208 (0.014) 0.380 (0.097) 0.011 (0.003) 0.275 (0.060) 234.8 (52.9)

FGL 0.803 (0.031) 0.413 (0.042) 0.812 (0.044) 0.412 (0.031) 0.944 (0.026) 0.046 (0.005) 0.456 (0.018) 15.2 (5.2)

GGL 0.816 (0.010) 0.3650 (0.029) 0.834 (0.025) 0.346 (0.018) 0.923 (0.016) 0.040 (0.003) 0.430 (0.016) 17.3 (6.5)

SSGL 0.398 (0.038) 0.441 (0.089) 0.362 (0.042) 0.437 (0.077) 0.601 (0.153) 0.080 (0.021) 0.358 (0.034) 221.4 (118.5)

SepBoost 0.753 (0.025) 0.146 (0.008) 0.760 (0.029) 0.156 (0.009) 0.915 (0.063) 0.040 (0.005) 0.215 (0.012) 290.7 (438.3)

SepThreshold 0.630 (0.047) 0.140 (0.013) 0.623 (0.37) 0.142 (0.008) 0.675 (0.103) 0.072 (0.006) 0.183 (0.017) 630.2 (611.2)

proposed 0.756 (0.062) 0.496 (0.074) 0.742 (0.060) 0.476 (0.061) 0.907 (0.036) 0.104 (0.012) 0.511 (0.038) −
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F IGURE B1 Simulation: ROC
curves for the setting with power law
networks, low signal strengths, and
p = 60, n = 200: ( ) GLasso; ( )
SepLasso; ( ) FGL; ( ) GGL; ( )
SSGL; ( ) SepBoost; ( )
SepThreshold; ( ) proposed.
Upper/Middle/Lower: Scenario 1/2/3
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