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We describe and analyze a class of positive recurrent reflected Brownian

motions (RBMs) in R
d
+ for which local statistics converge to equilibrium at

a rate independent of the dimension d. Under suitable assumptions on the

reflection matrix, drift and diffusivity coefficients, dimension-independent

stretched exponential convergence rates are obtained by estimating contrac-

tions in an underlying weighted distance between synchronously coupled

RBMs. We also study the symmetric Atlas model as a first step in obtaining

dimension-independent convergence rates for RBMs not satisfying the above

assumptions. By analyzing a pathwise derivative process and connecting it

to a random walk in a random environment, we obtain polynomial conver-

gence rates for the gap process of the symmetric Atlas model started from

appropriate perturbations of stationarity.

1. Introduction. We say a continuous stochastic process X is a solution to RBM(�,μ,

R) if it satisfies

(1.1) X(x, t) = x + μt + DB(t) + RL(x, t)

for each t > 0 and x ∈ R
d
+ := {x ∈ R

d | xi ≥ 0, i = 1, . . . , d}. Here, μ ∈ R
d ,D, R ∈ R

d×d ,

B is a d-dimensional Brownian motion and � = DDT is positive definite. We assume that

R = I − P T for a matrix P that is substochastic (i.e., nonnegative entries and row sums are

bounded above by one) and transient (i.e., P n → 0 as n → ∞). L is the local time constrain-

ing X to the positive orthant Rd
+: For x ∈ R

d
+, it is the nondecreasing, continuous process

adapted to the natural filtration of the Brownian motion B such that X(x, t) ∈ R
d
+ for all

t ≥ 0 and

(1.2) L(x,0) = 0,

∫ t

0
Xi(x, s) dLi(x, s) = 0 for all t > 0,1 ≤ i ≤ d.

RBMs of the form (1.1) arise in a variety of situations, including heavy-traffic limits of queue-

length processes in generalized Jackson networks with d servers [16, 30], and gaps between

d + 1 competing particles in rank-based diffusions (e.g., [23, 35]).

There is a large literature studying diffusions with oblique reflections, in cases both more

specific and more general than (1.1), and we give only a brief background describing previous

work most relevant to the current article. The paper [15] first proved (1.1) has a unique strong

solution. More precisely, under the stated assumptions on the reflection matrix R, for each

x ∈ R
d
+, there is a unique pair of continuous stochastic processes (X,L) satisfying (1.1)–

(1.2). Moreover, the collection {X(·;x)}x∈Rd
+

defines a strong Markov process (see [16]). The

naturality of this assumption on R stems from the fact that the routing matrix P of any single-

class open queueing network is substochastic and transient [15] which, in turn, translates to

its heavy traffic limit described by equations of the form (1.1)–(1.2). The conditions on P in
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particular say that its spectral radius is strictly less than 1. The matrix � = DDT gives the

covariance matrix associated with the diffusion term of (1.1).

It was shown in [16], Section 6, that (1.1) has a stationary distribution if and only if

R−1μ < 0, and in that case the stationary distribution is unique. Intuitively, this stability

condition can be understood by noting that the associated “noiseless system” ((1.1)–(1.2)

taking B ≡ 0), which governs the long time stability properties of RBM(�,μ,R), has 0

as its unique attracting fixed point if R−1μ < 0 [2]. For the open queueing network whose

heavy traffic limit gives RBM(�,μ,R), this stability condition is equivalent to the traffic

intensity at each server being less than its service rate, which is an “if and only if” condition

for stability of the queueing network.

In this article, we are interested in the effect of dimension on convergence rates to station-

arity for reflected Brownian motions (RBMs) from a variety of initial configurations. This is

a natural consideration for steady-state sampling and evaluating steady state performance for

high-dimensional RBMs. Toward this end, we will implicitly consider a family of processes

X(d) ∼ RBM(�(d),μ(d),R(d)) indexed by the dimension d ≥ 1. For notational convenience,

we will suppress the superscript (d) in further discussion.

1.1. Convergence rates for RBM: Work till date. To study convergence rates of X to its

stationary distribution, one can apply general methods like Harris’ theorem via using ap-

propriate Lyapunov functions and minorization conditions [27]. For example, [9] uses this

methodology to give exponentially fast convergence of X(x, ·) to the stationary random vari-

able in a weighted total variation norm starting from any x ∈ R
+
d . However, the rate of conver-

gence is not explicit, as is typical for such methods, and in particular has unknown dimension

dependence. See also [32] for a similar treatment.

In [7], the authors obtained explicit dimension dependent convergence rates to stationarity

in L1-Wasserstein distance when the RBM satisfies “uniformity conditions in dimension” on

the model parameters �, μ, R (discussed here in more detail in Example 2). Their key insight

was to consider synchronous couplings of the RBM X (i.e., driven by the same Brownian mo-

tion) started from distinct points x, y ∈ R
d
+, with x ≤ y (coordinatewise ordering). They used

the fact that synchronous couplings preserve ordering in time, that is, X(x, t) ≤ X(y, t) for

all t ≥ 0. Moreover, there are contractions in L1 distance between the synchronously coupled

processes (under their uniformity assumptions) when the dominating process X(y, ·) has hit

all faces of the orthant Rd
+. Building on this idea, [3] used a weighted Lyapunov function and

excursion theoretic control of the synchronously coupled processes to give convergence rates

in L1-Wasserstein distance for the general process (1.1), which depend explicitly on μ, R,

�, d . In particular, this approach greatly improved the rates for the models considered in [7]

from polynomial in d to logarithmic in d .

1.2. Dimension-free local convergence for RBM. Typically, growing dimension slows

down the rate of convergence for the whole system, as reflected in the bounds obtained in [3,

7], but one might observe a much faster convergence rate to equilibrium of local statistics of

the system. In Section 2, we describe and investigate a class of RBMs for which convergence

rates of local statistics do not depend on the underlying dimension of the entire system. We

call this phenomenon dimension-free local convergence.

Mathematically, this is challenging as the local evolution is no longer Markovian and the

techniques in [3, 7] cannot be readily applied. We make a crucial observation that certain

weighted L1 distances (see ‖ · ‖1,β defined in Section 2.1) between synchronously coupled

RBMs show dimension-free contraction rates. The evolution of such weighted distances are

tracked in time for synchronously coupled RBMs X(0, ·) and X(x, ·) for x ∈ R
d
+. It is shown

that for this distance to decrease by a dimension-free factor of its original value, only a subset
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of coordinates of X(x, ·), whose cardinality depends on the value of the original distance,

need to hit zero. This is in contrast with the unweighted L1 distance considered in [3, 7]

where all the coordinates need to hit zero to achieve such a contraction, thereby slowing down

the convergence rate. Consequently, by tracking the hitting times to zero of a time dependent

number of coordinates, one achieves dimension-free convergence rates in this weighted L1

distance as stated in Theorem 1. This, in turn, gives dimension-free local convergence as is

made precise in (2.4). In Section 2.4, Theorem 1 is applied to two important classes of RBM

to obtain explicit convergence rates.

1.3. Perturbations from stationarity for the symmetric Atlas model. As a first step in

studying dimension-free convergence rates for RBMs, which do not satisfy the assumptions

of Section 2, we focus attention in Section 3 on the symmetric Atlas model. This is a rank-

based diffusion comprising d +1 Brownian particles where the least ranked particle performs

a Brownian motion with constant positive drift and the remaining particles perform standard

Brownian motions. The gaps between the ordered particles collectively evolve as a RBM,

which converges in total variation distance to an explicit stationary measure (3.3) [28]. Inter-

estingly, the gap process of the infinite-dimensional version of the symmetric Atlas model ob-

tained in [28] has infinitely many stationary measures [36], only one of which is a weak limit

of the stationary measure (3.3) of the d-dimensional system (appropriately extended to a mea-

sure on R
∞
+ ) as d → ∞. This leads to the heuristic that, for large d , the d-dimensional gap

process with initial distribution “close” to the projection (onto the first d coordinates) of one

of the other infinite-dimensional stationary measures spends a long time near this projection

before converging to (3.3). From this heuristic, one expects that dimension-free convergence

rates for associated statistics can only be obtained if the initial gap distribution is “close”

to the stationary measure (3.3) in a certain sense. Evidence for this heuristic is provided in

the few available results on “uniform in dimension” convergence rates of some rank-based

diffusions [21, 22]. In both these papers, under strong convexity assumptions on the drifts of

the particles, dimension-free exponential ergodicity was proven for the joint density of the

particle system when the initial distribution is close to the stationary distribution as quanti-

fied by the Dirichlet energy functional (see [21], Theorem 2.12, and [22], Corollary 3.8). The

symmetric Atlas model lacks such convexity in drift, and hence, the dimension-free Poincaré

inequality for the stationary density, that is crucial to the methods of [21, 22] does not apply.

We take a very different approach, which involves analyzing the long term behavior of path-

wise derivatives of the RBM in initial conditions. Using this analysis, we obtain polynomial

convergence rates to stationarity in L1-Wasserstein distance when the initial distribution of

the gaps between particles is in an appropriate perturbation class (defined in Definition 1)

of the stationary measure. Although we do not yet have lower bounds on convergence rates,

we strongly believe that the optimal rates are indeed polynomially decaying in time (see

Remark 4).

We mention here that [8] has recently used the derivative process to study convergence

rates for RBMs satisfying strong uniformity conditions in dimension (which do not hold for

the symmetric Atlas model). Our analysis of the derivative is based on a novel connection

with a random walk in a random environment generated by the times and locations where

the RBM hits faces of Rd
+ (see Section 3.2). We believe our analysis can be combined with

that of [8] to study ergodicity properties of more general classes of RBM. This is deferred to

future work.

We also mention the work of [29] who obtained a dimension-free Talagrand type trans-

portation cost-information inequality for reflected Brownian motions. Such inequalities, how-

ever, are more useful in dimension-free concentration of measure phenomena as opposed to

dimension-free rates of convergence to stationarity.
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1.4. Future work: Ergodicity of infinite-dimensional RBMs. Although we only consider

finite large d , our work sets the stage for obtaining convergence rates to stationarity for

infinite-dimensional RBM, which we will address in future work. Such processes have ap-

peared in numerous situations [10, 13, 18, 28, 33] but their ergodicity properties are far from

being well understood. Notable advances in this direction are made in [4, 12, 34]. [34] par-

tially characterizes weak limits of the gap process of the infinite-dimensional symmetric At-

las model [34], Section 4.3. [12] obtains general conditions on the initial configuration of

the above gap process for it to converge weakly to
⊗∞

i=1 Exp(2) [12], Theorem 1.1. In [4],

general conditions were given on the initial gap distribution of the infinite-dimensional sym-

metric Atlas model for the time average of the gaps to converge to one of the (uncountably

many) stationary measures given by
⊗∞

i=1 Exp(2 + ia), a ≥ 0.

The dimension-free convergence rates obtained here can be combined with taking a limit

in dimension in an appropriate sense to obtain convergence rates in Wasserstein distance for

infinite-dimensional RBMs starting from appropriate initial configurations. This is part of the

first author’s continuing program of studying ergodicity properties of infinite-dimensional

systems [4–6].

1.5. Generic notation. Here, we list notation for general concepts and conventions. In-

equalities for vectors are evaluated elementwise. For a square matrix A, A|k is the k × k

northwest quadrant. For a vector v, v|k is the projection of v onto the first k coordinates.

Other conventions include x ∨ y = max(x, y), x ∧ y = min(x, y), �x
 = max{k ∈ Z | k ≤ x}
and x+ = max(0, x).

For x ∈ R
k , we write the supremum norm as ‖x‖∞ = max1≤i≤k |xi | and the �1 norm as

‖x‖1 :=∑k
i=1 |xi |. For a fixed β ∈ (0,1), define a weighted �1 norm by ‖x‖1,β =∑k

i=1 βi |xi |
and weighted supremum norm by ‖x‖∞,β = max1≤i≤k βi |xi |.

For X a RBM(�,μ,R) started at x ∈ R
d
+ and any k ∈ {1, . . . , d}, we write X(∞) for the

random variable with the stationary distribution. Write X|k(·, x) for the process restricted to

its first k coordinates.

2. Dimension-free local convergence rates for RBM.

2.1. A weighted norm governing dimension-free convergence. Our investigation of

dimension-free convergence relies on the analysis of the weighted distance ‖X(x, ·) −
X(X(∞), ·)‖1,β in time, for appropriate choices of β ∈ (0,1). Toward this end, we will

analyze the following functionals:

uβ(x, t) =
∥

∥R−1(X(x, t) − X(0, t)
)∥

∥

1,β :=
d
∑

i=1

βi
∣

∣

[

R−1(X(x, t) − X(0, t)
)]

i

∣

∣,(2.1)

uπ,β(t) = uβ

(

X(∞), t
)

, t ≥ 0.(2.2)

In the following, when β is clear from context, we will suppress dependence on β and

write u for uβ and uπ for uπ,β . The above functionals are convenient because the vector

R−1(X(x, t) − X(0, t)) is coordinatewise nonnegative and nonincreasing in time (see The-

orem 6(iii)). Moreover, R−1 (X(x, t) − X(0, t)) ≥ X(x, t) − X(0, t) ≥ 0 for all t ≥ 0. This

fact and the triangle inequality can be used to show for any x ∈ R
d
+, t ≥ 0 (see (4.40)),

∥

∥

(

X(x, t) − X
(

X(∞), t
))∥

∥

1,β ≤ u(x, t) + uπ (t),

where the bound on the right-hand side is nonincreasing in time. Due to the monotonicity of

the bound, it suffices to find ‘events’ along the trajectory of the coupled processes that lead to

a reduction in this bound by a dimension-independent factor. Using this idea, conditions are
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obtained under which there exists a d-independent β ∈ (0,1) and a function f : R+ �→ R+
not depending on the dimension d of X such that f (t) → 0 as t → ∞ and, for any x in an

appropriate subset S of Rd
+,

(2.3) E
[∥

∥

(

X(x, t) − X
(

X(∞), t
))∥

∥

1,β

]

≤ E
[

u(x, t) + uπ (t)
]

≤ Cf (t), t ≥ t0,

where C, t0 ∈ (0,∞) are constants not depending on d (but can depend on x). This, in partic-

ular, gives dimension-free local convergence in the following sense: For any k ∈ {1, . . . , d},
consider any function φ : Rk

+ �→ [0,∞) which is L1-Lipschitz, that is, there exists Lφ > 0

such that
∣

∣φ(x) − φ(y)
∣

∣≤ Lφ‖x − y‖1, x, y ∈ R
k
+.

Recall that the L1-Wasserstein distance between two probability measures μ and ν on R
k
+ is

given by

W1(μ, ν) = inf

{∫

R
k
+×R

k
+

‖x − y‖1γ (d x,d y) : γ is a coupling of μ and ν

}

.

Denote the law of a random variable Z by L[Z]. Then (2.3) implies for x ∈ S ,

W1

(

L
[

φ
(

X|k(x, t)
)]

,L
[

φ
(

X|k(∞)
)])

≤ E
[∣

∣φ
(

X|k(x, t)
)

− φ
(

X|k
(

X(∞), t
))∣

∣

]

≤ Cβ−kLφf (t), t ≥ t0.
(2.4)

2.2. Parameters and assumptions. We now define the parameters that govern dimension-

free local convergence which, in turn, are defined in terms of the original model parameters

(�,μ,R) of the associated RBM. We abbreviate σi =
√

�ii , i = 1, . . . , d . Define for 1 ≤
k ≤ d ,

b(k) := −(R|k)−1μ|k, b = b(d),

b(k) := min
1≤i≤k

b
(k)
i , a(k) := max

1≤i≤k

1

b
(k)
i

k
∑

j=1

(

(R|k)−1)

ijσj .
(2.5)

To get a sense of why these parameters are crucial, recall that our underlying strategy is to

obtain contraction rates of u(x, ·) defined in (2.1) by estimating the number of times a sub-

set of the coordinates of X(x, ·), say {X1(x, ·), . . . ,Xk(x, ·)}, k ≤ d , hit zero. However, this

subset does not evolve in a Markovian way. Thus, we use monotonicity properties of RBMs

to couple this subset with a R
k
+-valued reflected Brownian motion X̄(x|k, ·), started from

x|k and defined in terms of μ|k , D|k , R|k and (a possible restriction of) the same Brownian

motion driving X(x, ·), such that Xi(x, t) ≤ X̄i(x|k, t) for all 1 ≤ i ≤ k (see Theorem 7).

The analysis in [3] shows that the parameters defined in (2.5) with k = d can be used to

precisely estimate the minimum number of times all coordinates of X(x, ·) hit zero by time

t as t grows. Thus, for any 1 ≤ k ≤ d , the parameters (2.5) can be used to quantify analo-

gous hitting times for the process X̄(x|k, ·) which, by the above coupling, gives control over

corresponding hitting times of {X1(x, ·), . . . ,Xk(x, ·)}.
We list below two sets of assumptions on the model parameters (�,μ,R), which guarantee

dimension-free local convergence.

ASSUMPTION 1. There exist d-independent constants σ ,σ , b0 > 0, r∗ ≥ 0, M,C ≥ 1,

k0 ∈ {2, . . . , d} and α ∈ (0,1) such that for all d ≥ k0:

I. (R−1)ij ≤ Cαj−i for 1 ≤ i ≤ j ≤ d ,

II. (R−1)ij ≤ M for 1 ≤ i, j ≤ d ,

III. b(k) ≥ b0k
−r∗

for k = k0, . . . , d ,

IV. σi ∈ [σ,σ ] for 1 ≤ i ≤ d .
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We explain why Assumption 1 is “natural” in obtaining dimension-free local convergence.

Since P is a transient and substochastic, it can be associated to a killed Markov chain on

{0} ∪ {1, . . . , d} with transition matrix P on {1, . . . , d} and killed at 0 (i.e., probability of

going from state k ∈ {1, . . . , d} to 0 is 1 −
∑d

l=1 Pkl and P00 = 1). Moreover, since P is tran-

sient and R = I − P T , we have R−1 =∑∞
n=0(P

T )n. This representation shows that (R−1)ij
is the expected number of visits to site i starting from j of this killed Markov chain. For fixed

x ∈ R
d
+ and k << d , consider a local statistic of the form φ(X|k(x, t)) as in (2.4). For this

statistic to stabilize faster than the whole system, we expect the influence of the far away co-

ordinates X|j (x, ·), j � k, to diminish in an appropriate sense as j increases. This influence

is primarily manifested through the oblique reflection arising out of the R matrix in (1.1). I of

Assumption 1 quantifies this intuition by requiring that the expected number of visits to state

i starting from state j > i of the associated killed Markov chain decreases geometrically with

j − i. This is the case, for example, when this Markov chain started from j > i has a uniform

“drift” away from i toward the cemetery state. See Example 1. In more general cases, one can

employ Lyapunov function type arguments [27] to the underlying Markov chain to check I.

II above implies that the killed Markov chain starting from state j spends at most M

expected time at any other site i ∈ {1, . . . , d} before it is absorbed in the cemetery state 0.

This expected time, as our calculations show, is intimately tied to decay rates of ‖(X(x, ·) −
X(X(∞), ·))‖1,β .

As noted in [3, 7, 16], the “renormalized drift” vector b characterizes positive recurrence

of the whole system. Through III above, we allow for a power law type coordinatewise lower

bound of the renormalized drift vector b(k) of the projected system X|k(x, ·) as k grows. In

particular, if b(k) is uniformly lower bounded by b0, we can take r∗ = 0.

IV above is a quantitative “uniform ellipticity” condition on the coordinates of the driving

noise DB(·).
Note that we do not need to make any assumptions on the correlations of the driving noise,

that is, on σij/(σi, σj ) for i < j . This can be understood upon inspection of our proof tech-

nique where the drift and the reflection “overpower” the diffusivity in long time contraction

properties of ‖(X(x, ·) − X(X(∞), ·))‖1,β . The following assumption is a strengthening of

Assumption 1 which, when satisfied, will lead to significantly better convergence rates to

stationarity.

ASSUMPTION 2. Suppose Assumption 1 holds. In addition assume M , which does not

depend on d , may be chosen large enough that

II′. max1≤i≤d

∑d
j=1(R

−1)ij ≤ M .

This is satisfied, for example, when there exist positive d-independent constants j0, p0

such that the underlying killed Markov chain has jump size bounded by j0 at each step, and

a probability of at least p0 of reaching 0 in one step from any starting site in {1, . . . , d}. See

Example 2 for such a RBM.

2.3. Main results. Our first main result gives explicit bounds on the decay of expectation

of the weighted distance ‖X(x, ·) − X(X(∞), ·)‖1,
√

α (α defined in I of Assumption 1) with

time for RBMs satisfying Assumption 1 or 2. We first define some constants that will ap-

pear in Theorem 1. They are needed to bound moments of weighted norms of the stationary

random variable X(∞) and are derived in Lemma 5.

Suppose Assumption 1 holds, with k0 ∈ {2, . . . , d} and α ∈ (0,1) defined therein. Set

(2.6) L1 := kr∗+1
0 +

d
∑

i=k0

i3+r∗
αi/8.
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If in addition Assumption 2 holds, define

(2.7) L2 := kr∗
0 +

d
∑

i=k0

i2+r∗
αi/8.

Also, for B ∈ (0,∞), define the set

(2.8) S(b,B) :=
{

x ∈ R
d
+ : sup

1≤i≤d

b(i)‖x|i‖∞ ≤ B
}

.

Theorem 1 directly implies dimension-free bounds on t �→ ‖X(x, t) − X(X(∞), t)‖1,
√

α in

the sense of (2.3) (see Remark 1) which, in turn, produce dimension-free local convergence

rates as given by (2.4).

THEOREM 1. Suppose Assumption 1 holds for X, an RBM(�,μ,R), with α ∈ (0,1)

defined therein. Recall the weighted distance ‖·‖1,
√

α (taking β =
√

α) defined in Section 1.5.

Fix any B ∈ (0,∞). Then there exist constants C0,C
′
0,C1 > 0 not depending on d , r∗ or

B such that with t ′0 = t ′0(r
∗) = C′

0(1+ r∗)8+4r∗
and L1, L2, S(b,B) as defined in (2.6)–(2.8),

we have for any x ∈ S(b,B) and any d > t
′1/(4+2r∗)
0 ,

(2.9)

E
[∥

∥X(x, t) − X
(

X(∞), t
)∥

∥

1,
√

α

]

≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C1

(

L1

√

1 + t1/(4+2r∗) + ‖x‖∞ exp
{

B/σ 2}) exp
{

−C0t
1/(4+2r∗)}, t ′0 ≤ t < d4+2r∗

,

C1

(

L1

√

1 + t1/(4+2r∗) + ‖x‖∞ exp
{

B/σ 2}) exp

{

−C0
t

d3+2r∗

}

, t ≥ d4+2r∗
.

If instead Assumption 2 holds, with t ′1 = t ′1(r
∗) = C′

0(1 + r∗)2+4r∗
, we have for d >

t
′1/(1+2r∗)
1 ,

(2.10)

E
[∥

∥X(x, t) − X
(

X(∞), t
)∥

∥

1,
√

α

]

≤

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

C1

(

L2

√

1 + t1/(1+2r∗) + ‖x‖∞ exp
{

B/σ 2}) exp

{

−C0
t1/(1+2r∗)

log t

}

, t ′1 ≤ t < d1+2r∗
,

C1

(

L2

√

1 + t1/(1+2r∗) + ‖x‖∞ exp
{

B/σ 2}) exp

{

−C0
t

d2r∗
logd

}

, t ≥ d1+2r∗
.

REMARK 1. We note the following.

(i) The bounds in Theorem 1 indeed imply dimension-free convergence in the ‖ · ‖1,
√

α

norm in the sense of (2.3). To see this, note that under Assumption 1 the constant r∗ does

not depend on dimension d . Thus, since t

d3+2r∗ ≥ t1/(4+2r∗) for t ≥ d4+2r∗
, (2.9) implies the

following dimension-free convergence rate bound,

E
[∥

∥X(x, t) − X
(

X(∞), t
)∥

∥

1,
√

α

]

≤ C1

(

L1

√

1 + t1/(4+2r∗) + ‖x‖∞ exp
{

B/σ 2}) exp
{

−C0t
1/(4+2r∗)}

≤ C1

(

L1 + ‖x‖∞ exp
{

B/σ 2})
√

1 + t1/(4+2r∗) exp
{

−C0t
1/(4+2r∗)}, t ≥ t ′0.

Similarly, the bound in the first part of (2.10) continues to hold for all t ≥ t ′1. The bounds in

Theorem 1 are presented in the given form to emphasize that the weighted distances, in fact,

decay exponentially with coefficients depending on d .
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(ii) Bounds analogous to those in Theorem 1 hold using the norm ‖ · ‖1,β for any

β ∈ (α,1), with appropriately adjusted constants depending on β , and the choice β =
√

α

is merely for simplicity of exposition. In fact, our proofs are in terms of two parameters

β ∈ (α,1) and δ ∈ (β,1), which can be appropriately chosen for the specific RBM under

consideration to optimize the obtained bounds.

2.4. Applications of Theorem 1. Here, we present two examples of RBMs that arise in

diverse applications, where we can apply Theorem 1 to obtain explicit dimension-free con-

vergence rates.

EXAMPLE 1 (Asymmetric Atlas model). We consider Atlas-type models, which are in-

teracting particle systems represented by the following SDE:

(2.11) Zk(t) = Zk(0) + 1[k = 1]t + B∗
k (t) + pL(k−1,k)(t) − qL(k,k+1)(t), t ≥ 0,

for 1 ≤ k ≤ d + 1, p ∈ (0,1), q = 1 − p. Here, L(0,1)(·) ≡ L(d+1,d+2)(·) ≡ 0, and for

1 ≤ k ≤ d , L(k,k+1)(·) is a continuous, nondecreasing, adapted process that denotes the

collision local time between the kth and (k + 1)-th coordinate processes of Z, namely

L(k,k+1)(0) = 0 and L(k,k+1)(·) can increase only when Zk = Zk+1. B∗
k (·), 1 ≤ k ≤ d + 1,

are mutually independent standard one-dimensional Brownian motions. Each of the d + 1

ranked particles with trajectories given by (Z1(·), . . . ,Zd+1(·)) evolves as an independent

Brownian motion (with the particle 1 having unit positive drift) when it is away from its

neighboring particles, and interacts with its neighbors through possibly asymmetric colli-

sions. The symmetric Atlas model, namely the case p = 1/2, was introduced in [14] as a

mathematical model for stochastic portfolio theory. The asymmetric Atlas model, namely the

case p ∈ (1/2,1), was introduced in [23]. It was shown that it arises as scaling limits of nu-

merous well-known interacting particle systems involving asymmetrically colliding random

walks [23], Section 3. Since then, this model has been extensively analyzed; see [18, 19, 23,

34] and references therein.

The gaps between the particles, defined by Xi(·) = Zi+1(·) − Zi(·), 1 ≤ i ≤ d , evolve as

an RBM(�,μ,R) with � given by �ii = 2 for i = 1, . . . , d , �ij = −1 if |i −j | = 1, �ij = 0

if |i − j | > 1, μ given by μ1 = −1, μj = 0 for j = 2, . . . , d , and R = I − P T , where

(2.12) Pij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

p, j = i + 1,

1 − p, j = i − 1,

0, otherwise.

In this article, we are interested in the ergodicity of the gap process X. In the current example,

we study the asymmetric Atlas model. The symmetric Atlas model is treated in Section 3.

Recall that the reflection matrix R = I −P T is associated with a killed Markov chain. For

the asymmetric Atlas model, this Markov chain has a more natural description as a random

walk on {0,1, . . . , d + 1}, which increases by one at each step with probability p and de-

creases by one with probability 1 − p, and is killed when it hits either 0 or d + 1. Then for

1 ≤ i, j ≤ d , (R−1)ij is the expected number of visits to i starting from j by this random

walk before it hits 0 or d + 1. Since p > 1 − p, the random walk has a drift toward d + 1,

which suggests I, II of Assumption 1 hold. This is confirmed by direct computation, which

gives for q = 1 − p,

(2.13)

(

R−1)

ij =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(q/p)j−i

p − q

(1 − (q/p)i)(1 − (q/p)d+1−j )

1 − (q/p)d+1
≤

(q/p)j−i

p − q
, 1 ≤ i ≤ j ≤ d,

(p/q)i−j

p − q

((p/q)j − 1)((p/q)d+1−i − 1)

(p/q)d+1 − 1
≤

1

p − q
, 1 ≤ j < i ≤ d.
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Now I, II and IV of Assumption 1 hold with M = C = 1
p−q

, α = q
p

and σ = σ =
√

2. Further-

more, the restriction P |k is defined exactly as in (2.12) with k in place of d . Thus (R|k)−1 is

given by (2.13) with k in place of d , and b(k) = −(R|k)−1μ|k is the first column of (R|k)−1.

This entails

b
(k)
i =

(p/q)i−1

p − q

((p/q) − 1)((p/q)k+1−i − 1)

(p/q)k+1 − 1
≥

1

q

(

p

q

)k−1 ((p/q) − 1)

(p/q)k+1

=
p − q

p2
=: b0 > 0, 1 ≤ i ≤ k,1 ≤ k ≤ d.

(2.14)

Thus b(k) ≥ b0 for all 1 ≤ k ≤ d , uniformly in d . This shows that III of Assumption 1 holds

with b0 specified by (2.14) and r∗ = 0. Moreover, it follows from the first equality in (2.14)

that b
(k)
i ≤ p/(p − q) for all 1 ≤ k ≤ d and 1 ≤ i ≤ k. Therefore, recalling the definition of

S(b, ·) from (2.8), for any x ∈R
d
+,

x ∈ S
(

b,p‖x‖∞/(2p − 1)
)

.

Finally, we note Assumption 2 does not hold here. It can be checked from (2.13) that
∑d

j=1(R
−1)ij grows linearly in i, and hence, the row sums of R−1 are not uniformly bounded

by a dimension-independent constant. This stands in contrast with Example 2.

The above observations result in the next theorem, which follows directly from Theorem 1.

As in Remark 1, the following bounds imply dimension-free convergence rates in the sense

of (2.3) and (2.4).

THEOREM 2. Suppose X is the RBM representing the gap process of the asymmetric

Atlas model with p ∈ (1/2,1). Then there exist constants C̄, C̄0, t
′
0 > 0 depending on p but

not on d such that for d > t ′0,

(2.15)

E
[∥

∥X(x, t) − X
(

X(∞), t
)∥

∥

1,
√

1−p
p

]

≤

⎧

⎪

⎨

⎪

⎩

C̄
(

√

1 + t1/4 + ‖x‖∞ep‖x‖∞/(4p−2))e−C̄0t
1/4

, t ′0 ≤ t < d4,

C̄
(

√

1 + t1/4 + ‖x‖∞ep‖x‖∞/(4p−2))e−C̄0t/d
3

, t ≥ d4.

EXAMPLE 2 (Blanchet–Chen type conditions). Here, we consider RBM(�,μ,R) with

the system parameters satisfying certain “uniformity” assumptions in dimension similar to

those of [7]. In addition, we assume P is a “band matrix” (see Assumption a) below).

With the notation of Assumption 1: Suppose there exist d-independent constants b0, σ ,

σ > 0, j0 ∈ {1, . . . , d}, k0 ∈ {2, . . . , d} and α′ ∈ (0,1), such that:

(a) Pij = 0 for all 1 ≤ i, j ≤ d such that |j − i| > j0.

(b)
∑d

i=1 Pij ≤ α′ for all 1 ≤ j ≤ d .

(c) b(k) ≥ b0 for k0 ≤ k ≤ d .

(d) σi ∈ [σ,σ ] for 1 ≤ i ≤ d .

We check that these conditions imply Assumption 2 with r∗ = 0. Recall that the only differ-

ence between Assumption 1 and Assumption 2 is II in the former and II′ in the latter. Note

(c) and (d) immediately imply III, IV of Assumption 1 with r∗ = 0 and b0, σ , σ as above.

Condition (b) and induction imply

(2.16) max
1≤i,j≤d

P n
ij ≤ max

1≤j≤d

d
∑

i=1

P n
ij ≤

(

max
1≤i,l≤d

P n−1
il

)

max
1≤j≤d

d
∑

l=1

Plj ≤
(

α′)n, n ≥ 1.
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Therefore, since R−1 =
∑∞

0 (P T )n, condition II′ holds with M = 1/(1 −α′). It remains only

to show I of Assumption 1. To simplify the proof, we suppose j0 = 1; the general case is

similar. Consider i, j such that j > i. Then, by part (a) of the above assumptions, P n
ji = 0 for

n < j − i. This fact and (2.16) give

(2.17)
(

R−1)

ij =
∞
∑

n=0

(

P T )n
ij =

∞
∑

n=j−i

P n
ji ≤

∞
∑

n=j−i

(

α′)n =
(α′)j−i

1 − α′ .

This proves I of Assumption 1 with α = α′ and C = 1/(1 − α′). The case where j0 > 1 is

proven similarly, with α = (α′)1/j0 and C being a dimension-independent multiple of 1/(1 −
α′). Applying these facts to Theorem 1 in the case of Assumption 2 with r∗ = 0 gives the

following theorem.

THEOREM 3. Suppose X satisfies (a) to (d) of Example 2 and recall S(b, ·) from (2.8).

Then there exist constants C̄, C̄0, t
′
0 > 0 not depending on d such that for any B ∈ (0,∞),

x ∈ S(b,B) and d > t ′0,

E
[∥

∥X(x, t) − X
(

X(∞), t
)∥

∥

1,(α′)1/2j0

]

≤ C̄
(
√

1 + t + ‖x‖∞eB/σ 2)

e
−C̄0

t
log(t∧d) , t ≥ t ′0.

(2.18)

REMARK 2. A natural question in the above models is whether, for fixed k ∈ N, our

methods give dimension-free convergence for any set of k of the d coordinates of X. For ex-

ample, does dimension-free convergence hold for (Xd−k+1(·), . . . ,Xd(·)) as d (≥ k) grows?

The answer is no in general. To see this, observe that in the asymmetric Atlas model with

p > 1/2 (Example 1), the associated killed Markov chain starting from any j ∈ {1, . . . , d}
has a constant positive drift. Thus, although the expected number of visits to any i < j de-

cays like αj−i for some α ∈ (0,1), the expected time spent at any i > j is bounded below by

a positive constant that is independent of d , i − j . Consequently, part I of Assumption 1 does

not apply when analyzing the last k coordinates. It is interesting to specify which (possibly

d dependent) subsets of k coordinates exhibit dimension-free convergence and which do not.

We leave this for future research.

3. Perturbations from stationarity for the symmetric Atlas model. This section is

dedicated to the study of dimension free convergence for the symmetric Atlas model, namely

the model defined in (2.11) with p = 1/2. We view this model as a first step to explore

cases in which Assumption 1 fails to hold. As opposed to stretched exponential convergence

rates obtained in Section 2, we obtain dimension-free convergence rates to stationarity for the

process at a polynomial rate if started from appropriate perturbations from stationarity.

Recall that the gap process X of the symmetric Atlas model has the law of RBM(�,μ,R)

where μ = −(1,0, . . . ,0), R = I − P T and � = 2R for

(3.1) Pij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1/2, j = i + 1,

1/2, j = i − 1,

0, otherwise.

R−1 is given by computation (e.g., [3], Proof of Theorem 4), or by taking p → 1/2 in (2.13):

(3.2)
(

R−1)

ij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2i

(

1 −
j

d + 1

)

, 1 ≤ i ≤ j ≤ d,

2j

(

1 − i

d + 1

)

, 1 ≤ j < i ≤ d.
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The above representation shows that R−1 violates I, II of Assumption 1, for example, by con-

sidering i = j = �d/2
. Nonetheless, b = −R−1μ = {(R−1)i1}di=1 > 0 and �ii = 2 for all i.

Therefore, there exists a stationary distribution. In fact, if X(∞) denotes the corresponding

stationary distributed random variable, it holds that [17, 20]

(3.3) X(∞) ∼
d
⊗

i=1

Exp

(

2

(

1 −
i

d + 1

))

.

3.1. Main result and applications. Though Theorem 1 does not hold, we employ differ-

ent methods to obtain dimension-free convergence rates to stationarity from initial conditions

that perturb the stationary distribution by random variables in a “perturbation class,” which

we now define. We direct the reader to Corollary 2 and Example 3 for concrete examples in

this class of random variables.

DEFINITION 1 (Perturbation class). For P1,P2, δ ∈ (0,∞), let P(P1,P2, δ) denote the

class of R∞-valued random vectors Y = (Y1, Y2, . . . ) satisfying the following:

(i) E[‖Y‖2
1] ≤ P1.

(ii) supm∈NE[exp{δm−2‖Y |m‖∞}] ≤ P2.

We will consider synchronously coupled processes, one starting from stationarity and the

other starting from a perturbation of this stationary configuration by a random vector in

P(P1,P2, δ) for some P1,P2, δ ∈ (0,∞). Define for Y ∈ P(P1,P2, δ),

(3.4) αY (n) := E

[ ∞
∑

i=n+1

|Yi |
]

, n ∈ N.

By assumption (i) above on the class P(P1,P2, δ), note that for any Y ∈ P(P1,P2, δ),

αY (n) → 0 as n → ∞.

THEOREM 4. Fix any P1,P2, δ ∈ (0,∞) and Y ∈ P(P1,P2, δ). Let X(∞) be distributed

as in (3.3) and define XY (∞) := (X(∞) + Y |d)+.

Then there exist constants t0, t
′′
0 ,C0,C1 ∈ (0,∞) not depending on P1, P2, δ such that for

any d ≥ 1 and any n :R+ →N satisfying αY (n(t)) → 0 and t−3/32n(t) → 0 as t → ∞,

(3.5)

E
[∥

∥X
(

XY (∞), t
)

− X
(

X(∞), t
)∥

∥

1

]

≤

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

C1

√

P1n(t)t−3/32 + C1

√

P1

(

1 + P
1/4
2

)

exp

{

−C0
δ

δ + 4
t3/16

}

+ αY (n(t)
)

, t
(n)
0 ≤ t < d16/3,

C1

√

P2

(

d2 + P1

)

exp

(

−C0
t

d6 log(2d)

)

, t ≥ t ′′0 d4 log(2d),

where t
(n)
0 := inf{t ≥ t0 : t3/16 ≥ 1 + 2n(t)}.

REMARK 3. Note that the bounds in Theorem 4 show polynomial decay when t < d16/3

and exponential decay for t > d6 log(2d). In particular, we do not obtain the “smooth patch-

ing” of the bounds as in the results of Section 2. This is mainly because the methods used for

the two regimes t < d16/3 and t > d6 log(2d) in Theorem 4 are starkly different. The “con-

tractions” in ‖ · ‖1,β distance between the coupled RBMs upon certain events taking place
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in their trajectory, which was key to the results in Section 2, no longer holds here due to

Assumption 1 not being satisfied. This is the main factor behind the discontinuous qualitative

and quantitative transitions between the bounds in the two regimes in Theorem 4. See also

Remark 4.

The choice of n(·) in Theorem 4 has been intentionally kept flexible. One can choose n(·)
in an “optimal” way so as to minimize max{n(t)t−3/32, αY (n(t))}. This, in turn, is intricately

tied to the distributional behavior of the perturbation vector Y as quantified by the function

αY (·). We mention the following two special cases as corollaries and choose n(·) in a case-

specific way.

For perturbations from stationarity by finitely many coordinates in the following sense,

one can take n(·) to be the (fixed) number of perturbed coordinates to obtain the following

simplified bound.

COROLLARY 1 (Finite perturbations from stationarity). Fix an integer m ≥ 1 and a ran-

dom vector Z ∈ R
m such that its extension to R

∞ given by Y = (Z,0, . . .) is in the class

P(P1,P2, δ) of Definition 1 for some P1,P2, δ ∈ (0,∞). Setting n(t) = m for all t , we have

for all d > 1 + 2m,

E
[∥

∥X
(

XY (∞), t
)

− X
(

X(∞), t
)∥

∥

1

]

≤

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

C1

√

P1mt−3/32 + C1

√

P1

(

1 + P
1/4
2

)

× exp

{

−C0
δ

δ + 4
t3/16

}

, t0 ∨ (1 + 2m)16/3 ≤ t < d16/3,

C1

√

P2

(

d2 + P1

)

exp

(

−C0
t

d6 log(2d)

)

, t ≥ t ′′0 d4 log(2d).

The following corollary addresses the special case of perturbations from stationarity by

independent exponential random variables.

COROLLARY 2 (Independent exponential perturbations). Consider Y = (Y1, Y2, . . .)

where {Yi}i≥1 are independent random variables with Yi ∼ Exp(i1+β) (exponential with

mean i−(1+β)), for some β > 0. Then Y ∈ P(P1,P2, δ) with P1 :=
∑∞

1 i−2(1+β) +
(
∑∞

1 i−(1+β))2, P2 := 1 +∑∞
1 i−(1+β) and δ := 1/2. Setting n(t) = �t

3
32(1+β) 
, we have

E
[∥

∥X
(

XY (∞), t
)

− X
(

X(∞), t
)∥

∥

1

]

≤

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

C1

√

P1 + 2

β

)

t
− β

1+β
3
32 + C1

√

P1

(

1 + P
1/4
2

)

exp

{

−C0

9
t3/16

}

, t ′0 ≤ t < d16/3,

C1

√

P2

(

d2 + P1

)

exp

(

−C0
t

d6 log(2d)

)

, t ≥ t ′′0 d4 log(2d),

where t ′0 ∈ (0,∞) does not depend on d or β .

The proof of this corollary makes clear one could consider independent Yi ∼ Exp(λi)

for any sequence {λi}i≥1 such that ‖Y‖1 has finite expectation and variance. We choose

λi = i1+β as it lends itself to simple and explicit calculations of the rates of convergence.

PROOF OF COROLLARY 2. Y ∈ P(P1,P2, δ) is the result of the following calculations:

E
[

‖Y‖2
1

]

= Var
(

‖Y‖1

)

+
(

E
[

‖Y‖1

])2 =
∞
∑

i=1

i−2(1+β) +
( ∞
∑

i=1

i−(1+β)

)2

,
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E

[

exp

{‖Y |m‖∞
2m2

}]

≤ 1 + m−2
m
∑

i=1

i−(1+β) ≤ 1 +
∞
∑

i=1

i−(1+β) for all m ∈N.

With n(t) = �t
3

32(1+β) 
 we have by basic calculus that αY (n(t)) ≤ 2
β
t
− β

1+β
3
32 and n(t)t−

3
32 ≤

t
− β

1+β
3

32 for t ≥ 2. Applying Theorem 4 gives the corollary. �

We close the series of applications with the most basic example, in which the perturbation

Y is a constant.

EXAMPLE 3 (Constant perturbations). Consider Y = (Y1, Y2, . . .) such that Y is a con-

stant vector satisfying ‖Y‖1 < ∞, which implies ‖Y‖∞ < ∞. Choose n(t) to be any function

such that n(t) ≥ 1, t �→ n(t) is nondecreasing for t ≥ 0, and n(t)t−3/32 → 0 as t → ∞. Then

Theorem 4 holds for any such n(t) if we set δ = 1, P1 = ‖Y‖2
1 and P2 = exp{‖Y‖∞}. The

rate of convergence then is determined by the function t �→ max{n(t)t−3/32, αY (n(t))}.
In particular, Corollary 1 holds when for some m ≥ 1 we have Yi = 0 for i ≥ m + 1.

REMARK 4. In Theorem 4 and Corollaries 1 and 2, the upper bound has a polynomial

decay in t for large d (for t < d16/3) as opposed to the stretched exponential decay observed

in Section 2 when Assumption 1 applies. Although we do not currently have associated lower

bounds, we strongly believe that the L1-Wasserstein distance of the perturbed system (as

defined in Theorem 4) from stationarity indeed shows polynomial decay for the symmetric

Atlas model. This belief stems from the dynamics of the associated killed Markov chain

whose transition kernel is prescribed by P (see discussion after Assumption 1), which are

shown throughout this article to govern convergence rates to stationarity. This Markov chain

for the symmetric Atlas model behaves as a simple random walk away from the cemetery

state and thus lacks the “strong drift” toward the cemetery state characteristic of the models

considered in Section 2. This results in the slower convergence rates.

The polynomial rates of convergence to stationarity obtained in [5] for the Potlatch process

on Z
k , which (for k = 1) can be loosely thought of as a “Poissonian version” of the gap

process of the infinite symmetric Atlas model constructed in [28], lends further evidence to

this belief.

3.2. A pathwise derivative approach toward convergence rates. The proof of Theorem 4

is based on an analysis of the derivative process (derivative taken with respect to initial con-

ditions) of the RBM X. The key observation made here is a representation of this derivative

process in terms of a random walk in a certain random environment constructed from the

random order in which the RBM hits distinct faces of the orthant Rd
+ (see (3.8)). This rep-

resentation, in turn, is based on a succinct form for the derivative process obtained in [1],

Theorem 1.2. This is summarized in Theorem 5 below. This representation is interesting in

its own right and we believe a systematic study of the derivative process is at the heart of

obtaining convergence rates in more general cases where Assumption 1 does not hold. More-

over, as the relationship between the derivative process and the (random) transition kernel

of the random walk in the random environment is an exact equality (3.8), this representation

should also lead to lower bounds for convergence rates. We hope to report on this in future

work.

In the probability literature, random walks in random environments most commonly ap-

pear as random walks on graphs with jump probabilities given by i.i.d. random variables (see,

e.g., [37] or [11] for a model with i.i.d. holding times). Since the process we will consider in

Theorem 5 is substantially different, we take some care first to define it.
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DEFINITION 2 (RW(a, i0)). Here, we define a random walk on {0, . . . , d +1}, for d ≥ 1,

in a given fixed environment a and initial condition i0. Call any sequence a := (lk, tk)k≥0

admissible if:

(i) (lk, tk) ∈ {1, . . . , d} × [0,∞) for all k ≥ 0,

(ii) t0 = 0 and {tk}k≥0 is strictly increasing.

For any admissible sequence a and any i ∈ {1, . . . , d}, define the projected admissible se-

quence ai = (lik, t
i
k)k≥0 = (i, t ik)k≥0 to be the unique admissible sequence obtained from the

elements of the set a ∩ ({i} × [0,∞)). In words, this sequence consists of points in a with

first coordinate equal to i enumerated in ascending order of their second coordinates.

Define the random walk in environment a started from i0 ∈ {0, . . . , d + 1}, written as

RW(a, i0), to be the time-inhomogeneous Markov process W with state space {0, . . . , d + 1}
whose law is uniquely characterized by the following:

(i) W(0) = i0,

(ii) W is absorbed at 0 and d + 1,

(iii) Define the “jump times” {Tk}k≥0 = {Tk(a, i0)}k≥1 as follows: T0 = 0, T1 = t
i0
1 and

Tk+1 = min
{

t ij : i = W(Tk), t
i
j > Tk,

(

i, t ij
)

∈ a
}

, k ≥ 1.

The transition probabilities of W at the jump times are then given by

1/2 = Pa,i0

(

W(Tk+1) = W(Tk) + 1 |
(

W(Tk), Tk

))

= Pa,i0

(

W(Tk+1) = W(Tk) − 1 |
(

W(Tk), Tk

))

.

(iv) Pa,i0(W(t) = W(Tk) | (W(Tk), Tk)) = 1 for t ∈ [Tk, Tk+1), k ≥ 0,

(v) for 0 ≤ t < t ′,

Pa,i0

(

W
(

t ′
)

= W(t) | W(t) = 0
)

= Pa,i0

(

W
(

t ′
)

= W(t) | W(t) = d + 1
)

= 1.

In the above, we used the suffix in the probabilities to highlight the dependence of the law

of W on a and i0. The process W can be seen as a simple random walk absorbed at 0, d + 1

with jump times prescribed by the points in a encountered along its trajectory.

Finally, define

Ja,i0(t) := #
{

s ∈ [0, t] : W(s−) �= W(s)
}

= #
{

k ≥ 1 : Tk ∈ [0, t]
}

,

to be the number of jumps made by RW(a, i0) in the time interval [0, t].

We now define a few additional conventions and notation required to state the theorem.

For two vectors x, y ∈ R
d , we write 〈x, y〉 for the standard inner product, and ei,1 ≤ i ≤ d

for the standard basis vectors. For a d × d matrix R, write R(i) for the ith column vector

of R.

For X started at x ∈ R
d
+, x > 0, define a sequence of stopping times as follows: τ0(x) = 0,

τ1(x) = inf{t > 0 | Xi(x, t) = 0 for some i} and for k ≥ 1,

(3.6) τk+1(x) = inf
{

t > τk(x) | Xi(x, t) = 0,Xj (x, τk) = 0 for some i, j such that j �= i
}

.

Also define the sequence of integers ik(x) for k ≥ 0 as follows: Fix any i0(x) ∈ {1, . . . , d} and

define the remaining ik(x) by Xik(x)(x, τk(x)) = 0, that is, ik(x) is the index of the coordinate

hitting zero at time τk(x) for k ≥ 1. In other words, {τk(x)}k≥1 represent the times when X

has crossed from one face of the orthant to another, and ik(x) tells which coordinate has hit

zero at crossing time τk(x). We suppress dependence of τk , ik on x when there is no risk of

confusion.
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From [31], Theorem 1.9, the Atlas model almost surely has no simultaneous collisions,

which in the context of this paper means two different coordinates of X do not hit 0 at

the same time. Thus, almost surely, for any x ∈ R
d
+, t > 0, Xi(x, t) = 0 for at most one

i ∈ {1, . . . , d}. Therefore, ik , τk are well-defined and the sequence {(ik, τk)}k≥0 is admissible

in the sense of Definition 2. This fact is essential for the random walk representation below.

The following theorem gives a representation (3.7) of the derivative process of the RBM

X, which is a specialization of [1], Theorem 1.2, to the present context. This representation

is then encoded in terms of a random walk in an admissible environment constructed from

hitting times of faces of R
d
+ by the RBM X. This connection is the main message of the

theorem, and is key to proving Theorem 4.

THEOREM 5. For every t ∈ [0,∞) and every x > 0, the map y �→ X(y, t) is almost

surely differentiable at x. For each i0 ∈ {1, . . . , d}, the process

ηi0(x, t) := lim
ε→0

ε−1(X(x + εei0, t) − X(x, t)
)

has a right-continuous modification defined on [0,∞) such that

(3.7) ηi0(x, t) = S
i0
k (x) for t ∈ [τk, τk+1), k ≥ 0,

where {Si0
k (x)}k≥0 is a sequence of d-dimensional random vectors iteratively defined by

⎧

⎨

⎩

S
i0
0 (x) = ei0,

S
i0
k+1(x) = S

i0
k (x) −

〈

S
i0
k (x), eik+1

〉

R(ik+1), k ≥ 0.

Moreover, �(x) := {(ik, τk)}k≥0 is admissible and the derivative process has the following

representation in terms of the law of RW(�(x), i0):

(3.8) η
i0
j (t, x) = P�(x),i0

(

W(t) = j
)

, j = 1, . . . , d.

We illustrate in Figure 1 the connection between the paths of the RBM X and the random

walk W when d = 2. In the figure, i1 = 1, i2 = 2 and i3 = 1 corresponding to the index of the

coordinates at times τi, i = 1,2,3 when X crosses faces of the orthant. The corresponding

walk W , which begins at state 2, does not jump at time τ1 because W(τ1−) �= i1 = 1. W does

jump at time τ2 since W(τ2−) = i2 = 2, and thus τ2 is equal to the first jump time T1.

FIG. 1. Illustration of the connection between RBM X and the random walk W for d = 2.
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REMARK 5. We clarify the relationship between boundary-hitting times of the process

X started at x > 0 and the jump times of W ∼ RW(�(x), i0), i0 ∈ {1, . . . , d}.
Suppose X begins at x > 0 and W(t) = i ∈ {1, . . . , d} at some time t ≥ 0. Then at the first

time after t that Xi hits zero, W will jump to i − 1 or i + 1 with equal probability.

Now suppose for a given time interval [0, T ] and integer m ≥ 2 the random walk W start-

ing from i0 remains in the set {1, . . . ,m − 1}. Suppose also that there are random times 0 =
η0

m < η1
m < η2

m < · · · < ηN
m < T , with η

j+1
m − η

j
m > 1 for each j ∈ {0, . . . ,N − 1}, such that

X has hit each of the first m coordinates in every interval (η
j
m + 1, η

j+1
m ], j ∈ {0, . . . ,N − 1}.

Then the walk has made at least N jumps in the time interval [0, T ]. In particular, with

Nm(x, T ) defined as in (4.2) below:

(3.9)

{

Nm(x, T ) ≥ N,W(s) ∈ {1, . . . ,m − 1} for s ∈ [0, T ]
}

⊆
{

J�(x),i0(T ) ≥ N,W(s) ∈ {1, . . . ,m − 1} for s ∈ [0, T ]
}

.

This fact will be crucially used in the proof of Theorem 4.

We also note here that the process W is nonstandard in the sense that the number of jumps

of W in a certain time interval depends on the whole trajectory of W in that interval, which

makes its analysis challenging.

REMARK 6. We have stated Theorem 5 for the symmetric Atlas model examined here,

but an analogous result holds for any RBM (1.1) that almost surely does not hit intersections

of faces (corners) of the orthant Rd
+. In that case one-step transitions are given by the matrix

P (from R = I −P T ). See [23] for conditions guaranteeing when the gap process of an Atlas

model (symmetric or asymmetric) does not hit corners, and [31] for similar conditions for a

general RBM.

For the general RBM (1.1), even when corners are hit with positive probability, [26] shows

that the derivative process exists in an appropriate sense. However, in the general case we

do not have a random walk representation as in Theorem 5. [8] has recently obtained an

upper bound for the derivative process in terms of products of random matrices derived in

terms of the boundary hitting times and locations of the RBM and the killed Markov process

associated with P (see [8], Lemma 5). This presents an opportunity to generalize the methods

used here, and we defer it to future work.

The following corollary to Theorem 5 is the key tool in proving Theorem 4.

COROLLARY 3. Fix x, x̃ ∈ R
d
+ with x > 0 and let γ (u) = x + u(x̃ − x) for u ∈ [0,1].

Then, writing τ ∗
0 := inf{s ≥ 0 : W(s) = 0},

(3.10)
∥

∥X(x̃, t) − X(x, t)
∥

∥

1 ≤
d
∑

i=1

∣

∣(x̃ − x)i
∣

∣

∫

[0,1)
P�(γ (u)),i

(

τ ∗
0 > t

)

du, t ≥ 0.

PROOF. For each i = 1, . . . , d and t ≥ 0 define the function fi,t : [0,1] �→ [0,∞) as

fi,t (u) = Xi(γ (u), t). As shown in the proof of [15], Theorem 1, x �→ Xi(x, t) is Lipschitz.

Thus fi,t is absolutely continuous on [0,1] and we have for t ≥ 0:

∥

∥X(x̃, t) − X(x, t)
∥

∥

1 ≤
d
∑

j=1

d
∑

i=1

∣

∣(x̃ − x)i
∣

∣

∫

[0,1)
P�(γ (u)),i

(

W(t) = j
)

du

=
d
∑

i=1

∣

∣(x̃ − x)i
∣

∣

∫

[0,1)
P�(γ (u)),i

(

W(t) ∈ {1, . . . , d}
)

du

≤
d
∑

i=1

∣

∣(x̃ − x)i
∣

∣

∫

[0,1)
P�(γ (u)),i

(

τ ∗
0 > t

)

du.
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The first step above follows from absolute continuity and Theorem 5 for γ (u) > 0 for u ∈
[0,1). The second step follows by an interchange of summation. �

4. Proofs: Dimension-free local convergence rates for RBM.

4.1. Boundary-hitting times. Before proceeding to the proofs, we define boundary hitting

times for a solution X to (1.1), which we use throughout. For any 1 ≤ d ′ ≤ d , we define a

sequence of times between which X hits d ′ faces of R
d
+ corresponding to Xi = 0 for i =

1, . . . , d ′. Set η0
d ′(x) = 0 and define inductively for k ≥ 1,

(4.1) ξ k
i (x) = inf

{

t > ηk−1
d ′ (x)+ 1 | Xi(x, t) = 0

}

, ηk
d ′(x) = max

{

ξ k
i (x) | i = 1, . . . , d ′},

where we suppress the d ′ dependence of ξ k
i s for convenience. Also define

(4.2) Nd ′(x, t) = max
{

k | ηk
d ′(x) ≤ t

}

.

All the stopping times defined above are finite almost surely, which follows from the positive

recurrence criterion R−1μ < 0. It can also be deduced from Lemma 2 below.

4.2. Fundamental properties of RBM. The next two theorems record fundamental results

related to this work from, respectively, [24], Theorem 1.1, and [35], Theorem 3.1, Corollaries

3.5 and 3.6.

THEOREM 6 (Monotonicity under synchronous coupling). For X a solution to (1.1) and

x, x̃ ∈ R
d
+ such that x ≥ x̃, the following hold:

(i) X(x, t) ≥ X(x̃, t) for all t > 0.

(ii) t �→ L(x, t)−L(x̃, t) is nonpositive, nonincreasing and bounded below by −R−1(x−
x̃).

(iii) t �→ R−1(X(x, t) − X(x̃, t)) = R−1(x − x̃) + L(x, t) − L(x̃, t) is nonnegative and

nonincreasing.

THEOREM 7 (Stochastic domination of projected system). Suppose X is a solution to

(1.1) with parameters (�,μ,R) and corresponding local times L. For x ∈ R
d
+ and an integer

1 ≤ k ≤ d , define the process Z(x|k, t) := x|k + μ|kt + (DB(t))|k , t ≥ 0, which uses the

same driving Brownian motion B as X. Define X̄ to be the R
k
+-valued process obtained as

the solution to

X̄(x|k, t) = Z(x|k, t) + R|kL̄(x|k, t), t ≥ 0,

where L̄(x|k, ·) is the local time which constrains X̄ to R
k
+. Then

X|k(x, t) ≤ X̄(x|k, t), t ≥ 0,

L|k(x, t) − L|k(x, s) ≥ L̄(x|k, t) − L̄(x|k, s), 0 ≤ s ≤ t.

4.3. Proofs. The following lemma provides a crucial local contraction estimate. It shows

that for any x ∈R
d
+, the weighted distance between the coupled processes X(x, ·) and X(0, ·)

as measured by u(x, ·) in (2.1) decreases by a constant factor if a subset of coordinates of

X(x, ·) (whose cardinality is determined by the initial distance) hit zero.

LEMMA 1 (Local contraction). Suppose I, II of Assumption 1 hold for X, an RBM(�,μ,

R). Fix an initial condition X(x,0) = x ≥ 0. With α as in Assumption 1, fix β ∈ (α,1) and

δ ∈ (β,1). Recall the weighted supremum norm ‖x‖∞,δ = max1≤i≤d δixi , and u(x, ·) from

(2.1).

Fix d ′ ∈ {1, . . . , d}. Recall the definition of η1
d ′ = η1

d ′(x) from (4.1).

There exist C′ > 0 and λ ∈ (1/2,1) not dependent on d , d ′ or x such that:
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(i) if 1 ≤ d ′ ≤ d − 1,

(4.3) u(x,0) ≥ C ′‖x‖∞,δ(β/δ)d
′+1 =⇒ u

(

x,η1
d ′
)

≤ λu(x,0).

(ii) if d ′ = d ,

(4.4) u
(

x,η1
d

)

≤ λu(x,0).

C′, λ may be chosen explicitly as functions of β , δ and the constants α, C, M from Assump-

tion 1.

PROOF. Define the processes:

(4.5)

�X(t) = X(x, t) − X(0, t),

�L(t) = L(x, t) − L(0, t),

Y (t) = R−1�X(t) = R−1x + �L(t).

From Theorem 6, we know that for all for all t ≥ 0, �X(t) ≥ 0, t �→ �L(t) is nonpositive,

nonincreasing and t �→ Y(t) is nonnegative, nonincreasing. By definition, then t �→ u(x, t) is

nonnegative and nonincreasing. We aim to show that u indeed contracts by a fixed proportion

λ of its initial value at time η1
d ′ .

The crucial fact is that if Xi(x, ·) has hit zero before a time t , then �Li(s) ≤ −xi for all

s ≥ t . Indeed, setting t0 > 0 to be the first hitting time of Xi(x, ·) at 0 and assuming t0 < t ,

0 = �Xi(t0) = xi +
(

R�L(t0)
)

i

= xi + �Li(t0) −
(

P T �L(t0)
)

i ≥ xi + �Li(t) ≥ xi + �Li(s),
(4.6)

for all s ≥ t , where the first equality follows from R = I − P T and the last two inequalities

follow from Theorem 6(ii) and the nonnegativity of P . By definition, at time η1
d ′ = η1

d ′(x) the

first d ′ coordinates of X(x, ·) have already hit zero. Equation (4.6) then implies

(4.7)

u
(

x,η1
d ′
)

=
d
∑

i=1

βiYi

(

η1
d ′
)

= u(x,0) +
d
∑

i=1

βi�Li

(

η1
d ′
)

≤ u(x,0) −
d ′
∑

i=1

βixi + 1
[

d ′ < d
]

d
∑

i=d ′+1

βi�Li

(

η1
d ′
)

≤ u(x,0) −
d ′
∑

i=1

βixi .

The last inequality follows once again from Theorem 6(ii). To achieve the result (4.3), we

first bound
∑d

i=d ′+1 βiYi(0). In the following, the first inequality is a consequence of the

definition of ‖x‖∞,δ and the second inequality follows from I, II of Assumption 1. Remaining

statements follow from the fact that α < β < δ < 1. For d ′ < d ,

d
∑

i=d ′+1

βiYi(0) =
d
∑

i=d ′+1

βi
d
∑

j=1

(

R−1)

ijxj ≤ ‖x‖∞,δ

d
∑

i=d ′+1

βi
d
∑

j=1

(

R−1)

ij δ
−j

≤ ‖x‖∞,δ

d
∑

i=d ′+1

βi

(

M

i
∑

j=1

δ−j + C

d
∑

j=i+1

αj−iδ−j

)

≤ ‖x‖∞,δ

d
∑

i=d ′+1

(β/δ)i

(

M

i−1
∑

j=0

δj + C

∞
∑

j=i+1

(α/δ)j−i

)

(4.8)
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≤
‖x‖∞,δM

1 − δ

d
∑

i=d ′+1

(β/δ)i

+ ‖x‖∞,δC(α/δ)

1 − α/δ

d
∑

i=d ′+1

(β/δ)i ≤ C̃‖x‖∞,δ(β/δ)d
′+1,

with C̃ = M
(1−δ)(1−β/δ)

+ C(α/δ)
(1−α/δ)(1−β/δ)

, which by Assumption 1 does not depend on d ′, d

or x.

Now recall that since P is transient and R = I − P T we have R−1 =∑∞
n=0(P

T )n, which

implies Y(0) = R−1x ≥ x. Using this and (4.8), we have for 1 ≤ d ′ ≤ d − 1,

(4.9)

d ′
∑

i=1

βixi =
d
∑

i=1

βixi −
d
∑

i=d ′+1

βixi ≥
d
∑

i=1

βixi −
d
∑

i=d ′+1

βiYi(0)

≥
d
∑

i=1

βixi − C̃‖x‖∞,δ(β/δ)d
′+1.

Furthermore, I, II of Assumption 1 and 1 > β > α give

u(x,0) =
d
∑

i=1

βiYi(0) =
d
∑

j=1

βjxj

d
∑

i=1

(

R−1)

ijβ
i−j

≤
d
∑

j=1

βjxj

(

C

j
∑

i=1

(α/β)j−i + M

d
∑

i=j+1

βi−j

)

≤
(

C

1 − α/β
+

Mβ

1 − β

) d
∑

i=1

βjxj ≤ C̃′
d
∑

i=1

βjxj ,

(4.10)

where we have set C̃′ = 1 ∨ [C/(1 − α/β) + Mβ/(1 − β)]. Combining (4.9) and (4.10),

(4.11)

d ′
∑

i=1

βixi ≥
1

C̃′
u(x,0) − C̃‖x‖∞,δ(β/δ)d

′+1.

Finally, if u(x,0) ≥ 2C̃′C̃‖x‖∞,δ(β/δ)d
′+1 then (4.11) gives

(4.12)

d ′
∑

i=1

βixi ≥ 1

2C̃′
u(x,0).

The result (4.3) now follows with C ′ = 2C̃′C̃ and λ = 1 − 1/(2C̃′) using (4.12) and (4.7). To

prove (4.4), we use (4.7) with d ′ = d and (4.10) as follows:

(4.13) u
(

x,η1
d

)

≤ u(x,0) −
d
∑

i=1

βixi ≤
(

1 −
1

C̃′

)

u(x,0) ≤ λu(x,0).
�

COROLLARY 4. Retain the assumptions of Lemma 1 and recall β , δ chosen there. Recall

the definition of Nd ′(x, t) from (4.2). Define the stopping times with C′ as in (4.3),

(4.14) τ
(

x, d ′) := inf
{

s > 0 | u(x, s) ≤ C′‖x‖∞,δ(β/δ)d
′+1} for x ∈ R

d
+,1 ≤ d ′ ≤ d − 1.

Then for any q > 0:
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(i) if 1 ≤ d ′ ≤ d − 1,

(4.15) u(x, t)1
[

τ
(

x, d ′)> t,Nd ′(x, t) ≥ q
]

≤ λ�q
u(x,0),

(ii) if d ′ = d ,

(4.16) u(x, t)1
[

Nd(x, t) ≥ q
]

≤ λ�q
u(x,0).

PROOF. First, by Theorem 6(iii) and the definition (2.1) of u(x, t) we have u(x, t) ≤
u(x,0) for all t > 0. Therefore, it suffices to show for each k ≥ 1,

(4.17)
u
(

x,ηk
d ′
)

≥ C′(β/δ)d
′+1 =⇒ u

(

x,ηk+1
d ′

)

≤ λu
(

x,ηk
d ′
)

if 1 ≤ d ′ ≤ d − 1 and

u
(

x,ηk+1
d

)

≤ λu
(

x,ηk
d

)

.

To do so, we note that the argument proving Lemma 1 remains valid if we replace u(x, η1
d ′)

with u(x, ηk+1
d ′ ), u(x,0) with u(x, ηk

d ′) and �X(0) = x with �X(ηk
d ′) throughout—so long

as (4.8) is replaced by
∑d

i=d ′+1 βiYi(η
k
d ′) ≤ ∑d

i=d ′+1 βiYi(0) ≤ C̃‖x‖∞,δ(β/δ)d
′+1 in the

case where 1 ≤ d ′ ≤ d − 1. This follows directly from (4.8) and Theorem 6(iii), which gives

Yi(η
k
d ′) ≤ Yi(0) for i = 1, . . . , d . �

In the following lemma, we obtain estimates on tail probabilities for Nd ′(x, t), defined in

(4.2), using results from [3] and the stochastic domination recorded in Theorem 7. Recall k0

from Assumption 1, which by definition was such that d ≥ k0.

LEMMA 2 (Boundary-hitting estimates). Fix d ′ ∈ {k0, . . . , d}. Suppose b(d ′) > 0 and IV

of Assumption 1 holds, and recall the definition of a(d ′) from (2.5). Define the d ′-dependent

quantities

(4.18) T (d ′) = 1 +
(

a(d ′))2 log
(

2d ′), �(d ′) =
(

a(d ′))−2
.

There exist positive constants δ′, C′′ and A0 ≥ 1 not dependent on d ′, d , μ, R, �, such that

for any x ∈ R
d
+, A ≥ A0 and t ≥ 4T (d ′)/δ′,

P
[

Nd ′(x, t) < δ′t/
(

4T (d ′))]≤ exp

(

−t
δ′C′′

T (d ′)

)

+ exp

(

−t
C′′�(d ′)

A

){

1 + exp

(‖x|d ′‖∞
Aσa(d ′)

)}

.

(4.19)

PROOF. Define X̄ as in Theorem 7 with k = d ′. The theorem states X̄ dominates X|d ′ , the

projection of the d-dimensional RBM with parameters (�,μ,R) onto the first d ′ coordinates.

Therefore, a coordinate of X|d ′ hits zero whenever the same coordinate of X̄ hits zero. In

other words, Nd ′(x, t) dominates the corresponding quantity for X̄, for all x, t .

By hypothesis of the lemma, b(d ′) > 0. As in [3], for any v ∈ R
d ′
+ satisfying R−1v ≤ b(d ′),

v > 0, and any y ∈R
d ′
+ , define

‖y‖�
∞,v := sup

1≤i≤d ′
viσ

−2
i yi, �(v) := inf

1≤i≤d ′
σ−2

i v2
i ,

T (v) :=
(

1 +
log(2

∑d ′
i=1 v2

i σ
−2
i /�(v)))

�(v)

)

.
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With these definitions, recalling the stochastic domination noted in the previous paragraph,

[3], proof of Lemma 8, equations (33) and (41), applied to the process X̄ give positive con-

stants δ′, A0, not depending on d ′, d , μ, R, �, such that for each x ∈ R
d
+, A ≥ A0 and

t ≥ 4T (v)/δ′,

P
[

Nd ′(x, t) < δ′t/
(

4T (v)
)]

≤ exp

(

−
δ′t

128T (v)

)

+ exp

(

−
�(v)t

16A

)

{

1 + exp
(

A−1‖x|d ′‖�
∞,v

)}

.
(4.20)

From certain optimality properties of rates of convergence obtained in [3] (see [3], Section 8),

we take v = v∗ where v∗
i = (a(d ′))−1σi , 1 ≤ i ≤ d ′. Noting that T (v∗) = T (d ′), �(v∗) = �(d ′)

and ‖x|d ′‖�
∞,v∗ ≤ ‖x|d ′‖∞/(σa(d ′)), the lemma follows from (4.20). �

The following lemma combines the local contraction estimates obtained in Lemma 1 and

the probability estimates on number of times subsets of coordinates hit zero by time t , ob-

tained in Lemma 2, to furnish upper bounds on E[u(x, t)], x ∈R
d
+, t ≥ 0.

LEMMA 3. Suppose Assumption 1 holds. Fix d ′ ∈ {k0, . . . , d} and x ∈ R
d
+. Recall u(x, ·)

from (2.1), the quantities λ, β , δ, C′ in Lemma 1, and A0, �(d ′), T (d ′), δ′, C′′ in Lemma 2.

Define

(4.21) λ(t) = λ�tδ′/(4T (d′))
.

Then for any A ≥ A0 and t ≥ 4T (d ′)/δ′,

(4.22)
E
[

u(x, t)
]

≤ u(x,0)

[

exp

(

−t
δ′C′′

T (d ′)

)

+ exp

(

−t
C′′�(d ′)

A

){

1 + exp

(‖x|d ′‖∞
Aa(d ′)σ

)}]

+ u(x,0)λ(t) + C′‖x‖∞,δ(β/δ)d
′+1.

In the case d ′ = d , (4.22) holds without the C′‖x‖∞,δ(β/δ)d
′+1 term in the bound.

PROOF. With τ(x, d ′) as in Corollary 4, we have for any A ≥ A0 and t ≥ 4T (d ′)/δ′,

(4.23)

E
[

u(x, t)
]

≤ E
[

u(x, t)1
[

τ
(

x, d ′)> t
]]

+ C′‖x‖∞,δ(β/δ)d
′+1

= E
[

u(x, t)1
[

τ
(

x, d ′)> t,Nd ′(x, t) < tδ′/4T (d ′)]]

+E
[

u(x, t)1
[

τ
(

x, d ′)> t,Nd ′(x, t) ≥ tδ′/4T (d ′)]]

+ C′‖x‖∞,δ(β/δ)d
′+1

≤ u(x,0)P
[

Nd ′(x, t) < δ′t/
(

4T (d ′))]+ λ(t)u(x,0)

+ C′‖x‖∞,δ(β/δ)d
′+1

≤ u(x,0)

[

exp

(

−t
δ′C′′

T (d ′)

)

+ exp

(

−t
C′′�(d ′)

A

){

1 + exp

(‖x|d ′‖∞
Aa(d ′)σ

)}]

+ λ(t)u(x,0) + C′‖x‖∞,δ(β/δ)d
′+1,

where the second inequality follows from the monotonicity of u and Corollary 4, and the last

inequality follows from Lemma 2.

When d ′ = d , by Corollary 4,

u(x, t)1
[

Nd(x, t) ≥ tδ′/4T (d)]≤ λ(t)u(x,0).
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Thus, again using the monotonicity of u and applying Lemma 2 with d ′ = d , we have for any

A ≥ A0 and t ≥ 4T (d ′)/δ′,

(4.24)

E
[

u(x, t)
]

≤ E
[

u(x, t)1
[

Nd(x, t) < tδ′/4T (d)]]

+E
[

u(x, t)1
[

Nd(x, t) ≥ tδ′/4T (d)]]

≤ u(x,0)

[

exp

(

−t
δ′C′′

T (d)

)

+ exp

(

−t
C′′�(d)

A

){

1 + exp

( ‖x‖∞
Aa(d)σ

)}]

+ λ(t)u(x,0).

The lemma follows from (4.23) and (4.24). �

For any x ∈ R
d
+ and d ′ ∈ {k0, . . . , d − 1}, Lemma 3 shows that one can track the number

of times the first d ′ coordinates of X(x, ·) hit zero by time t to achieve exponential contrac-

tion in time t of the weighted distance u(x, ·) between X(x, ·) and X(0, ·), until u(x, ·) hits

C ′‖x‖∞,δ(β/δ)d
′+1. Thus, to ensure that this exponential contraction holds until u(x, ·) is

small, d ′ should be close to d . However, for large d , choosing a large d ′ slows down the con-

vergence rate as it takes a long time for the d ′ coordinates to hit zero. This is manifested in

the large value of T (d ′), which makes the exponential contraction coefficient in (4.22) small.

In the next lemma, we take an adaptive approach where the number of coordinates tracked

increases with time. Suppose Assumption 1 holds. With r∗ ≥ 0 as in III of Assumption 1, set

(4.25) �(t) =
{

d ∧
⌊

t1/(3+2r∗)⌋ under Assumption 1,

d ∧
⌊

t1/(1+2r∗)⌋ under Assumption 2.

�(·) represents the time varying number of coordinates of the process X(x, ·) that must hit

zero to achieve a desired contraction. The choice of �(·) is obtained by optimizing bounds on

the exponents appearing in (4.22), which depend on the assumptions.

LEMMA 4 (Decay rate of E[u(x, ·)]). Fix an initial condition X(x,0) = x ≥ 0. With δ,

β as in Lemma 1, recall the weighted supremum norm ‖x‖∞,δ and the process u(x, ·) as in

(2.1). Define �(·) as in (4.25).

If Assumption 1 holds, there exist constants C0,C1 > 0 not depending on d , x, r∗ such

that, with k′
0 = k′

0(r
∗) = k0 ∨ (8(3+2r∗)

C′
0e

)2, we have for d > k′
0 and any A ≥ A0 (A0 defined in

Lemma 2),

(4.26) E
[

u(x, t)
]

≤

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C1

(

u(x,0)e

‖x|�(t)‖∞
Aσa(�(t)) + ‖x‖∞,δ

)

e−C0
A

t1/(3+2r∗)

+ C1u(x,0)e
−C0

t1/(3+2r∗)

log t , k′
0 ≤ �(t) < d,

C1u(x,0)e
‖x‖∞

Aσa(d) e
−C0

t

Ad2(1+r∗)

+ C1u(x,0)e
−C0

t

d2(1+r∗) logd , �(t) = d.

If Assumption 2 holds, we have using the same constants k′
0, C0, C1,

(4.27) E
[

u(x, t)
]

≤

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C1

(

u(x,0)e

‖x|�(t)‖∞
Aσa(�(t)) + ‖x‖∞,δ

)

e−C0
A

t1/(1+2r∗)

+ C1u(x,0)e
−C0

t1/(1+2r∗)

log t , k′
0 ≤ �(t) < d,

C1u(x,0)e
‖x‖∞

Aσa(d) e
−C0

t

Ad2r∗

+ C1u(x,0)e
−C0

t

d2r∗ logd , �(t) = d.
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PROOF. We will employ Lemma 3 with d ′ = �(t). We will consider two cases: k0 ≤
�(t) < d and �(t) = d .

In the work below, all constants depend on α, M , C, r∗, b0, σ , σ in the notation of As-

sumptions 1 and 2, and β ∈ (α,1) of Lemma 1.

CASE (k0 ≤ �(t) < d). First, suppose Assumption 1 holds. Set d ′ = �(t) where for now

we suppress the dependence on t . To employ the bound in Lemma 3, we consider bounds on

the quantities T (d ′), �(d ′) and a(d ′). III of Assumption 1 implies b(d ′) ≥ b0(d
′)−r∗

for some

b0 > 0 not depending on d . This along with II, IV of Assumption 1 gives

(4.28) a(d ′) ≤ σ max
1≤i≤d ′

1

b
(d ′)
i

d ′
∑

j=1

(

R−1)

ij ≤
d ′σM

b(d ′)
≤
(

d ′)1+r∗ σM

b0

.

Here, we have used ((R|d ′)−1)ij ≤ (R−1)ij for 1 ≤ i, j ≤ d ′ in the first inequality, which is

a consequence of P T having nonnegative entries. From (4.28) and the definitions in (4.18),

setting A ≥ A0 and recalling d ′ = �(t) = d ∧ �t1/(3+2r∗)
, there exists C′
0 > 0 not dependent

on d ′, d , r∗ such that for all t ≥ 2,

(4.29)

−t
�(d ′)

A
= −t

1

A(a(d ′))2
≤ −t

b2
0

A(d ′)2(1+r∗)(σM)2
≤ −

C′
0

A
t1/(3+2r∗),

−t
δ′

T (d ′)
≤ −t

δ′

1 + (d ′)2(1+r∗)(σM
b0

)2 log(2d ′)
≤ −C′

0

t1/(3+2r∗)

log t
.

C′
0 in the above can be taken to be (2(σM

b0
)2 +2 log 2)−1. Recalling λ(t) = λ�tδ′/4T (d′)
, (4.29)

also gives

(4.30) λ(t) ≤ λ
C′

0
4

t1/(3+2r∗)

log t
−1

.

In addition, (4.29) implies 4T (d′)
δ′ ≤ 4

C′
0
t1−1/(3+2r∗) log t . Since t−1/2(3+2r∗) log t as a func-

tion of t is upper bounded by 2(3+2r∗)
e

, we have 4T (d′)
δ′ ≤ t for (8(3+2r∗)

C′
0e

)2(3+2r∗) ≤ t . These

calculations show the condition t ≥ 4T (d′)
δ′ in Lemma 3 holds when �(t) ≥ (8(3+2r∗)

C′
0e

)2.

We now apply (4.29), (4.30) to (4.22) in Lemma 3, with A ≥ A0. Recalling k′
0 = k′

0(r
∗) =

k0 ∨ (8(3+2r∗)
C′

0e
)2 we have

(4.31)

E
[

u(x, t)
]

≤ u(x,0)

[

1 + exp

(‖x|�(t)‖∞
Aσa(�(t))

)]

e−C′′C′
0

A
t1/(3+2r∗)

+ u(x,0)e
−C′′C′

0
t1/(3+2r∗)

log t + u(x,0)λ
C′

0
4

t1/(3+2r∗)

log t
−1

+ C′‖x‖∞,δ(β/δ)t
1/(3+2r∗)

for k′
0 ≤ �(t) < d,

where we used in the second line d ′ + 1 = �(t) + 1 ≥ t1/(3+2r∗). This proves the first case in

(4.26) with

(4.32)

C0 = C′′C′
0 ∧

C′
0

4
log

1

λ
∧ log

δ

β
,

C1 =
(

2 + 1

λ

)

∨ C′.
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If Assumption 2 holds, we set d ′ = �(t) = d ∧ �t1/(1+2r∗)
. Instead of (4.28), we have

(4.33) a(d ′) ≤ σ max
1≤i≤d ′

1

b
(d ′)
i

d ′
∑

j=1

(

R−1)

ij ≤ σM

b(d ′)
≤
(

d ′)r∗ σM

b0

.

Proceeding in the same way as (4.29), we use (4.33) to show

(4.34)

−t
�(d ′)

A
= −t

1

A(a(d ′))2
≤ −t

b2
0

A(d ′)2r∗
(σM)2

≤ −
C′

0

A
t1/(1+2r∗),

−t
δ′

T (d ′)
≤ −t

δ′

1 + (d ′)2r∗
(σM

b0
)2 log(2d ′)

≤ −C′
0

t1/(1+2r∗)

log t
.

Arguing as in (4.30) but using (4.34) instead of (4.29), we have

(4.35) λ(t) ≤ λ
C′

0
4

t1/(1+2r∗)

log t
−1

.

Using (4.34), we have 4T (d′)
δ′ ≤ 4

C′
0
t1−1/(1+2r∗) log t . As in the argument after (4.30), 4T (d′)

δ′ ≤ t

for t such that �(t) ≥ (8(1+2r∗)
C′

0e
)2, under which Lemma 3 is valid. We now apply (4.34), (4.35)

to (4.22):

(4.36)

E
[

u(x, t)
]

≤ u(x,0)

[

1 + exp

(‖x|�(t)‖∞
Aa(�(t))σ

)]

e−
C′′C′

0
A

t1/(1+2r∗)

+ u(x,0)e
−C′′C′

0
t1/(1+2r∗)

log t + u(x,0)λ
C′

0
4

t1/(1+2r∗)

log t
−1

+ C′‖x‖∞,δ(β/δ)t
1/(1+2r∗)

for k′
0 ≤ �(t) < d.

This proves the first case in (4.27) with C0, C1 as in (4.32). Since (8(1+2r∗)
C′

0e
)2 < (8(3+2r∗)

C′
0e

)2,

we use the same k′
0 in (4.31) and (4.36).

CASE (�(t) = d). First, we consider the scenario of Assumption 1, in which case �(t) = d

implies t ≥ d3+2r∗
. We follow the same basic recipe: We use Lemma 3, this time in the case

d ′ = d , and bound the quantities a(d), T (d), �(d).

The bound on a(d ′) in (4.28) continues to hold with d ′ = d , and using this with we have

(4.37)

−t
�(d)

A
= −t

1

A(a(d))2
≤ −t

Ab2
0

d2(1+r∗)(σM)2
≤ −C′

0

t

d2(1+r∗)
,

−t
δ′

T (d)
≤ −t

δ′

1 + d2(1+r∗)(σM
b0

)2 log(2d)
≤ −C′

0

t

d2(1+r∗) logd
.

Now (4.37) implies

(4.38) λ(t) ≤ λ

C′
0

4
t

d2(1+r∗) logd
−1

.

Since the lemma statement has imposed d > k′
0, we have t ≥ [k′

0(r
∗)]3+2r∗

. Apply-

ing the argument preceding (4.31), this implies t ≥ 4T (d)

δ′ , and thus Lemma 3 holds for

all t ≥ [k′
0(r

∗)]3+2r∗
in the case �(t) = d . Using (4.37), (4.38) in (4.22) (without the

C′‖x‖∞,δ(β/δ)d
′+1 term), we have

(4.39)
E
[

u(x, t)
]

≤ C1u(x,0)e
‖x‖∞

Aa(d)σ e
−C0

t

Ad2(1+r∗)

+ C1u(x,0)e
−C0

t

d2(1+r∗) logd for �(t) = d,

where we use C0, C1 from (4.32). This is the second line in (4.26).
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When Assumption 2 holds, �(t) = d implies t ≥ d1+2r∗
. The second line of (4.27) is

proven in identical fashion to (4.39), after accounting for the stronger assumptions in the

same way as we did in (4.34) and (4.36). �

For any β ∈ (α,1) and x ∈ R
d
+, Lemma 4 gives quantitative estimates for the decay rate of

the ‖·‖1,β distance between X(x, ·) and X(0, ·). To use this in furnishing rates of convergence

to stationarity in ‖ · ‖1,β distance starting from any x ∈ R
d
+, namely Theorem 1, we use

Theorem 6 to make the following simple observation. Recalling u in (2.1) and uπ in (2.2),

we have by the triangle inequality,
∥

∥

(

X(x, t) − X
(

X(∞), t
))∥

∥

1,β

≤
∥

∥

(

X(x, t) − X(0, t)
)∥

∥

1,β +
∥

∥

(

X
(

X(∞), t
)

− X(0, t)
)∥

∥

1,β

≤
∥

∥R−1(X(x, t) − X(0, t)
)∥

∥

1,β

+
∥

∥R−1(X
(

X(∞), t
)

− X(0, t)
)∥

∥

1,β

= u(x, t) + uπ (t).

(4.40)

To bound the expectation of the final two terms in (4.40), we apply Lemma 4 to bound

E[u(x, t)]. To bound E[uπ (t)], we will use a slightly altered version of Lemma 3 and

Lemma 4 conditional on x = X(∞) followed by taking expectation in the law of X(∞).

This will require quantitative control over moments of several functionals of X(∞). This is

the objective of the following lemma.

LEMMA 5 (Moments under stationarity). Suppose Assumption 1 holds, with α ∈ (0,1)

set therein. Fix β ∈ (α,1) and define u(x,0) = ‖R−1x‖1,β as in (2.1). Fix δ ∈ (β,1).

Recall the random variable X(∞) distributed as the stationary distribution for the process

(1.1). Fix d ′ ∈ {k0, . . . , d}. Then there exists a constant C′′′ ≥ 1 not depending on d ′, d or r∗

(see III of Assumption 1) such that

E

[

exp

(

2
‖X|d ′(∞)‖∞

Aσa(d ′)

)]

≤ 1 + d ′ for A ≥ 2d ′ σM

σ
,(4.41)

E
[∥

∥X(∞)
∥

∥

∞,δ

]

≤ E
[∥

∥X(∞)
∥

∥

∞,
√

δ

]

≤ C′′′L1(δ),(4.42)

E
[

u
(

X(∞),0
)]

≤
√

E
[

u2
(

X(∞),0
)]

≤ C′′′L1(δ),(4.43)

where L1(δ) := (kr∗+1
0 +∑d

i=k0
i3+r∗

δi/2). If in addition Assumption 2 holds, we have

E

[

exp

(

2
‖X|d ′(∞)‖∞

Aσa(d ′)

)]

≤ 1 + d ′ for A ≥ 2
σM

σ
,(4.44)

E
[∥

∥X(∞)
∥

∥

∞,δ

]

≤ E
[∥

∥X(∞)
∥

∥

∞,
√

δ

]

≤ C′′′L2(δ),(4.45)

E
[

u
(

X(∞),0
)]

≤
√

E
[

u2
(

X(∞),0
)]

≤ C′′′L2(δ),(4.46)

where L2(δ) := (kr∗
0 +

∑d
i=k0

i2+r∗
δi/2).

PROOF. For k ∈ {k0, . . . , d}, write X̄(k) for the process X̄ defined in Theorem 7.

III of Assumption 1 imposes −(R|d ′)−1μ|d ′ = b(d ′) > 0. Thus X̄(d ′) has a stationary dis-

tribution ([16], Section 6). We write X̄(d ′)(∞) for the random variable with this distribu-

tion. From [16], Lemma 4, Section 6, and [16], Lemma 12 and its proof, Section 6, for any

θ (d ′) ∈ R
d ′

such that

(4.47) θ (d ′) > 0, (R|d ′)−1θ (d ′) ≤ b(d ′),
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we have

(4.48)

P
[

(R|d ′)−1X̄(d ′)(∞) ≤ (R|d ′)−1z
]

= lim inf
t→∞

P
[

(R|d ′)−1X̄(d ′)(0, t) ≤ (R|d ′)−1z
]

≥ 1 −
d ′
∑

j=1

exp

(

−2zj

θ
(d ′)
j

σj

)

, z ∈ R
d ′
+ .

In other words, the distribution of (R|d ′)−1X̄(d ′)(∞) has exponential tails. This is the key fact

in proving the lemma, and the remainder of the argument is in choosing θ (d ′) appropriately

to achieve the desired dependence on the parameters and dimension. Recalling the quantity

a(d ′) from Assumption 1 we set

(4.49) θ
(d ′)
i =

σ

a(d ′)
, 1 ≤ i ≤ d ′.

By definition of a(d ′), for each 1 ≤ i ≤ d ′,

d ′
∑

�=1

(

(R|d ′)−1)

i�θ
(d ′)
� ≤

d ′
∑

�=1

(

(R|d ′)−1)

i�

(

b
(d ′)
i σ

∑d ′
j=1((R|d ′)−1)ijσj

)

≤
d ′
∑

�=1

(

(R|d ′)−1)

i�

(

b
(d ′)
i σ�

∑d ′
j=1((R|d ′)−1)ijσj

)

= b
(d ′)
i ,

(4.50)

and hence, θ (d ′) satisfies (4.47).

We now prove the exponential moments (4.41) and (4.44). Since we consider a fixed

d ′ here, we write X̄(∞) = X̄(d ′)(∞) to lighten notation. Note Theorem 7 implies X̄(∞)

stochastically dominates X|d ′(∞). Hence, since ((R|d ′)−1)ij ≥ 0 we have for any z ∈ R
d ′
+ ,

(4.51) P
[(

(R|d ′)−1X|d ′(∞)
)

i ≤ zi,1 ≤ i ≤ d ′]≥ P
[(

(R|d ′)−1X̄(∞)
)

i ≤ zi,1 ≤ i ≤ d ′].

For arbitrary z0 ≥ 1, setting zi = (log z0)
Aa(d′)

2
for each i = 1, . . . , d ′ in (4.51),

(4.52)

P

[

exp

(

2
‖X|d ′(∞)‖∞

Aa(d ′)

)

≤ z0

]

= P

[

Xi(∞) ≤ (log z0)
Aa(d ′)

2
,1 ≤ i ≤ d ′

]

≥ P

[

(

(R|d ′)−1X|d ′(∞)
)

i ≤ (log z0)
Aa(d ′)

2
,1 ≤ i ≤ d ′

]

≥ P

[

(

(R|d ′)−1X|d ′(∞)
)

i ≤ (log z0)
Aa(d ′)

2

∑d ′
j=1((R|d ′)−1)ij

max1≤k≤d ′
∑d ′

j=1((R|d ′)−1)kj
,1 ≤ i ≤ d ′

]

≥ 1 −
d ′
∑

j=1

exp

(

−(log z0)
Aσ

σj max1≤k≤d ′
∑d ′

j=1((R|d ′)−1)kj

)

≥ 1 − d ′ exp

(

−(log z0)
Aσ

σMd ′

)

.

We used in the second line (R|d ′)−1x ≥ x, ∀x ∈ R
d ′
+ . For the third inequality, we used (4.48)

with the d ′-dimensional vector (log z0)
Aa(d′)

2
(max1≤k≤d ′

∑d ′
j=1((R|d ′)−1)kj )

−1(1, . . . ,1)T in
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place of z. For the last inequality, we used II and IV of Assumption 1. From (4.52), we obtain

(4.41) as follows:

(4.53)

E

[

exp

(

2
‖X|d ′(∞)‖∞

Aσa(d ′)

)]

≤ 1 +
∫ ∞

1
P

[

exp

(

2
‖X|d ′(∞)‖∞

Aa(d ′)

)

> z0

]

dz0

≤ 1 + d ′
∫ ∞

1
exp

(

−(log z0)
Aσ

σMd ′

)

≤ 1 + d ′,

for A ≥ 2d ′ σM
σ

. If instead Assumption 2 holds, then

(4.54) max
1≤k≤d ′

d ′
∑

j=1

(

(R|d ′)−1)

kj ≤ max
1≤k≤d ′

d ′
∑

j=1

(

R−1)

kj ≤ M.

Instead of (4.52) we have

(4.55)

P

[

exp

(

2
‖X|d ′(∞)‖∞

Aa(d ′)

)

≤ z0

]

= P

[

Xi(∞) ≤ (log z0)
Aa(d ′)

2
,1 ≤ i ≤ d ′

]

≥ 1 −
d ′
∑

j=1

exp

(

−(log z0)
Aσ

σj max1≤k≤d ′
∑d ′

j=1((R|d ′)−1)kj

)

≥ 1 −
d ′
∑

j=1

exp

(

−(log z0)
Aσ

σjM

)

≥ 1 − d ′ exp

(

−(log z0)
Aσ

σM

)

.

This proves (4.44) by proceeding exactly as in (4.53), using (4.55) in place of (4.52).

We turn to (4.42), recalling the notation X̄(k)(∞) from the start of this proof. By Theo-

rem 7, Xi(∞) ≤ X̄
(k0)
i (∞) for i = 1, . . . , k0 and Xi(∞) ≤ X̄

(i)
i (∞) for i = k0, . . . , d . This

implies

(4.56) P
[∥

∥X(∞)
∥

∥

∞,
√

δ > z0

]

≤ P
[∥

∥X̄(k0)(∞)
∥

∥

∞,
√

δ > z0

]

+
d
∑

i=k0

P
[

δi/2X̄
(i)
i (∞) > z0

]

.

In preparation to handle the first probability of the right-hand side in (4.56), we note that by

I, II of Assumption 1 and ((R|k0
)−1)ij ≤ (R−1)ij ,

(4.57)

k0
∑

j=1

(

(R|k0
)−1)

ij δ
−j/2 ≤ M

i
∑

j=1

δ−j/2 + 1[i < k0]C
k0
∑

j=i+1

αj−iδ−j/2

≤ δ−i/2 M

1 −
√

δ
+ 1[i < k0]Cδ−i/2

k0−i
∑

j=1

(α/
√

δ)j ≤ C′δ−i/2,

for C′ = M

1−
√

δ
+ C

α/
√

δ

1−(α/
√

δ)
, recalling that 0 < α <

√
δ < 1. In the following, we set θ

(i)
j =

σ

a(k0) for k0 ≤ i ≤ d , 1 ≤ j ≤ i. Note that

P
[∥

∥X̄(k0)(∞)
∥

∥

∞,
√

δ ≤ z0

]

≥ P
[(

(R|k0
)−1X̄(k0)(∞)

)

i ≤ z0δ
−i/2, i = 1, . . . , k0

]

(4.58)
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≥ P

[

(

(R|k0
)−1X̄(k0)(∞)

)

i ≤ z0

∑k0

j=1((R|k0
)−1)ijδ

−j/2

C′ , i = 1, . . . , k0

]

≥ 1 −
k0
∑

j=1

exp

(

−2z0δ
−j/2

θ
(k0)
j

C′σj

)

≥ 1 −
k0
∑

j=1

exp

(

−2z0δ
−j/2 σ

a(k0)C′σ

)

.

In the first line, we used ((R|k0
)−1X̄

(k0)
i (∞))i ≥ X̄

(k0)
i (∞), i = 1, . . . , k0. The second line

uses (4.57). The last line applies (4.48) with k0 in place of d ′ and with zj = (C′)−1z0δ
−j/2,

1 ≤ j ≤ k0, and uses IV of Assumption 1.

Now we bound P[δi/2X̄
(i)
i (∞) > z0] for i = k0, . . . , d required to bound the second term

of the right-hand side in (4.56). In the following equations, we use II of Assumption 1, which

says ((R|i)−1)kj ≤ M in the third line and (4.48) to show

(4.59)

P
[

δi/2X̄
(i)
i (∞) ≤ z0

]

≥ P
[(

(R|i)−1X̄(i)(∞)
)

i ≤ z0δ
−i/2]

≥ P
[(

(R|i)−1X̄(i)(∞)
)

k ≤ z0δ
−i/2, k = 1, . . . , i

]

≥ P

[

(

(R|i)−1X̄(i)(∞)
)

k ≤ z0δ
−i/2

∑i
j=1((R|i)−1)kj

iM
, k = 1, . . . , i

]

≥ 1 −
i
∑

j=1

exp

(

−2z0δ
−i/2

θ
(i)
j

iMσj

)

≥ 1 − i exp

(

−2z0δ
−i/2 σ

ia(i)Mσ

)

,

for i = k0, . . . , d , where in the first line we used ((R|k0
)−1X̄(i)(∞))i ≥ X̄

(i)
i (∞). Applying

(4.58), (4.59) to (4.56), we get

P
[∥

∥X(∞)
∥

∥

∞,
√

δ > z0

]

≤
k0
∑

i=1

exp

(

−2z0δ
−i/2 σ

a(k0)C′σ

)

+
d
∑

i=k0

i exp

(

−2z0δ
−i/2 σ

ia(i)Mσ

)

.

(4.60)

As a result,

(4.61)

E
[∥

∥X(∞)
∥

∥

∞,
√

δ

]

=
∫ ∞

0
P
[∥

∥X(∞)
∥

∥

∞,
√

δ > z0

]

dz0

≤ a(k0)
σC′

2σ

k0
∑

i=1

δi/2 +
Mσ

2σ

d
∑

i=k0

i2a(i)δi/2

≤ a(k0)
σC′√δ

2σ(1 −
√

δ)
+

Mσ

2σ

d
∑

i=k0

i2a(i)δi/2

≤ kr∗+1
0

MC′σ 2
√

δ

2b0σ(1 −
√

δ)
+

M2σ 2

2b0σ

d
∑

i=k0

i3+r∗
δi/2

≤ C′′
(

kr∗+1
0 +

d
∑

i=k0

i3+r∗
δi/2

)

,
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with C′′ = M2σ 2

2b0σ
∨ MC′σ 2

√
δ

2b0σ(1−
√

δ)
. In the final line, we used the fact that a(i) ≤ iMσ

b(i) by def-

inition of a(i) and Assumption 1, and b(i) ≥ b0i
−r∗

using III of Assumption 1. If instead

Assumption 2 holds, a(i) ≤ Mσ

b(i) ≤ ir
∗ Mσ

b0
. Substituting this fact in the final line of (4.61), but

otherwise proceeding in exactly the same way, produces (4.45) with the same choice of C′′.
Now we show (4.43) and (4.46). We need prove only the second inequality in (4.43),

(4.46). Using Jensen’s inequality in the first line below, we have

(4.62)

u2(X(∞),0
)

=
(

d
∑

i=1

βi
d
∑

j=1

(

R−1)

ij (∞)Xj (∞)

)2

≤
β

1 − β

d
∑

i=1

βi

(

d
∑

j=1

(

R−1)

ij (∞)Xj (∞)

)2

≤
∥

∥X(∞)
∥

∥

2

∞,
√

δ

β

1 − β

d
∑

i=1

βi

(

d
∑

j=1

(

R−1)

ij (∞)δ−j/2

)2

≤
∥

∥X(∞)
∥

∥

2

∞,
√

δ

(C′)2β

1 − β

d
∑

i=1

βiδ−i ≤
∥

∥X(∞)
∥

∥

2

∞,
√

δ

(C′)2β

1 − β

β/δ

1 − β/δ
.

In the second line, we used (4.57) with d in place of k0 and C′ set therein. For the final

line, recall β ∈ (α, δ). Using (4.60) to bound the quadratic moment on the right-hand side of

(4.62),

(4.63)

E
[

u2(X(∞),0
)]

≤
(C′)2β

1 − β

β/δ

1 − β/δ
E
[∥

∥X(∞)
∥

∥

2

∞,
√

δ

]

=
(C′)2β

1 − β

β/δ

1 − β/δ

∫ ∞

0
P
[∥

∥X(∞)
∥

∥

∞,
√

δ >
√

z0

]

dz0

≤
(C′)2β

1 − β

β/δ

1 − β/δ

∫ ∞

0

k0
∑

i=1

exp

(

−2
√

z0δ
−i/2 σ

a(k0)C′σ

)

dz0

+
(C′)2β

1 − β

β/δ

1 − β/δ

∫ ∞

0

d
∑

i=k0

i exp

(

−2
√

z0δ
−i/2 σ

ia(i)Mσ

)

dz0

= 2
(C′)2β

1 − β

β/δ

1 − β/δ

(

(

a(k0)C′σ

2σ

)2 k0
∑

i=1

δi +
(

Mσ

2σ

)2 d
∑

i=k0

δii3(a(i))2

)

.

Under Assumption 1, we have a(i) ≤ iMσ

b(i) ≤ i1+r∗ Mσ
b0

, and applying this to (4.63) gives

(4.64) E
[

u2(X(∞),0
)]

≤
(

C′′′)2
(

k
2(r∗+1)
0 +

d
∑

i=k0

i5+2r∗
δi

)

,

where we have chosen C′′′ ≥ C′′ to be large enough that both (4.64) and (4.61) are satisfied,

(4.65) C′′′ = C′′ ∨
√

(C′)2β

2(1 − β)

β/δ

1 − β/δ

(

Mσ

b0

)2((C′σ

σ

)2 δ

1 − δ
+
(

Mσ

σ

)2)

.
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Under Assumption 2, we have a(i) ≤ Mσ

b(i) ≤ ir
∗ Mσ

b0
, so by (4.63)

(4.66) E
[

u2(X(∞),0
)]

≤
(

C′′′)2
(

k2r∗
0 +

d
∑

i=k0

i3+2r∗
δi

)

.

After taking square roots and using
∑m

1 x2
i ≤ (

∑m
1 xi)

2 for any nonnegative numbers

x1, . . . , xm, (4.64) proves (4.43) and (4.66) proves (4.46). �

Now we bound E[uπ (t)]. We would like simply to use Lemma 4 conditional on x = X(∞)

followed by taking expectation in the law of X(∞). We will do so to prove (4.69) under

Assumption 2, but this is not desirable under Assumption 1 for the following reason.

If one tries this approach under Assumption 1, terms of the form E[exp(2
‖X|�(t)(∞)‖∞

Aσa(�(t)) )]
(where �(·) is defined in (4.25)) appear in the bound and A should be chosen large enough

so that this expectation is finite. Lemma 5 shows this requires A to be of order �(t). How-

ever, such choice of A implies that e−C0
A

t1/(3+2r∗)
is bounded below by a positive dimension

independent constant as t → ∞, thereby lending the bounds obtained via Lemma 4 trivial.

Thus, under Assumption 1, we proceed by choosing a higher number of coordinates of

X(x, ·) that must hit zero in order to achieve a desirable contraction in E[uπ (·)]. Namely,

instead of �(·) of Lemma 4, we define

(4.67) d(t) =
{

d ∧
⌊

t1/(4+2r∗)⌋ under Assumption 1,

d ∧
⌊

t1/(1+2r∗)⌋ under Assumption 2,

with r∗ ≥ 0 as in III of Assumption 1.

LEMMA 6 (Decay rate of E[uπ (·)]). Suppose Assumption 1 holds for X, an RBM(�,μ,

R), with α ∈ (0,1) defined therein. Fix β ∈ (α,1), δ ∈ (β,1), and recall the weighted distance

uπ (·) from (2.2). Recall L1(δ), L2(δ) from Lemma 5.

There exist constants C̄0, C̄1,C
′
0 > 0 not depending on d or r∗ such that, with k′′

0 =
k′′

0 (r∗) = max{k0,
A0σ
2σM

, (8(4+2r∗)
C′

0e
)2} (A0 defined in Lemma 2), we have for d > k′′

0

(4.68) E
[

uπ (t)
]

≤

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C̄1L1(δ)
√

1 + d(t)e−C̄0t
1/(4+2r∗)

+ C̄1L1(δ)e
−C̄0

t1/(2+r∗)

log t , k′′
0 ≤ d(t) < d,

C̄1L1(δ)
√

1 + de
−C̄0

t

d3+2r∗

+ C̄1L1(δ)e
−C̄0

t

d2(1+r∗) logd , d(t) = d.

If instead Assumption 2 holds, retaining k′′
0 , C̄1, C̄0 but switching d(t) according to (4.67),

we have

(4.69) E
[

uπ (t)
]

≤

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C̄1L2(δ)
√

1 + d(t)e−C̄0t
1/(1+2r∗)

+ C̄1L2(δ)e
−C̄0

t1/(1+2r∗)

log t , k′′
0 ≤ d(t) < d,

C̄1L2(δ)
√

1 + de
−C̄0

t

d2r∗

+ C̄1L2(δ)e
−C̄0

t

d2r∗ logd , d(t) = d.

PROOF. The proof technique is similar to that of Lemma 4, so we merely sketch the

common parts of the argument.
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Suppose Assumption 1 holds, and recall (4.28) holds for arbitrary d ′ ∈ {k′′
0 , . . . , d}. Set

d ′ = d(t), with d(t) as in (4.67), and consider first the case d ′ < d . Setting A = 2d ′ σM
σ

≥ A0

(by choice of k′′
0 ), we apply (4.28) exactly as in (4.29) to show

(4.70)

−t
�(d ′)

A
= −t

1

2d ′ σM
σ

(a(d ′))2
≤ −t

b2
0σ

2(d ′)1+2(1+r∗)(σM)3
≤ −C′

0t
1/(4+2r∗),

−t
δ′

T (d ′)
≤ −t

δ′

1 + (d ′)2(1+r∗)(σM
b0

)2 log(2d ′)
≤ −C′

0

t1/(2+r∗)

log t
,

for a constant C′
0 > 0 that does not depend on d , d ′, r∗. We note the discrepancy of orders in

the first and second line of (4.70) comes from the extra d ′-dependence in the first term, which

was not present in (4.29).

Fix x ∈ R
d
+. Arguments preceding (4.31) remain valid here: Apply Lemma 3 with A =

2d ′ σM
σ

, using (4.70) instead of (4.29), to obtain

(4.71)

E
[

u(x, t)
]

≤ u(x,0)

[

1 + exp

( ‖x|d(t)‖∞
2d(t)σMa(d(t))

)]

e−C′′C′
0t

1/(4+2r∗)

+ u(x,0)e
−C′′C′

0
t1/(2+r∗)

log t + u(x,0)λ
C′

0
4

t1/(2+r∗)

log t
−1

+ C′‖x‖∞,δ(β/δ)t
1/(4+2r∗)

,

for k′′
0 ≤ d(t) < d . As in the proof of (4.31), d(t) ≥ (8(4+2r∗)

C′
0e

)2 implies t ≥ 4T (d(t))

δ
.

Applying (4.71) conditional on x = X(∞), taking expectations and applying Lemma 5 to

bound the expectations of associated functionals of X(∞) produces

(4.72)

E
[

uπ (t)
]

= E
[

u
(

X(∞), t
)]

≤ E

[

u
(

X(∞),0
)

[

1 + exp

( ‖X|d(t)(∞)‖∞
2d(t)σMa(d(t))

)]]

e−C′′C′
0t

1/(4+2r∗)

+E
[

u
(

X(∞),0
)]

e
−C′′C′

0
t1/(2+r∗)

log t +E
[

u
(

X(∞),0
)]

λ
C′

0
4

t1/(2+r∗)

log t
−1

+ C′
E
[∥

∥X(∞)
∥

∥

∞,δ

]

(β/δ)t
1/(4+2r∗)

≤ E

[

u
(

X(∞),0
)

[

1 + exp

( ‖X|d(t)(∞)‖∞
2d(t)σMa(d(t))

)]]

e−C′′C′
0t

1/(4+2r∗)

+ C′′′L1(δ)
(

e
−C′′C′

0
t1/(2+r∗)

log t + λ
C′

0
4

t1/(2+r∗)

log t
−1 + C′(β/δ)t

1/(4+2r∗))

≤ 2C′′′L1(δ)
√

1 + d(t)e−C′′C′
0t

1/(4+2r∗)

+ C′′′L1(δ)
(

e
−C′′C′

0
t1/(2+r∗)

log t + λ
C′

0
4

t1/(2+r∗)

log t
−1 + C′(β/δ)t

1/(4+2r∗))

,

for k′′
0 ≤ d(t) < d„ where L1(δ) is defined in Lemma 5. The second inequality above fol-

lows from (4.42) and (4.43). In the final line, we used the Cauchy–Schwarz inequality, the

observation that (1 + ez)2 ≤ 4e2z for z ≥ 0, and (4.41) and (4.43). This proves the first line in

(4.68), with

(4.73) C̄1 = C′′′((2 + C′)∨
(

1 + λ−1))
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and

(4.74) C̄0 = C′′C′
0 ∧

C′
0

4
log

1

λ
∧ log

δ

β
.

We now consider d(t) = d , which implies t ≥ d4+2r∗
. Setting A = 2d σM

σ
≥ A0, once again

we use (4.28) with d ′ = d to show

(4.75)

−t
�(d ′)

A
= −t

1

2d σM
σ

(a(d))2
≤ −t

b2
0σ

2d1+2(1+r∗)(σM)3
≤ −C′

0

t

d1+2(1+r∗)
,

−t
δ′

T (d)
≤ −t

δ′

1 + d2(1+r∗)(σM
b0

)2 log(2d)
≤ −C′

0

t

d2(1+r∗) logd
.

The second line of (4.68) now follows using Lemma 3 and Lemma 5 with A = 2d σM
σ

via

calculations exactly like (4.72), using (4.75) instead of (4.70).

To prove (4.69), that is, supposing Assumption 2 holds, we simply use Lemma 4: Set

x = X(∞) and A = max{2σM
σ

,A0} in (4.27) then take expectations with respect to X(∞).

Result (4.69) now follows in a manner perfectly analogous to (4.72), using (4.44), (4.45),

(4.46) instead of (4.41), (4.42), (4.43). �

With Lemma 4 and Lemma 6 in hand, we are now ready to prove Theorem 1 via (4.40).

PROOF OF THEOREM 1. Fix any β ∈ (α,1) and δ ∈ (β,1). Fix B ∈ (0,∞) and fix any

x ∈ S(b,B). First, we consider the case in which Assumption 1 holds. Since d(t) of (4.68)

differs slightly from �(t) of Lemma 4, we must take a little care to match the convergence

rates appropriately.

Recall �(t) of Lemma 4 is given as �(t) = d ∧ �t1/(3+2r∗)
. Recall from the statement of

that lemma the term k′
0 = k′

0(r
∗) = k0 ∨ (8(3+2r∗)

C′
0e

)2. Then (k0 ∨ (8(3+2r∗)
C′

0e
)2 + 1)3+2r∗ ≤ t <

d3+2r∗
implies k′

0 ≤ �(t) < d . As a result, we have directly from the first line of (4.26), using

A = A0 (A0 defined in Lemma 2),

(4.76)

E
[

u(x, t)
]

≤ C1

(

u(x,0)e

‖x|�(t)‖∞
A0σa(�(t)) + ‖x‖∞,δ

)

e
− C0

A0
t1/(3+2r∗)

+ C1u(x,0)e
−C0

t1/(3+2r∗)

log t

≤ C′
1‖x‖∞

(

e

‖x|�(t)‖∞
A0σa(�(t)) + 1

)

e
− C0

A0
t1/(3+2r∗)

+ C′
1‖x‖∞e

−C0
t1/(3+2r∗)

log t

≤ C′
1‖x‖∞

(

eB/σ 2 + 1
)

e
− C0

A0
t1/(3+2r∗)

+ C′
1‖x‖∞e

−C0
t1/(3+2r∗)

log t ,

for (k0 ∨ (8(3+2r∗)
C′

0e
)2 + 1)3+2r∗ ≤ t < d3+2r∗

, where C′
1 is a constant not depending on

d , x. The second-last line above follows from the observation u(x,0) ≤ C̃′ β
1−β

‖x‖∞ which

is a consequence of (4.10). In the final line, we have used A0 ≥ 1, x ∈ S(b,B) and
∑�(t)

j=1((R|�(t))−1)ij ≥ 1 for 1 ≤ i ≤ �(t) to get from the definition of a(k),

‖x|�(t)‖∞
A0σa(�(t))

≤ σ−2b(�(t))‖x|�(t)‖∞ ≤ σ−2B.

Now recall d(t) = d ∧ �t1/(4+2r∗)
, which by definition gives d(t) ≤ �(t). Therefore, re-

calling k′′
0 from Lemma 6, (k′2

0 + 1)4+2r∗ ≤ t < d3+2r∗
implies k0 ∨ (8(4+2r∗)

C′
0e

)2 ≤ d(t) ≤
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�(t) < d . Hence, we combine (4.40), (4.76) with the first line of (4.68) to obtain

(4.77)

E
[∥

∥

(

X(x, t) − X
(

X(∞), t
))∥

∥

1,β

]

≤ E
[

uπ (t)
]

+ C′
1‖x‖∞

(

eB/σ 2 + 1
)

e
− C0

A0
t1/(3+2r∗)

+ C′
1‖x‖∞e

−C0
t1/(3+2r∗)

log t

≤ C̄1L1(δ)

√

1 + t1/(4+2r∗)e−C̄0t
1/(4+2r∗) + C̄1L1(δ)e

−C̄0
t1/(2+r∗)

log t

+ C′
1‖x‖∞

(

eB/σ 2 + 1
)

e
− C0

A0
t1/(3+2r∗)

+ C′
1‖x‖∞e

−C0
t1/(3+2r∗)

log t ,

for (k′2
0 + 1)4+2r∗ ≤ t < d3+2r∗

. Now if d3+2r∗ ≤ t < d4+2r∗
the bound on E[uπ (t)] in the

first line of (4.68) continues to hold, and the bound on E[u(x, t)] from the second line of

(4.26) is now valid. Thus, we have

(4.78)

E
[∥

∥

(

X(x, t) − X
(

X(∞), t
))∥

∥

1,β

]

≤ C̄1L1(δ)

√

1 + t1/(4+2r∗)e−C̄0t
1/(4+2r∗) + C̄1L1(δ)e

−C̄0
t1/(2+r∗)

log t

+ C′
1‖x‖∞

(

eB/σ 2 + 1
)

e
− C0

A0

t

d2(1+r∗) + C′
1‖x‖∞e

−C0
t

d2(1+r∗) logd

≤ C̄1L1(δ)

√

1 + t1/(4+2r∗)e−C̄0t
1/(4+2r∗) + C̄1L1(δ)e

−C̄0
t1/(2+r∗)

log t

+ C′
1‖x‖∞

(

eB/σ 2 + 1
)

e
− C0

A0
t1/(3+2r∗)

+ C′
1‖x‖∞e

−3C0
t1/(3+2r∗)

log t ,

for d3+2r∗ ≤ t < d4+2r∗
, where the final inequality follows from t

d2(1+r∗) ≥ t1/(3+2r∗) and

logd ≤ log t
3+2r∗ ≤ log t

3
. The first line in (2.9) follows from (4.77), (4.78) by taking β =

√
α and

δ = α1/4 after keeping only leading-order terms in the above bounds, for simplicity.

To prove the second line in (2.9): Note the second lines of (4.68) and (4.26) remain valid

for all t ≥ d4+2r(d). Applying those results to (4.40) and otherwise proceeding as in the lead-

up to (4.78),

(4.79)

E
[∥

∥

(

X(x, t) − X
(

X(∞), t
))∥

∥

1,β

]

≤ C1‖x‖∞e
‖x‖∞

A0σa(d)
e
− C0

A0

t

d2(1+r∗) + C1‖x‖∞e
−C0

t

d2(1+r∗) logd

+ C1L1(δ)
√

1 + de
−C̄0

t

d3+2r∗ + C1L1(δ)e
−C0

t

d2(1+r∗) logd

≤ C1‖x‖∞eB/σ 2

e
− C0

A0

t

d2(1+r∗) + C1‖x‖∞e
−C0

t

d2(1+r∗) logd

+ C1L1(δ)

√

1 + t1/(4+2r∗)e
−C̄0

t

d3+2r∗ + C1L1(δ)e
−C0

t

d2(1+r∗) logd ,

for t ≥ d4+2r∗
and constants C0,C1 > 0 not depending on d , r∗ or B . The second line in

(2.9) follows from (4.79) by taking β =
√

α and δ = α1/4 and by keeping only leading-order

terms in (4.79).

The bounds in (2.10) follow in identical fashion, using (4.27) instead of (4.26) and (4.69)

instead of (4.68). We therefore omit the proof. �

5. Proofs: Perturbations from stationarity for the symmetric Atlas model. Theo-

rem 5 is a simple specialization of [1], Theorem 1.2. We provide a proof nonetheless to fix

notation for the special case considered here, in particular for the fact that [1], Theorem 1.2,
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considers possibly state-dependent drift, whereas solutions to (1.1) have constant drift coef-

ficients. To assist a reader in relating the specialized Theorem 5 to the reference, we make

the following comparisons between the notation of (1.1) and that of the referenced theorem:

The drift coefficient marked b(·) in the reference is the constant μ here, the domain G is Rd
+,

the directions of reflection vi, i = 1, . . . , d in the reference are the columns of the reflection

matrix R, and w of the reference is the Brownian motion DB .

PROOF OF THEOREM 5. The almost sure existence and representation (3.7) of the

derivative is a consequence of [1], Theorem 1.2, as we now show. The cited theorem proves

the almost sure existence of the derivative process up to the first time X hits a corner (inter-

section of two or more faces) of the orthant Rd
+. Since the Atlas model does not hit corners

by [31], Theorem 1.9, the derivative ηi0(x, t) exists almost surely for any t ∈ [0,∞).

For 1 ≤ i ≤ d , the vector vi of [1], Theorem 1.2, is the ith column of R here, denoted

R(i), and the ith inward normal ni of Rd
+ is the standard basis vector ei . Terms ∂

∂xj
b(X(x, t))

of [1], Theorem 1.2, are all zero here, since the drift b(X(x, t)) = μt does not depend on

x. For 1 ≤ i ≤ d , define vectors (R(i))⊥ and e⊥
i , orthogonal to R(i) and ei , respectively, by

equation (1.1) of [1] such that these vectors lie in span{R(i), ei}. For d ≥ 3, extend ei , e⊥
i by

the vectors {nj
i }3≤j≤d to an orthonormal basis of Rd

+.

From [1], Theorem 1.2, writing S
i0
k (x) = ηi0(x, τk) for k ≥ 0,

(5.1) S
i0
k+1 =

〈

S
i0
k (x),

(

R(ik+1)
)⊥〉

e⊥
ik+1

+
d
∑

j=3

〈

S
i0
k (x), n

j
ik+1

〉

n
j
ik+1

,

and ηi0(x, t) is constant on t ∈ [τk, τk+1). Moreover,

(5.2) S
i0
k =

〈

S
i0
k (x), eik+1

〉

eik+1
+
〈

S
i0
k (x), e⊥

ik+1

〉

e⊥
ik+1

+
d
∑

j=3

〈

S
i0
k (x), n

j
ik+1

〉

n
j
ik+1

.

In the above representations, the sum
∑d

j=3 is taken to be zero if d = 1,2. From (5.1), (5.2)

and [1], Lemma 1.7,

(5.3)
S

i0
k+1 − S

i0
k =

〈

S
i0
k (x),

(

R(ik+1)
)⊥〉

e⊥
ik+1

−
〈

S
i0
k (x), eik+1

〉

eik+1
−
〈

S
i0
k (x), e⊥

ik+1

〉

e⊥
ik+1

= −
〈

S
i0
k (x), eik+1

〉

R(ik+1),

which proves (3.7).

It remains only to prove the random walk representation (3.8). Define the R
d+2
+ -valued

functions u(·) and v(·) as follows: vj (t) := P�(x),i0(W(t) = j), j ∈ {0, . . . , d + 1}. Set

uj (t) := η
i0
j (x, t) for j = 1, . . . , d and define u0(·), ud+1(·) iteratively by u0(τk+1) =

u0(τk) + 1
2
u1(τk)1[ik+1 = 1], ud+1(τk+1) = ud+1(τk) + 1

2
ud(τk)1[ik+1 = d], with u0(·) and

ud+1(·) constant on t ∈ [τk, τk+1) for k ≥ 0.

Using (3.7) for u(·) and the defining properties of RW(�(x), i0) for v(·), note that for

any k ≥ 0, u(t) = u(τk) and v(t) = v(τk) for all t ∈ [τk, τk+1). Hence, we only need to show

that u(τk) = v(τk), k ≥ 0. This follows from the fact that both {u(τk)}k≥0 and {v(τk)}k≥0 are

solutions to the recursive equation in {w(k)}k≥0: w(0) = ei0 and for k ≥ 0, with the fixed

integer sequence {ik}k≥0,

(5.4)

wj (k + 1) =
(

wj (k) +
1

2
wj−1(k)

)

1[ik+1 = j − 1]

+
(

wj (k) + 1

2
wj+1(k)

)

1[ik+1 = j + 1] + wj (k)1[ik+1 �= j, j ± 1],
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for 1 ≤ j ≤ d , and

w0(k + 1) = w0(k) +
1

2
w1(k)1[ik+1 = 1],

wd+1(k + 1) = wd+1(k) + 1

2
wd(k)1[ik+1 = d].

(5.5)

Note an inductive argument implies
∑d+1

j=0 wj (k) = 1 for all k ≥ 0 for any solution to (5.4),

(5.5) with w(0) = ei0 .

Equations (5.4), (5.5) hold for {u(τk)}k≥0 by (3.7) and for {v(τk)}k≥0 by the definition of

RW(�(x), i0). Since u(0) − v(0) = 0, the sequence {ik}k≥0 is common to u and v, and (5.4),

(5.5) are linear recursive equations in w(·), we have u(τk) − v(τk) = 0 for all k ≥ 0. This

proves (3.8). �

PROOF OF THEOREM 4. The proof consists of analyzing two regimes: t < d16/3 and

t > t ′′0 d4 log(2d). In the former regime, we show that the probability of any of the first m(t)

coordinates of X not hitting zero sufficiently often is well controlled by Lemma 2, for ap-

propriately chosen time-dependent integer m(t). On the other hand, if each of the first m(t)

coordinates of X makes a large number of visits to zero, then the random walk W in the

derivative representation of Theorem 5 makes a large number of jumps, and consequently,

has a higher chance of getting absorbed in 0 or d + 1 by time t . In this case, we bound the

right-hand side of Corollary 3 using the probability that a simple random walk does not hit

0 within a certain number of steps. For t > t ′′0 d4 log(2d), we use the approach of [3] via

contractions in L1 distance between the synchronously coupled RBMs.

Note that the Atlas model X satisfies b(d ′) = −(R|d ′)−1μ|d ′ = {(R|d ′)−1
i1 }d ′

i=1 > 0 for every

d ′ ∈ {1, . . . , d}, and IV of Assumption 1 holds with k0 = 1 and σ = σ =
√

2. Therefore, we

may apply Lemma 2, and in preparation we first calculate the quantities a(d ′), T (d ′), �(d ′) for

d ′ ∈ {1, . . . , d}.
Recalling that b(d ′) is the first column of (R|d ′)−1 and computing the row sums of (R|d ′)−1

from (3.2) with d ′ in place of d gives

(5.6) a(d ′) = max
1≤i≤d ′

1

b
(d ′)
i

d ′
∑

j=1

(

(R|d ′)−1)

ijσj = max
1≤i≤d ′

√
2i(d ′ + 1 − i)

2(1 − i
d ′+1

)
=

d ′(d ′ + 1)√
2

.

Plugging this into the definitions of T (d ′), �(d ′) in (4.18) and applying Lemma 2, we obtain

A0 ≥ 1 not depending on d , d ′ such that for any d ′ ∈ {1, . . . , d}, A ≥ A0 and t ≥ 4(1 +
1
2
(d ′(d ′ + 1))2 log(2d ′))/δ′,

(5.7)

P

[

Nd ′(x, t) < t
δ′

4(1 + 1
2
(d ′(d ′ + 1))2 log(2d ′))

]

≤ exp

(

−t
δ′C′′

1 + 1
2
(d ′(d ′ + 1))2 log(2d ′)

)

+ exp

(

−t
2C′′

A(d ′(d ′ + 1))2

){

1 + exp

( ‖x|d ′‖∞
Ad ′(d ′ + 1)

)}

,

where δ′,C′′ > 0 and A0 ≥ 1 do not depend on d ′, d . We now consider d ′ = m(t), where

m(t) ∈ {1, . . . , d} will be a time-dependent integer to be determined later. Recall τ ∗
0 :=

inf{s ≥ 0 : W(s) = 0}. For any integer n(t), such that 1 ≤ n(t) < m(t) for t large enough



DIMENSION-FREE CONVERGENCE RATES FOR RBM 411

that (5.7) holds (a time t0 to be determined below) and with N(t) = t δ′

4(1+ 1
2 (d ′(d ′+1))2 log(2d ′))

we have for i ∈ {1, . . . , n(t)},

(5.8)

E

[

P�(x),i

(

τ ∗
0 > t, max

0≤s≤t
W(s) < m(t)

)]

≤ E

[

P�(x),i

(

τ ∗
0 > t, max

0≤s≤t
W(s) < m(t)

)

1
[

Nm(t)(x, t) ≥ N(t)
]

]

+ P
[

Nm(t)(x, t) < N(t)
]

≤ 12
n(t)√
N(t)

+ P
[

Nm(t)(x, t) < N(t)
]

≤ 12
n(t)√
N(t)

+ exp
(

−4C′′N(t)
)

+ exp

(

−8C′′N(t)
1 + 1

2
(m(t)(m(t) + 1))2 log(2m(t))

δ′A(m(t)(m(t) + 1))2

)

×
{

1 + exp

( ‖x|m(t)‖∞
Am(t)(m(t) + 1)

)}

≤ 12
n(t)√
N(t)

+ exp
(

−4C′′N(t)
)

+ exp

(

−
4C′′

δ′A
N(t)

)

×
{

1 + exp

( ‖x|m(t)‖∞
Am(t)(m(t) + 1)

)}

.

The second inequality above follows from (3.9) with m = m(t) and a standard bound on

the probability that a simple random walk started from i ∈ {1, . . . , n(t)} has not hit 0 after

N(t) steps (e.g., [25], Theorem 2.17). The third inequality applies (5.7) with d ′ = m(t) and

t = N(t)(δ′)−14(1 + 1
2
(m(t)(m(t) + 1))2 log(2m(t))).

Now for i ∈ {1, . . . , n(t)} such that W(0) = i, the event {τ ∗
0 > t,max0≤s≤t W(s) ≥ m(t)}

implies the walk W has taken at least m(t) − n(t) steps without hitting 0 or d + 1, where it

is absorbed. Thus for all i ∈ {1, . . . , n(t)},

(5.9) P�(x),i

(

τ ∗
0 > t, max

0≤s≤t
W(s) ≥ m(t)

)

≤ 12
n(t)√

m(t) − n(t)
.

We now set m(t) so that the bounds in (5.8), (5.9) are of the same order. Fix ε ∈ (0,1/4) to

be chosen later. Set m(t) = d ∧ �t1/4−ε
. There exists a t0(ε) > 0 not depending on d such

that

(5.10) N(t) =
tδ′

1 + 1
2
(m(t)(m(t) + 1))2 log(2m(t))

≥
tδ′

t1−4ε log(2t1/4−ε)
≥ t3ε,

for t ≥ t0(ε). From this, we conclude that if t is chosen such that d ≥ �t1/4−ε
 ≥ �t0(ε)1/4−ε

and n(t) ≤ m(t)/2, the dominating term in (5.8) is of order n(t)t−

3
2 ε and the dominating term

in (5.9) is of order n(t)t−
1
8 + ε

2 .

Setting ε = 1
16

matches these orders, at n(t)t−
3
32 . Therefore, we set t0 = t0(1/16) and

define

(5.11) m(t) = d ∧
⌊

t1/4−ε⌋= d ∧
⌊

t3/16⌋.

We are now ready to prove (3.5). Choose and fix any n(·) as in the statement of the theorem,

and recall the definition of t
(n)
0 given there. We have by (5.8), (5.9), (5.10) for any 1 ≤ i ≤ n(t)
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and t ≥ t
(n)
0 , which implies 2n(t) ∨ �t3/16

0 
 ≤ m(t) ≤ d ,

(5.12)

E
[

P�(x),i

(

τ ∗
0 > t

)]

= E

[

P�(x),i

(

τ ∗
0 > t, max

0≤s≤t
W(s) ≥ m(t)

)]

+E

[

P�(x),i

(

τ ∗
0 > t, max

0≤s≤t
W(s) < m(t)

)]

≤ 12
n(t)√

m(t) − n(t)
+ 12

n(t)√
N(t)

+ exp
(

−4C′′N(t)
)

+ exp

(

−
4C′′

δ′A
N(t)

){

1 + exp

( ‖x|m(t)‖∞
Am(t)(m(t) + 1)

)}

≤ 12(1 +
√

2)
n(t)√
m(t)

+ exp
(

−4C′′N(t)
)

+ exp

(

−
4C′′

δ′A
N(t)

){

1 + exp

( ‖x|m(t)‖∞
Am(t)(m(t) + 1)

)}

.

This holds for any A ≥ A0 given in (5.7). In the final inequality, we used m(t) ≥ 2n(t) implies√
m(t) − n(t) ≥ 2−1/2

√
m(t), and N(t) ≥ t3/16 ≥ m(t) by (5.11) with the chosen ε = 1/16.

For x, x̃ ∈ R
d
+ with x > 0 and t ≥ 0, by Corollary 3, with γ (u) = x + u(x̃ − x), u ∈ [0,1],

(5.13)

∥

∥X(x̃, t) − X(x, t)
∥

∥

1

≤
n(t)
∑

i=1

∣

∣(x̃ − x)i
∣

∣

∫

[0,1)
P�(γ (u)),i

(

τ ∗
0 > t

)

du +
d
∑

i=n(t)+1

∣

∣(x̃ − x)i
∣

∣.

Applying (5.12) to (5.13) and using N(t) ≥ m(t), we have for 2n(t) ∨ �t3/16
0 
 ≤ m(t) ≤ d ,

(5.14)

E
[∥

∥X(x̃, t) − X(x, t)
∥

∥

1

]

≤
[

12(1 +
√

2)‖x − x̃‖1

] n(t)√
m(t)

+ ‖x − x̃‖1 exp
(

−4C′′m(t)
)

+
[

‖x − x̃‖1

∫

[0,1)

{

1 + exp

( ‖γ (u)|m(t)‖∞
Am(t)(m(t) + 1)

)}

du

]

exp

(

−
4C′′

δ′A
m(t)

)

+
d
∑

i=n(t)+1

∣

∣(x̃ − x)i
∣

∣.

Fix any Y ∈ P(P1,P2, δ). Recall XY (∞) := (X(∞) + Y |d)+ and αY (·) from (3.4). Using

(5.14) conditioned on x = X(∞), x̃ = XY (∞), then taking expectations, and using the fact

‖X(∞) − XY (∞)‖1 ≤∑d
1 |Yi | ≤

∑∞
1 |Yi | = ‖Y‖1, we have for 2n(t) ∨ �t3/16

0 
 ≤ m(t) ≤ d ,

E
[∥

∥X
(

XY (∞), t
)

− X
(

X(∞), t
)∥

∥

1

]

− αY (n(t)
)

≤
[

12(1 +
√

2)E
[

‖Y‖1

]] n(t)√
m(t)

+E
[

‖Y‖1

]

exp
(

−4C′′m(t)
)

+E

[

‖Y‖1

∫

[0,1)

{

1 + exp

( ‖γ (u)|m(t)‖∞
Am(t)(m(t) + 1)

)}

du

]

exp

(

−
4C′′

δ′A
m(t)

)

≤
[

12(1 +
√

2)E
[

‖Y‖1

]] n(t)√
m(t)

+E
[

‖Y‖1

]

exp
(

−4C′′m(t)
)

+
√

E
[

‖Y‖2
1

]

[

1 +
√

E

[

exp

(

2‖Y |m(t)(∞)‖∞
Am(t)(m(t) + 1)

)

exp

(

2‖X|m(t)(∞)‖∞
Am(t)(m(t) + 1)

)]]

(5.15)
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× exp

(

−
4C′′

δ′A
m(t)

)

≤
[

12(1 +
√

2)E
[

‖Y‖1

]] n(t)√
m(t)

+E
[

‖Y‖1

]

exp
(

−4C′′m(t)
)

+
√

E
[

‖Y‖2
1

]

[

1 +
(

E

[

exp

(

4‖Y |m(t)(∞)‖∞
Am(t)(m(t) + 1)

)]

×E

[

exp

(

4‖X|m(t)(∞)‖∞
Am(t)(m(t) + 1)

)])1/4]

exp

(

−
4C′′

δ′A
m(t)

)

.

In the second inequality, we used the Cauchy–Schwarz inequality and the observation

that for any m ∈ {1, . . . , d}, ‖γ (u)|m‖∞ = max1≤i≤m |Xi(∞) + u(XY
i (∞) − Xi(∞))| ≤

‖Y |m(∞)‖∞ + ‖X|m(∞)‖∞ for u ∈ [0,1].
As Y ∈ P(P1,P2, δ), taking A = 4 max{A0,4δ−1}, where A0 is given in (5.7),

(5.16)

E
[

‖Y‖1

]

≤
√

E
[

‖Y‖2
1

]

≤
√

P1,

E

[

exp

(

4‖Y |m(t)(∞)‖∞
Am(t)(m(t) + 1)

)]

≤ P2.

Moreover, for the same choice of A, we obtain along the same lines as (4.53) using the

explicit product form distribution of X|m(t)(∞) (see (3.3)),

(5.17)

E

[

exp

(

4‖X|m(t)(∞)‖∞
Am(t)(m(t) + 1)

)]

≤ E

[

exp

( ‖X|m(t)(∞)‖∞
A0m(t)(m(t) + 1)

)]

≤ 1 +
m(t)

A0m(t)(m(t) + 1) − 1
≤ 2.

Note that we cannot refer to Lemma 5 here since Assumption 1 does not hold for the Atlas

model. Using the above estimates in (5.15), we obtain for 2n(t) ∨ �t3/16
0 
 ≤ m(t) ≤ d ,

(5.18)

E
[∥

∥X
(

XY (∞), t
)

− X
(

X(∞), t
)∥

∥

1

]

≤
√

P1

[

12(1 +
√

2)
n(t)√
m(t)

+ exp
(

−4C′′m(t)
)

]

+
√

P1

(

1 + (2P2)
1/4) exp

(

−
C′′

δ′ max{A0,4δ−1}
m(t)

)

+ αY (n(t)
)

.

This proves the first bound in (3.5) upon noting that C′′

δ′ max{A0,4δ−1} ≥ C′′
δ′A0

δ
δ+4

, and for t
(n)
0 ≤

t < d16/3 (with t
(n)
0 as defined in the theorem statement), 2n(t) ∨ �t3/16

0 
 ≤ m(t) ≤ d .

We now address the case when t is large relative to d by applying results from [3]. Using

equation (44) of that reference, plugging in the standard Atlas model parameter estimates

calculated in equation (5.6) here (with d = d ′) and, in the reference, equation (12) and pa-

rameters given prior to Theorem 1, we have for any x, x̃ ∈R
d
+ with x > 0,

(5.19)

E
[∥

∥X(x, t) − X(x̃, t)
∥

∥

1

]

≤ E
[∥

∥X(x, t) − X(0, t)
∥

∥

1

]

+E
[∥

∥X(x̃, t) − X(0, t)
∥

∥

1

]

≤ C1

(

‖x‖1 exp

(

C′
0‖x‖∞
A′d4

)

+ ‖x̃‖1 exp

(‖C′
0x̃‖∞

A′d4

))

exp

(

−
C0

A′
t

d6 log(2d)

)

,

for all t ≥ t ′′0 d4 log(2d), A′ ≥ A′
0, where C0,C

′
0,C1, t

′′
0 ,A′

0 ∈ (0,∞) are dimension-

independent constants. Applying (5.19) conditional on x = X(∞) > 0 and x̃ = XY (∞) ≥ 0
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and taking expectations, we have

(5.20)

E
[∥

∥X
(

XY (∞), t
)

− X
(

X(∞), t
)∥

∥

1

]

≤ C1

(

E

[

∥

∥X(∞)
∥

∥

1 exp

(

C′
0‖X(∞)‖∞

A′d4

)]

+E

[

∥

∥XY (∞)
∥

∥

1 exp

(‖C′
0X

Y (∞)‖∞
A′d4

)])

exp

(

−
C0

A′
t

d6 log(2d)

)

for all t ≥ t ′′0 d4 log(2d), A′ ≥ A′
0. From the explicit distribution of X(∞) in (3.3), for any

A′ ≥ max{A′
0,4C′

0},

(5.21)

E

[

∥

∥X(∞)
∥

∥

1 exp

(

C′
0‖X(∞)‖∞

A′d4

)]

≤
√

E
[∥

∥X(∞)
∥

∥

2
1

]

√

E

[

exp

(

2C′
0‖X(∞)‖∞

A′d4

)]

≤ 2d.

Moreover, as Y ∈ P(P1,P2, δ), using ‖XY (∞)‖1 ≤ ‖X(∞)‖1 + ‖Y‖1 and ‖XY (∞)‖∞ ≤
‖X(∞)‖∞ + ‖Y |d‖∞, we obtain for any A′ ≥ max{A′

0,2C′
0δ

−1,4C′
0},

(5.22)

E

[

∥

∥XY (∞)
∥

∥

1 exp

(

C′
0‖XY (∞)‖∞

A′d4

)]

≤
√

E
[∥

∥XY (∞)
∥

∥

2
1

]

√

E

[

exp

(

2C′
0‖XY (∞)‖∞

A′d4

)]

≤
√

2E
[∥

∥X(∞)
∥

∥

2
1

]

+ 2E
[

‖Y‖2
1

]

×
√

E

[

exp

(

2C′
0‖X(∞)‖∞

A′d4

)]

E

[

exp

(

2C′
0‖Y |d‖∞
A′d4

)]

≤
√

4d2 + 2P1

√

2P2.

Using (5.21) and (5.22) in (5.20), fixing A′ = max{A′
0,2C′

0δ
−1,4C′

0}, we obtain

(5.23)

E
[∥

∥X
(

XY (∞), t
)

− X
(

X(∞), t
)∥

∥

1

]

≤ 2C1

√

4d2 + 2P1

√

2P2 exp

(

−
C0

A′
t

d6 log(2d)

)

,

for t ≥ t ′′0 d4 log(2d), which proves the second bound in (3.5), and completes the proof of the

theorem. �
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