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We describe and analyze a class of positive recurrent reflected Brownian
motions (RBMs) in Ri for which local statistics converge to equilibrium at
a rate independent of the dimension 4. Under suitable assumptions on the
reflection matrix, drift and diffusivity coefficients, dimension-independent
stretched exponential convergence rates are obtained by estimating contrac-
tions in an underlying weighted distance between synchronously coupled
RBMs. We also study the symmetric Atlas model as a first step in obtaining
dimension-independent convergence rates for RBMs not satisfying the above
assumptions. By analyzing a pathwise derivative process and connecting it
to a random walk in a random environment, we obtain polynomial conver-
gence rates for the gap process of the symmetric Atlas model started from
appropriate perturbations of stationarity.

1. Introduction. We say a continuous stochastic process X is a solution to RBM(X, 1,
R) if it satisfies

(L.1) X(x,t)=x+ut+DB(t)+ RL(x,1t)

for each r > 0 and x G]Ri =xeRl|x>0,i=1,...,d). Here,ue]Rd,D, R e R9xd,
B is a d-dimensional Brownian motion and ¥ = DD is positive definite. We assume that
R =1 — PT for a matrix P that is substochastic (i.e., nonnegative entries and row sums are
bounded above by one) and transient (i.e., P" — 0 as n — o0). L is the local time constrain-
ing X to the positive orthant Ri: For x € RY, it is the nondecreasing, continuous process
adapted to the natural filtration of the Brownian motion B such that X (x,t) € Ri for all
t >0 and

t
(1.2) L(x,0)=0, / Xi(x,8)dL;(x,s)=0 forallt>0,1<i<d.
0

RBMs of the form (1.1) arise in a variety of situations, including heavy-traffic limits of queue-
length processes in generalized Jackson networks with d servers [16, 30], and gaps between
d + 1 competing particles in rank-based diffusions (e.g., [23, 35]).

There is a large literature studying diffusions with oblique reflections, in cases both more
specific and more general than (1.1), and we give only a brief background describing previous
work most relevant to the current article. The paper [15] first proved (1.1) has a unique strong
solution. More precisely, under the stated assumptions on the reflection matrix R, for each
x € RY, there is a unique pair of continuous stochastic processes (X, L) satisfying (1.1)—
(1.2). Moreover, the collection { X (-; x)}xeRi defines a strong Markov process (see [16]). The

naturality of this assumption on R stems from the fact that the routing matrix P of any single-
class open queueing network is substochastic and transient [15] which, in turn, translates to
its heavy traffic limit described by equations of the form (1.1)—(1.2). The conditions on P in
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particular say that its spectral radius is strictly less than 1. The matrix ¥ = DD gives the
covariance matrix associated with the diffusion term of (1.1).

It was shown in [16], Section 6, that (1.1) has a stationary distribution if and only if
R~ <0, and in that case the stationary distribution is unique. Intuitively, this stability
condition can be understood by noting that the associated “noiseless system” ((1.1)—(1.2)
taking B = 0), which governs the long time stability properties of RBM(Z, i, R), has 0
as its unique attracting fixed point if R~y < 0 [2]. For the open queueing network whose
heavy traffic limit gives RBM(Z, i, R), this stability condition is equivalent to the traffic
intensity at each server being less than its service rate, which is an “if and only if” condition
for stability of the queueing network.

In this article, we are interested in the effect of dimension on convergence rates to station-
arity for reflected Brownian motions (RBMs) from a variety of initial configurations. This is
a natural consideration for steady-state sampling and evaluating steady state performance for
high-dimensional RBMs. Toward this end, we will implicitly consider a family of processes
XD ~ RBM(E(d), u(d), R (d)) indexed by the dimension d > 1. For notational convenience,
we will suppress the superscript (d) in further discussion.

1.1. Convergence rates for RBM: Work till date. 'To study convergence rates of X to its
stationary distribution, one can apply general methods like Harris’ theorem via using ap-
propriate Lyapunov functions and minorization conditions [27]. For example, [9] uses this
methodology to give exponentially fast convergence of X (x, -) to the stationary random vari-
able in a weighted total variation norm starting from any x € R;}'. However, the rate of conver-
gence is not explicit, as is typical for such methods, and in particular has unknown dimension
dependence. See also [32] for a similar treatment.

In [7], the authors obtained explicit dimension dependent convergence rates to stationarity
in L'-Wasserstein distance when the RBM satisfies “uniformity conditions in dimension” on
the model parameters X, u, R (discussed here in more detail in Example 2). Their key insight
was to consider synchronous couplings of the RBM X (i.e., driven by the same Brownian mo-
tion) started from distinct points x, y € RZ, with x < y (coordinatewise ordering). They used
the fact that synchronous couplings preserve ordering in time, that is, X (x, t) < X (y,t) for
all t > 0. Moreover, there are contractions in L! distance between the synchronously coupled
processes (under their uniformity assumptions) when the dominating process X (y, -) has hit
all faces of the orthant Rfi. Building on this idea, [3] used a weighted Lyapunov function and
excursion theoretic control of the synchronously coupled processes to give convergence rates
in L'-Wasserstein distance for the general process (1.1), which depend explicitly on u, R,
%, d. In particular, this approach greatly improved the rates for the models considered in [7]
from polynomial in d to logarithmic in d.

1.2. Dimension-free local convergence for RBM. Typically, growing dimension slows
down the rate of convergence for the whole system, as reflected in the bounds obtained in [3,
7], but one might observe a much faster convergence rate to equilibrium of local statistics of
the system. In Section 2, we describe and investigate a class of RBMs for which convergence
rates of local statistics do not depend on the underlying dimension of the entire system. We
call this phenomenon dimension-free local convergence.

Mathematically, this is challenging as the local evolution is no longer Markovian and the
techniques in [3, 7] cannot be readily applied. We make a crucial observation that certain
weighted L' distances (see | - ||1. p defined in Section 2.1) between synchronously coupled
RBMs show dimension-free contraction rates. The evolution of such weighted distances are
tracked in time for synchronously coupled RBMs X (0, -) and X (x, -) for x € Ri. It is shown
that for this distance to decrease by a dimension-free factor of its original value, only a subset
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of coordinates of X (x, -), whose cardinality depends on the value of the original distance,
need to hit zero. This is in contrast with the unweighted L! distance considered in [3, 7]
where all the coordinates need to hit zero to achieve such a contraction, thereby slowing down
the convergence rate. Consequently, by tracking the hitting times to zero of a time dependent
number of coordinates, one achieves dimension-free convergence rates in this weighted L'
distance as stated in Theorem 1. This, in turn, gives dimension-free local convergence as is
made precise in (2.4). In Section 2.4, Theorem 1 is applied to two important classes of RBM
to obtain explicit convergence rates.

1.3. Perturbations from stationarity for the symmetric Atlas model. As a first step in
studying dimension-free convergence rates for RBMs, which do not satisfy the assumptions
of Section 2, we focus attention in Section 3 on the symmetric Atlas model. This is a rank-
based diffusion comprising d 4+ 1 Brownian particles where the least ranked particle performs
a Brownian motion with constant positive drift and the remaining particles perform standard
Brownian motions. The gaps between the ordered particles collectively evolve as a RBM,
which converges in total variation distance to an explicit stationary measure (3.3) [28]. Inter-
estingly, the gap process of the infinite-dimensional version of the symmetric Atlas model ob-
tained in [28] has infinitely many stationary measures [36], only one of which is a weak limit
of the stationary measure (3.3) of the d-dimensional system (appropriately extended to a mea-
sure on RS%) as d — oo. This leads to the heuristic that, for large d, the d-dimensional gap
process with initial distribution “close” to the projection (onto the first d coordinates) of one
of the other infinite-dimensional stationary measures spends a long time near this projection
before converging to (3.3). From this heuristic, one expects that dimension-free convergence
rates for associated statistics can only be obtained if the initial gap distribution is “close”
to the stationary measure (3.3) in a certain sense. Evidence for this heuristic is provided in
the few available results on “uniform in dimension” convergence rates of some rank-based
diffusions [21, 22]. In both these papers, under strong convexity assumptions on the drifts of
the particles, dimension-free exponential ergodicity was proven for the joint density of the
particle system when the initial distribution is close to the stationary distribution as quanti-
fied by the Dirichlet energy functional (see [21], Theorem 2.12, and [22], Corollary 3.8). The
symmetric Atlas model lacks such convexity in drift, and hence, the dimension-free Poincaré
inequality for the stationary density, that is crucial to the methods of [21, 22] does not apply.
We take a very different approach, which involves analyzing the long term behavior of path-
wise derivatives of the RBM in initial conditions. Using this analysis, we obtain polynomial
convergence rates to stationarity in L'-Wasserstein distance when the initial distribution of
the gaps between particles is in an appropriate perturbation class (defined in Definition 1)
of the stationary measure. Although we do not yet have lower bounds on convergence rates,
we strongly believe that the optimal rates are indeed polynomially decaying in time (see
Remark 4).

We mention here that [8] has recently used the derivative process to study convergence
rates for RBMs satisfying strong uniformity conditions in dimension (which do not hold for
the symmetric Atlas model). Our analysis of the derivative is based on a novel connection
with a random walk in a random environment generated by the times and locations where
the RBM hits faces of Ri (see Section 3.2). We believe our analysis can be combined with
that of [8] to study ergodicity properties of more general classes of RBM. This is deferred to
future work.

We also mention the work of [29] who obtained a dimension-free Talagrand type trans-
portation cost-information inequality for reflected Brownian motions. Such inequalities, how-
ever, are more useful in dimension-free concentration of measure phenomena as opposed to
dimension-free rates of convergence to stationarity.
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1.4. Future work: Ergodicity of infinite-dimensional RBMs. Although we only consider
finite large d, our work sets the stage for obtaining convergence rates to stationarity for
infinite-dimensional RBM, which we will address in future work. Such processes have ap-
peared in numerous situations [10, 13, 18, 28, 33] but their ergodicity properties are far from
being well understood. Notable advances in this direction are made in [4, 12, 34]. [34] par-
tially characterizes weak limits of the gap process of the infinite-dimensional symmetric At-
las model [34], Section 4.3. [12] obtains general conditions on the initial configuration of
the above gap process for it to converge weakly to Q7 Exp(2) [12], Theorem 1.1. In [4],
general conditions were given on the initial gap distribution of the infinite-dimensional sym-
metric Atlas model for the time average of the gaps to converge to one of the (uncountably
many) stationary measures given by @2 Exp(2 + ia),a > 0.

The dimension-free convergence rates obtained here can be combined with taking a limit
in dimension in an appropriate sense to obtain convergence rates in Wasserstein distance for
infinite-dimensional RBMs starting from appropriate initial configurations. This is part of the
first author’s continuing program of studying ergodicity properties of infinite-dimensional
systems [4-6].

1.5. Generic notation. Here, we list notation for general concepts and conventions. In-
equalities for vectors are evaluated elementwise. For a square matrix A, Ay is the k x k
northwest quadrant. For a vector v, v|; is the projection of v onto the first k coordinates.
Other conventions include x vV y = max(x, y), x A y =min(x, y), |x] = max{k € Z | k < x}
and xT = max (0, x).

For x € R¥, we write the supremum norm as ||x s = maxi<;<k |X;| and the ¢! norm as
lxll1 := XK_, |x;|. For afixed g € (0, 1), define a weighted £' norm by ||x 1.5 = Y5_, 7 |x:|
and weighted supremum norm by ||x |0, g = max;<;<k B |xil.

For X a RBM(X, i, R) started at x € Ri and any k € {1, ..., d}, we write X (co) for the
random variable with the stationary distribution. Write X | (-, x) for the process restricted to
its first £ coordinates.

2. Dimension-free local convergence rates for RBM.

2.1. A weighted norm governing dimension-free convergence. Our investigation of
dimension-free convergence relies on the analysis of the weighted distance | X (x,:) —
X (X (00), )|l1,p in time, for appropriate choices of B € (0, 1). Toward this end, we will
analyze the following functionals:

k)

d
Q1) up(e,n)=[R(X(x,0) = X(©0,0)], 5= B[R (X(x, 1) = X(0,0)],
i=1

(22) ugp(t)=up(X(0),t), t=>0.

In the following, when B is clear from context, we will suppress dependence on 8 and
write u for ug and u; for u; g. The above functionals are convenient because the vector
R~ Y(X(x,1) — X(0,1)) is coordinatewise nonnegative and nonincreasing in time (see The-
orem 6(iii)). Moreover, R~ (X (x,1) — X(0,1)) > X (x,1) — X(0,¢) > 0 for all # > 0. This
fact and the triangle inequality can be used to show for any x € R, ¢ > 0 (see (4.40)),

(X (x, 1) — X(X (00), t))||1’ﬂ <u(x,t)+ur(t),

where the bound on the right-hand side is nonincreasing in time. Due to the monotonicity of
the bound, it suffices to find ‘events’ along the trajectory of the coupled processes that lead to
a reduction in this bound by a dimension-independent factor. Using this idea, conditions are
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obtained under which there exists a d-independent B € (0, 1) and a function f : R4 — R4
not depending on the dimension d of X such that f(#) — 0 as t — oo and, for any x in an
appropriate subset S of R?,

(2.3) E[[(X (x,1) — X(X (00), t))||1’ﬁ] <Elu(x,t) +u ()] <Cf @), t=>1o,

where C, 1y € (0, 0co) are constants not depending on d (but can depend on x). This, in partic-
ular, gives dimension-free local convergence in the following sense: For any k € {1, ...,d]},
consider any function ¢ : Rﬁ > [0, co) which is Ll—Lipschitz, that is, there exists Ly > 0
such that

0(0) —¢| = Lgllx =yl x,yeRE.
Recall that the L'-Wasserstein distance between two probability measures p and v on R’i is
given by

Wi, v) :inf{/k . Ix —yll1y(dx,dy) : y is a coupling of u and v}.
RX xR

+ X84

Denote the law of a random variable Z by £[Z]. Then (2.3) implies for x € S,
04 Wi (L[o(X 1k (x,D)], L[P(X1k(00))]) < E[|p(X1k(x, 1)) — (X1 (X (00),1))[]
' <CP  Lyf(1), 1=00.

2.2. Parameters and assumptions. We now define the parameters that govern dimension-
free local convergence which, in turn, are defined in terms of the original model parameters
(X, u, R) of the associated RBM. We abbreviate 0; = \/X;;, i = 1,...,d. Define for 1 <
k <d,

b® = —RI ulk, b=bD,

k

® i K *) ._ RS 1y
b .—llélil;lkbi, a ._lrislizls)skb(k) ;((le) )ij0)-
1 J=

(2.5)

To get a sense of why these parameters are crucial, recall that our underlying strategy is to
obtain contraction rates of u(x, -) defined in (2.1) by estimating the number of times a sub-
set of the coordinates of X (x, -), say {X1(x, ), ..., Xx(x, ")}, k <d, hit zero. However, this
subset does not evolve in a Markovian way. Thus, we use monotonicity properties of RBMs
to couple this subset with a Rﬁ -valued reflected Brownian motion X (x|, -), started from
x| and defined in terms of w|g, D|k, R|x and (a possible restriction of) the same Brownian
motion driving X (x, -), such that X;(x, ) < X; (x|g,t) for all 1 <i < k (see Theorem 7).
The analysis in [3] shows that the parameters defined in (2.5) with k = d can be used to
precisely estimate the minimum number of times all coordinates of X (x, -) hit zero by time
t as t grows. Thus, for any 1 < k < d, the parameters (2.5) can be used to quantify analo-
gous hitting times for the process X (x|x, -) which, by the above coupling, gives control over
corresponding hitting times of {X(x, -), ..., Xz (x,)}.

We list below two sets of assumptions on the model parameters (X, i, R), which guarantee
dimension-free local convergence.

ASSUMPTION 1. There exist d-independent constants o,5,bg >0, r* >0, M,C > 1,
koe{2,...,d}and o € (0, 1) such that for all d > kq:
L (R7Y;j<Ca/7iforl<i<j<d,
I (R <Mforl<i,j<d,
L. 5% > pok™"" for k =k, ...,d,
IV. 0, elo,o]forl <i <d.
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We explain why Assumption 1 is “natural” in obtaining dimension-free local convergence.
Since P is a transient and substochastic, it can be associated to a killed Markov chain on
{0y U {1,...,d} with transition matrix P on {1,...,d} and killed at O (i.e., probability of
going from state k € {1,...,d}to Ois 1 — Zle Py and Py = 1). Moreover, since P is tran-
sientand R=1 — PT,wehave R~ = Z;’liO(PT)”. This representation shows that (R_l),-j
is the expected number of visits to site i starting from j of this killed Markov chain. For fixed
X € Rfi and k << d, consider a local statistic of the form ¢ (X|i(x, t)) as in (2.4). For this
statistic to stabilize faster than the whole system, we expect the influence of the far away co-
ordinates X|;(x, -), j > k, to diminish in an appropriate sense as j increases. This influence
is primarily manifested through the oblique reflection arising out of the R matrix in (1.1). I of
Assumption 1 quantifies this intuition by requiring that the expected number of visits to state
i starting from state j > i of the associated killed Markov chain decreases geometrically with
j —i. This is the case, for example, when this Markov chain started from j > i has a uniform
“drift” away from i toward the cemetery state. See Example 1. In more general cases, one can
employ Lyapunov function type arguments [27] to the underlying Markov chain to check I.

IT above implies that the killed Markov chain starting from state j spends at most M
expected time at any other site i € {1, ..., d} before it is absorbed in the cemetery state 0.
This expected time, as our calculations show, is intimately tied to decay rates of || (X (x, ) —
X(X(00), DI, p-

As noted in [3, 7, 16], the “renormalized drift” vector b characterizes positive recurrence
of the whole system. Through IIT above, we allow for a power law type coordinatewise lower
bound of the renormalized drift vector b®) of the projected system X | (x, -) as k grows. In
particular, if 5® is uniformly lower bounded by by, we can take r* = 0.

IV above is a quantitative “uniform ellipticity” condition on the coordinates of the driving
noise DB(-).

Note that we do not need to make any assumptions on the correlations of the driving noise,
that is, on 0;;/(0;, o) for i < j. This can be understood upon inspection of our proof tech-
nique where the drift and the reflection “overpower” the diffusivity in long time contraction
properties of [|(X (x,-) — X(X(c0), ) |l1,5. The following assumption is a strengthening of
Assumption 1 which, when satisfied, will lead to significantly better convergence rates to
stationarity.

ASSUMPTION 2. Suppose Assumption 1 holds. In addition assume M, which does not
depend on d, may be chosen large enough that

II'. max;<j<g Zizl(R_l)ij =M.

This is satisfied, for example, when there exist positive d-independent constants jo, po
such that the underlying killed Markov chain has jump size bounded by jg at each step, and
a probability of at least pg of reaching O in one step from any starting site in {1, ..., d}. See
Example 2 for such a RBM.

2.3. Main results. Our first main result gives explicit bounds on the decay of expectation
of the weighted distance || X (x, -) — X (X (00), -)|l;, /g (o defined in I of Assumption 1) with
time for RBMs satisfying Assumption 1 or 2. We first define some constants that will ap-
pear in Theorem 1. They are needed to bound moments of weighted norms of the stationary
random variable X (co) and are derived in Lemma 5.

Suppose Assumption 1 holds, with kg € {2, ...,d} and « € (0, 1) defined therein. Set

d
(2.6) Ly=ky 4 > i3 a8,

i=ko
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If in addition Assumption 2 holds, define

d
2.7) Ly:=kf + > %7 a8,
i=ko
Also, for B € (0, 00), define the set
(2.8) S(b, B) := [x eRL: sup bV|Ix]illoo < B}.
1<i<d

Theorem 1 directly implies dimension-free bounds on 7 — || X (x, 1) — X (X (00), 1)}, Ja in
the sense of (2.3) (see Remark 1) which, in turn, produce dimension-free local convergence
rates as given by (2.4).

THEOREM 1. Suppose Assumption 1 holds for X, an RBM(X, u, R), with o € (0, 1)
defined therein. Recall the weighted distance || - || 1,V (taking B = /) defined in Section 1.5.

Fix any B € (0, 00). Then there exist constants Cy, C(/), C1 > 0 not depending on d, r* or

B such that with t), = t)(r*) = C{(1 +r*)3*" and Ly, L, S(b, B) as defined in (2.6)~(2.8),
we have for any x € S(b, B) and any d > t(;l/(4+2r*),
(2.9)

B[ X (x,0) = X(X(00), 1) ]
Cl(Llw/l+t1/(4+2’*)+IIxIImexp{B/gz})exp{—COzl/(““’*)}, t6§t<d4+2’*,

* t *
Ci(Liy/ 14 1/@+2r) 4 ||x||ooexp{B/g2}) exp{—CoW}, t>d*

If instead Assumption 2 holds, with t| = t;(r*) = C{(1 + r*)2T9" e have for d >
11/(142r%)

tl N

(2.10)

E[|X (. 1) — X (X (00), 1) | yq]

A/a2r) .
Ci(Lay/ 14 ¢1/0+2r%) ||x||ooexp{B/g2})exp{—Co—}, 1 <t<d™,

logt

* t *
Ci(Layy/ 14 ¢1/0+2r%) 4 ||x||ooexp{B/g2})exp{—C0m}, T

REMARK 1. We note the following.

=

=

(i) The bounds in Theorem 1 indeed imply dimension-free convergence in the || - ||} Ja
norm in the sense of (2.3). To see this, note that under Assumption 1 the constant r* does
not depend on dimension d. Thus, since —/7 > VG2 for t > @*+¥”, (2.9) implies the
following dimension-free convergence rate bound,

E[]X e, 1) = X (X(00), )], 5]

= CI(L1W+ 1 | oo exp{ B/a2}) exp{—Cot '/ 4+2)}
< Ci(L1+ lIxllo eXp{B/gz})Wexp{_cml/m-ﬂr*)}’ o1

Similarly, the bound in the first part of (2.10) continues to hold for all 7 > ¢{. The bounds in
Theorem 1 are presented in the given form to emphasize that the weighted distances, in fact,
decay exponentially with coefficients depending on d.
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(i1) Bounds analogous to those in Theorem 1 hold using the norm || - |[; g for any
B € («, 1), with appropriately adjusted constants depending on B, and the choice 8 = \/«
is merely for simplicity of exposition. In fact, our proofs are in terms of two parameters
B e (a,1) and § € (B, 1), which can be appropriately chosen for the specific RBM under
consideration to optimize the obtained bounds.

2.4. Applications of Theorem 1. Here, we present two examples of RBMs that arise in
diverse applications, where we can apply Theorem 1 to obtain explicit dimension-free con-
vergence rates.

EXAMPLE 1 (Asymmetric Atlas model). We consider Atlas-type models, which are in-
teracting particle systems represented by the following SDE:

(2.11) Zy(t) = Zy(0) + L[k = 1]t + B (t) + pLk—1.60(t) — gLk k+1)(t), >0,

for 1 <k<d+1, pe(0,1), g =1— p. Here, Lo1)(-) = L@g+1,a+2)(-) =0, and for
1 <k <d, Lkx+1)(-) is a continuous, nondecreasing, adapted process that denotes the
collision local time between the kth and (k + 1)-th coordinate processes of Z, namely
Lk k+1)(0) =0 and L x41)(-) can increase only when Zy = Z;y1. B ("), 1 <k <d + 1,
are mutually independent standard one-dimensional Brownian motions. Each of the d + 1
ranked particles with trajectories given by (Z(-),..., Z4+1(-)) evolves as an independent
Brownian motion (with the particle 1 having unit positive drift) when it is away from its
neighboring particles, and interacts with its neighbors through possibly asymmetric colli-
sions. The symmetric Atlas model, namely the case p = 1/2, was introduced in [14] as a
mathematical model for stochastic portfolio theory. The asymmetric Atlas model, namely the
case p € (1/2,1), was introduced in [23]. It was shown that it arises as scaling limits of nu-
merous well-known interacting particle systems involving asymmetrically colliding random
walks [23], Section 3. Since then, this model has been extensively analyzed; see [18, 19, 23,
34] and references therein.

The gaps between the particles, defined by X;(-) = Z;+1(-) — Z;(-), 1 <i <d, evolve as
an RBM(Z, i, R) with ¥ givenby ¥;; =2fori=1,...,d, Z;j=—1if[i—j|=1,%;; =0
if i — j|> 1, givenby g =—1,u; =0for j=2,...,d,and R=1— PT, where

D, j=i+1,
(2.12) Pijj=q1—-p, j=i—-1,
0, otherwise.

In this article, we are interested in the ergodicity of the gap process X. In the current example,
we study the asymmetric Atlas model. The symmetric Atlas model is treated in Section 3.

Recall that the reflection matrix R = I — P is associated with a killed Markov chain. For
the asymmetric Atlas model, this Markov chain has a more natural description as a random
walk on {0, 1,...,d + 1}, which increases by one at each step with probability p and de-
creases by one with probability 1 — p, and is killed when it hits either O or d + 1. Then for
1<i,j<d, (R_l)i j 1s the expected number of visits to i starting from j by this random
walk before it hits 0 or d 4 1. Since p > 1 — p, the random walk has a drift toward d + 1,
which suggests I, IT of Assumption 1 hold. This is confirmed by direct computation, which
gives forg =1 — p,

(2.13)

(a/p)~" A= (a/PHA = (a/P)™) _(@/p)

(RN, =] Pq A=G/p* T p—q T T
T @l (/e = D/ -1

p—q (p/p)*+! =1 “p—q
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Now [, Il and IV of Assumption 1 hold with M = C = g A= % ando =0 = /2. Further-
more, the restriction P | is defined exactly as in (2.12) with k in place of d. Thus (R| ) Lis
given by (2.13) with k in place of d, and b®) = —(R|;) ™" 1u|x is the first column of (R|)~!.

This entails
p® — (/)" ((p/g) — D((p/)* T = 1) - l(g)k_l ((p/q)—1)
(2.14) : pP—q (p/)f+! —1 T q\q (p/q)f+!

_P—4q
P2

=by>0, 1<i<k 1<k<d.

Thus Q(k) > by for all 1 <k <d, uniformly in d. This shows that IIT of Assumption 1 holds
with by specified by (2.14) and r* = 0. Moreover, it follows from the first equality in (2.14)
that b < p/(p — ) forall 1 <k <d and 1 <i < k. Therefore, recalling the definition of
S(b, -) from (2.8), for any x € R%,

x €S(b, plixllos/C2p —1)).

Finally, we note Assumption 2 does not hold here. It can be checked from (2.13) that
Z‘;: 1 (R, ;j grows linearly in 7, and hence, the row sums of R~ are not uniformly bounded
by a dimension-independent constant. This stands in contrast with Example 2.

The above observations result in the next theorem, which follows directly from Theorem 1.
As in Remark 1, the following bounds imply dimension-free convergence rates in the sense
of (2.3) and (2.4).

THEOREM 2. Suppose X is the RBM representing the gap process of the asymmetric
Atlas model with p € (1/2,1). Then there exist constants C, Co, ty > 0 depending on p but
not on d such that for d > t;,

E[HX()C, 1) — X(X(OO), Z)HL\/?]

(2.15) et x[|ogePI¥loe/ 4P=2)=Cot g4,

G114 4 x| eI/ =Dy ~Cot/d® s g4,

ExXAMPLE 2 (Blanchet—Chen type conditions). Here, we consider RBM(X, u, R) with
the system parameters satisfying certain “uniformity” assumptions in dimension similar to
those of [7]. In addition, we assume P is a “band matrix” (see Assumption a) below).

With the notation of Assumption 1: Suppose there exist d-independent constants by, o,
>0,joe{l,....d},koe{2,...,d} and o’ € (0, 1), such that:

(a) Pjj=0forall 1 <i,j<dsuchthat|j—i]> jo.
(b) Y4, Pj<a foralll <j<d.

(c) b® > po forkg <k <d.

d) o, €elo,0]forl <i <d.

We check that these conditions imply Assumption 2 with »* = 0. Recall that the only differ-

ence between Assumption 1 and Assumption 2 is II in the former and II' in the latter. Note

(c) and (d) immediately imply III, IV of Assumption 1 with »* =0 and bg, o, & as above.
Condition (b) and induction imply

d d

n < n < ( .”_1> c< (o) >
(2.16) 13,2}’;1 P < lrfnjagd; Pj < lgil,aluf(d P III?IX ZPIJ <()", n>1.
1=
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Therefore, since R~! = Y-5°(PT)", condition IT" holds with M = 1/(1 — ). It remains only
to show I of Assumption 1. To simplify the proof, we suppose jo = 1; the general case is
similar. Consider i, j such that j > i. Then, by part (a) of the above assumptions, PJ’.’i =0 for
n < j —i. This fact and (2.16) give

Sy ST S pr S gy @
(2.17) (RN =2(P)5= 3 Pi= > (@)'= 101—0/'
n=0 n=j—i n=j—i

This proves I of Assumption 1 with « = o’ and C = 1/(1 — «’). The case where jo > 1 is
proven similarly, with @ = (a’)!//0 and C being a dimension-independent multiple of 1/(1 —
a). Applying these facts to Theorem 1 in the case of Assumption 2 with r* = 0 gives the
following theorem.

THEOREM 3. Suppose X satisfies (a) to (d) of Example 2 and recall S(b, -) from (2.8).

Then there exist constants C, Co, t), > 0 not depending on d such that for any B € (0, 00),
x €S(b, B) and d > t,,

E[]X (x, 1) = X(X(00), 1) ||| (@ry1/2i0]

(2.18) _
< C(WTH1+ xoeeB/e)e™CORetrd | 1> 4.

REMARK 2. A natural question in the above models is whether, for fixed k € N, our
methods give dimension-free convergence for any set of k of the d coordinates of X. For ex-
ample, does dimension-free convergence hold for (Xj_x4+1(-), ..., Xq(-)) as d (> k) grows?
The answer is no in general. To see this, observe that in the asymmetric Atlas model with
p > 1/2 (Example 1), the associated killed Markov chain starting from any j € {1, ..., d}
has a constant positive drift. Thus, although the expected number of visits to any i < j de-
cays like o/ ~# for some « € (0, 1), the expected time spent at any i > j is bounded below by
a positive constant that is independent of d, i — j. Consequently, part I of Assumption 1 does
not apply when analyzing the last k coordinates. It is interesting to specify which (possibly
d dependent) subsets of k coordinates exhibit dimension-free convergence and which do not.
We leave this for future research.

3. Perturbations from stationarity for the symmetric Atlas model. This section is
dedicated to the study of dimension free convergence for the symmetric Atlas model, namely
the model defined in (2.11) with p = 1/2. We view this model as a first step to explore
cases in which Assumption 1 fails to hold. As opposed to stretched exponential convergence
rates obtained in Section 2, we obtain dimension-free convergence rates to stationarity for the
process at a polynomial rate if started from appropriate perturbations from stationarity.

Recall that the gap process X of the symmetric Atlas model has the law of RBM(X, i, R)
where p = —(1,0,...,0), R=1 — PT and £ = 2R for

172, j=i+1,
3.1 Pij=11/2, j=i-1,
0, otherwise.

R~ is given by computation (e.g., [3], Proof of Theorem 4), or by taking p — 1/2 in (2.13):

(3.2) (R_l)l.j =
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The above representation shows that R~! violates I, IT of Assumption 1, for example, by con-
sidering i = j = |d/2]. Nonetheless, b= —R~'ju = {(R™1);1}%_, > 0 and &;; =2 for all i.
Therefore, there exists a stationary distribution. In fact, if X (co) denotes the corresponding
stationary distributed random variable, it holds that [17, 20]

33 xeo~@e(2(1- ;1))

3.1. Main result and applications. Though Theorem 1 does not hold, we employ differ-
ent methods to obtain dimension-free convergence rates to stationarity from initial conditions
that perturb the stationary distribution by random variables in a “perturbation class,” which
we now define. We direct the reader to Corollary 2 and Example 3 for concrete examples in
this class of random variables.

DEFINITION 1 (Perturbation class). For Pi, P>, 8 € (0, 00), let P(Py, P>, §) denote the
class of R*-valued random vectors Y = (Y7, Y3, ...) satisfying the following:

() EIYIT] < Pr.
(ii) sup,,ey Elexp{sm 2|Y |nlloc}] < P2.
We will consider synchronously coupled processes, one starting from stationarity and the

other starting from a perturbation of this stationary configuration by a random vector in
P(Py, Py, 8) for some P, P>, 5 € (0, 00). Define for Y € P(Py, P, 6),

(3.4) af (n) :=E[ > |Yi|}, neN.

i=n+1

By assumption (i) above on the class P(Pq, P2, 8), note that for any Y € P(Py, P2, 6),
a¥(n) - 0asn— oo.

THEOREM 4. Fixany P, P;,5 € (0,00) and Y € P(Py, P»,6). Let X (00) be distributed
as in (3.3) and define XY (00) := (X (00) + Yia)+.

Then there exist constants t, t(/)/ , Co, C1 € (0, 00) not depending on Py, P>, § such that for
anyd > 1 and any n : R — N satisfying o (n(1)) —» 0 and t3/*n(t) = 0 as t — oo,

(3.5)
E[] X (X" (00). 1) — X (X (00).1)] ]

CiVPin(t) =2 + /P (1 + P)%) exp{—COmt3/l6}

C1y/Pa(d? + Pl)exp<—C0;>, t > td* log(2d),
d®log(2d) -

where té") = inf{r > 19 : 1319 > 1 4+ 2n(1)}.

A

REMARK 3. Note that the bounds in Theorem 4 show polynomial decay when r < d'6/3
and exponential decay for ¢ > d®1og(2d). In particular, we do not obtain the “smooth patch-
ing” of the bounds as in the results of Section 2. This is mainly because the methods used for
the two regimes 1 < d'%/3 and > d®log(2d) in Theorem 4 are starkly different. The “con-
tractions” in || - ||1,5 distance between the coupled RBMs upon certain events taking place
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in their trajectory, which was key to the results in Section 2, no longer holds here due to
Assumption 1 not being satisfied. This is the main factor behind the discontinuous qualitative
and quantitative transitions between the bounds in the two regimes in Theorem 4. See also
Remark 4.

The choice of n(-) in Theorem 4 has been intentionally kept flexible. One can choose n(-)
in an “optimal” way so as to minimize max{n (1)t7332 oY (n(¢))}. This, in turn, is intricately
tied to the distributional behavior of the perturbation vector Y as quantified by the function
oY (-). We mention the following two special cases as corollaries and choose n(-) in a case-
specific way.

For perturbations from stationarity by finitely many coordinates in the following sense,
one can take n(-) to be the (fixed) number of perturbed coordinates to obtain the following
simplified bound.

COROLLARY 1 (Finite perturbations from stationarity). Fix an integer m > 1 and a ran-
dom vector Z € R™ such that its extension to R*® given by Y = (Z,0,...) is in the class
P(P1, P2, 8) of Definition 1 for some Py, P2, § € (0, 00). Setting n(t) = m for all t, we have
foralld > 1+2m,

E[[| X (X" (00).1) = X(X(00).1)]]

Ci1v/Pimt =3 4. ¢\ /P (14 P,/%)

xexp{ —Cop——— 3/16}, tov(1+2m)16/3§t<d16/3,

5+4

t
Ci/P>(d2+ P (—c 7) t>t'd*log(2d).
1y P2(d* + Pr)exp 0 6 T0g2d) > 1pd" log(2d)

The following corollary addresses the special case of perturbations from stationarity by
independent exponential random variables.

COROLLARY 2 (Independent exponential perturbations). Consider ¥ = (Y1,Y2,...)

where {Y;};>1 are independent random variables with Y; ~ Exp(il‘Hg ) (exponential with
mean i~ 1A, for some B > 0. Then Y € P(Py, P,8) with P| := Zfoi_z(“rﬁ) +

50~ Py =14+ Y0~ and § := 1/2. Setting n(t) = Lt—32<13+/3) |, we have
E[[[ X (X" (00), 1) = X (X (00),1)] ]

2 —£53 C
<C1\/P1+E> +B3 +C1\/P1(1+P21/4)exp{—30t3/16}, t6§t<d16/3,

t
Ci\/P(d2+ P (—c 7> t >t'd*log(2d),
1y P2(d? + Pr)exp 0 o log(2d) > tyd " log(2d)

where t(/) € (0, 0o) does not depend on d or B.

=

The proof of this corollary makes clear one could consider independent Y; ~ Exp(};)
for any sequence {A;};>1 such that |Y||; has finite expectation and variance. We choose
A; =i'*P as it lends itself to simple and explicit calculations of the rates of convergence.

PROOF OF COROLLARY 2. Y € P(Py, P2, d) is the result of the following calculations:

oo 2
E[I1Y 3] = Var(IY 1) + (E[I1Y [I1]) Zﬂ(”ﬂ) (Zi—<1+ﬁ>>,
i=1
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E[exp{w}]fl—i—m ;z §1+;z for all m e N.

B3 3
4832 and n(¢)t™ 32 <

3
With n(¢) = [#320+F) | we have by basic calculus that af (n(1)) < %t

_ B 3
t ™F32 fort > 2. Applying Theorem 4 gives the corollary. [

We close the series of applications with the most basic example, in which the perturbation
Y is a constant.

EXAMPLE 3 (Constant perturbations). Consider ¥ = (Y1, Y2, ...) such that Y is a con-
stant vector satisfying || Y ||; < oo, which implies || Y ||cc < 00. Choose n(¢) to be any function
such that n(¢) > 1, t = n(¢) is nondecreasing for t > 0, and n(t)t=3/32 > 0 ast — oo. Then
Theorem 4 holds for any such n(¢) if we set § =1, P; = ||Y||% and Py = exp{||Y||o}. The
rate of convergence then is determined by the function ¢ — max{n ()t =332 a¥ (n(1))}.

In particular, Corollary 1 holds when for some m > 1 we have ¥; =0 fori >m + 1.

REMARK 4. In Theorem 4 and Corollaries 1 and 2, the upper bound has a polynomial
decay in ¢ for large d (for t < d'%/3) as opposed to the stretched exponential decay observed
in Section 2 when Assumption 1 applies. Although we do not currently have associated lower
bounds, we strongly believe that the L'-Wasserstein distance of the perturbed system (as
defined in Theorem 4) from stationarity indeed shows polynomial decay for the symmetric
Atlas model. This belief stems from the dynamics of the associated killed Markov chain
whose transition kernel is prescribed by P (see discussion after Assumption 1), which are
shown throughout this article to govern convergence rates to stationarity. This Markov chain
for the symmetric Atlas model behaves as a simple random walk away from the cemetery
state and thus lacks the “strong drift” toward the cemetery state characteristic of the models
considered in Section 2. This results in the slower convergence rates.

The polynomial rates of convergence to stationarity obtained in [5] for the Potlatch process
on Z*, which (for k = 1) can be loosely thought of as a “Poissonian version” of the gap
process of the infinite symmetric Atlas model constructed in [28], lends further evidence to
this belief.

3.2. A pathwise derivative approach toward convergence rates. The proof of Theorem 4
is based on an analysis of the derivative process (derivative taken with respect to initial con-
ditions) of the RBM X. The key observation made here is a representation of this derivative
process in terms of a random walk in a certain random environment constructed from the
random order in which the RBM hits distinct faces of the orthant Ri (see (3.8)). This rep-
resentation, in turn, is based on a succinct form for the derivative process obtained in [1],
Theorem 1.2. This is summarized in Theorem 5 below. This representation is interesting in
its own right and we believe a systematic study of the derivative process is at the heart of
obtaining convergence rates in more general cases where Assumption 1 does not hold. More-
over, as the relationship between the derivative process and the (random) transition kernel
of the random walk in the random environment is an exact equality (3.8), this representation
should also lead to lower bounds for convergence rates. We hope to report on this in future
work.

In the probability literature, random walks in random environments most commonly ap-
pear as random walks on graphs with jump probabilities given by i.i.d. random variables (see,
e.g., [37] or [11] for a model with i.i.d. holding times). Since the process we will consider in
Theorem 5 is substantially different, we take some care first to define it.
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DEFINITION 2 (RW(a, ip)). Here, we define arandom walk on {0, ...,d+1},ford > 1,
in a given fixed environment a and initial condition ip. Call any sequence a := (Ix, fx)k>0
admissible if:

1) (g, 1) ef{l,...,d} x[0,00) forall k >0,
(i1) to =0 and {#; }x>0 is strictly increasing.

For any admissible sequence a and any i € {1, ..., d}, define the projected admissible se-
quence a; = (l,i, f/i)kzo = (i, l/i)kzo to be the unique admissible sequence obtained from the
elements of the set aN ({i} x [0, 00)). In words, this sequence consists of points in a with
first coordinate equal to i enumerated in ascending order of their second coordinates.

Define the random walk in environment a started from iy € {0, ...,d + 1}, written as
RW(a, ip), to be the time-inhomogeneous Markov process W with state space {0, ...,d + 1}
whose law is uniquely characterized by the following:

(i) W(0) =i,
(i1)) W is absorbed at O and d + 1, .
(iii) Define the “jump times” {7y }x>0 = {7k (@, io) }xk>1 as follows: Tp =0, T1 = t{o and

Tepr =min{th i = W(Ty). 1} > Tr, (i.1) €a}, k=1
The transition probabilities of W at the jump times are then given by
1/2 =P ig (W (Tip) = W(T) + 1| (W(T0). Ty)
=Paig(W(Ti1) = W(Ti) — 1| (W(Ty), Tx)).

(iv) Paiy(W(t) = W(Ty) | (W(Tx), Tx)) = 1 for t € [Ty, Tk+1), k >0,
(v) forO<t <t

Paig(W (') = W) | W(t) =0) =Py (W) = W) | W(t)=d +1) = 1.

In the above, we used the suffix in the probabilities to highlight the dependence of the law
of W on a and . The process W can be seen as a simple random walk absorbed at 0, d + 1
with jump times prescribed by the points in a encountered along its trajectory.

Finally, define

Jaig(1) :=#{s €[0,1]: W(s—) # W (s)} =#{k > 1: T} € [0, 1]},

to be the number of jumps made by RW(a, ig) in the time interval [0, 7].

We now define a few additional conventions and notation required to state the theorem.
For two vectors x, y € R?, we write (x, y) for the standard inner product, and ¢;, 1 <i <d
for the standard basis vectors. For a d x d matrix R, write R® for the ith column vector
of R.

For X started at x € Ri, x > 0, define a sequence of stopping times as follows: to(x) =0,
71(x) =inf{t > 0| X;(x,t) =0 for some i} and for k > 1,

(3.6) Tr41(x) =inf{r > 7 (x) | Xi(x,2) =0, X j(x, 7)) = 0 for some i, j such that j #i}.

Also define the sequence of integers iy (x) for k > 0 as follows: Fix any igp(x) € {1,...,d} and
define the remaining i (x) by X, (x)(x, T (x)) =0, that s, ix (x) is the index of the coordinate
hitting zero at time tx(x) for k > 1. In other words, {t;(x)},>1 represent the times when X
has crossed from one face of the orthant to another, and i (x) tells which coordinate has hit
zero at crossing time 7 (x). We suppress dependence of i, iy on x when there is no risk of
confusion.
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From [31], Theorem 1.9, the Atlas model almost surely has no simultaneous collisions,
which in the context of this paper means two different coordinates of X do not hit O at
the same time. Thus, almost surely, for any x € RZ, r > 0, X;(x, 1) = 0 for at most one
i €{l,...,d}. Therefore, iy, t; are well-defined and the sequence {(ix, Tx) }k>0 is admissible
in the sense of Definition 2. This fact is essential for the random walk representation below.

The following theorem gives a representation (3.7) of the derivative process of the RBM
X, which is a specialization of [1], Theorem 1.2, to the present context. This representation
is then encoded in terms of a random walk in an admissible environment constructed from
hitting times of faces of Rfﬂ by the RBM X. This connection is the main message of the
theorem, and is key to proving Theorem 4.

THEOREM 5. For every t € [0, 00) and every x > 0, the map y — X (y,t) is almost
surely differentiable at x. For each ig € {1, ..., d}, the process
n(x, 1) == lim e 7 (X (x + €ej, 1) — X (x, 1))
e—0

has a right-continuous modification defined on [0, 00) such that
(3.7) N0, 1) =S fort €[t 1),k =0,
where {S,i0 (x)}k>0 is a sequence of d-dimensional random vectors iteratively defined by

So’ (x) = eig,

S () = 82(x) — (S (x), iy )JRUHV, k>0.

Moreover, ©(x) := {(ik, Tk)}k>0 is admissible and the derivative process has the following
representation in terms of the law of RW (O (x), ip):

(3.8) 00t x) = Pogyig(WH) = j). j=1.....d.

We illustrate in Figure 1 the connection between the paths of the RBM X and the random
walk W when d = 2. In the figure, i; = 1, i =2 and i3 = 1 corresponding to the index of the
coordinates at times 7;,7 = 1,2,3 when X crosses faces of the orthant. The corresponding
walk W, which begins at state 2, does not jump at time 7| because W (r;—) #i; = 1. W does
jump at time 12 since W (t2—) = i2 = 2, and thus 13 is equal to the first jump time 77.

X2

"ITe=1

T,=1 T

; i ; 3 5 " .
w(0)

FIG. 1. Illustration of the connection between RBM X and the random walk W for d =2.
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REMARK 5. We clarify the relationship between boundary-hitting times of the process
X started at x > 0 and the jump times of W ~ RW(®(x), ip), ip € {1, ...,d}.

Suppose X begins at x > 0 and W(t) =i € {1, ...,d} at some time ¢ > 0. Then at the first
time after ¢ that X; hits zero, W will jump toi — 1 or i + 1 with equal probability.

Now suppose for a given time interval [0, T'] and integer m > 2 the random walk W start-
ing from ip remains in the set {1, . — 1} Suppose also that there are random times 0 =
n% < n}n < 1751 - < nm <T, w1th nHl —nj > 1 for each j € {0, . — 1}, such that
X has hit each of the first m coordinates in every interval (nﬁ1 +1, n,jn+1], j € {O, o, N—1}
Then the walk has made at least N jumps in the time interval [0, 7']. In particular, with
Ny (x, T) defined as in (4.2) below:

(N, T) >N, W(s)efl,...,m— 1} fors € [0, T]}
C{Jow).i(T) =N, W(s)e{l,...,m— 1} fors € [0, T]}.

This fact will be crucially used in the proof of Theorem 4.

We also note here that the process W is nonstandard in the sense that the number of jumps
of W in a certain time interval depends on the whole trajectory of W in that interval, which
makes its analysis challenging.

(3.9

REMARK 6. We have stated Theorem 5 for the symmetric Atlas model examined here,
but an analogous result holds for any RBM (1.1) that almost surely does not hit intersections
of faces (corners) of the orthant R‘i. In that case one-step transitions are given by the matrix
P (from R = I — PT). See [23] for conditions guaranteeing when the gap process of an Atlas
model (symmetric or asymmetric) does not hit corners, and [31] for similar conditions for a
general RBM.

For the general RBM (1.1), even when corners are hit with positive probability, [26] shows
that the derivative process exists in an appropriate sense. However, in the general case we
do not have a random walk representation as in Theorem 5. [8] has recently obtained an
upper bound for the derivative process in terms of products of random matrices derived in
terms of the boundary hitting times and locations of the RBM and the killed Markov process
associated with P (see [8], Lemma 5). This presents an opportunity to generalize the methods
used here, and we defer it to future work.

The following corollary to Theorem 5 is the key tool in proving Theorem 4.

COROLLARY 3. Fixx,Xx € Rfﬁ with x > 0 and let y(u) = x + u(x — x) for u € [0, 1].
Then, writing T :=inf{s > 0: W(s) =0},

d
(3.10) IXE 0 —X(x, 0, < Z](i - x)i| /[0 I)P@(V(u))’i(rg‘ >1)du, t>0.
— ,
PROOF. For eachi =1,...,d and t > 0 define the function f;; : [0, 1] — [0, c0) as

fir()=X;(y(m),t). As shown in the proof of [15], Theorem 1, x — X;(x,t) is Lipschitz.
Thus f; ; is absolutely continuous on [0 1] and we have for t > 0:

PERESTNINS 3yl [, oW = j)du

j=li=l1

Mm

!(x—x)z[ Po wy),i (W) e{l,...,d})du

i=1

<

1

|(F —x)i /[O’I)Po(y(u»,i(fé‘ > 1)du.

_M&
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The first step above follows from absolute continuity and Theorem 5 for y (1) > 0 for u €
[0, 1). The second step follows by an interchange of summation. [

4. Proofs: Dimension-free local convergence rates for RBM.

4.1. Boundary-hitting times. Before proceeding to the proofs, we define boundary hitting
times for a solution X to (1.1), which we use throughout. For any 1 < d’ < d, we define a
sequence of times between which X hits d’ faces of Ri corresponding to X; =0 for i =
1,...,d". Set ) (x) = 0 and define inductively for k > 1,

@.1) gF () =inf{r > n’ () + 11 X;(x, 1) =0}, ki (x) =max{gf () |i=1,...,d'},
where we suppress the d’ dependence of Eiks for convenience. Also define
(4.2) Ny (x, 1) = max[k | 18 (x) <1}

All the stopping times defined above are finite almost surely, which follows from the positive
recurrence criterion R4 < 0. It can also be deduced from Lemma 2 below.

4.2. Fundamental properties of RBM. The next two theorems record fundamental results
related to this work from, respectively, [24], Theorem 1.1, and [35], Theorem 3.1, Corollaries
3.5 and 3.6.

THEOREM 6 (Monotonicity under synchronous coupling). For X a solution to (1.1) and
X,X € Ri such that x > X, the following hold:

1) X(x,t)>X(x,t) forallt > 0.

(ii) t— L(x,t)— L(x,t) is nonpositive, nonincreasing and bounded below by —R “(x—
X).
(iii) > R V(X (x,1) — XX, 1)) = R~ '(x — %) + L(x,1) — L(%, t) is nonnegative and
nonincreasing.

THEOREM 7 (Stochastic domination of projected system). Suppose X is a solution to
(1.1) with parameters (X, iu, R) and corresponding local times L. For x € Ri and an integer
1 <k <d, define the process Z(x|i,t) := x| + plxt + (DB(t))|x, t = 0, which uses the
same driving Brownian motion B as X. Define X to be the R]_‘F—valued process obtained as
the solution to

X(x|k, 1) = Z(x|k 1) + RlkL(x|g, 1), t>0,
where I:(x| %, ) is the local time which constrains X to R’j_. Then
Xle(x, 1) < X (xlg.1), >0,
Llk(x,1) = LIk(x,5) = L(x|e, ) = L(x|t,s), 0<s<t.

4.3. Proofs. The following lemma provides a crucial local contraction estimate. It shows
that for any x € R, the weighted distance between the coupled processes X (x, -) and X (0, -)
as measured by u(x, -) in (2.1) decreases by a constant factor if a subset of coordinates of
X (x, -) (whose cardinality is determined by the initial distance) hit zero.

LEMMA 1 (Local contraction). Suppose I, Il of Assumption 1 hold for X, an RBM(X, u,
R). Fix an initial condition X (x,0) = x > 0. With a as in Assumption 1, fix B € (a, 1) and
8 € (B, 1). Recall the weighted supremum norm ||x||c0,s = Mmaxj<j<q 6'x;, and u(x, -) from
(2.1).

Fixd €{l,...,d}. Recall the definition Ofné, = né, (x) from (4.1).

There exist C' > 0 and A € (1/2, 1) not dependent on d, d’' or x such that:
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4.3) u(x,00> C'llxlloos(B/8)? T = u(x,nh) < ru(x,0).
(i) ifd =d,
(4.4) u(x, k) < ru(x,0).

C’, » may be chosen explicitly as functions of B, § and the constants «, C, M from Assump-
tion 1.

PROOF. Define the processes:
AX(t)=X(x,1) — X(0,1),
4.5) AL(t)=L(x,t)— L(0,1),
YO =R 'AX(@#) =R 'x+ AL®).

From Theorem 6, we know that for all for all # > 0, AX(t) >0, t = AL(#) is nonpositive,
nonincreasing and ¢ — Y (¢) is nonnegative, nonincreasing. By definition, then ¢ — u(x, 1) is
nonnegative and nonincreasing. We aim to show that # indeed contracts by a fixed proportion
A of its initial value at time 17('1/.

The crucial fact is that if X; (x, -) has hit zero before a time ¢, then AL;(s) < —x; for all
s > t. Indeed, setting fg > O to be the first hitting time of X;(x, -) at 0 and assuming #y < ¢,

0=AX;(to) =x; + (RAL(19)),
(4.6)
= xi + AL;(to) — (PTAL(19)); = x; + ALi (1) = xi + AL;(s),

for all s > ¢, where the first equality follows from R = I — PT and the last two inequalities
follow from Theorem 6(ii) and the nonnegativity of P. By definition, at time n 411/ =n }i/ (x) the
first d’ coordinates of X (x, -) have already hit zero. Equation (4.6) then implies

u(x, nd, Z,B Y ( nd, ) =ulx, 0)+Zﬁ AL;( nd,)

i=1 i=1

(4.7)
d d
<u(x,00—Y Bxi+1[d <d] Y B'ALi(ny) <u(x,0)— Z,Bx,
i=1 i=d'+1

The last inequality follows once again from Theorem 6(ii). To achieve the result (4.3), we
first bound Zfi: s B'Y;(0). In the following, the first inequality is a consequence of the
definition of ||x ||c,s and the second inequality follows from I, IT of Assumption 1. Remaining
statements follow from the fact thata < 8 <8 < 1. Ford’ <d,

d d d
Y. BYi(0)= Z B Y (R %) < lIxlloc,s Z B Z

i=d'+1 i=d'+1 j=l1 i=d'+1

d i d
< lxlloos D ,Bi(MZS_j—I—C > af—fa—f)

i=d'+1 j=1 j=i+1

d i—1 o)
(4.8) <lxllsos Y <ﬂ/6)"(M26/'+c > (a/8>f—")

i=d'+1 j=0 j=i+1
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cosM &
||x|| M SN

i=d'+1

xloo,sC(@/8) & - s
Toas Y (B8 = Clixlloo,s(B/8)T T,

i=d'+1

. =~ Ca/s . .
with C = (1—5)%—;3/3) + (1—a/(§()x(/13,3/5)’ which by Assumption 1 does not depend on d’, d

or X.
Now recall that since P is transient and R = I — PT we have R~! = Y2 ;(PT)", which
implies Y (0) = R x> x. Using this and (4.8), we have for 1 <d’' <d — 1,

d d d
Y Bxi=) Bxi— Z ﬁxl>2/3xl > BYi0)

i=1 i=1 i=d'+1 i=d'+1

4.9) ]
>3 " Bixi = Clixllo,s(B/8)7 .
i=1

Furthermore, I, IT of Assumption 1 and 1 > 8 > « give

d
u(x,0) =" BY;(0) = Z Blx; Z

j=l1

i=1
d . J o d o
Zﬂ]xJ(CZ(a/ﬂ)"”rM > ﬁ“’)
j=1

i=1 i=j+1

(4.10)

IA

IA

(3 i/ﬁ )Z’” = éﬁj’”’

where we have set C' =1 v [C/(1 —a/B) + MB/(1 — B)]. Combining (4.9) and (4.10),

/

@.11) Zﬂ xi > —u(x 0) — Clixlloc,s(B/8)7 .

Finally, if u(x, 0) > 2C"C||x|lcc.5(8/8)? t! then (4.11) gives

d/
: 1
(4.12) "Xi > —
2PNz

The result (4.3) now follows with C’ =2C’C and > = 1 — 1/(2C’) using (4.12) and (4.7). To
prove (4.4), we use (4.7) with d’ = d and (4.10) as follows:

(4.13) u(x, 77d < u(x,0) — Z,B xi < (1 — é)u(x,O) < iu(x,0). .

COROLLARY 4. Retain the assumptions of Lemma 1 and recall B, § chosen there. Recall
the definition of Ny (x, t) from (4.2). Define the stopping times with C' as in (4.3),

@.14) t(x,d'):=inf{s > 0| u(x,s) < C'|xllcos(B/H? T} forxeRL,1<d <d—1.

Then for any q > 0:



DIMENSION-FREE CONVERGENCE RATES FOR RBM 395

(4.15) w(x, D1z (x,d) > t, Ny (x, 1) > q] < A 9u(x,0),
(i) ifd' =d,
(4.16) u(x, DN (x, 1) > ] < A u(x, 0).

PROOF. First, by Theorem 6(iii) and the definition (2.1) of u(x,¢) we have u(x,t) <
u(x,0) for all + > 0. Therefore, it suffices to show for each k > 1,
win u(x,nb) = C' B/ = ulx,nh) <ru(x,nf) ifl<d <d-1 and
17
u(x, nZH) <u(x, ’75)

To do so, we note that the argument proving Lemma 1 remains valid if we replace u(x, 77(11/)
with u(x, nfﬂ'l), u(x,0) with u(x, 175/) and AX(0) =x with AX (’75') throughout—so long
as (4.8) is replaced by Y\, BYi(nk) < X4 BTYi(0) < Clixlloo,s(B/8)? ! in the
case where 1 <d’ <d — 1. This follows directly from (4.8) and Theorem 6(iii), which gives
Yi(nk) <Y fori=1,....,d. O

In the following lemma, we obtain estimates on tail probabilities for Ny (x, 1), defined in
(4.2), using results from [3] and the stochastic domination recorded in Theorem 7. Recall kg
from Assumption 1, which by definition was such that d > k.

LEMMA 2 (Boundary-hitting estimates). Fix d’ € {ko, ..., d}. Suppose Q(d,) >0 and 1V
of Assumption 1 holds, and recall the definition of a'®) from (2.5). Define the d’-dependent
quantities

(4.18) T =14 (@) log2d"), A = ()2

There exist positive constants ', C" and Ao > 1 not dependent on d’, d, ., R, , such that
foranyx eRL, A> Agandt > 4T /5,

T

C"A@) llx1alloo
+exp(—t 1 >{1+exp<Aga(d/))}.

PROOF. Define X as in Theorem 7 with k = d’. The theorem states X dominates X |, the
projection of the d-dimensional RBM with parameters (X, i, R) onto the first d’ coordinates.
Therefore, a coordinate of X|, hits zero whenever the same coordinate of X hits zero. In
other words, Ny (x, r) dominates the corresponding quantity for X, for all x, 7.

By hypothesis of the lemma, b@) > 0. As in [3], for any v € }R:{’ satisfying R~1v < b)),
v>0,and any y € R4, define

[N (c,0) <80/ (4T )] = exp( 12 )
4.19)

* -2 . -2.2
= sup v;o; ‘i, A(W):= inf o “v7,
[ AT p 151-54/ i0; i (v) (dnf oi v

<1 | log@ ¥, v?o,-‘z/Aw))))

T():= AD)
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With these definitions, recalling the stochastic domination noted in the previous paragraph,
[3], proof of Lemma 8, equations (33) and (41), applied to the process X give positive con-
stants 8, Ao, not depending on d’, d, u, R, ¥, such that for each x € Ri, A > Ap and
1> 4T (v)/8,

PNy (x, 1) < 8't/(4T (v))]

(4.20) §'t A(v)t
< eXp<—m> + eXp(—%){l + eXp(Ail ||x|d’ ”go,v)}‘

From certain optimality properties of rates of convergence obtained in [3] (see [3], Section §),
we take v = v* where v} = (@) "l0;, 1 <i <d’.Noting that T (v*) = T@), A(v*) = A
and ||x| || < |Ixla'llso/(ca@?), the lemma follows from (4.20). [J

*
oo, v*

The following lemma combines the local contraction estimates obtained in Lemma 1 and
the probability estimates on number of times subsets of coordinates hit zero by time ¢, ob-
tained in Lemma 2, to furnish upper bounds on E[u(x, )], x € R4, 1 >0.

LEMMA 3. Suppose Assumption 1 holds. Fixd' € {kg, ...,d} and x € Ri. Recall u(x, )

from (2.1), the quantities A, B, 8, C' in Lemma 1, and Ay, A9 T@) § C" in Lemma 2.
Define

(4.21) A() = AL 1ETO)
Then for any A > Ag and t > 4T /5’

5'c” C'AD 1]l
422) Elu(x,1)] <u(x,0) [exp(—t T(d’)> + exp(—t n ) {1 + exp( Aa(d/)g> ”

+u(x, M) + C'llxlloo,s (B/8)T T
In the case d' = d, (4.22) holds without the C’||x||oo,5(,6'/6)d/+1 term in the bound.

PROOF. With (x, d’) as in Corollary 4, we have for any A > Ag and 1 > 47@) /8,
Elux, 0] < E[u(e. 01[z(x. ') > 1]+ C'lxlloc.s (/8"
=E[u(x,)1[t(x,d) > 1, Ny (x,1) <18 /4T]]
+E[uCe, D[t (x,d) > 1, Ny (x, 1) > 18" /4T ]]
+CIx oo s(B/8)* T
(423 <u(x, OP[Ny (x, 1) < 8't/(4T9N)] + A(0)u(x, 0)

+ C|Ix 005 (B/8)TT!

P §'C” A ) . 14 lloo
<u(x,0)|exp —tm +exp| —¢ 2 + exp Aa@g

+ A(Oux, 0) + C'llxlloos (B/8) Y,

where the second inequality follows from the monotonicity of # and Corollary 4, and the last
inequality follows from Lemma 2.
When d’ = d, by Corollary 4,

u(x, L[ Ng(x, 1) > 18 /AT D] < a()u(x, 0).
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Thus, again using the/monotonicity of u and applying Lemma 2 with d’ = d, we have for any
A>Agandr>4T9)/s

Elu(x, )] <E[u(x, )1[Ny(x, 1) <18 /4T D]]
+Efu(x, )1[Ng(x, 1) > 18 /AT D]]

(4.24) 5C” C"A@ Al
o0
Su(x’o)[eXp(_tW) +€Xp<_t A >{1 +CXP<Aa(")g>”

+A(u(x,0).
The lemma follows from (4.23) and (4.24). [

For any x € Ri and d’ € {kg,...,d — 1}, Lemma 3 shows that one can track the number
of times the first d’ coordinates of X (x, -) hit zero by time 7 to achieve exponential contrac-
tion in time ¢ of the weighted distance u(x, -) between X (x, -) and X (0, -), until u(x, -) hits
C'|xloo.5(B/ S)dl“. Thus, to ensure that this exponential contraction holds until u(x, -) is
small, d” should be close to d. However, for large d, choosing a large d’ slows down the con-
vergence rate as it takes a long time for the d’ coordinates to hit zero. This is manifested in
the large value of T which makes the exponential contraction coefficient in (4.22) small.
In the next lemma, we take an adaptive approach where the number of coordinates tracked
increases with time. Suppose Assumption 1 holds. With »* > 0 as in III of Assumption 1, set

d A |[tYCF2) | under Assumption 1,

4.25 L(t) = *
(423) ® d A [tYIF2 | under Assumption 2.

£(-) represents the time varying number of coordinates of the process X (x, -) that must hit
zero to achieve a desired contraction. The choice of £(-) is obtained by optimizing bounds on
the exponents appearing in (4.22), which depend on the assumptions.

LEMMA 4 (Decay rate of E[u(x, -)]). Fix an initial condition X (x,0) = x > 0. With §,
B as in Lemma 1, recall the weighted supremum norm || x| s s and the process u(x, -) as in
(2.1). Define £(-) as in (4.25).

If Assumption 1 holds, there exist constants Cy, C; > 0 not depending on d, x, r* such
that, with k{, = k{(r*) = ko v (%)2, we have for d > ky and any A > Ag (Ao defined in
Lemma 2),

Ixlg () lloo
Ci(u(x,0)e 424 4 |Ixlo0,5)e
Co 1/G4+2r%)

T ko< €(t) <d,

_Co,1/G+2r%)
A

+ Ciu(x,0)e
lxloo

13
Cru(x, 0)e Aoa® o~ 031w

O e S—
4+ Cru(x,0)e @ ioga () =d.

(4.26) Elu(x,1)] <

If Assumption 2 holds, we have using the same constants k(’), Co, Cy,

llxlg(rylloo
Ci(u(x,0)e 42« + x| o0,5)e
k
_CO,L/(1+2r ) /
+ Ciu(x, 0)e logr ky < () <d,
oo _
Ciu(x,0)eAsa@ ¢~ 4a2r™

—C02+
+ Ciu(x,0)e 47 logd L(t) =d.

—So1/a+2r%)
A

4.27) Elu(x,1)] <
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PROOF. We will employ Lemma 3 with d’ = £(z). We will consider two cases: kg <
£(t) <dand £(t) =d

In the work below, all constants depend on «, M, C, r*, by, o, & in the notation of As-
sumptions 1 and 2, and 8 € («, 1) of Lemma 1.

CASE (ko < £(t) < d). First, suppose Assumption 1 holds. Set d’ = £(¢) where for now
we suppress the dependence on ¢. To employ the bound in Lemma 3, we consider bounds on
the quantities 7@ A@) and @) I of Assumption 1 implies Q(d,) > bo(d")™"" for some
bp > 0 not depending on d. This along with II, IV of Assumption 1 gives

d/EM< d 1+r*@

@) « =
l

lfifd’

Here, we have used ((Rld/)*l)ij < (R*I)ij for 1 <i, j <d’ in the first inequality, which is
a consequence of pPT having nonnegative entries. From (4.28) and the definitions in (4.18),
setting A > Ao and recalling d’' = £(r) =d A |¢1/G+2r *)J, there exists C(’) > 0 not dependent
ond’, d, r* such that for all r > 2,

d /
_ZA( ) _ b b§ - @tl/(3+2r*)
A A2 = T A@2 T GeME = A ’
(4.29) Py 5 $1/G+2r%)
ey =71 N2+ (TM 2 ~=-Co
T 1+ (@)= (%7)~ log(2d") logt?

C(/) in the above can be taken to be (2(%)2 +2log )L Recalling A(t) = AL’S//“TW)J , (4.29)
also gives

Cp 11/G+2r%)

(430) )\‘(t) < A4 log?

In addition, (4.29) implies *L" < &'+ log 1. Since 1~1/2G+2 ) log as a func-

* ) *
2(3—22r ) we have 4T/ <t for (8(3+2r ))2(3+2r*) <t. These
0

tion of ¢ is upper bounded by

calculations show the condition ¢ > T(;, in Lemma 3 holds when £(¢) > (8(3 +2r ))2

We now apply (4.29), (4.30) to (4.22) in Lemma 3, with A > Ag. Recalling kO = ko(r*) =
ko v (G

we have

c’'c S
Efu(r. 1)] < u(x. 0)[1 +exp(||x|e<t>||oo)} _ % 1y

Aga(e(f))
4.31 e 1/GH2) Ch /G2
“3D) Fulx,0)e €0 T/ x0T T
+Clxlloos(B/8)T forky <) <d,

where we used in the second line d’ + 1 = £(r) 4+ 1 > ¢'/G+2™) _This proves the first case in
(4.26) with
/

. C 1 )
Co=C CO/\—log Alog —

(4.32) )

1
Ci=(2+=-)vC.
1<+x>
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If Assumption 2 holds, we set d’ = £(t) =d A Ltl/(Hz’*)J Instead of (4.28), we have

oM xoM
(d) < < (7 2
(4.33) crlrgzgj/ b(d) Z )i; < b(d/) <(d) b
Proceeding in the same way as (4.29), we use (4.33) to show
") /
—tA’ =—t ! <t bO < _ Eﬁﬂ/ﬂ+hﬂ
A A(a@? — A(d/)zr @M)?2— A ’
(4.34) .
&' 8 /a2

—t s < 1 — <-
7@ L+ (@) (3 )210g(2d') 0

Arguing as in (4.30) but using (4.34) instead of (4.29), we have
C(’) A/42r%)

(4.35) Moy <a® et
Using (4.34), we have 4T6—(,d) < ¢t

0
for t such that £(¢) > (%)2, under which Lemma 3 is valid. We now apply (4.34), (4.35)
0
to (4.22):

logt

4T< )

c’cl ¥
Elu(x,1)] Su(x,O)[l +exp<”x|£(l)”°°>] — LA

Aalg
(436) o /tl/(1+2r ) C_(/)tl/(1+2r*)_
+M(X,O)€ G log? —J,-u(x’O))\‘ 4 Tog?
+Clxlloos B/ for k< €(r) <d.

This proves the first case in (4.27) with Co, C as in (4.32). Since (%ﬁ’*))z (8(3+2’ )2,
we use the same k6 in (4.31) and (4.36).

CASE (£(t) =d). First, we consider the scenario of Assumption 1, in which case €(¢) =d
implies t > 372", *. We follow the same basic recipe: We use Lemma 3, this time in the case
d’ = d, and bound the quantities a'®, 7@ A@D,

The bound on a@” in (4.28) continues to hold with d’ = d, and using this with we have

A B 1 Ab} _c t
A _IA(a(d))Z = W(UM)Z = 02045
t i <—t il <—C !
- = *) o = "0 204 Tme T°
T 1 4+ q2(+r )(%)Zk)g(zd) d21+) Jog d
Now (4.37) implies

—t
4.37)

C_6+_1
(438) )\‘(t) <A 4 204 1ogd
Since the lemma statement has imposed d > k), we have t > [ké(r*)]3+2’ " Apply-

ing the argument preceding (4.31), this implies 7 > T’ and thus Lemma 3 holds for
all ¢ > [k{)(r*)]3+2’ in the case £(t) = d. Using (4.37), (4.38) in (4.22) (without the
C'lIxlloo,s(B/8)? +! term), we have

lIxlloo

—C, 4 -
E[u(x,1)] < Cru(x,0)e4a@e e " 2207

(4.39) c .
+ Cru(x,0)e @ ogd  for ¢(t) =d
where we use Cp, C1 from (4.32). This is the second line in (4.26).
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When Assumption 2 holds, £(t) = d implies ¢t > d 142" The second line of (4.27) is
proven in identical fashion to (4.39), after accounting for the stronger assumptions in the
same way as we did in (4.34) and (4.36). [

Forany B € (o, 1) and x € ]Rd Lemma 4 gives quantitative estimates for the decay rate of
the || -[|1,p distance between X (x -) and X (0, -). To use this in furnishing rates of convergence
to stationarity in || - [|1 g distance starting from any x € RZ, namely Theorem 1, we use
Theorem 6 to make the following simple observation. Recalling « in (2.1) and u, in (2.2),
we have by the triangle inequality,

[(X(x. 1) = X(X (00),1)); 5
< [(X G, 0) = X0.0)]; g+ [(X(X(00). 1) = X(0,0)] 4
(4.40) <[|R™'(X(x,0) = X(0,0)], 4
+[R™H(X (X (00), 1) = X (0, D)1 s

=u(x,t)+ux(t).

To bound the expectation of the final two terms in (4.40), we apply Lemma 4 to bound
Elu(x,t)]. To bound E[u, ()], we will use a slightly altered version of Lemma 3 and
Lemma 4 conditional on x = X (00) followed by taking expectation in the law of X (00).
This will require quantitative control over moments of several functionals of X (co). This is
the objective of the following lemma.

LEMMA 5 (Moments under stationarity). Suppose Assumption 1 holds, with a € (0, 1)
set therein. Fix B € («, 1) and define u(x,0) = ||R_1x||1,,3 asin (2.1). Fixé € (B, 1).
Recall the random variable X (00) distributed as the stationary distribution for the process

(1.1). Fixd' € {ko, ..., d}. Then there exists a constant C""" > 1 not depending on d’, d or r*
(see III of Assumption 1) such that
X|g oM
(4.41) E|exp 2% <1+d fora=2a'72,
Aga(d) g
(4.42) E[]| X (c0) ] o ] <E[| X (c0) ||Oo f] <C"L1(8),
(4.43) E[u(X (c0),0)] \/E (X (00),0)] < C"Li(8),
where L1(8) := (k;, L Zi:ko 31ty If in addition Assumption 2 holds, we have
X|g oM
(4.44) Elexp(2/ X1 NT o 452 TM
Aga(d) ag
(4.45) E[]| X (00) | ] < E[||X(oo)|| ] <C"Ly(5),
(4.46) E[u(X (c0),0)] \/IE (X (00),0)] < C"Ly(8),

where Ly(8) 1= (kfy + Y&y it 81/%).

PROOF. Fork € {ko, ...,d}, write X% for the process X defined in Theorem 7.

III of Assumption 1 1mposes —(Rla)~ Yulg = b@) = 0. Thus X@) has a stationary dis-
tribution ([16], Section 6). We write X @ )(00) for the random variable with this distribu-
tion. From [16], Lemma 4, Section 6, and [16], Lemma 12 and its proof, Section 6, for any
0@ e RY such that

(4.47) @)~ 0, (R|y) o) <p)
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we have
P{(RIa) ™' X7 (00) < (RI4)™"2] = liminf P[(R]¢) ' XV (0.1) < (Rla)™']

(4.48) e(d )

>1—Zexp( 2z;-1— - ) zeRY.

In other words, the distribution of (R|z) "' X @ ) (00) has exponential tails. This is the key fact
in proving the lemma, and the remainder of the argument is in choosing 6@ appropriately
to achieve the desired dependence on the parameters and dimension. Recalling the quantity
a@) from Assumption 1 we set

d)_ & . ,
(4.49) 0; =@ l<i<d.

By definition of ¢@?, foreach 1 <i <d’,

d/

S (Rl 9(‘”<Z<R|d/ ( b )
_ Z Dijo;

—1((Rla)~

(4.50)

b, p
Z R N7 )=n".
=1 Z —1((Rlg)™DHijo;
and hence, 0@ satisfies 4.47).
We now prove the exponential moments (4.41) and (4.44). Since we consider a fixed
d’ here, we write X(oc0) = X (d/)(oo) to lighten notation. Note Theorem 7 implies X (00)
stochastically dominates X | (00). Hence, since ((R|z) )i ;>0 we have for any z € R,

@.51)  P[((Rla)" " Xla(00)), <zi, 1 <i < d’] > P[((Rla) "' X(00)), <zi, 1 <i <d'].

For arbitrary zg > 1, setting z; = (log z9) 55— A“ for eachi =1, d’ in (4.51),
4.52)
| X a7 (00) [l oo
]P’[exp(2W> = Z0:|
a<d>
=P X (00) < (log z0) lfifd’]
i 1 Aa@D
> P| ((Rla) ™" X|4/(00)); < (logzo) o e—, 1 <1 5d’]
r Aa@®) Z ((Rla)™hij
> B[ ((Rlo) ™ X1/ (00)); = (log:0) - Lo isisd]
L 2 maxi<k<d’ ijl((Rld/)‘ )kj
d/
Ao
>1- em(—(logzo) — >
; o max) <g<a' -1 (Rla) "Dk

>1 —d/eXp( (10gzo)_Md,>

We used in the second line (R)| d/)_ xX>x, Vx € Rd, For the third inequality, we used (4.48)

with the d’-dimensional vector (logZO)A“ (max1<k<d/zl LRI, ., DT in
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place of z. For the last inequality, we used II and IV of Assumption 1. From (4.52), we obtain
(4.41) as follows:

| X147 (00) [l o | X|ar (00) |00
E[exp(Z Aga@ )] 1+/ [ < T @ )>ZO]dz0

(4.53)
<1+d f eXP( (logzo)— d,) <l+d,
for A >2d’ % If instead Assumption 2 holds, then
d/
439 i 2 (Rl = ]%2
Instead of (4.52) we have
| X a7 (00) [l oo
len (=5 ) <)
q@)
= P[Xi(00) < loge0) S — 1 =i <]
(4.55) d Ao
> 1 Y exp(~(ogz0) c )
; 0j max|<i<q' 2721 ((Rlg) ™M)

> 1 iex( (lo )Ag)>1 d/ex((lo )Ag)
=TT ) = PAUTYORZ )

This proves (4.44) by proceeding exactly as in (4.53), using (4.55) in place of (4.52).

We turn to (4.42), recalling the notation X® (00) from the start of this proof. By Theo-
rem 7, X;(00) < X}k‘))(oo) fori=1,...,ky and X;(c0) < )_(i(l)(oo) fori = kg, ...,d. This
implies

d
4.56)  P[[X(00)] .5 > 20] < P[[X*)(00)| 5 > 20] + Y P[8"7 X" (00) > 20].
i=ko

In preparation to handle the first probability of the right-hand side in (4.56), we note that by
I, IT of Assumption 1 and ((Rlg,)~1)i; < (R,

ko ko

Y ((Rlg)™"),;8” J/2<MZS I 41)i <k)C Y ol 872

j=1 j=1 j=i+1

(4.57)
—ip M z/zk0 l i2,
<38 +1li <kolCST2 Y (a/V8)) <C's™
-5 =
o/ V5 o _

/) _ M . .
for C' = -y +C YNGR recalling that 0 < « < +/8 < 1. In the following, we set ;
&5 forkg <i <d, 1 < j <i.Note that

P X% (00) ] o, 5 < 20]

4.58)  >P[((Rlk,) ' X% (00)), <2087/, i =1,... ko]
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k -1 —j/2
s S (Rlkg) ™ Hijé ™%
> P|:((R|k0) 1)((k())(oo))l. <2zo0 J é/ ! Ji=1,.. k0:|
G(ko)

ko
_ _ 270 _ - <
>1 X:Iexp< 2708/ Cro >>1 Zexp( 272087/ a(kO)C/E)
Jj=

In the first line, we used ((R|k0)_1)_(i(k0)(oo))i > )_(i(k‘)) (00),i=1,...,ko. The second line
uses (4.57). The last line applies (4.48) with k¢ in place of d’ and with z; = (C") 129877/,
1 < j < ko, and uses IV of Assumption 1.

Now we bound P[Si/z)_(l.(i)(oo) > z¢] for i = ko, ..., d required to bound the second term
of the right-hand side in (4.56). In the following equations, we use II of Assumption 1, which
says ((R|i)_l)kj < M in the third line and (4.48) to show

IP’[314/2)_(?)(00) <2z0]
> P[((R[) ™' X D (00)); < 2087"/?]
> P[((RI) ' XD (00)), <2087/ k=1,....i]

_ . . B R,~ =y
> P[(<R|,-)—1X“)(oo))k < zp87i/? ZFI((,M' ) k=1,..., i]
l

(4.59)

; 0)
i ) 0" ) p
>1—Y exp( -2 5'/2f—)>1—'ex (-2 51/2.;),
- 2::1 p( 00 Moy ) = TP U oM

for i = ko, ..., d, where in the first line we used ((R|k0)_1)_((i)(oo))i > )_(l.(i)(oo). Applying
(4.58), (4.59) to (4.56), we get

ko
i g
P[|X (00, 5 > 20] < X;exp<—2z08 z/za(ko)w)
1=

(4.60) J
. o
+ Z iexp<—2Z08_'/2%).
= iaO Mo
As aresult,
o
B[] X (00) | o.v5] = | PUX (0], 5 > z0]d20
— v ko
(k)"c/ 2y 2 (i)gi/2
Saozzl/ _Zla(’é’/
i=1 i=ko
_ — d
<a(k0) O_C/\/S MU Z lza(l)gl/Q
@.61) = -V 20 =,

< MC'E>\/8 M2—2
Bl 2boa (1 — /8 ) 2boa

d
< C//<k(r)‘*+1 + Z i3+r*8i/2)’

i=kg

Z 3+ 5i/2
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. n_ M*G* MC'5>/5 (i) ~ iMT 3
with C" = oo Y 2h00 (15" In the final line, we used the fact that a'’ < 50 by def:

inition of a” and Assumption 1, and b® > boi ™" " using III of Assumption 1. If instead
Assumption 2 holds, a® < 2{—3 <i’ : AZ—(;’. Substituting this fact in the final line of (4.61), but

otherwise proceeding in exagtly the same way, produces (4.45) with the same choice of C”.
Now we show (4.43) and (4.46). We need prove only the second inequality in (4.43),
(4.46). Using Jensen’s inequality in the first line below, we have

d 2

g & /4 2
<ip2F (Z(Rl),-j@o)X,-(oo))

i=1  \j=1
(4.62)
d 2
< ¥ il Z:ﬁ (2 s ,/2)
(C)2,3 (C)zﬂ B/s

In the second line, we used (4.57) with d in place of ko and C’ set therein. For the final

line, recall 8 € («, §). Using (4.60) to bound the quadratic moment on the right-hand side of
(4.62),

E[u?(X (00),0)]

(C)*B  B/S 2
ST BT1_ps [1X (02, 5]

C’? )
- )ﬁlf/ﬂ/a [ P[IX(00) 5> V0] 2o
! ko
(4.63) (CONINIL _
R 1‘/3/5f ZeXp( 2708 <k>c/—>dzo

(C/)ZIB B/é o0 . —i/2 g
FToB T8 s ,-gkzolexp (-2 s ) 4

(@28 B8 [fatocE\2le o ME\t &
_21—,31—/3/8(( 20 >25 ( g> g;o%(a )7 )

Under Assumption 1, we have a) < ’2{ g < jltr M“ , and applying this to (4.63) gives

d
(4.64) E[uz(X(oo),O)] < (C///)2<k(2)(r*+l) + Z i5+2r*5i>,

i=ko
where we have chosen C”” > C” to be large enough that both (4.64) and (4.61) are satisfied,

ww e I () 5 ()
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Under Assumption 2, we have a® < % < ir Ag—f, so by (4.63)

(4.66) E[u?(X (00),0)] < (C") ( Z 327 )

After taking square roots and using >} xl.2 <7 x;)? for any nonnegative numbers
X1, ..., Xm, (4.64) proves (4.43) and (4.66) proves (4.46). [

Now we bound E[u (¢)]. We would like simply to use Lemma 4 conditional on x = X (c0)
followed by taking expectation in the law of X (co). We will do so to prove (4.69) under

Assumption 2, but this is not desirable under Assumption 1 for the following reason.

1X 1y (00) o
2 )]

(where £(-) is defined in (4.25)) appear in the bound and A should be chosen large enough

so that this expectation is finite. Lemma 5 shows this requires A to be of order £(¢). How-

—Cog1/aet S .
ever, such choice of A implies that e~ /927 is bounded below by a positive dimension

independent constant as t — 0o, thereby lending the bounds obtained via Lemma 4 trivial.

Thus, under Assumption 1, we proceed by choosing a higher number of coordinates of
X (x, -) that must hit zero in order to achieve a desirable contraction in E[u, (-)]. Namely,
instead of £(-) of Lemma 4, we define

If one tries this approach under Assumption 1, terms of the form E[exp(

d A |t/ 620 ] under Assumption 1,

4.67 d(t *
o7 = A Y321 under Assumption 2,

with 7* > 0 as in III of Assumption 1.

LEMMA 6 (Decay rate of E[u,(-)]). Suppose Assumption 1 holds for X, an RBM(Z, u,
R), witha € (0, 1) defined therein. Fix 8 € («, 1), 8 € (B8, 1), and recall the weighted distance
Uy (+) from (2.2). Recall L1(8), L>(8) from Lemma 5.

There exist constants Cy, C1, C(’) > 0 not depending on d or r* such that, with k(/)’ =

kg (r*) = max{ko, Ao (8(4+2’ )2} (Ag defined in Lemma 2), we have for d > kg

20M°
C1L1(8)yT + d(rye=Cor /4
_ N LACA)
+C1Ly <8>e‘C°Tf .k =d@) <d,
t
C1L1(8)v1 + de Cograe

LELIG)e CE T d() =d

(4.68) Efur(1)] <

If instead Assumption 2 holds, retaining ki, C1, Co but switching d(t) according to (4.67),
we have

ClLZ((S) 1 —+ d(t e*éotl/(1+2r*)
~ [1/(1+2r*)
C _Cooi 1
(4.69) Eluz ()] < + C1Ly(8)e e W <d() <d.
C1L2(3)me 0
+C1L2(8)e Om d)=d

PROOF. The proof technique is similar to that of Lemma 4, so we merely sketch the
common parts of the argument.
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Suppose Assumption 1 holds, and recall (4.28) holds for arbitrary d" € {kj, ..., d}. Set
d' =d(t), with d(¢) as in (4.67), and consider first the case d’ < d. Setting A = 21% > Ag
(by choice of k ), we apply (4.28) exactly as in (4.29) to show

d 2
A )=—t 1 - bya e
A 2d/%(a(d/))2 - 2(d/)1+2(1+r*)(0M)3 -
(4.70) B *
s 5 , fl/(2+r )

<G

’

—t—— < —t —
T@ 1+ ()24 (G¥)21og (2d) log?
for a constant C, > 0 that does not depend on d, d’, r*. We note the discrepancy of orders in
the first and second line of (4.70) comes from the extra d’-dependence in the first term, which
was not present in (4.29).
Fix x € Rfi. Arguments preceding (4.31) remain valid here: Apply Lemma 3 with A =

2d’ %, using (4.70) instead of (4.29), to obtain

E[u(x, Z)] <u(x, 0)|:1 + eXP<M):|e—C//C6II/(4+2r*)

2d(t)o Ma@®)
4.71 o 11T ) /e
( ) + M()C, O)e G ©Togr + u(x O))\ 4) Tog?

1/(4+2r%)

+ C'lxlloo,s(B/8) :

for kjj <d(t) < d. As in the proof of (4.31), d(t) > ( (4+2r ))2 implies ¢t > TW))

Applying (4.71) conditional on x = X (00), taking expectatlons and applymg Lemma 5 to
bound the expectations of associated functionals of X (co) produces

Eluz ()] =E[u(X (00),1)]
< E|:u (X (00), ()) |:1 + exp<M)H8_Cu%tl/<4+zr*>

2d(t)o Mad®)
_erey e o ey
+ E[M(X(OO), 0)] Togi 4 E[ (X(OO), O)]k 1 og?
+ CE[| X (00) | 5] 8/
4.72) X
d(l)(oo)”OO )i|i| _C//C/tl/(4+2r*)
Elu(X 1 A& 1d@) (00) floo /
[u( (oo),O)[ +exp<2d(t)6Ma(d(t)) 0
1 11/ QA) clh o1/ ;
+C///L1(6)( —C’'c)t T gt 4 ), A{)[IT_l +C/(ﬁ/8)tl/(4+2 ))
<2C"Li(8)Y1+d(t o= CCtV /42
e 11/@H) Cp (1/@+r) r
L@ (e T TR ey ),

for kg <d(t) <d,, where L{(§) is defined in Lemma 5. The second inequality above fol-
lows from (4.42) and (4.43). In the final line, we used the Cauchy—Schwarz inequality, the
observation that (1 4 ¢%)? < 4¢* for z > 0, and (4.41) and (4.43). This proves the first line in
(4.68), with

(4.73) Ci=C"(2+C)v (1+27")
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and

C( 1 1)
—Olog— Alog —.
4 A B

We now consider d (1) = d, which implies t > d*+%" " Setting A = 2d¥ > Ay, once again
we use (4.28) with d’ = d to show

(4.74) Co=C"C{n

A ! boe ot
- A _IZdM(a(d))2 - 2d1+2(1+r*)(0M)3 - Om;
(4.75) &
& s/ / '

—l—— <1 = <—Comamm—-
T 1 4+ q2(+r )(%)zlog(zd) d?(1+) logd

The second line of (4.68) now follows using Lemma 3 and Lemma 5 with A = 2d— via
calculations exactly like (4.72), using (4.75) instead of (4.70).

To prove (4.69), that is, supposing Assumption 2 holds, we simply use Lemma 4: Set
x=X(o0) and A = max{Z%, Ao} in (4.27) then take expectations with respect to X (00).
Result (4.69) now follows in a manner perfectly analogous to (4.72), using (4.44), (4.45),
(4.46) instead of (4.41), (4.42), (4.43). O

With Lemma 4 and Lemma 6 in hand, we are now ready to prove Theorem 1 via (4.40).

PROOF OF THEOREM 1. Fix any B € («, 1) and 6 € (B, 1). Fix B € (0, c0) and fix any
x € §(b, B). First, we consider the case in which Assumption 1 holds. Since d(¢) of (4.68)
differs slightly from £(z) of Lemma 4, we must take a little care to match the convergence
rates appropriately.

Recall £(¢) of Lemma 4 is given as £(t) =d A Ll (3+2’*)J Recall from the statement of
that lemma the term k{, = k(,(r*) = ko v (8(3+2’ )2 Then (ko V (8(3+2’ )2 4 )32 < <

a3+’ implies ky < £(t) < d. As aresult, we have directly from the ﬁrst line of (4.26), using
A = Ap (Ag defined in Lemma 2),

l€lg () lloo ) 1/G+2r%) _c 1/G+2r%)
Elu(x, )] < Ci(u(x, 0)eo2e™ 4 x| o, s)e + Cru(x, 0)e~ O Toer
IX1¢(rylloo RV G42r%) A/342r™)
(476) < Ci ”x ”Oo(e Aoga(l(t)) + l)e AO Ci ”x ”Ooe_COT
2 _ Co,1/G+2%) _ 162
< C{lx oo ¢P/2” + 1)~ 0" + Clllxflsoe ™0 o

for (ko Vv (8(3+2r *))2 + 1)3+2’ <t < d>" where C/ | 18 a constant not dependlng on

d, x. The second last line above follows from the observation u(x, 0) < C ! /S [|x]loo Which
is a consequence of (4.10). In the final line, we have used Ag > 1, x e S(b, B) and
Zf.(:t)l ((R|g(,))_1),~j > 1for 1 <i <{(¢) to get from the definition of a®,

Ixlelloo _ -2, ey
Aogatioy <2 B Ixluolle <o B,

Now recall d(1) =d A [t/ (4+2’*)J, which by definition gives d(¢) < £(¢). Therefore, re-
calling k{ from Lemma 6, (k> + D*2" <t < @+ implies ko v CH22)2 < d(r) <
0
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£(t) < d. Hence, we combine (4.40), (4.76) with the first line of (4.68) to obtain
E[[ (X (x, 1) = X(X (00).1)) ] 4]

G * 1/(3+2r%)
2 _iotl/(3+2r ) —Cpt
<E[uz ()] + C1lxlloo(eB/T 4 1)e” %0 + O ooe O e
(4.77) - e

< CLL1(8)y 1 + 11/é+2r) =Cut +CiLy(§)e O T

Co ;1/(G+2r%) 1/G+2r%)

2 — Y _ [ AL
+ CllIxlloo (€B/2” + 1)e” %o + C}||x|looe ™0 Tomr

for (k)2 + D" <t < @32 Now if @3*?" <t < d**?" the bound on E[uy (1)] in the
first line of (4.68) continues to hold, and the bound on E[u(x, )] from the second line of
(4.26) is now valid. Thus, we have

E[l(X G, 1) = X (X (00), 1)) 4]

R VA

< 1Ly @)1+ 1116420 = Co VD L @ 1 5y~ C0 T

Co t

—-v _C I*
(4.78) + Cj ||x||oo(eB/92 +1)e A0 2T 4 Cl|lxlsoe 2T T oga

- ,1/(2+r*)

< CLL 1B 1+ /@20~ Co 20 4 By 1y (g)e ™0 e

@tl/(3+2r*)

2 —
+ Cllxlloo (€77 + 1)e™ 70 + Cll1x looe

[l/(3+2"*)
—3Cyp ~logr

for d3t2" <t < d**?", where the final inequality follows from Ha t1/G+2) and

logd < 28 < " The first line in (2.9) follows from (4.77), (4.78) by taking # = /& and
1/4

8 =o' /" after keeping only leading-order terms in the above bounds, for simplicity.

To prove the second line in (2.9): Note the second lines of (4.68) and (4.26) remain valid
for all £ > d*+2 (@ Applying those results to (4.40) and otherwise proceeding as in the lead-
up to (4.78),

E[(X (x, 1) = X (X (00), 1)) 4]

dloo _Co_ 4 ot
< Cillxllove 09T ¢~ F0 FOFT 4 € [x|nge 20 Tioea

—Cp—1 —Co—r—e—
4.79) + C1L (8T + de Co 3 FCILi(8)e AT oz

B/o? _g_o 2(1[+ ) —Co 2(1+rt*)
= Cillxllcce™ e A0a2+D + Cyx]loce ¢ ogd

+CiLi(0)y 1+ tl/(4+2’*)e_cod3+[2’* +Ci1L4 (5)6_C0d2(1+’*)'0gd,

for t > d**?" and constants Co, C1 > 0 not depending on d, r* or B. The second line in
(2.9) follows from (4.79) by taking 8 = /& and 8 = «!/* and by keeping only leading-order
terms in (4.79).

The bounds in (2.10) follow in identical fashion, using (4.27) instead of (4.26) and (4.69)
instead of (4.68). We therefore omit the proof. [

5. Proofs: Perturbations from stationarity for the symmetric Atlas model. Theo-
rem 5 is a simple specialization of [1], Theorem 1.2. We provide a proof nonetheless to fix
notation for the special case considered here, in particular for the fact that [1], Theorem 1.2,
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considers possibly state-dependent drift, whereas solutions to (1.1) have constant drift coef-
ficients. To assist a reader in relating the specialized Theorem 5 to the reference, we make
the following comparisons between the notation of (1.1) and that of the referenced theorem:
The drift coefficient marked b(-) in the reference is the constant y here, the domain G is RZ,
the directions of reflection v;,i =1, ..., d in the reference are the columns of the reflection
matrix R, and w of the reference is the Brownian motion DB.

PROOF OF THEOREM 5. The almost sure existence and representation (3.7) of the
derivative is a consequence of [1], Theorem 1.2, as we now show. The cited theorem proves
the almost sure existence of the derivative process up to the first time X hits a corner (inter-
section of two or more faces) of the orthant Ri. Since the Atlas model does not hit corners
by [31], Theorem 1.9, the derivative niO (x, t) exists almost surely for any ¢ € [0, 00).

For 1 <i <d, the vector v; of [1], Theorem 1.2, is the ith column of R here, denoted
R®, and the ith inward normal n; of RY is the standard basis vector ¢;. Terms aaij(X (x,1))

of [1], Theorem 1.2, are all zero here, since the drift b(X (x, t)) = ut does not depend on
x. For 1 <i <d, define vectors (R("))L and eiL, orthogonal to R® and e;, respectively, by
equation (1.1) of [1] such that these vectors lie in span{R(i), e;}. For d > 3, extend ¢;, eiL by
the vectors {nlj }3<j<a to an orthonormal basis of Ri.

From [1], Theorem 1.2, writing S,i" (x) = n'o(x, i) for k > 0,

Ik+1°

d
(5.1) Sy = (80 (), (RU) e ZSLO(X) .l

and nio (x,t) is constant on ¢ € [1g, Tx+1). Moreover,

lkt1°

d
(5.2) S = (8 (x), Ciry1 )i + (S0 (x), elk+1 lm Z SO (x), nlk+l n’
In the above representations, the sum 2?23 is taken to be zero if d =1, 2. From (5.1), (5.2)
and [1], Lemma 1.7,
' j L
S — SE = (8000, (RUD) et | —(S000), eiyyJeisy — (P, eir, Jeir,,

_(Sllco (x), €y >R(lk+])’

(5.3)

which proves (3.7).

It remains only to prove the random walk representation (3.8). Define the -valued
functions u(-) and v(-) as follows: v;(t) := Pe),iy(Wt) = j), j €{0,...,d + 1}. Set
uj(t) ;== nljo(x,t) for j =1,...,d and define ug(-), ug4+1(-) iteratively by ug(tx4+1) =
uo(te) + 5u1 (T Lk = 11, g1 (k1) = a1 () + ua () Llik+1 = d], with ug(-) and
ug+1(-) constanton ¢ € [1x, Tx41) for k > 0.

Using (3.7) for u(-) and the defining properties of RW(®(x), ig) for v(-), note that for
any k >0, u(t) = u(tx) and v(t) = v(tx) for all ¢ € [tx, tx+1). Hence, we only need to show
that u(tx) = v(w), kK > 0. This follows from the fact that both {u(7x)}x>0 and {v(tk)}x>0 are
solutions to the recursive equation in {w(k)}r>0: w(0) = e;, and for k > 0, with the fixed
integer sequence {ix}x>0,

d+2
RY

1
w1 = (1500 + 0100 1lisr = = 1
5.4 1
+ (wJ-(k) 4 ijﬂ(k))ﬂ[im 1w )Ll £ o j £ 10,
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for1 <j <d, and

1
wo(k + 1) = wo(k) + Ewl(k)]l[ik+1 =1],
(5.5

1
wa1k +1) =wg11(k) + Ewd(k)]l[ik+l =d].

Note an inductive argument implies Z‘H'l w;j(k) =1 for all k > O for any solution to (5.4),
(5.5) with w(0) = ¢;,.

Equations (5.4), (5.5) hold for {u(zx)}x>0 by (3.7) and for {v(zx)}r>0 by the definition of
RW(®(x), ip). Since u(0) — v(0) = 0, the sequence {ix };>0 is common to # and v, and (5.4),
(5.5) are linear recursive equations in w(-), we have u(tx) — v(tx) = 0 for all k¥ > 0. This
proves (3.8). O

PROOF OF THEOREM 4. The proof consists of analyzing two regimes: ¢ < d'%/3 and
t >t d*10g(2d). In the former regime, we show that the probability of any of the first m(¢)
coordinates of X not hitting zero sufficiently often is well controlled by Lemma 2, for ap-
propriately chosen time-dependent integer m (). On the other hand, if each of the first m(r)
coordinates of X makes a large number of visits to zero, then the random walk W in the
derivative representation of Theorem 5 makes a large number of jumps, and consequently,
has a higher chance of getting absorbed in 0 or d 4+ 1 by time ¢. In this case, we bound the
right-hand side of Corollary 3 using the probability that a simple random walk does not hit
0 within a certain number of steps. For ¢ > t(’)/ d* log(2d), we use the approach of [3] via
contractions in L! distance between the synchronously coupled RBMs.

Note that the Atlas model X satisfies h(@) = —(R|g)™ ,u|d/ = {(R|d/),1 } —1 > O for every
d €{l,...,d}, and IV of Assumption 1 holds with kg =1 and 0 =7 = f 2. Therefore, we
may apply Lemma 2, and in preparation we first calculate the quantities a @), @) A@) for
defl,....d}.

Recalling that b is the first column of (R|;)~" and computing the row sums of (R lg) !
from (3.2) with d’ in place of d gives

V2id +1—-i) d'd+1)
Tisise o - g V2

@) _ h
5.6) a 1<l<d,b(d/)Z(R|d) o

Plugging this into the definitions of 7@ A@) in (4.18) and applying Lemma 2, we obtain
Ap > 1 not depending on d, d’ such that for any d’ € {1,...,d}, A > Ag and ¢t > 4(1 +
3(d'(d +1))*log(2d")) /',

8/
41+ (d' @ + 1))210g(2d/))}

s'c”
5.7 -
(5.7) = exP( SRRy 1>>2log<2d/>>

ror(-ag i) [ o (s

where 8’, C” > 0 and Ap > 1 do not depend on d’, d. We now consider d’ = m(t), where
m(t) € {1,...,d} will be a time-dependent integer to be determined later. Recall 7 :=
inf{s > 0 : W(s) = 0}. For any integer n(z), such that 1 < n(¢) < m(t) for ¢ large enough

]P’|:./\fdr(x,t) <t
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. . . _ 8
that (5.7) holds (a time f to be determined below) and with N (¢) = t4(1+ T @+ 1) loe@d)

we have fori € {1,...,n(@)},

E[P@(x),i(t{)" > t, onglil; W(s) < m(t))]
< E[P@mi(rg‘ > 1, max W(s) < m(t))IL[Nm(;)(x, 1> N(t)]]

+P[Nm(l)(x,t) < N(t)]
<12 n(t)
VN ()
12 n(t)
(5.8) N()

+ PNy (x, 1) < N(1)]

+exp(—4C"N(1))

+ (—SC”N(t)l + 3@ m() + 1)>210g(2m(t)))
P 5 A m () + 1)2
1% 1 (6) oo
X {1 +eXp<Am(t)(m(t) n 1))}
n(t)
<12
JNO

« {l—i—exp( ||x|m(t)||oo )}
Am(t)(m(t) + 1)

The second inequality above follows from (3.9) with m = m(¢) and a standard bound on
the probability that a simple random walk started from i € {1,...,n(¢)} has not hit O after
N (1) steps (e.g., [25], Theorem 2.17). The third inequality applies (5.7) with d’ = m(¢) and
t=N@OE) 40+ Lm@) (@) + 1)) log(2m(1))).

Now for i € {1,...,n(t)} such that W(0) =i, the event {z§ > ¢, maxo<y<; W(s) > m(t)}
implies the walk W has taken at least m(t) — n(t) steps without hitting O or d + 1, where it
is absorbed. Thus for all i € {1, ..., n(t)},

1

8'A

+exp(—4C"N (1)) + exp<— N(t)>

. (1)
(59) P@)(x),i<770 > 1, 01';1;1;([ W(S) > m(t)> < lzm

We now set m(t) so that the bounds in (5.8), (5.9) are of the same order. Fix € € (0, 1/4) to
be chosen later. Set m(t) =d A [t'/47€]. There exists a fo(¢) > 0 not depending on d such
that

18’ 2 3¢

5.10 N() =
G N T O + D) logm() — 1T log@i ) =

k]

for t > ty(¢). From this, we conclude that if 7 is chosen such that d > Lt1/4_€J > Lto(e)l/A'_eJ
and n(t) < m(t)/2, the dominating term in (5.8) is of order n(¢)¢~2¢ and the dominating term
in (5.9) is of order n(t)t’%Jr%.

Setting € = 1L6 matches these orders, at n(t)t_.%%. Therefore, we set fg = 79(1/16) and
define

(5.11) m(t)y=d A [tV | =d A |10

We are now ready to prove (3.5). Choose and fix any n(-) as in the statement of the theorem,
and recall the definition of té") given there. We have by (5.8), (5.9), (5.10) forany 1 <i < n(t)
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3/16

and t > t Wthh implies 2n(t) V 15" ] <m(t) <d,

E[P@(x),i(f() > l‘)] = EI:P(”)(X)J(T(T >, OI;I?;(I W(S) > m(t))]
o x*
+ ]E[IP’@(X),, (To >t, Org;dé Wi(s) < m(t))]

n(t) n(t)
12 + 12
- Jm(t) —n() VIN(t)

N exp<_‘;i: N(t)) { 1+ exp( Am'g;g;itz;“)oi D ) }

<1231 + v2)—

+exp(—4C"N(1))
(5.12)

+ exp(—4C"N (1))

v()

4c”
+ exp(— N(t)) { 1+ exp( 1l loo ) }
8’'A Am((t)(m(t) + 1)
This holds for any A > Ag given in (5.7). In the final inequality, we used m(¢) > 2n(¢) implies

m(@®) —n@) =272 /m(@), and N(1) > 1319 > m(r) by (5.11) with the chosen € = 1/16.
Forx,x € Ri with x > 0 and # > 0, by Corollary 3, with y () =x +u(x —x),u € [0, 1],

IX(E, 0)— X(x,0),
(5.13) n(t)

<Z|(x—x) |f P@(y(u))t(f() >t du + Z (x—x) |
i=n(t)+1
Applying (5.12) to (5.13) and using N (1) > m(t), we have for 2n(t) v |13/ '°) <m(1) <d,
E[|X .0 — X(x, 0]
<[1201 +v2)|Ix — 'II]J— + |lx — &||1 exp(—4C"m (1))
(5.14) . Y @) @) o >} } <_4C” )
+ [le x||1 {l +eXp(Am(t)(m(t) D du | exp A m(t)
+ Z |(X = x)il.
i=n(t)+1

Fix any Y € P(P1, P2, 8). Recall XY (c0) := (X (00) + Y|4)+ and «¥ (-) from (3.4). Using
(5.14) conditioned on x = X (00), ¥ = XY (00), then taking expectations, and using the fact

1X (00) — XY (00) I} < X4 1¥il < £°1Y;| = | Y |I1, we have for 2n(1) v 15/ '] < m(1) < d,
E[|X (X" (00). 1) — X(X(00). 1) |,] — a” (n(1))
< [121 + ﬁ)E[uYnl]]% LE[IIY I ] exp(—4C"m (1))
1 @)l oo 4c”
+E[ [, i+ on(gtions o) ] (-5 m0)
<1201 + VDE[IY 1] W%m[nm]exp( 4C" m (1))

211Y | 00 2| X |m 00
G135+ E[”Y”ﬂ[l+\/E[CXP(AL<1)<(Z((:T1))CXP<A|:|n<z|>((:1(<:;)+”1>)H
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X exp(— A;IC‘I;/m(t))
n(t)

<[12(1 + ﬁ)E[nYnl]]W +E[lIY[l1] exp(—4C"m(1))

By 171] 1+ (E[ewp( o 0 )|

41X ooy (09) e } ‘/4} ac?
XE[“"(Am(z)(m(r)H))) e"p( a/A’"(”)

In the second inequality, we used the Cauchy—Schwarz inequality and the observation
that for any m € {1,....d}, ||y @)|mlloo = maxi<j<m |X;(00) + u(X] (00) — Xi(c0))| <
1Y 11 (00) loo + | X |m (00) [loc for u € [0, 1].

As Y € P(Py, P, ), taking A =4 max{Ay, 48—}, where Ay is given in (5.7),

E[IYIh] < VE[IYI3] < VP,

Sl G+ 17)) =

Moreover, for the same choice of A, we obtain along the same lines as (4.53) using the
explicit product form distribution of X |,,(;)(00) (see (3.3)),

]E[exp( H X (1) (20) [l oo )] < ]E[exp( [ X |m (1) (90) [l 0 )}
Am(@t)(m(t) + 1) Aom(t)(m(t) + 1)
<1+ o <
Aom(t)(m(t) +1) — 1
Note that we cannot refer to Lemma 5 here since Assumption 1 does not hold for the Atlas

(5.16)

(5.17)

model. Using the above estimates in (5.15), we obtain for 2n(¢) v Lt3/ 16J <m(t) <d,
E[| X (X" (00).1) = X (X (00),1)|]
4
(5.18) <P [12(1 + I)Jt + exp(—4C m(t))]
1/4 c’ Y
Pi(14+ Q2P — t t)).

VP14 P ) exp((~ () o (1)

This proves the first bound in (3.5) upon noting that WZ}AS*‘} > % si 7> and for t( ) <

t < dlos3 (with té”) as defined in the theorem statement), 2n(t) Vv Ltg / 16J <m(t) <d.

We now address the case when ¢ is large relative to d by applying results from [3]. Using
equation (44) of that reference, plugging in the standard Atlas model parameter estimates
calculated in equation (5.6) here (with d = d’) and, in the reference, equation (12) and pa-
rameters given prior to Theorem 1, we have for any x, x € ]Rﬁlr with x > 0,

E[|X (o) - XGE )]

519y  =ElXG.0=XO.0] ]+ E[[XE 0 - X©.0],]

Chixll ) 1ot Co 1
< cl<||x||1exp(—°A, d4°°> +1El exp(—ff, d;”)) exp(—;—d6 e d)),

for all r > t(’)’d4 log(2d), A" = Aj, where Co, Cy, C1,t), Ay € (0,00) are dimension-
independent constants. Applying (5.19) conditional on x = X(c0) >0 and x = X Y(00)>0
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and taking expectations, we have
E[[ X (X" (00), 1) = X(X (00),1)||,]

C{HlIX (00) [l oo
(5.20) SCI(E[HX(OO)”16XP< A )}

, M)D (-9t )
+E|:HX (OO)HICXP< A’d4 exp A/ d610g(2d)

for all > ] d*log(2d), A’ > Ay From the explicit distribution of X (c0) in (3.3), for any
A’ > max{A, 4Cy},

E[”X(C’O) }|16Xp<%>}

= Vel xco i o (U | <o

Moreover, as Y € P(Py, P2, 8), using | XY (c0)|l1 < | X (c0)l1 + IY[l1 and [ XY (00) 0o <
X (00) o + 1Y |allo» We obtain for any A’ > max{Ay, 2C)8~", 4C}},

i coeo{ S0

= \/m\/E[exp(2c(/)”iZ§fo)Hoo>]

< B[ X 00) ] + 2E[17 ]
P e P

< J4d> + 2P\ 2P,

Using (5.21) and (5.22) in (5.20), fixing A" = max{A}, 2C68_1, 4C}, we obtain

(5.21)

(5.22)

E[]| X (X" (00). 1) — X(X(00).1),]
(5.23) t
<2C1\/4d* +2P12P, exp( 2 76 10g(2d))

fort >t} d*1og(2d), which proves the second bound in (3.5), and completes the proof of the
theorem. [
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