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Abstract: Finger photo recognition represents a promising touchless technology that offers portable
and hygienic authentication solutions in smartphones, eliminating physical contact. Public spaces,
such as banks and staff-less stores, benefit from contactless authentication considering the current
public health sphere. The user captures the image of their own finger by using the camera integrated
in a mobile device. Although recent research has pushed boundaries of finger photo matching, the
security of this biometric methodology still represents a concern. Existing systems have been proven
to be vulnerable to print attacks by presenting a color paper-printout in front of the camera and
photo attacks that consist of displaying the original image in front of the capturing device. This paper
aims to improve the performance of finger photo presentation attack detection (PAD) algorithms by
investigating deep fusion strategies to combine deep representations obtained from different color
spaces. In this work, spoofness is described by combining different color models. The proposed
framework integrates multiple convolutional neural networks (CNNs), each trained using patches
extracted from a specific color model and centered around minutiae points. Experiments were carried
out on a publicly available database of spoofed finger photos obtained from the IIITD Smartphone
Finger photo Database with spoof data, including printouts and various display attacks. The results
show that deep fusion of the best color models improved the robustness of the PAD system and
competed with the state-of-the-art.

Keywords: finger photo presentation attack detection; color spaces; deep fusion

1. Introduction

This research promotes the secure adoption of mobile technology in homeland security
and across the federal government. Although smartphones have developed into highly
portable and accelerated computing devices, there is a growing challenge to secure them
properly. Due to lower costs and geographic flexibility, several government services can
benefit from using mobile devices. Samsung and German Federal officials have been
working on secure storage public credentials, and user-friendly smartphone devices [1].
Samsung has been cooperating with the German Federal Office for Information Security
(BSI) to enable secure storage of ID credentials on Galaxy smartphones, which will combine
the high-level trust in the physical document with the user-friendliness of smartphones [1].
Furthermore, staff-less stores are predominantly trending where customers are connected
via a mobile application for authentication.

Recent advances have shown that finger photos acquired using a basic smartphone
camera are promising for authenticating individuals. At FMR = 0.1%, finger photo-to-finger
photo matching has achieved an accuracy of 99.66% by fusing four fingers and 85.62% by
using individual fingers [2]. Very recently, the contactless finger photo to contact-based
fingerprint matching has achieved an Equal Error Rate (EER) less than 1% across multiple
datasets and under background and illumination variation [3].

Researchers have also established the vulnerability of finger photo-based systems to
presentation attacks (PAs) [4], see an example in Figure 1. The PAs considered in this study
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are compared with printouts and multiple devices such as iPads and laptops. In mobile
devices, the sensor is a component of the architecture that lacks a mechanism for preventing
spoofing. Thus, the acquisition sensor requires a Presentation Attack Detection (PAD)
module, which classifies biometric samples as being live (non-spoof) or fake (spoof). Only
a few research efforts have been made to mitigate this issue. There is an urgent need to
build robust PAD modules to classify genuine biometric samples from presentation attacks.

Figure 1. An example of a finger photo display attack. A finger photo of the genuine identity is
displayed by using a smartphone positioned in front of the camera integrated in the mobile to unlock.

The proposed research seeks to boost the performance of finger photo PAD using deep
fusion strategies by investigating whether the robustness of PADs to different spoofing
methods can be enhanced by fusing various color spaces (e.g., HSV, YCbCr). From the
image classification literature, it is known that certain classes might be better represented
in specific color spaces [5]. Most of the PAs are generated using different hardware inclined
toward different color spaces. Color monitors mostly use RGB color space, CMY models for
color printout, and HSV, which are the closest to how humans interpret colors, and YCbCr
is paired with popular video and digital photography.

A color space is a specific organization of colors to produce digital color representa-
tion [5]. RGB is ideal for image color generation (as in image capture by a color camera),
but its use is limited to the color description. Thus, researchers are also investigating
transformations of original RGB images into different color spaces, and their impact on
accuracy [5]. In RGB, a spoof can only be modeled in terms of percentages of the three
primaries composing its color [6]. Differences between live human fingers and display
attacks can be better detected using good color descriptors. Choosing an appropriate color
space can provide a more robust analysis. Images of the color models used in the proposed
study are shown in Figure 2.

Figure 2. Examples of finger photo center core patches converted into different color spaces.
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Finger photos are featured by qualities such as the color of the skin and ridges of
fingerprints; thus, working with various color spaces will help to focus on characteristics
that cannot be extracted from RGB images. For example, the color space used in previous
work for skin recognition was YCbCr.

Existing PAD algorithms used in finger photo authentication systems are based on
texture descriptors, including Local Binary Patterns (LBP), Locally Uniform Comparison
Image Descriptor (LUCID), etc., which are processed on RGB images. These approaches
might limit the algorithm’s performance since spoofs are extracted only in the RGB color
model. Recently, we used appropriate color space liveness detection and found that choos-
ing different color spaces can provide a more robust analysis. This research investigated
finger photo patch-based training on a deep learning framework that integrates different
color spaces via a late fusion mechanism. The color spaces considered in this work can be
derived from RGB, thus the proposed investigation seeks to answer the research question
“Is it reasonable to fuse information provided from different color spaces?” more specifically,
“Do different color spaces complement each other?”. Then, this study focuses on addressing
the problem related to the question “What is an effective fusion strategy to increase the
robustness of the finger photo PAD systems?”.

The contribution of this paper is two-fold: (i) carry out a correlation analysis among
various color spaces to assess that they complement each other, and (ii) design and evaluate
a deep learning framework that integrates different color spaces via late fusion. In the
proposed approach, the input RGB finger photo is converted into various color spaces to
train various CNNs by using minutia-centered patches. A single fusion layer is built with
the input size equivalent to the sum of all the fully connected layers of each best net and the
output size equivalent to binary classification (i.e., live or spoof). The last fully connected
layers of the most accurate nets are combined through a fusion layer, which yields a global
decision. The proposed framework is then compared to the state-of-the-art on a publicly
available database.

The rest of the paper is structured as follows: Section 2 reviews research conducted
on liveness detection from fingerprints as well as finger photo PAD, Section 3 summarizes
the approaches evaluated in this study, Section 4 presents the experimental procedure,
Section 5 describes the experimental results, and Section 6 is the conclusions and discusses
future work.

2. Related Work

Existing liveness detection approaches are not explicitly designed for mobile devices
and are generally unsuited for portable devices [7,8]. Several software-based methods,
including Fourier Transform (FT), Local Binary Patterns (LBP), Binarized Statistical Im-
age Features (BSIF), Local Phase Quantization (LPQ), Weber Local Image Descriptor, or
Histograms of Invariant Gradients (HIG), have been investigated for PAD [9–11]. Deep
learning approaches have also been applied. Menotti et al. learned a suitable CNN architec-
ture that was evaluated by executing linear SVM on the resulting deep representation [12].
Frassetto et al. used a hybrid approach combining CNNs and LBPs with best reported
accuracy of 95.2% using 50,000 samples for training from the LivDet 2009, 2011, and 2013
datasets [13].

In 2013, Stein et al. [14] discussed a method to capture multiple finger photos in the
smallest time frame. In addition, they implemented an anti-spoofing method that relied
on the user’s challenge response to detect spoofs by measuring the light that was reflected
from the finger that was exposed to the camera’s LED as well as the position, distance,
and sharpness characteristics of the finger. A database of video stream data was built and
an overall Equal Error Rate (EER) of 3% on the 37 subjects was reported.

In 2014, Akhtar et al. presented the Mobile Biometric Liveness Detection (MoBio
LivDet) approach that analyzes local and global features of biometric images to defend
against spoofing [8]. Locally Uniform Comparison Image Descriptor (LUCID), Census
Transform Histogram (CENTRIST), and Patterns of Oriented Edge Magnitudes (POEM)
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were used for being computationally inexpensive and suitable for mobile processors as well
as robust to photometric transformations and noise. For fingerprint PAD, the researchers
found that LUCID and Local Phase Quantization (LPQ) attained 7.17% and 14.22% Half
Total Error Rate (HTER), respectively; while CENTRIST achieved a HTER 2.2% and POEM
3.84%. In this paper, experiments were carried out on sensor-based fingerprint images.

In 2016, Taneja et al. evaluated LBP, DSIFT, and LUCID on a new database of spoofs
that they created as an extension of the previously published IIITD Smartphone Finger
photo Database built to study matching algorithms [4]. When the complete dataset is
considered, the lowest EER reported is 3.7% and achieved using LBP features to train an
SVM classifier, followed by DSIFT with EER = 5.37% and LUCID EER = 22.22%.

In 2018, Wasnik et al. discussed an approach based on the convolution of input images
at multiple scales through a Frangi filter to obtain Maximum Filter Response (MFR) images
that are then processed to extract LBP, HOG, and BSIF features [15]. The performance
obtained by SVM trained using these features was Attack Presentation Classification Error
Rate (APCER) of 10%, Attack Presentation Classification Error Rate (BPCER) of 1.8% for
print picture attacks, 0.0% for display attacks, and 0.66% for replay attacks.

In 2019, Labati et al. discussed the finger photo recognition pipeline, including acqui-
sition from a smartphone, liveness detection, quality assessment, segmentation, enhance-
ment, feature extraction, and matching. The authors concluded that the two main reasons
for the low performance of matching are due to heterogeneous smartphone acquisition,
uncontrolled illumination, and background conditions’ diversity [16].

Recently, Marasco et al. investigated a methodology that transforms RGB finger photos
into various color spaces, which are used to train different CNNs. The approach finds the
best deep representation for each color model and combines the corresponding individual
outputs. The overall system’s performance combining the top three color spaces achieved
an EER of 2.12% [17]. Although multiple color spaces were used on the whole image, there
were no experimental validations to prove independence among the color spaces. Simple
score-level fusion was used as a mechanism to combine the individual outputs of the CNNs
in order to generate a global score for the final decision.

3. Spoofness by Integrating Different Representations of Colors

Since computer images are numbers, their transformations are viewed as new images.
For humans, a color object is described by its hue, saturation, and brightness. The brightness
component (intensity) in HSV is decoupled from a color image of color-carrying information
(hue and saturation). Thus, they represent ideal tools for developing image-processing
algorithms based on color descriptions that are natural to humans.

XYZ employs extrapolated X, Y, and Z channels from the R, G, and B channels. Lu-
minance is represented by Y, a channel close to blue by Z, and a mix of non-negative cone
response curves by X. LAB is a perceptually uniform color space in which the three channels
are L luminance (black to white), A (green to red), and B (blue to yellow). The lightness
value, L, defines black at 0 and white at 100. The A axis is oriented in relation to the
green–red opponent colors and the blue–yellow opponents are represented on the B axis.
The LAB color space is device-independent; thus, its appearance does not depend on the
type of screen. CMY is a subtractive color model (colors produced in reflected light) in
which cyan, magenta, and yellow pigments are added together in various ways to repro-
duce a broad array of colors. Color printers and copiers use a color model based on the
cyan, magenta, and yellow colors to deposit color pigments on paper. Printers with a
separate black color ribbon or ink are more likely to use the CMYK color model.

3.1. Conversion of RGB Images into Different Color Spaces

The segmented images are then transformed into different color spaces. Below are the
reported equations for the conversions. RGB images can be converted to HSV as follows:

R
00 = R/255, G

00 = G/255 + B
00 = B/255

Cmax = max(R
00, G

00, B
00), Cmin = min(R

00, G
00, B

00)
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Image conversion from RGB supports a modified YCbCr where Y, Cb, and Cr have the
full 8-bit range of [0. . . 255]. Below are the reported equations for the conversion expressed
in six decimal digits of precision:

Y
00 = 0 + (0.299 .RD) + (0.587 .GD) + (0.114 .BD)

C
00
B = 128 � (0.168736 .RD) + (0.331264 .GD) + (0.4 .BD) (3)

C
00
R = 128 + (0.5 .RD)� (0.418688 .GD) + (0.081312 .BD)

A standardized 3 ⇥ 3 matrix describing how to convert RGB into XYZ data.
0
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Converting RGB to LAB requires a reference to the XYZ color space, as illustrated in
Equation (5).

L
00 = 116 fy � 16, A

00 = 500( fx � fy), B
00 = 200( fy � fz) (5)

Image Conversion from RGB to CMY, CMY is the subtractive colors of RGB. The equa-
tion is illustrated in Equation (6):
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00
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00

B
00
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3.2. Correlation Analysis between Color Spaces

Consider whether it is reasonable to fuse the information provided individually by
each color space for an enhanced ability to discriminate between live finger photos and
PAs [18]. To provide experimental evidence that different color spaces complement each
other, their correlation is investigated. Due to its efficiency in terms of computational
requirements at each pixel, in this study, 2D Person’s correlation coefficient (PCC) was
used. PCC is a statistical measure of linear correlation strength between two variables X

and Y that takes values in the closed interval [�1, +1]. Let X and Y denote the intensities
of two images taken in different lighting conditions. A high similarity between them is
obtained when corresponding intensities are linearly related [19]. The computational details
are illustrated in Equation (7), where xi is the intensity of the ith pixel of the segmented
finger photo image in a given color space, and xm is the mean. yi and ym describe similar
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quantities but for different color spaces. The correlation is computed for corresponding
channels, and the average is then considered.

r =
Âi(xi � xm)(yi � ym)q

Âi(xi � xm)
2
q

Âi(yi � ym)
2 (7)

4. The Proposed Finger Photo Color Net (FPCN)

This section discusses the architecture of the proposed deep fusion framework for
finger photo anti-spoofing. The input finger photo is segmented using a U-Net segmenta-
tion Network based on a pre-trained ResNet-50 as the backbone [20]. The segmented RGB
image is converted into multiple color spaces. From the segmented RGB image, minutiae
points (i.e., bifurcation and terminal) are also extracted and mapped into the various color
spaces. For each color space, a patch image is cropped over the coordinates of minutia
points. Furthermore, patches of size 128 ⇥ 128 centered around the detected minutia points
are generated to capture local texture information for enhancing PAD robustness. Finally,
CNNs are individually fine-tuned each on a single color space and the best models are
combined using a late fusion strategy, see Figure 3.

Finger photo

HSV

RGB

YCbCr

XYZ

LAB

CMY

Minutia Patches

Color Space Patches

AlexNet

Mobile-V3

Resnet

DenseNet

Finger photo in 
different color spaces

Segmented 
finger photo

Mapping minutia on different
color space finger photos

GoogLeNet

VGG Net

DeepNets

Fully Connected Layer

Global   
Score

Late Fusion Layer

Softmax Layer

Best Nets Selection

Figure 3. The finger photo is segmented with respect to the distal phalange and transformed
to different color spaces. Patches centered around minutiae points are determined and used to
feed different CNNs. Deep fusion is performed on the best-selected color models and an overall
global decision is provided.

4.1. Finger Photo Segmentation

For the IIIT-D finger photo database used in this research, the input finger photo
distal phalange (fingertip) is segmented using a U-Net segmentation network [20]. This
algorithm has been validated by Grosz et al. on various contactless fingerprint databases
with satisfying results [3]. The ground truth was generated using the open-source LabelMe
segmentation tool on a subset of 100 live and spoof images from both white and natural
backgrounds [20,21]. The ground truth and finger photo images were used to train the
U-net model. The trained segmentation model was then applied to the remaining finger
photos of the dataset to predict the foreground Figure 4. These binary predictions of size
256 ⇥ 256 were expanded to the original size of the finger photo 3264 ⇥ 2448 by maintaining
the aspect ratio. The Gaussian blur (s: 2) is applied to remove the blurriness on the resized
binary image. These binary mask predictions are then used to crop the foreground of the
entire finger photo image. This process retains the ridges and valleys of the original finger
photo image Figure 4.
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Figure 4. Examples of predicted output masks by using the U-Net framework.

4.2. Finger Photo Enhancement and Generation of Patches

A fingerprint enhancement algorithm is applied to improve the clarity of ridge and
valley structures [22]. A bank of Gabor filters is used as band-pass filters to remove noise
while preserving the ridge/valley structures. These filters are tuned to the orientation
and frequency of the ridge configurations. The general Gabor filter function is reported in
Equation (8), where q and f are the orientation and frequency of the filter, and dX and dy are
the space constants of the Gaussian envelope along the x and y axes. For the enhancement,
the segmented finger photos are converted into grey-scale images and then normalized to
estimate the orientation and frequency parameters.

G(x, y : q, f ) = exp

(
�1

2

"
x

2
q

d2
x

+
y

2
q

d2
y

#
cos(2p f xq)

)
(8)

The enhanced images are binarized and further processed via ridge thinning to convert
them into skeletonized images [23]. The ridge ending and bifurcation minutiae points are
extracted by scanning the local neighborhood of each pixel in the ridge-thinned image
using a 3 ⇥ 3 window; then, the crossing number (CN) is computed [23]. CN is half of the
sum of the differences between pairs of neighboring pixels pi and pi+1; see Equation (9).
The coordinates of the minutia points extracted from the ROI of the finger photos are
simultaneously mapped into the various color spaces used in this study. For each color
space, a patch image is cropped over the coordinates of minutia points; see Figure 5.

CN(x,y) =
1
2

8

Â
i=1

|pi � pi+1|, p1 = p9 (9)

Figure 5. Architecture illustrating image segmentation, enhancement and minutia points extraction.
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4.3. The Deep Fusion Layer

Late fusion is a deep feature-level fusion strategy in which multiple CNNs, each
trained on a particular color space, are integrated to obtain a global decision [24]. After fine-
tuning the pre-trained models, the parameters are frozen, and the last layer of each CNN
(i.e., the SoftMax) is removed. A single customized SoftMax layer is built by concatenating
the deep features generated by each CNN. The overall model is then fine-tuned again.
In this study, various pre-trained CNNs are considered, including AlexNet, VGGNet,
ResNet, GoogLeNet, MobileNetV3, and DenseNet-121 [25–28]. Table 1 shows the notations
used in this research.

Table 1. Notations.

Notation

RHYXLC: RGB, HSV, YCbCr, LAB, XYZ & CMY.
RHYXC: RGB, HSV, YCbCr, XYZ & CMY.
RHYC: RGB, HSV, YCbCr & CMY.
RHYLX: RGB, HSV, YCbCr, LAB, & XYZ.
RHYL: RGB, HSV, LAB & YCbCr.
RHY: RGB, HSV & YCbCr.

4.4. Statistical Test for Comparing Classification Algorithms

To compare the proposed approach to various color space-based binary classification
methods, this research applies the paired non-parametric McNemar’s statistical test [29–31].
The scores output of the classifiers do not follow a normal distribution and the live/spoof
group samples are paired. This test analyzes whether two models disagree in the same way
(or not). It is not commenting on whether one model is more accurate or error-prone than
another. The McNemar’s test statistic is calculated as follows:

statistic = (Yes/No � No/Yes)2/(Yes/No + No/Yes) (10)

where Yes/No represents the number of test instances correctly classified by Model 1 but
incorrectly classified by Model 2, and No/Yes represents the number of test instances
incorrectly classified by Model 1 but correctly classified by Model 2. The test determines
whether there is a statistically significant difference in these counts. The null hypothesis
(H0) of the test is that the two classifiers disagree in similar ways, see Equation (11). If the
null hypothesis is rejected, it suggests that our models disagree in significantly different
ways. Furthermore, McNemar’s test provides a c2 distribution with one degree of freedom.
The higher c2 value indicates the significant difference of our models.

H0 = “Classi f iers have a similar proportion o f errors on the test set” (11)

Given the selection of a significance level (a), the p-value (p) calculated by the test can
be interpreted as follows:

p > a : accept H0, no di f f erence in the disagreement. (12)

p <= a : reject H0, signi f icant di f f erence in the disagreement. (13)

5. Experimental Results

5.1. Dataset

The experiments were carried out using the IIITD smartphone finger photo database,
which is the only publicly available database with both live and spoof finger photos [4,32].
Samples pertain to 64 individuals featured by two different backgrounds, under both
controlled and uncontrolled illumination. Examples are shown in Figure 6. The data used
in this study consist of 12,288 finger photo images (4096 live and 8192 spoof).
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Figure 6. Examples of finger photos acquired from live human fingers with white and natural
background as well as of display spoof attacks.

A total of 400,000 minutia patches were extracted from the dataset. For each image,
30 patches centered around a minutia point were randomly selected for training. For
training each CNN, finger photos need to be downsized to the input shape of the model,
which results in a loss of texture features. This issue can be mitigated by using patches
that conserve texture information at a local region. Thus, the proposed approach is based
on training the deep networks using patches centered at the minutia points, which lets
the model learn the salient texture information at local regions resulting in enhanced
PAD robustness.

128 ⇥ 128 patches centered around the minutia points are extracted. These patches are
resized to 224 ⇥ 224 to train the CNNs under study and to 227 ⇥ 227 to train the AlexNet.
The resizing strategy uses area interpolation that retains the aspect ratio to prevent any
feature loss [3,33]

5.2. Evaluation Procedure

To assess the proposed framework, the performance metrics defined in the ISO/IEC
30107-3 standard on biometric presentation attack detection were referenced, partly related
to testing and reporting performance metrics for evaluating biometric presentation attacks.
The assessment scheme is reported below:
• Attack Presentation Classification Error Rate (APCER): Proportion of attack pre-

sentations incorrectly classified as normal presentations, i.e., false acceptance of
spoof samples.

• Normal Presentation Classification Error Rate (NPCER): Proportion of normal presen-
tations incorrectly classified as attack presentations, i.e., false rejection of live samples.

• Equal Error Rate (EER): The intersection point of the percentage of normal presentation
classification error rate and attack presentation classification error rate.

• Receiver Operating Characteristic (ROC) curves to assess the accuracy.
The proposed framework is trained on both natural and white backgrounds in different

lighting conditions (i.e., Indoor and Outdoor). The data were partitioned into 50% training,
20% validation, and 30% testing sets with subjects mutually exclusive.

The experiments were carried out using Argo Cluster at George Mason University [34].
Argo Cluster is a high-performance batch computing resource provided to all the students
and faculty of George Mason University. It was assembled in 2013, which has 75 compute
nodes totaling 1496 cores and over 8 TB of memory. The cluster is managed by two head
nodes, Argo-1 and Argo-2, which is assigned to the user in a round-robin fashion upon
login. Sixty-nine compute nodes have dual Intel processors with 64 to 512 GB RAM. There
are six GPU compute nodes powered by V100 GPUs with 28 core CPUs, 32 GB onboard
memory per GPU750 GB to 1.5 TB RAM per node, equipped with specialized libraries for
Pytorch, which were used for this research.
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5.3. Results

The experimental results related to the correlation analysis demonstrate that the color
spaces considered in this study complement each other. Pearson correlation confirms that
the color spaces to be fused are uncorrelated. From Table 2, it is clear that HSV and LAB
images exhibit a Pearson correlation coefficient of 0.015 and �0.031, respectively, which
suggests no correlation. Furthermore, RGB and CMY images are negatively correlated.
The general trend found from this analysis supports the initial hypothesis that color spaces
provide enough diversity to be exploited in a fusion strategy.

Table 2. Pearson correlation between color spaces.

RGB HSV LAB XYZ YCbCr CMY

RGB 1.000 0.015 �0.031 0.998 0.324 �0.983
HSV 0.015 1.000 0.017 �0.453 �0.037 �0.010
LAB �0.031 0.053 1.000 �0.013 0.334 �0.004
XYZ 0.995 0.026 �0.013 1.000 0.333 �0.993

YCbCr 0.324 0.011 0.335 0.240 1.000 �0.621
CMY �0.990 �0.006 �0.007 �0.993 �0.283 1.000

Table 3 illustrates the EER% of the CNNs under study when individually fine-tuned
on a single color space. Findings support the initial hypothesis about the diversity in
the information provided by various color spaces, which can enhance the performance
of the overall system. The lowest EER of 0.96% is achieved by the MobileNet-V3 trained
using HSV images. Further, 1.39% and 1.84% are the EER achieved by YCbCr and CMY,
respectively. ResNet-18 and ResNet-34 perform well with RGB, YCbCr, and CMY color
spaces. ResNet34 reached an EER of 1.19% using HSV.

Table 3. Performance of the individual color spaces in terms of EER%.

Color Space AlexNet ResNet-18 ResNet-34 VGG16 VGG19 GoogLeNet MobileNetV3 DenseNet-121

RGB 2.875 1.381 1.454 4.012 3.274 2.124 2.024 1.274
XYZ 3.87 5.124 3.765 5.611 5.612 6.248 3.164 4.127

YCbCr 2.471 1.918 2.472 4.37 4.374 5.312 1.394 3.041
HSV 3.214 2.412 1.196 2.487 2.847 2.471 0.967 1.671
LAB 11.471 4.974 5.972 8.87 9.69 8.574 4.974 4.472
CMY 4.124 2.874 3.412 4.102 3.128 3.481 2.851 1.971

Table 4 compares CNN models individually trained by using all color spaces as well
as only by using RHY, the proposed late fusion framework, and the state-of-the-art. Results
are reported in terms of EER%, average accuracy after repeating each experiment three
times, standard deviation, F1, and 10-fold cross-validation. Individual CNNs trained on
all color spaces (e.g., RHYLXC) generally do not exhibit competitive results. In particular,
ResNet-34 and Densenet-121 achieved an EER of 6.12% and 6.38%. When trained on RHY,
Densenet-121 and Resnet-34 achieved an EER of 3.01% and 3.54%.

By using the proposed late fusion strategy, the combination RHYC achieved an EER of
0.841%. Late fusion with selected best net models outperformed the current state-of-the-art.

Figure 7a shows the DET curve of the proposed late fusion strategy. RHYXC and
RHY achieved an EER of 0.961%, with BPCER of 4.88% at APCER = 0.1%, and 0.864%
with BPCER of 3.5% at APCER = 0.1%, respectively. The lowest EER of 0.841% is obtained
by RHYC with BPCER of 2.67% at APCER = 0.1%. Figure 7b shows the DET curve of
individual CNNs trained on RHY color spaces.
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Table 4. Comparison of the Proposed Approach to the State-of-the-art in terms of EER%.

Model EER% Avg. Accuracy Standard Deviation F1 Score CV-10fold

Finger photo :
Trained on all color spaces

Alexnet 6.97 92.5 1.52 0.91 91.98 ± 1.04
VGG16 8.08 90.4 1.57 0.89 89.31 ± 0.96
VGG19 6.42 93.6 1.41 0.85 91.67 ± 1.84

ResNet 18 8.64 91.1 0.98 0.87 91.61 ± 1.44
ResNet-34 6.12 93.9 1.64 0.84 93.04 ± 1.25
GoogleNet 7.84 92.6 0.94 0.89 91.51 ± 0.98
Dense-121 6.38 93.2 1.34 0.87 92.51 ± 0.97

Finger photo :
Trained on RHY

Alexnet 4.02 95.41 0.92 0.931 95.47 ± 0.87
VGG16 4.97 94.1 0.68 0.965 94.45 ± 0.81
VGG19 6.42 93.93 0.91 0.85 94.14 ± 1.24

ResNet 18 4.06 95.97 0.73 0.94 94.14 ± 0.42
ResNet-34 3.54 96.65 0.67 0.95 95.17 ± 0.87
GoogleNet 4.09 96.08 0.65 0.96 96.84 ± 1.04
Dense-121 3.01 97.1 1.48 0.97 97.81 ± 0.48

Late Fusion:
Selection of best nets

RHYLXC 0.964 97.42 1.63 0.969 97.42 ± 1.04
RHYXC 0.961 97.27 0.98 0.953 97.47 ± 0.64
RHYC 0.841 98.91 1.01 0.964 98.17 ± 1.20
RHY 0.864 98.93 0.87 0.971 98.37 ± 0.97

State of the art:
Score-Level Fusion

RHY [17] 2.12 96.32 0.85 0.93 97.28 ± 0.78
RHYL [17] 2.71 96.81 0.98 0.95 98.15 ± 0.87

RHYLX [17] 3.29 96.02 1.03 0.91 97.08 ± 0.95

State of the art:
RGB Color Space

LBP+SVM [4] 3.02 97.7 0.85 0.98 98.40 ± 0.74
DSIFT+SVM [4] 5.03 95.05 0.27 0.96 96.31 ± 0.21
LUCID+SVM [4] 21.66 77.2 0.31 0.85 78.34 ± 0.51

(a) (b)

Figure 7. (a) DET Curves illustrate the performance of late fusion on the overall system. (b) DET
Curves illustrate the RHY finger photo patches trained on individual CNN.

Estimating the liveness of RGB finger photos acquired with a smartphone under
unstable illumination conditions is a complex task. Results suggest that characteristics of
indoor and outdoor brightness conditions that were not captured by RGB can be captured
by a combination of V and Y components in the HSV and YCbCr color spaces, respectively.
Spoof finger photos displayed by a certain device, thus featured by certain saturation levels
can be effectively represented by the HSV representation. CMY is the subtractive color of
RGB, i.e., brighter colors in RGB color space are darker in CMY. This property is useful for
discriminating printout attacks since most printouts are captured on white paper, which is
a reflective (bright) material.

The time efficiency of the proposed PAD system was also computed. Time efficiency

indicates the time required by the system to be executed on the available resources [35,36]. It
is defined as the elapsed time from the moment the input data is captured until the decision
is output [37]. The deep fusion module operating on six patches (one patch per color space)
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provides a global decision in 485 milliseconds. The total time efficiency when the fusion
model provides a global decision by sequentially testing on five patches per subject is 2.6 s
computed as 5 ⇥ 485 ms added to the time to execute a majority voting. Additionally,
the segmentation process with UNet takes 632 ms, while enhancement, minutia detection,
and minutia patch extraction take a total of 14.35 s.

Mcnemar’s Test
The research performed a statistical test for a meaningful interpretation and compar-

ison of the PAD methods analyzed in this study and their statistical differences. Table 5
reports McNemar’s test between the late fusion models. The results clearly show that the
p-value is less than the significance value, i.e., 5%. our research also reports the c2 with
1 degree of freedom for all the late fusion models. Results suggest that the p-value is less
than the significance level, which shows that the null hypothesis H0 can be rejected. This
means the fusion models have different performances when tested on the same dataset.

Table 5. McNemar’s test.

RHYLXC RHYXC RHYC RHY

c2 p < 0.05 c2 p < 0.05 c2 p < 0.05 c2 p < 0.05

RHYLXC 16.46 4.9 ⇥ 10�5 35.53 2.5 ⇥ 10 �8 35.15 5.7 ⇥ 10�8

RHYXC 16.46 4.9 ⇥ 10�5 4.212 0.041 29.45 4.2 ⇥ 10�12

RHYC 35.53 2.5 ⇥ 10�8 4.212 0.041 26.16 3.1 ⇥ 10�7

RHY 35.15 5.7⇥ 10�8 29.45 4.2 ⇥ 10�12 26.16 3.1 ⇥ 10�7

From Table 5, the p-result suggests that RHYC and RHYXC have a c2 of 4.2 and p-value
of 0.041, which is very close to the significance value (alpha). Although, when compared
with other fusion models, the p-value is < 1% and has a large c2 value. This shows that our
model’s performances are diverse. We can also observe that the c2 values of RHYC and
RHY are 35.53 and 35.15 compared with RHYLXC. This suggests that the performance of
RHYC and RHY fusion models significantly differs from RHYLXC.

6. Conclusions

Finger photo technology can be used as a viable approach for touchless authentication
in mobile devices. However, it is vital to understand the implications of spoofing attempts
on finger photo recognition. The proposed research provides a mechanism for defense
against finger photo spoofing. Different CNNs are trained individually using various color
spaces and then integrated via deep fusion. Finger photo patches were used to train the
deep networks to conserve texture information in a local region. Results demonstrate the
superiority after combining different color spaces compared to the state-of-the-art. Findings
show that when late fusion is performed, the scheme that integrates RHYC results in an EER
of 0.841%. This supports the hypothesis that different color spaces complement each other,
and combining the information provided by each of them can aid spoof representation and
thus PAD. The proposed study is constrained by the limited publicly available finger photos
spoof database with 64 subjects. Furthermore, the existing IIIT-D database device used
for the acquisition of live and spoof samples was not of similar specification. Therefore,
our future efforts will focus on creating a larger database for spoof finger photos using
the same capture device for live and spoof. This will allow us to generalize our current
framework. We will also explore methodologies such as activation maps to explain the
deep models obtained in this work.
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Abbreviations

PA presentation attack
PAD presentation attack detection
CNN convolutional neural network
PCC person’s correlation coefficient
ROI region of interest
CN crossing number
LUCID locally uniform comparison image descriptor
BSIF Binarized Statistical Image Features
LBP local binary patterns
LPQ Local Phase Quantization
HIG Histograms of Invariant Gradients
FT Fourier Transform
CENTRIST Census Transform Histogram
POEM Patterns of Oriented Edge Magnitudes
MFR Maximum Filter Response
DSIFT dense scale invariant feature transform
APCER attack presentation classification error rate
NPCER normal presentation classification error rate
HTER Half Total Error Rate
EER equal error rate
RHYXLC RGB, HSV, YCbCr, LAB, XYZ, CMY
RHYXC RGB, HSV, YCbCr, XYZ, CMY
RHYC RGB, HSV, YCbCr, CMY
RHYLX RGB, HSV, YCbCr, LAB, XYZ
RHYL RGB, HSV, LAB, YCbCr
RHY RGB, HSV, YCbCr
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