

JGR Biogeosciences

METHOD

10.1029/2022JG007342

Special Section:

The Earth in living color: spectroscopic and thermal imaging of the Earth: NASA's Decadal Survey Surface Biology and Geology Designated Observable

Key Points:

- Cloud-based plant disease detection system, easily accommodates model improvements and future data sources
- Empower agricultural stakeholders to use hyperspectral data for decision support while preserving stakeholder data privacy
- Outline framework for researchers interested in designing geospatial/ remote sensing applications for agricultural stakeholders to follow

Correspondence to:

G. Rubambiza and F. Romero Galvan, gbr26@cornell.edu; fer36@cornell.edu

Citation:

Rubambiza, G., Romero Galvan, F., Pavlick, R., Weatherspoon, H., & Gold, K. M. (2023). Toward cloud-native, machine learning base detection of crop disease with imaging spectroscopy. Journal of Geophysical Research: Biogeosciences, 128, e2022JG007342. https://doi.org/10.1029/2022JG007342

Received 11 DEC 2022 Accepted 26 APR 2023

Author Contributions:

Fernando Romero Galvan

Data curation: Gloire Rubambiza,
Fernando Romero Galvan

Formal analysis: Gloire Rubambiza,
Fernando Romero Galvan

Funding acquisition: Hakim
Weatherspoon, Kaitlin M. Gold

Investigation: Gloire Rubambiza,
Fernando Romero Galvan

Conceptualization: Gloire Rubambiza.

© 2023. The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Toward Cloud-Native, Machine Learning Base Detection of Crop Disease With Imaging Spectroscopy

Gloire Rubambiza¹, Fernando Romero Galvan², Ryan Pavlick³, Hakim Weatherspoon¹, and Kaitlin M. Gold²

¹Department of Computer Science, Cornell University, Ithaca, NY, USA, ²Cornell University, Cornell AgriTech, Geneva, NY, USA, ³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Abstract Developing actionable early detection and warning systems for agricultural stakeholders is crucial to reduce the annual \$200B USD losses and environmental impacts associated with crop diseases. Agricultural stakeholders primarily rely on labor-intensive, expensive scouting and molecular testing to detect disease. Spectroscopic imagery (SI) can improve plant disease management by offering decision-makers accurate risk maps derived from Machine Learning (ML) models. However, training and deploying ML requires significant computation and storage capabilities. This challenge will become even greater as global-scale data from the forthcoming Surface Biology & Geology satellite becomes available. This work presents a cloud-hosted architecture to streamline plant disease detection with SI from NASA's AVIRIS-NG platform, using grapevine leafroll-associated virus complex 3 (GLRaV-3) as a model system. Here, we showcase a pipeline for processing SI to produce plant disease detection models and demonstrate that the underlying principles of a cloud-based disease detection system easily accommodate model improvements and shifting data modalities. Our goal is to make the insights derived from SI available to agricultural stakeholders via a platform designed with their needs and values in mind. The key outcome of this work is an innovative, responsive system foundation that can empower agricultural stakeholders to make data-driven plant disease management decisions while serving as a framework for others pursuing use-inspired application development for agriculture to follow that ensures social impact and reproducibility while preserving stakeholder privacy.

Plain Language Summary Agricultural decision-makers need reliable access to accurate data to make sustainable crop management choices. This is especially important for decisions related to crop disease management, which can have major financial, environmental, and societal impacts. Forthcoming hyperspectral satellite systems such as Surface Biology & Geology will provide spectroscopic imagery (SI) that can be used in combination with machine learning (ML) for agricultural decision making at the global scale. However, deploying ML models trained on SI requires significant computation and storage resources, limiting non-expert use. Additionally, agricultural stakeholders frequently have reservations and/or restrictions about how data can or cannot be shared with outside entities. Here, we overview a proof-of-concept, cloud system designed with agricultural users in mind that allows researchers to rapidly deploy ML models for plant disease detection using SI from AVIRIS-NG without retaining confidential stakeholder information. We use grapevine leafroll virus-complex 3 (GLRaV-3) in California wine grapes, a virus that causes \$3 billion in damages and losses to the US grape industry annually, as a case study. We provide a framework design that outlines how this system is implemented and could be made accessible to both growers and researchers, as well as discuss system limitations and opportunities for future work.

1. Introduction

Food security through consistent and scalable agriculture output is the invisible foundation of modern society. However, the globalization and interconnectedness of the agricultural problems we now face demand global, interconnected, and scalable solutions. For example, climate change reduced global farming productivity by 21% over the past 60 years while food demand increased 100% (Ortiz-Bobea et al., 2021). Food demand is anticipated to rise an additional 60%–90% over the next 30 years as the population continues to grow (FAO et al., 2015). Plant disease threatens our ability to scale agricultural output to meet this continuously growing demand. Currently, plant disease destroys an estimated 15%–30% of the global harvest annually, resulting in \$220B in losses (Secretariat et al., 2021). Climate change is anticipated to increase the virulence, geographic range, and dispersal capacity of plant pathogens, and consequently, their downstream impacts to human health

Methodology: Gloire Rubambiza, Fernando Romero Galvan Resources: Gloire Rubambiza, Fernando Romero Galvan, Ryan Paylick, Hakim Weatherspoon, Kaitlin M. Gold Software: Gloire Rubambiza, Fernando Romero Galvan Supervision: Ryan Pavlick, Hakim Weatherspoon, Kaitlin M. Gold Validation: Gloire Rubambiza, Fernando Romero Galvan Visualization: Gloire Rubambiza. Fernando Romero Galvan Writing - original draft: Gloire Rubambiza, Fernando Romero Galvan Writing - review & editing: Gloire Rubambiza, Fernando Romero Galvan, Rvan Pavlick, Hakim Weatherspoon, Kaitlin M. Gold

and society (Nnadi & Carter, 2021). Providing agricultural stakeholders with privacy-preserving, easily deployable, and scalable methods to detect early-stage plant disease, the period of time when intervention is both most critical and most likely to succeed can help address this challenge and reduce food insecurity.

Spectroscopic imagery (SI) in the visible to shortwave infrared light range (VSWIR, 400–2,400 nm) can quantify chemistry in soil, rock, and vegetation based on the interaction of light with chemical bonds (Curran, 1989). Plant disease changes how solar radiation interacts with leaves, canopy, and plant energy balance, all of which is captured in SI. This underlying capacity is what enables airborne imaging spectroscopy to non-destructively detect biotic stress in both natural and agroecosystems asymptomatically (Romero Galvan et al., 2023; Sapes ST detect biotic stress in both natural and agroecosystems asymptomatically (Romero Galvan et al., 2023; Sapes et al., 2022; Zarco-Tejada et al., 2018, 2021). Disease detection with SI has benefited greatly from data processing using artificial intelligence (AI), specifically machine learning (ML) (Hruška et al., 2018; Jiménez-Brenes et al., 2019). However, using ML with SI requires powerful compute and storage media to process potentially terabytes (TBs) of data. Imaging spectrometers such as the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) instrument have collected SI over millions of acres of agricultural lands unintentionally during campaigns targeted at other uses. Forthcoming satellite systems such as the European Space Agency's Copernicus Hyperspectral Imaging Mission for the Environment (CHIME; Nieke & Rast, 2018) and NASA's Surface Biology and Geology (SBG); (Schneider et al., 2019), will revolutionize global imaging spectroscopy data availability. Taken as a constellation, these instruments will provide data at actionable intervals without cost, and will, for the first time, democratize the availability of such powerful data products for agricultural use. The Surface Biology and Geology (SBG); (Schneider et al., 2019), will revolutionize global imaging spectroscopy AVIRIS-NG archives therefore present an exciting opportunity to test and validate the utility of SI for disease ≤ management decision making. However, deploying cutting edge models for agricultural stakeholder use beyond

management decision making. However, deploying cutting edge models for agricultural stakeholder use beyond academic investigations requires a flexible infrastructure that can readily access a user's edge devices, such as computers, storage, and networks. Cloud computing is an ideal solution to this challenge.

Cloud computing has revolutionized data storage and processing by providing ubiquitous, convenient, and a third of the world's data, compute, and storage is hosted by the cloud (Cohen, 2021; Marr, 2015). Practically, a third of the world's data, compute, and storage is hosted by the cloud (Cohen, 2021; Marr, 2015). Practically, a third of the world's data, compute, and storage is hosted by the cloud (Cohen, 2021; Marr, 2015). Practically, a third of the world's data, compute, and storage is hosted by the cloud (Cohen, 2021; Marr, 2015). Practically, a third of the world's data, compute, and storage is hosted by the cloud (Cohen, 2021; Marr, 2015). Practically, a third of the world's data, compute, and storage is hosted by the cloud (Cohen, 2021; Marr, 2015). Practically, a third of the world's data, compute, and storage is hosted by the cloud (Cohen, 2021; Marr, 2015). Practically, a third of the world's data, compute, and storage is hosted by the cloud (Cohen, 2021; Marr, 2015). Practically, a third of the world's data, compute, and storage is hosted by the cloud (Cohen, 2021; Marr, 2015). Practically, a third of the world's data, compute, and storage and compute devices (Mell & Grance, 2011). In fact, a third of the world's data, compute, and storage and compute devices (Mell & Grance, 2011). In fact, a third of the world's data, compute, and storage and compute devices (Mell & Grance, 2011). In fact, a third of the world's data centers to provide low-latency compute, and third of the world's data centers to provide low-latency compute, and third of the world's data centers to provide low-latency compute, and third of the world's data centers to provide low-latency compute, and third of the world's data the cloud and AI are increasingly employed in yield prediction, soil mapping, land and data management, etc (Analytics, 2022; Awan et al., 2020; Pavón-Pulido et al., 2017). In the context of SI-informed disease management, cloud computing is not only needed to scale current methods, but also to explore the implications of tuture missions. Agricultural decision-making stands to benefit from ML models trained using powerful clouds computers. However, in contexts where Internet connectivity is sparse, as is often the case in rural communities, it is more practical for models to be trained in the cloud but deployed closer to the data sources. This distributed computing model, which complements cloud computing, is known as edge computing. The edge cloud is a similar compute system organization as the cloud, but rather than providing all computing and storage resources on remote servers, these capabilities are, in part, local and semi-autonomous to accommodate limitations in centralized systems and the intermittency or complete loss of Internet connectivity.

The goal of this work is three-fold. First, we aim to provide a general, cloud-based platform for training and testing SI-informed ML models for non-intrusive and scalable crop disease management. To that end, we showcase new techniques for processing Section 2.4 and refining spectroscopic imagery Section 2.3 in a novel agricultural application: grapevine leafroll associated virus complex 3 (GLRaV-3) detection in wine grape Section 2.1 (Romero Galvan et al., 2023). The second goal is to provide a general platform for researchers to explore the implications of future satellite missions, including SBG and beyond, whose data scales and resolutions are yet to be finalized, for actionable disease detection and decision making. We demonstrate a cloud-based software architecture whose underlying data and application programming interfaces (APIs) are "plug-and-play" to accommodate current known, and future, yet unknown needs Section 2.2. Finally, the final goal of this work is to achieve a positive social impact by providing agricultural stakeholders, including grape growers and industry members, with insights from our work through a platform that is not only easily accessible but also designed with

RUBAMBIZA ET AL. 2 of 12

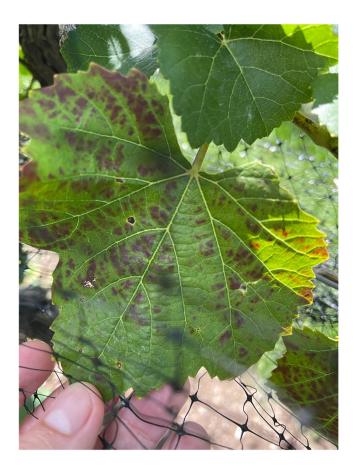


Figure 1. Cabernet Sauvignon grapevine infected with GLRaV-3; one leaf (top of image) not showing the characteristic GLRaV-3 foliar red-blotch symptoms while another leaf (center of image) is showing characteristic red-blotch foliar symptoms of GLRaV-3 infection.

data privacy in mind. To this end, we illustrate the efficacy of ML models developed for GLRaV-3 detection (Figure 6) in a cloud-native environment developed for GLRaV-3 detection (Figure 6) in a cloud-native environment that does not retain potentially proprietary grower data (e.g., exact field loca-

that does not retain potentially proprietary grower data (e.g., exact field locations) within it. Finally, we discuss methods for reproducibly sharing these models in a manner as required by public funding agencies, while maintaining grower privacy and support Section 2.2.3.

2. Materials and Methods

2.1. Model Pathosystem, Disease Incidence, and Detection Models

Grapevine leafroll-associated virus complex 3 (GLRaV-3) is an economically important viral disease of wine, juice, table, and raisin grape. GLRaV-3 is estimated to cause up to 3 billion (USD) in economic damage to the U.S. wine and grape industry annually. While the virus is primarily vectored by mealybugs (Pseudococcidae sp.), it can also be spread by many other phloemodification of the complex of the unit of the uni have reduced lifespan and productivity. Additionally, infection causes uneven berry ripening and disordered berry chemistry, which reduces wine quality. ≤ Detecting GLRaV-3 infected grapevine at the symptomatic stage is straight and a piece of the grapevine is sent over to a commercial lab to verify viral presence via serological or molecular testing. growers face is early detection. Infected plants can stay at the asymptomatic stage for up to 1 year, meaning they display no visible sign of disease for phumans to identify despite being infectious to nearby grapevines (Almeida et al., 2013; Maree et al., 2013; Naidu et al., 2014). Additionally, unlike redo grape varieties (e.g., Cabernet Sauvingnon), white grape varieties (e.g., Charty donnay) do not manifest visible foliar symptoms that can be identified by donnay) do not manifest visible, foliar symptoms that can be identified by scouts (J. Charles et al., 2006; Naidu et al., 2014; Olmos et al., 2016). Exist-

ing methods for asymptomatic GLRaV-3 rely on molecular testing which can cost \$40-\$300 USD per vine depending on the number of viruses that are being tested. Considering that a small vineyard has close to 1,000 vines, and a large vineyard 30,000+, this presents a crucial scaling problem that imaging spectroscopy is ripe to address.

All data worked with here is within the city of Lodi, California, USA illustrated in Figure 2. Here, there are roughly 11,000 acres of vineyards where AVIRIS-NG acquisitions were made. The AVIRIS-NG acquisitions roughly 11,000 acres of vineyards where AVIRIS-NG acquisitions were made. The AVIRIS-NG acquisitions captured vineyards roughly a week after the disease incidence coordinates were recorded. For more detailed description of disease incidence collection, validation, and aggregation, see Romero Galvan (Romero Galvan et al., 2023). In brief, disease incidence data was collected at seven vineyards and covered 7 acres (ac) of red grape variety Aglianico, 204ac of Cabernet Sauvignon, and 57ac of Petite Sirah in the city of Lodi, CA by visual inspection for foliar symptoms ("scouting") by expert teams. A subset of the data was sent for external validation with molecular testing in September of 2020 and 2021. Molecular testing found the expert scouts to be 100% accurate. When a diseased vine was encountered scouts recorded the coordinates of diseased vine was encountered. accurate. When a diseased vine was encountered, scouts recorded the coordinates of disease incidence in local Universal Transverse Mercator geographic coordinate system, Zone 11 (EPSG: 26910). Each disease incidence point is classified according to one of three labels: non-infected (NI), symptomatic (Sy), and asymptomatic (aSy). Sq It is well established that GLRaV-3-infected red variety grapevines (e.g., Cabernet Sauvignon, Malbec) can stay at the asymptomatic stage for up to a year if no visible symptoms appear before a grapevine's winter dormant period (J. Charles et al., 2006; Olmos et al., 2016). Therefore, incidence points identified as visibly infected in 800 more described in 100 more describ 2021 were labeled asymptomatic (aSy), and vines identified as visibly diseased by the scouts in 2020, during the AVIRIS data acquisition, are labeled as symptomatic (Sy). Vines that were identified as Sy in 2020 were removed prior to the 2021 growing season, and therefore were not present at the time of 2021 scouting. Vines that were not identified as visibly infected in either 2020 or 2021 are labeled non-infected (NI). We note that we did not conduct molecular testing to prove that these vines were truly aSy at the time of data collection, as it would

RUBAMBIZA ET AL. 3 of 12

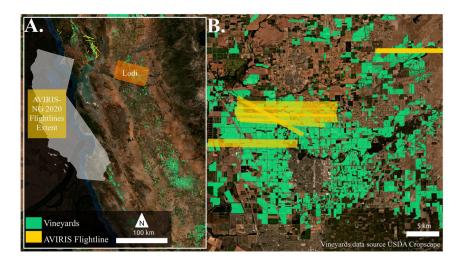


Figure 2. Area of interest (AOI) highlighting AVIRIS-NG acquisitions which spatially overlap our ground validation data in the city of Lodi, California. (a) Shows the full geographic extent of all AVIRIS-NG flight lines collected in 2020 that flew over vineyards. (b) Shows a zoom-in to the flight lines that collected SI over vineyards in the AOI.

have been unfeasible given our scope of study and sample testing expense (\$40–50 per vine). We emphasize that this assumption is well supported by current understanding of disease biology (Almeida et al., 2013; Maree et al., 2013; Naidu et al., 2014), and the fact that all green foliage was destroyed and removed from the vineyard during mechanical harvest soon after the flight took place. This implies a lower likelihood that vines experienced an opportunity to become infected between the time of the AVIRIS-NG flight and bud break the following season.

Following common convention of training ML models (Gholamy et al., 2018), our Random Forest models (RFm) Romero Galvan found to be optimal for GLRaV-3 detection in grape....

the optimal balance of not losing too much of the disease signal and drowning the noise introduced by the background present at each pixel. In total, 268 acres were classified, capturing 80% of the disease incidence in a reference in a were trained through a 70/30 training/validation split. The models were trained on spatially-resampled 3-m SI as o

2.2. System Architecture

The system architecture consists of three major components that provide an adaptable pipeline for disease detec tion. These components are the NASA Cloud, the edge lab at Cornell University, and the publicly accessible cloud, specifically, Azure Cloud (Figure 3). We describe these components and the corresponding steps below.

2.2.1. NASA Cloud

The NASA Cloud serves as the peripheral location of raw data. The raw data is collected through NASA's AVIRIS-NG flight missions. That is, the servers host high-dimensional SI data originating from flights over 875,000 acres of vineyards in California, USA. In **Step 1** the SI is accessed from the AVIRIS-NG data portal and accessed from the AVIRIS-NG data portal accessed from the AVIRIS-NG data port through a user-initiated download. These data sets serve two distinct functions. First, they serve as data to train ? new disease detection models. Second, they function as raw data for filtering during field-specific inference requests.

2.2.2. Edge Lab

The edge lab serves as a central location for data pre-processing. Before the NASA Cloud data can yield useful

insights, it requires pre-processing to account for noise in the data collection process. The pre-processing steps must include those highlighted in Section 2.4: BRDF, topographic, vector normalization, etc. all steps are illustrated in Figure 4. In Step 2, the pre-processed training data is uploaded to the cloud for model training. In addition to data pre-processing, the edge lab serves as training ground for the GLRaV-3 model training/testing. Note that, in Step 3, the models can be trained in the cloud or at the edge lab. On one hand, in Step 4, the training relies on pre-processed data and more compute power in the cloud. On the other hand, the edge lab (or "local")

RUBAMBIZA ET AL. 4 of 12

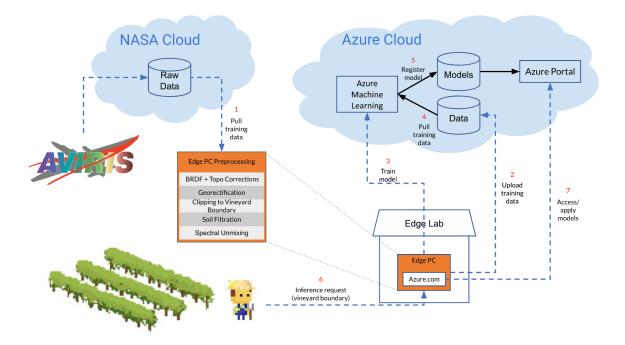


Figure 3. Flowchart of the system architecture for early GLRaV-3 disease detection.

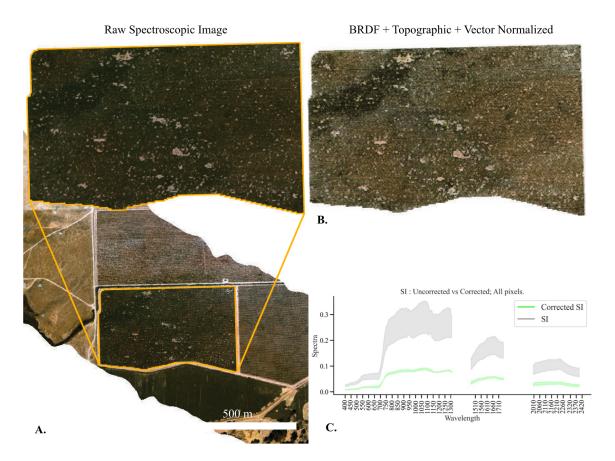


Figure 4. (a) AVIRIS-NG Flightline with inset of example vineyard as seen by AVIRIS-NG. (b) Imagery with BRDF, topographic, and vector normalization applied. (c) Spectroscopic graph of reflectance values before and after.

RUBAMBIZA ET AL. 5 of 12

U Journals, Wiley Online Libi

training and testing follows from three practical considerations. First, it affords researchers as much flexibility as possible in setting up environments in terms of software dependencies. Second, to minimize cloud consumption costs, disease inference requests can be iteratively tested locally before being deployed to the cloud. Lastly, though rare in research labs, the connectivity to the public cloud for data and model access may be immediately and the local setup may intermittently serve inference requests during such outages. The training at the edge laby yields GLRaV-3 models that are managed by the model management pipeline described next.

2.2.3. Model Management Pipeline

alization is the process of turning objects in a computer program into bits that can be sent on a network like the Internet and/or stored in persistent storage like a hard disk drive (HDD) or solid-state drive (SSD). The models essentially represent mathematical functions that represent the most salient components in the disease detection of process. Therefore, the serialization process captures these functions as (Python) objects that can be uploaded from one site and downloaded at another site with the same representation. In this context, the GLRaV-3 models can be uploaded/downloaded locally or stored in the cloud for retrieval during disease inference requests (Step 6).

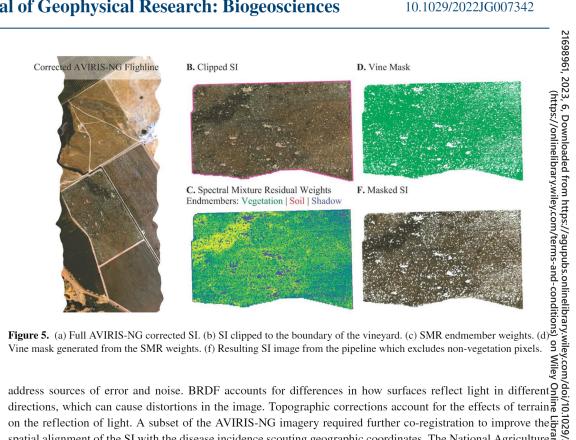
The model upload process in Step 5 specifies the location of the model on the local computer, the name for the model, any appropriate tags, and the Azure Machine Learning (ML) workspace where the model is to be uploaded. Azure ML is a platform-as-a-service (PaaS) offering to enable data processing in the Azure Cloud, § and a workspace is a logical partition of computing and storage servers for a single project (Microsoft, 2021). Therefore, the name of the model must be unique within a workspace. The tags are useful to filter models during the download process. Within the workspace, models are indexed by names and versions. The versions are automatically created by the Azure ML workspace when an existing model name is registered more than once. In other words, all models are stored under a single location, but it is possible to specify which version to download \vec{z} and apply for inference requests.

The download process can be triggered programmatically or manually. The programmatic download can be triggered from any (Python) script with the correct credentials for the workspace where the model is stored. The \$\mathbb{G}\$ programmatic trigger is ideal for downloading the model at the network edge where connectivity to the cloud is limited in order to field inference requests even during network outages. As demonstrated in Step 7, the manual $\sqrt[n]{2}$ download is possible from any networked computer with access credentials for the Azure ML workspace through the Azure portal. The Azure portal is a user-friendly interface for provisioning and managing resources in the Azure Cloud. The manual download is a convenient way to access the model parameters and potentially checking the size before targeting a model deployment location or device. This is important for inference requests that may be run on resource-constrained devices such as Raspberry Pis (Raspberry Pi, 2022).

2.3. Spectroscopic Imagery

Spectroscopic Imagery (SI) from NASA Jet Propulsion Laboratory's AVIRIS-NG airborne instrument was used to train these models. Specifically, the SI image IDs were: ang20200918t210249, ang20200918t205737. ang20200918t212656, ang20200918t213801, ang20200918t213229. The SI imagery was collected on 18 ang20200918t213229. September 2020 between 1:00 p.m. and 3:00 p.m. Pacific (local) time. All listed SI are collected at the 1-m of spatial resolution, collected spectral-channels at 5-nanometers (nm) between 380 and 25,000 nm totaling 425 channels (Chapman et al., 2019; Thompson et al., 2018). All AVIRIS-NG imagery used in this study is publicly available reflectance data that can be developeded from the AVIRIS NG data portal https://exiris.inl.ness.gov/ available reflectance data that can be downloaded from the AVIRIS-NG data portal https://aviris.jpl.nasa.gov/odataportal/. All AVIRIS-NG SI were atmospherically corrected using the ATmospheric REMoval (ATREM) algorithm (Gao & Goetz, 1990). Additionally, water absorption feature wavelengths are excluded due to noise \(\mathbb{Q}\) caused by atmospheric affects and water absorption featured found at these sections of the electromagnetic spectrum. To be specific, the spectroscopic ranges excluded from the training data: 380-400 nm, 1,310-1,470 nm, 1,750–2,000 nm, and 2,400–2,600 nm. All pixels outside the extent of the vineyard are likewise excluded by masking the imagery using the Python package Rasterio (Gillies et al., 2013). To exclude non-vine spectra from the imagery (e.g., soil, shadows, trees), a vine mask was generated using the spectral unmixing residuals outlined in Sousa et al. (2022). Both the bidirectional reflectance distribution function (BRDF) and topographic corrections (Queally et al., 2022) scripts from the HyTools package (Chlus et al., 2022) were applied to all of the SI using default parameters. BRDF and topographic corrections are common techniques in remote sensing to

RUBAMBIZA ET AL. 6 of 12



on the reflection of light. A subset of the AVIRIS-NG imagery required further co-registration to improve the spatial alignment of the SI with the disease incidence scouting geographic coordinates. The National Agriculture Imagery Program (NAIP; USDA) imagery collected within a week of our AVIRIS-NG imagery was used as a reference to improve georeferencing and co-registration. Ground control points (GCPs) were generated by passing a target SI and reference NAIP image to the open-source Python library Automated and Robust Open-Source Image co-registration Software (AROSICS) (Scheffler et al., 2017). Lastly, the n-dimensional spectroscopics vectors were normalized to reduce the effects of varying illumination conditions that may be present in the field. vectors were normalized to reduce the effects of varying illumination conditions that may be present in the field. The reason for applying vector normalization is to make uniform the brightness of each band of the SI. This results in a normalized SI where the values of each band are only influence by the spectral characteristics of the surface rather than illumination conditions. Vector normalization was done using the normalization function from the Python library Numpy to calculate the magnitude or "length" of each vector, each vector is then divided by its a surface rather than illumination conditions.

the Python library Numpy to calculate the magnitude or "length" of each vector, each vector is then divided by its and length resulting in a normalized vector: |v| where v is the vector and |v| is the magnitude, which results in a unit vector in the direction of v. These corrections are illustrated in Figure 4, note the comparison of illumination in the raw SI (a) versus the corrected image (b), as well as the values of the spectra after normalization (c).

2.4. Processing SI Data

Our pipeline takes AVIRIS-NG Imagery with the corrections in Figure 4b already applied. This automatic pipe-library on line takes AVIRIS-NG Imagery and outputs a classified geospatial raster. The pipeline steps are illustrated in Figures 5a–5f. The first step masks the AVIRIS-NG SI to the extent of the vineyard boundaries. Spectral residual r

tion system (Figure 3) capable of training and applying GLRaV-3 detection RF models to AVIRIS-NG spectroscopic imagery in the edge cloud (e.g., the farm) and public Azure cloud (Section 3.1). Second, we demonstrate the effectiveness of RF models trained following the methodology outlined (Romero Galvan et al., 2023) and deployed to the system (Section 3.2). Lastly, we present a release of executeable python scripts for the training and application of these models to an AVIRIS-NG image (Galvan & Rubambiza, 2023).

RUBAMBIZA ET AL. 7 of 12

Table 1 Grapevine Disease Detection: Model Training Runtime and Accuracy Using Various Configurations

Training	Data location	Data size	Storage (GB)	Runtime (s)	Accuracy (%)
Edge	Local	4MB	256	27.1	84
Edge	Cloud	-	256	35.6	86
Azure ML	Cloud	_	100	86.5	86

Storage (%)

Storage (%)

256 27.1 84
256 35.6 86
100 86.5 86
100 86.5 86
100 86.5 86
100 86.5 86

The final output of the model management pipeline are the classified rasters for which we provide an illustrative or gairs. The final output of the model management pipeline are the classified rasters for which we provide an illustrative of pairs. The first pair includes rasters for non-infected vine locations and infected vines at either the symptomatic or pairs. The first pair includes rasters for non-infected vine locations, along with its class probability raster to show the model's confidence in the label. The seconding class probability raster to show the model's confidence in the label. The seconding class probability raster to show the model's confidence in the label. The seconding class probability raster to show the model's confidence in the label. The seconding class probability raster to show the model's confidence in the label. The seconding class probability raster to show the model's confidence in the label. The seconding class probability raster to show the model's confidence in the label. The seconding class probability raster to show the model's confidence in the label. The seconding class probability raster to show the model's confidence in the label. The seconding class probability raster to show the model's confidence in the label. The seconding class probability raster to show the model's confidence in the label. The seconding class probability raster to show the model's confidence in the label. The seconding class probability raster to show with it is class probability raster to show with it is class probability raster to show with it is class probability raster to show with is class probability raster to show with it is class probability raster contains a raster for non-infected and asymptomatic vines, also with a corresponding class probability raster contains a raster for non-infected and asymptomatic vines, also with a corresponding class probability raster contains a raster for non-infe

asymptomatic stage, each with a class probability raster to show the model's confidence in the label. The second of pair contains a raster for non-infected and symptomatic vines, also with a corresponding class probability raster. A function of the third pair has a raster for non-infected and asymptomatic vine locations, along with its class probability raster. The rasters are georeferenced, meaning that each raster is aligned with the geographic coordinate system of the input AVIRIS-NG image. As a result, these rasters are compatible with Geographic Information Systems of the input AVIRIS-NG image. As a result, these rasters are compatible with Geographic Information Systems of the input AVIRIS-NG image. As a result, these rasters are compatible with Geographic Information Systems of the input AVIRIS-NG image. As a result, these rasters are compatible with Geographic Information Systems of the input AVIRIS-NG image. As a result, these rasters are compatible with Geographic Information Systems of the input AVIRIS-NG image. As a result, these rasters are compatible with Geographic Information Systems of the input AVIRIS-NG image. As a result, these rasters are compatible with Geographic Information Systems of the input AVIRIS-NG image. As a result, these rasters are compatible with Geographic Information Systems of the input AVIRIS-NG image. As a result, these rasters are compatible with Geographic Information Systems of the input AVIRIS-NG image.

4. Discussion

Successful detection of GLRaV-3 at the asymptomatic stage provides grape of growers up to a year of warning to act on removing the infected vine before of the input AVIRIS-NG image. As a result, these raster is aligned with the geographic Information Systems of the input AVIRIS-NG image. As a result, these raster is aligned with the geographic Information Systems of the input AVIRIS-NG image. As a result, these raster is aligned with the geographic Information Systems of the input AVIRIS-NG image. As a result, these raster is aligned with the geographic

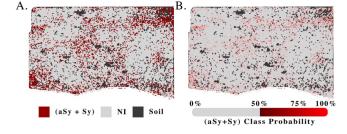


Figure 6. Example of the output prediction rasters from the cloud system architecture. These rasters illustrate the GLRaV-3 incidence predictions made using an AVIRIS-NG image clipped to the boundaries of a commercial vineyard in Lodi, California. (a) The output rasters for disease incidence, in red, are the GLRaV-3 incidence classifications. In gray, are the non-infected predicted vines. In black are soil pixels that were masked out. (b) The output probability rasters of the (aSy + Sy) class, where pixels that reach a minimum of 50% confidence score are highlighted from dark-red (50%) to bright-red (100%).

any further spread could take place. Our methodology and results showcase a robust system with significant implications for decision support not only for crop disease detection but also for future data sources (e.g., SBG) and use cases targeted to improve our understanding of disease incidence processes at a global scale. First, the proposed system architecture is general enough to enable plug-and-play of different and complementary models. For example, this architecture can easily be reused to train and test grape variety classification models, which in turn we can use to better refine our methodologies for disease detection across grape varieties. This adaptability may prove important for both future application and model improvement, given different management requirements and innate disease resistance across grape varieties which may affect the spectroscopic signal, as illustrated in Figure 7. This figure illustrates the unique spectral signatures that exist between grape varieties Cabernet Sauvignon and Chardonnay. Two vineyards with AVIRIS-NG SI were used to generate this graph. Both vineyards are right next to each

RUBAMBIZA ET AL. 8 of 12

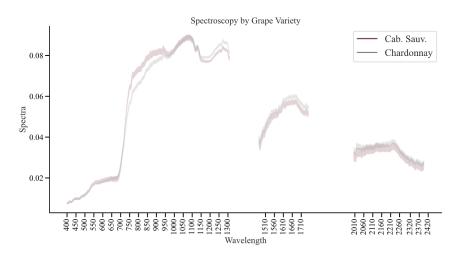


Figure 7. Spectroscopic signal for red-grape variety Cabernet Sauvignon and white-grape variety Chardonnay. Here we plot the spectra of two vineyards by variety and show the maximum and minimums at each wavelength.

other and are managed by the same vineyard owner ruling out potential sources for these spectral differences Thus, suggesting that developing grape variety classification models are possible and may indeed help disease detection models improve their accuracy. Second, beyond model variety, we designed the software architecture to be plug-and-play to different data sources. Currently, the system provides GLRaV-3 decision support and resolution with SI derived from AVIRIS-NG. As we look to future satellite missions, such as SBG and CHIME. our system can be leveraged to explore disease detection efficacy at these systems' anticipated resolutions (30 m) of their launches

In our context, the public cloud provides storage and computation spaces for the disease detection data and models (both of which are refined by the edge lab) (Mell & Grance, 2011). It is important to note that although we use the Azure Cloud, the "Google Cloud," "Amazon Cloud," and "IBM Cloud," could have been used as well. Our use of cloud computing plays a crucial role in fulfilling our architecture goals to have social impact and research reproducibility while preserving user privacy. Social impact is achieved by demonstrating a holistic, simple archi tecture that agricultural stakeholders can access as a service in the decision-making process via refined models. The models can be deployed as web endpoints that can be called upon to perform field data inference requests on $\overline{\mathfrak{g}}$ edge devices. Our architecture also provides a platform that contributes to reproducible research while addressing user data privacy concerns by leaving all potentially proprietary data on the user's edge device. Through the Azure ML platform that the architecture wraps around, researchers can access and share disease detection models within both their community of peers and stakeholders (Microsoft, 2021). As discussed in Section 2.2.3. Azure ML enables systematic registration, tracking, and tagging of models by researchers in the course of the experimentation process that is at the core of the scientific method. From iterative and tagged models, researchers can confidently make general and reproducible knowledge claims. While this architecture makes strides toward reproducibility, streamlined sharing of models (e.g., access permissions, appropriate application programming 2 interfaces, or APIs) are still needed to enable true access and sharing not only across institutions but also across cloud providers. This challenge is not addressed in this work, and it remains an open area of exploration for our future work in this vein (see Section 4.1).

4.1. Limitations

Co-occurring biotic and abiotic stresses can confuse SI-informed GLRaV-3 detection (Romero Galvanger at al. 2023). It is not uncommon for a vine common for a v

et al., 2023). It is not uncommon for a vine, or multiple neighboring vines, to be infected with multiple pathogens (e.g., trunk disease), and/or experience co- occurring abiotic stress (e.g., drought). Further work is required to gauge how common abiotic stressors in Californian vineyards (e.g., water stress, insect damage, or sunburn) cause misclassifications. However, as long as the model correctly identifies a plant as abnormal, this information is still of great value to agricultural stakeholders because it can be used to strategically deploy scouts and field management teams to areas most in need of attention. Thus the potential service outlined here is still valuable to the grape grower community, despite this open area for improvement. Another limitation is AVIRIS-NG acquisition

RUBAMBIZA ET AL. 9 of 12

availability. While the majority of grapevine in the United States is in California, the home of AVIRIS-NG and thus the state with the most historical coverage, there are growers in other regions including New York, which is the 3rd most important grape-growing state in the US. AVIRIS-NG is an airborne platform that requires appro-

the 3rd most important grape-growing state in the US. AVIRIS-NG is an airborne platform that requires appropriate flying conditions for an acquisition to happen, and thus can be both expensive and logistically challenging to deploy. However, spaceborne imaging spectrometers such as SBG, Soil Mapper, and CHIME will soon provide global SI. With the help of this proposed framework, we open the door for global-scale GLRaV-3 monitoring beyond the currently outlined geographic area of study.

In this work, we have demonstrated the design, prototype, and inference results of an Azure Cloud-based disease will detection system. The next logical step is to streamline the system toward a more accessible user experience for agricultural stakeholders and researchers. However, we face two limitations. First, although Azure provides the capability to deploy the models as web-based endpoints (e.g., issuing web requests with shape files and getting head back classified rasters of disease presence), the disease detection system is still tied to a single cloud provider. To avoid technical compatibility issues inherent in vendor lock-in (e.g., transferring data across private and public and clouds), the system must evolve to work across clouds so that the data and models are not siloed in a single cloud. Second, the system's effectiveness has been shown in a few fields. In practice, growers operate thousands of fields potentially spread across multiple farms. One area that remains unexplored is managing diverse models across in the provider and public across in the provider of the provider and public across in the provider and provider and provider and provider and provider area and public across in the provider and provide

Second, the system's effectiveness has been shown in a few fields. In practice, growers operate thousands of fields potentially spread across multiple farms. One area that remains unexplored is managing diverse models across farms. For instance, growers can operate water-stress models at some farms while deploying GLRaV-3 models on other fields. Technologically, this necessitates scalable techniques for managing the model and data lifecycleal across farms and is the subject of ongoing future work.

5. Conclusions

Here, we describe and deploy an adaptable cloud-based system for detecting an economically important cropary of the current of the coordinates and boundaries to run. The goal of this system is to empower agricultural stakeholders to make well-informed, data-driven decisions by granting them access to the latest advances in SI-ML disease detection. Our work improves crop disease decision-making while serving as a guide for others interested in developing accessible, use-inspired, remote sensing applications for agricultural stakeholders who stand to benefit from Q accessible, use-inspired, remote sensing applications for agricultural stakeholders who stand to benefit from Q accessible, use-inspired, remote sensing applications for agricultural stakeholders who stand to benefit from Q accessible, use-inspired, remote sensing applications for agricultural stakeholders who stand to benefit from Q accessible. Our work improves crop disease decision-making while serving as a guide for outers interested in decemplance accessible, use-inspired, remote sensing applications for agricultural stakeholders who stand to benefit from publicly funded research. Besides the exploration of different models and data modalities, the system could a fundamentally change the way we approach vineyard management operations. Infected vines, be they symptoaway at profit across the value chain. Typically, asymptomatic vines are hard to detect, which ultimately affects, grape and wine quality. The system presented in this work can provide a valuable predictor/indicator of potential yield, as well as which vines are spectroscopic anomalies, signaling stress, disease, or any other damage. This predictive analytics service is useful in anticipating the chemical supplementation that may be necessary for the predictive analytics service is useful in anticipating the chemical supplementation that may be necessary for the predictive analytics service is useful in anticipating the chemical supplementation that may be necessary for the predictive analytics service is useful in anticipating the chemical supplementation that may be necessary for the predictive analytics service is useful in anticipating the chemical supplementation that may be necessary for the predictive analytics service is useful in anticipating the chemical supplementation that may be necessary for the predictive analytics service is useful in anticipating the chemical supplementation that may be necessary for the predictive analytics service is useful in anticipating the chemical supplementation that may be necessary for the predictive analytics service is useful in anticipating the chemical supplementation that may be necessary for the predictive analytics service is useful in anticipating the chemical supplementation that may be necessary for the predictive analytics and the predictive analytics are predicted as a service and the predictive analytics are predicted as a service and the predictive analytics are predicted as a service and the predictive analytics are predicted as a service and the predictive analytics are predicted as a service and the predictive analytics are predicted as a service and the predictive analytics are predicted as a service and the predictive analytics are predicted as a service and the predictive analytics are predicted as a service and the predictive analytics are predicted as a service and the predictive analytics are predicted as a service and the predictive analytics are predicted as a service and the predictive analytic and the predictive analytic and the predictive analytic and the predictiv most reliable method of asymptomatic detection, does not scale to the sizes required. However, armed with a disease detection system, growers can strategically deploy their high-accuracy ground resources, such as expert scouts or molecular testing, more efficiently because the system predicts with high accuracy vineyard regions most likely to be infected. In this manner, the system complements the farm ecosystem, empowering the users, and not seeking to replace their valuable expertise.

Data Availability Statement

All spectroscopic imagery used for this study are publicly available without restrictions from the AVIRIS-NG

Data portal: https://aviris.jpl.nasa.gov/dataportal/. v0.0.1 of the GLRaV3Detection Pipeline used for hosting the GLRaV-3 detection models and applying scripts for applying the GLRaV-3 detection models on the AVIRIS-NG 8 imagery is preserved at https://doi.org/10.5281/zenodo.7826842, available via and developed openly at https://zenodo.org/badge/latestdoi/573130843.

RUBAMBIZA ET AL. 10 of 12

Acknowledgments

This work was funded in part by NASA FINESST (Grant 80NSSC21K1605) awarded to Romero Galvan (FI) and Gold (PI), NASA Jet Propulsion Laboratory Strategic University Research Partnership Fund, NSF NRT Digital Plant Sciences training Grant awarded to Cornell University (Grant 1922551), the NSF STC Center for Research on Programmable Plant Systems (CROPPS: Grant 2019674), and the NSF CHS Grant understanding and improving the social impact of high-bandwidth farm networking infrastructure (Grant 1955125). We acknowledge with gratitude Dr. Michael Scanlon, project leader of the Cornell University NSF NRT Digital Plant Sciences program that introduced and inspired Rubambiza and Romero Galvan to collaborate on this co-first authored paper. Additionally, we thank Dr. Michael Eastwood and the myriad members of the NASA JPL AVIRIS-NG team who, along with the NASA Biodiversity and Ecological Conservation program office, are responsible for initiating and executing the successful air campaign that provided data for this publication. Importantly, we would like to thank our industry collaborators, including Charlie Starr, Stephanie Bolton, Mimar Alsina, and Nick Dokoozlian, for their invaluable efforts, feedback, and collaboration that supported this project. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

- References

 Almeida, R. P. P., Dame, K. M., Bell, V. A., Blindell, G. K., Cooper, M. L., Herrbech, E., & Pieterson, G. (2013). Ecology and management of generoics leafed disease. *Frontiers in Membralogy, A Impediation and New Services*, Inc. Retrieved from https://www.andysca.eu/and/doi.org/10.1389/froids.2013.00.00034

 Announ Med Services. I. (1922). J. M. Lange and the powering Mark.—State that Announ Web Services. Inc. Retrieved from https://www.andysca.eu/andysca.
 - tion with airborne imaging spectroscopy. Phytopathology®, PHYTO-01-23-0030-R. https://doi.org/10.1094/PHYTO-01-23-0030-R

RUBAMBIZA ET AL. 11 of 12

RUBAMBIZA ET AL. 12 of 12