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Abstract— This paper proposes a state estimation and sensor
placement method for DC microgrids that has relatively fixed
operation patterns. It is developed based on compressive sensing
theory. Formulations of various types of measurements and
components are developed under the proposed framework. A
measurement placing strategy to minimize the coherence of the
measurement matrix and thus increase estimation accuracy is
presented. Simulation results show that the proposed state
estimation and sensor placing approach can effectively reduce the
number of sensors to achieve a certain level of estimation
accuracy.
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[. INTRODUCTION

Microgrid is important for integrating renewables and
distributed resources for improving power grid reliability, and
reducing cost and environmental impact. Due to these
increasing inverter-based generation, energy storages, and
loads, DC microgrid is becoming a popular option for microgrid
configuration and its control problems have been intensively
studied recently. Distributed generation such as wind, PV, and
fuel cells are based on DC or have internal DC links.
Additionally, to improve better controllability and efficiency,
loads are also becoming more based on DC power [1, 2]. For
example, the various-speed motors, electronic devices, and
heating. Distributed sources such as batteries and super
capacitors, are also categorized as DC devices inherently.

For security, large-scale power systems are equipped with
dedicate situation awareness and control systems, which consist
of sensors, advanced analysis algorithms, and multiple
actuators [3]. The increase of renewables adds more difficulties
as well as value of system situation awareness [4, 5]. Similar to
large power systems, it is important to understand DC
microgrid operation situation for various control and protection
purposes [6]. The variation and uncertainty of distributed
resources brings challenges for understanding the real-time
microgrid operation situation [7]. As the microgrid provides
flexibility for integrating or shut down a substantial amount of
distributed resources without having to report to control centers
as in large power grids, the microgrid is more vulnerable to
drastic voltage changes and power flow fluctuations [8].
Moreover, many distributed generators and loads do not have
meters installed at the point of connection, which makes it
difficult for situational awareness compared with conventional
large power grids.

There are some pioneer studies that apply compressive
sensing has in power systems. For example, Ref. [9, 10] applied
compressive sensing to obtain higher resolution when
observing harmonics and interharmonics. Ref. [11] used
compressive sensing to detect the fault location in distribution
systems. Ref. [12] studied new methods based on the idea of
compressive sensing to correct spare error from nonlinear
measurements. Ref. [13] and [14] proposed a new method based
on compressive sensing for topology identification. Ref. [15]
studied the strong coupling of voltage phasors in distribution
systems, which allows the application of compressive sensing
in distribution system state estimation. In [16, 17], compressive
sensing was applied to reconstruct missing and bad
synchrophasor data and reduce communication bandwidth
requirements in wide-area measurement systems. Ref. [18]
applied compressive sensing as a signal denoising method in
power line communications. In [19, 20], compressive sensing
was applied to power line outages identification by considering
the power network as single graph. The issue of high coherence
in the sensing matrices was tackled by matrix decomposition
[21].

This paper focuses on the situational awareness of DC
microgrids with relatively fixed operation patterns, which
means that the system power flow pattern is relative fixed at one
or several states most of the time and it does not deviate much
from these states due to additional loads or generators. The
deviation from these fixed operation patterns are some random
connections of additional generation or loads on just a few
buses. As these random factors happen in a sparse manner, the
situational awareness of such DC microgrids can be achieved
using fewer sensors and probably achieve higher accuracy
provided the knowledge of these fixed operation patterns.

The main contribution of this paper is to propose a state
estimation method based on compressive sensing (CS) to
improve DC microgrid situation awareness. Under the
compressive sensing framework, the formulations of various
measurements and components including voltage, current, and
power pseudo and real sensors are developed for DC grid state
estimation using fewer meters. To improve estimation
performance, a meter placing method is presented to minimize
the coherence of the measurement matrix. The proposed state
estimation and meter placement methods are tested on the
standard DC power flow representation of the IEEE 9 bus and
118 bus systems.
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II. SITUATIONAL AWARENESS FOR DC MICROGRIDS WITH
FIXED OPERATION PATTERNS BASED ON COMPRESSIVE
SENSING

A. State Estimation based on Compressive Sensing for DC
Microgrid with Fixed Operation Patterns

Compressive sensing represents a category of methods to
reconstruct signals with sparsity properties using far less
samplings required by the Shannon-Nyquist sampling theory. It
has been applied in many areas since it was proposed by Candés
and Tao in 2006 [22]. For example, Ref. [23] studied the
application of compressive sensing in improving the frequency
resolution of power quality monitoring without increasing
measurement time significantly. Ref. [24] used compressive
sensing to compress PMU data and reconstruct missing data.
Ref. [25] applied compressive sensing to reduce feedback
overhead in communication systems.

The essence of compressive sensing is to take advantage of
the sparsity of a signal to find a unique spare solution of an
underdetermined linear system. A pre-requisite of compressed
sensing is that the original signal x has sparsity in some
domain, which can be represented by a transformation matrix
basis @ € RV*N and a sparse vector a:

X = @a )

a is a sparse vector as it has far less non-zero elements than

its dimensions. The aim of compressed sensing is to reconstruct
x based on a measurement vector y [26]:

y = ox = opa 2)
where ¢ is the measurement matrix. The sparsity index S,
denoting the sparsity of x, is the number of non-zeros elements
in . Let N denote the dimension of the measurement vector y.
M denotes the dimension of the original signal x. As N is much
smaller than M, the reconstruction of x is realized by solving a
[, basis pursuit optimization problem.

@ = argmin [lall, 3
S.t.
y = opa “
or an [y basis pursuit denoising problem
@ = arg min ||a||, %)
S.t.
ly — opall; <€ (6)

Through solving the optimization problem, x can be
reconstructed provided M = Cu?(o, @)S log N. u(o, @) is the
coherence of the column pairs in ¢ and ¢. C is a constant.

The aim of microgrid state estimation is to provide a reliable
result of the microgrid state based on all available
measurements. The estimation formulation can be over-
determined or under-determined equations depending on the
measurement availability. In DC microgrids with relatively
fixed operation patterns, deviations of components from these
fixed patterns appear in a sparse manner in the time domain,
which means the percentage of deviated components is small
for most of the time. For example, some loads occasionally
deviate from their normal values, and they seldom deviate
simultaneously. It would be uneconomic to install a meter for
each bus. As compressive sensing casts an insight that sparse

signals can be accurately reconstructed using less
measurements, it can be borrowed by situational awareness for
such DC microgrids based on under-determined equations.
Through sparse sensing, deviations of state variables of these
distributed resources or loads from their values in fixed patterns
are treated as sparse signals. Then, the system state variables
could be fully reconstructed. Below are the formulations of
various components under the state estimation framework
based on compressive sensing.

1) Voltage meters and voltage sources: The basic
formulation is a microgrid that contains generators and some
known constant-resistance loads. The voltage measurements
are used to estimate generator current and load current
deviations. The network impedance matrix Z directly serves a
projection between the sparse current injection deviation vector
and the measured voltage deviation.

Vi Z11 Zaa Zim| I
Vol = 221 Z22 - Zom||D2 (7)
Vy Zn1  Znz Zym | Unm

V; is the voltage deviation at the bus i. I; is the generator or
load current deviation at bus j. Z;; is the entry of the network
resistance matrix Z. When constant-resistance load exists, Z
could be the modified network impedance matrix that
incorporates load resistance. Despite that N < M, indicating the
equations are underdetermined, generator current injection
deviations and load current deviations can be used to
reconstruct by solving the problems.

If a voltage regulated source is present, it can be treated as a
voltage meter with an unknown current injection deviation,
equivalent to adding a variable and a measurement.

2) Current meters and current sources: When current
injection measurements or current regulated sources are
present, the above equation can be updated by an offset. This
scenario also covers the situation of constant current load
deviations.

4 [Z,,  Zy, Zim || I

Vol = |Z21 Z22 Zom || 1, +

Vy [Zn1 Zn2 Zym) Unm
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Zy1 Zy Zok | | Iz (8)
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where I,; is the measured current deviation or the current
deviation value of current-regulated sources.

3) Constant power sources and loads: Some generators in
DC microgrid have constant power characteristics, such as
MPPT control. As these components show negative impedance
in small signal stability, estimating their current or voltage
values is important to ensure stable operation. Since constant
power sources and loads involves nonlinearity in state
estimation, they require an iterative process based on the
Jacobian matrix. The entries of Jacobian matrix H can be

represented by
ap;

where P; and I; are the power and current deviations of the



source (load), respectively. The entry values can be calculated
as

ap;
a—,il =2Zyli + Xizj Zijl;
ap;

y; = Zyl;

o (10)
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B. Sensor Placement for Low Coherence of the Measurement
Matrix

In compressive sensing, a low coherence is desired in the
measurement matrix so that fewer measurements will be needed
to reconstruct system states. It has been shown that smaller off-
diagonal elements’ absolute values in the measurement matrix
will lead to smaller coherence [27, 28]. In order to quantify the
coherence, the Gram matrix is applied as G = DT D, where D is
the column-normalized version of D, which equals ¢ as ¢ =
I The ideal zero-coherence measurement matrix will have
G = Iy, where Iy, is the identity matrix. However, this will
be impossible for the environment of wusing fewer
measurements to estimate system states by compressive
sensing. The idea here is to make the measurement matrix G as
close as the identity matrix.

(11)
where ||. || ;e 18 the matrix max norm. To minimize the max

norm, a heuristic method to place the sensor in DC microgrid is
shown in Fig. 1 with its major step explained as follows:

| k=1 |
I
Place meter £ at all
candidate locations
I
For each location,
calculate |G- 1|

G = arg min||6 — 1|70

max

Place meter k at the b=h+1
location with the smallest
|61,
I
[ Update G/ |
I ,
< kK=t

Fig. 1. Sensor placement procedures.

1. Calculate the |[|G—1I||3,, when placing one
measurement at each of the candidate locations.

2. Select the location that has the smallest max norm as
the measurement location of the current sensor.

3. Update the measurement matrix.

4. Proceed the next measurement to archive the smallest
max norm.

In DC microgrids, the bus impedance matrix could be ill-
conditioned because of some short line sections. This ill-
condition feature will increase the coherence of the deviation
measurement matrix, thus requiring more meters to acquire the
same level of estimation accuracy. In some situations, this
feature makes it almost impossible to further reduce the number
of sensors. The proposed meter placement method can search
the best placement plan under this theoretical constraint.

In the real-world application, location of meters for voltage

or other DC grid measurements prioritizes safety (e.g.
protection) and fast response as highest. The proposed sensor
placement method is to gain higher observability of the entire
system, which is one step further to enable more advanced and
selective protection schemes. If the system already has some
existing sensors, which are most likely in practice, additional
sensors can still be placed based on the proposed method: each
additional sensor can be placed at the location that achieves the
minimal Gram matrix.

III. CASE STUDIES

The DC representation of the IEEE 9 bus system and the IEEE
118 bus system are used to test the effectiveness of proposed
state estimation and meter placement approaches.

A: IEEE 9 Bus System

The diagram of the IEEE 9 bus system is shown in Fig. 2. This
system is converted to the DC microgrid model based on its
standard DC power flow network representation.
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Fig. 2. The IEEE 9 bus system

In this study, it is assumed that seven voltage meters are
available. Applying the proposed placing strategy, voltage
meters are installed at bus 1, 2, 3, 5, 6, 7, and 9. During a time
snapshot, the system has two power sources and one load
working, as shown in Fig. 3. The deviation estimation result
based on the proposed method is shown in Fig. 4. For
comparison, the estimation based on the minimal energy
method is shown in Fig. 5. It shows that the proposed method
is more accurate compared with the minimal energy estimation.
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Fig. 3. The actual generator and load current deviation (IEEE-9).
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Fig. 4. The estimated generator and load current deviation based on CS
and the proposed strategy (IEEE-9).
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Fig. 5. The estimated generator and load current deviation using minimal
energy estimation (IEEE-9).

For comparison, Fig. 6 shows the estimated generator or load
injection current deviation based on compressive sensing and
random placing of meters. It can be seen that its result quality
lies between the proposed method and the minimal energy
method. Table I shows the reconstruction ratio of the two
methods for meter placement. It can be noted that the proposed
method has better performance than the random placement
approach, which does not pay special attention to the possible
ill-condition feature of the microgrid. This result shows that by
placing sensors at locations that resulted to lower coherence in
the measurement matrix, the proposed method can effectively
achieve the best possible sensor placement and state estimation
result.

It is noted that in the real world, there exist many stages of
testing before commissioning, and the industry has established
and widely-accepted process and systems [29]. The CS-based
state estimation and sensor placement proposed in Section II
can be plugged into the existing process and systems by
selecting the best location for the next available sensor to
maximize the system observability and minimize estimation
error.

TABLE I: THE SPARSE RECONSTRUCTION RATIO USING THE PROPOSED
METER PLACING METHOD AND THE RANDOM PLACING METHOD

Number of Ratio of estimation with < 5% error

deviated Random placement Proposed strategy
sources and

loads to 7 meters 8 meters 7 meters 8 meters
estimate

(besides

constant

resistance load)

1 78.5% 78.8% 100% 100%
2 51.4% 61.1% 82.9% 91.5%
3 42.8% 51.1% 75.2% 87.2%

B: IEEE 118 Bus System

In the IEEE 118 test system, the system has five power sources
and five load working during a time snapshot, as shown in Fig.
7. Using the proposed meter placement approach, 90 voltage
meters are placed into the system. The estimation results based
on the proposed method and the minimal energy method is
shown in Fig. 8 and Fig. 9, respectively. Comparison on the
results shows that the proposed method is more accurate
compared with the minimal energy estimation.

C. Impact of Meter Errors

The robustness of the proposed method is studied by
incorporating measurement errors before state estimation. It is
assumed that all measurements have normal distribution errors
with a standard deviation of 0.2%,1%, and 5% in p.u. Changes

of the root mean square error of the estimation result with the
measurement error is shown in Table II. It can be seen that
under all scenarios of sensor accuracy, the proposed method has
better accuracy than the minimal energy estimation method.
Since compressive sensing reduced the number of sensors
below the minimum number of sensors required to make the
system fully observable under all conditions, the estimation
method is not entirely immune to measurement error. As the
estimation is based on under-determined equations formulated
by a reduced number of measurements, the accuracy of
estimation result is almost linear to the meter accuracy.
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Fig. 6. The estimation result based on CS and random placing of meters.
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Fig. 7. The actual state deviation of the microgrid (IEEE-118).
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Fig. 8. The state deviation estimation result based on CS and the proposed
strategy (IEEE-118).
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Fig. 9. The deviation estimation result using minimal energy estimation
(IEEE-118).



TABLE II: STATE ESTIMATION ACCURACY CHANGES WITH SENSOR
ACCURACY

Meter error standard RMSE of estimation result
deviation p.u. Compressive sensing Min energy
0.0% 0.05% 8.44%
0.2% 0.30% 8.45%
1.0% 0.96% 8.49%
5.0% 4.81% 9.53%

D. Discussion on Field Implementation

This study is a proof-of-concept study, which uses MATLAB
as the programming language. It should be noted that
MATLAB is not a deployment language in protection and
automation systems for AC or DC grids. Moreover,
compressive sensing is relatively computationally intensive
compared with other conventional algorithm for state
estimation. More practical programming languages for
protection and automation systems, such as C and C++, need to
be considered for field implementation [30].

IV. CONCLUSIONS

The proposed compressive-sensing-based state estimation
method can effectively estimate system states using fewer
measurements in DC microgrids with relatively fixed operation
patterns. The proposed meter placement strategy can minimize
the coherence of the measurement matrix to improve estimation
performance. The proposed framework shows the potential to
achieve more robust state estimation. Future work could be
extending the proposed methods to AC and AC/DC hybrid
microgrids.
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