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ABSTRACT: Directed evolution, a revolutionary biotechnology in protein engineering, W"mypi cLavEzo.
optimizes protein fitness by searching an astronomical mutational space via expensive @D IS S .
experiments. The cluster learning-assisted directed evolution (CLADE) efficiently . fitness landscape ::::lllevr;ﬁ?i}m
explores the mutational space via a combination of unsupervised hierarchical clustering  Mdationallbrary ' 8| cuger . il
and supervised learning. However, the initial-stage sampling in CLADE treats all clusters E -
equally despite many clusters containing a large portion of non-functional mutations. —8 T cuserx

Recent statistical and deep learning tools enable evolutionary density modeling to access 1T weaepece

protein fitness in an unsupervised manner. In this work, we construct an ensemble of directed Informative labeled

multiple evolutionary scores to guide the initial sampling in CLADE. The resulting A L e
evolutionary score-enhanced CLADE, called CLADE 2.0, efficiently selects a training set F;ggﬁg’;'c";a' lest @

within a small informative space using the evolution-driven clustering sampling. CLADE  (argmax f(seq) = = 4_-
2.0 is validated by using two benchmark libraries both having 160,000 sequences from |

four-site mutational combinations. Extensive computational experiments and compar-
isons with existing cutting-edge methods indicate that CLADE 2.0 is a new state-of-art tool for machine learning-assisted directed
evolution.

1. INTRODUCTION Potts models'® are popular in capturing sequence conservation
Protein functions, broadly referred to as fitness, such as using multiple sequence alignment (MSA). Local deeg learning
catalytic activity and antibody efficacy, are critical to all living models such as variational autoencoders (VAEs)  offer a
organisms. Protein engineering designs proteins to better serve similar approach in extracting evolutionary information from
the needs in real life. Directed evolution (DE), a major MSA. The natural language processing-based protein models
approach in protein engineering, optimizes };rotein fitness by such as Transformer'”'* and long short-term memory' """
mimicking natural selection via mutagenesis.  Mathematically, learn natural selection rules from large sequence databases to
DE can be formulated as a black-box optimization problem for predict evolutionary scores of target proteins. Similar to global
searching the best sequence x* models, deep MSA Transformer can also predict evolutionary

information by training on a large set of MSAs.'® In addition to

*
x" = arg max f(x) unsupervised approaches from the evolutionary models,

x€S (1) . . . . . s
supervised regression models provide explicit strategies using
Here, S is the sequence mutational space, and f(x) is an a set of sequences with experimentally measured fitness to
unknown sequence-to-fitness function for sequence x in S. In predict the fitness of new sequences. A variety of supervised
DE, the mutational space is astronomically large. For example, models have been applied to protein fitness predictions, such
the combinatorial library consisting of all mutations at expert- as convolutional neural networks,'” Transformer,”> and

selected N mutational sites for a target protein has 20~ 18,19
sequences.”” To find the global maximal sequence, DE
sequentially queries sequences in S for experimental fitness
measurement. However, the experimental measurement is
usually expensive and time-consuming. These challenges call
for effective searching strategies in DE to navi%ate the epistatic
fitness landscape enriched with local maxima.”*>

With recent advanced computational tools, especially
machine learning models, in silico protein fitness evaluation
complements the experimental screening for an expedition.”®’
For example, evolutionary density models provide implicit
strategies to predict target protein fitness without specific
experimental labels.® Particularly, hidden Markov models” and

decision tree-based methods.

Fueled by the success of computational protein fitness
models, machine learning-assisted DE (MLDE) becomes a
new strategy in DE for acceleration and systematic
exploration.””® MLDE has been widely applied to engineer
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enzyme evolution,z’21 protein ﬂuorescence,22 membrane
proteins localization,” protein thermostability,”* and antibody
efficacy.”® MLDE is generally an active learning approach that
consists of a surrogate model that predicts protein fitness and
an acquisition function that determines a query of sequences
for the next round of experimental screening.”® The Gaussian
process is an established MLDE method which can balance the
exploitation—exploration trade-off.”*~>* Alternatively, other
advanced supervised models, which are trained on a randomly
selected labeled set to perform greedy search, have shown
accurate performance,”* although the informative training set
selection is critical to the performance. To avoid the ineflicient
random sampling in the huge mutational space containing a
large portion of non-functional sequences, fMLDE uses the
evolutionary density models to rank sequences and confine the
sampling within an informative subspace.” Additionally, cluster
learning-assisted DE (CLADE) uses unsupervised hierarchical
clustering to guide the sampling within more informative
subspe;ge with accumulated knowledge of the fitness land-
scape.

In this work, we proposed an evolution-driven clustering
learning-assisted DE, called CLADE 2.0, to improve the
inefficient equally sampling in CLADE at the initial stage. We
ensemble multiple evolutionary scores to rank sequences to
drive robust initial sampling. With no available labeled data,
the evolution-driven clustering sampling in CLADE 2.0 targets
high-evolution space enriched with informative sequences. At
the later stage with labeled data, CLADE 2.0 iteratively refines
sampling probabilities and clustering architectures using the
labeled data. With a selected informative training set, the final
step of CLADE 2.0 executes a greedy search from an ensemble
supervised model to pick potentially high-fitness sequences
predicted by the model. We benchmark CLADE 2.0 on two
benchmark combinatorial libraries with four mutational sites
and 160,000 mutations. CLADE 2.0 demonstrates robust and
accurate performance compared with other existing advanced
MLDE methods in spite of hyperparameter selection.

2. METHODS

2.1. Data Sets. In this work, we use two combinatorial
libraries, GB1 and PhoQ, that have almost complete coverage
for mutations at four mutational sites. GB1 is a very popular
benchmark library, while the PhoQ library has also been used
in early MLDE studies.”””® PhoQ is considered as an
alternative data set. For both data sets, their fitness values
were normalized into the range [0, 1] when being applied to
CLADE.

The GBI data set’ is an empirical fitness landscape for
protein G domain B1 (PDB ID: 2GI9) binding to an antibody.
Fitness was defined as the enrichment of folded protein bound
to the antibody IgG-Fc. This data set contains 149,361
experimentally labeled sequences out of 20* = 160,000 possible
ones at four amino acid sites (i.e., V39, D40, G41, and V54).

In the PhoQ data set,”” a high-throughput assay for the
signaling of a two-component regulatory system, a PhoQ—
PhoP sensor kinase and a response regulator, was developed
with a yellow fluorescent protein (YFP) reporter expressed
from a PhoP-dependent promoter. Extracellular magnesium
concentration stimulates phosphatase or kinase activity of
PhoQ, which can be reported by YFP levels. The combinatorial
library was constructed at four sites (i.e., A284, V285, S288,
and T289) located at the protein—protein interface between
the sensor domain and the kinase domain of PhoQ. Two

4630

libraries were constructed by using different extracellular
magnesium treatments. In each library, the sequences with
comparable YFP levels to those of the wild-type were selected
by fluorescence-activated cell sorting and used for enrichment
ratio calculations. The comparable YFP levels are strictly
defined by two thresholds. In this work, we take the
enrichment ratios from the library with high extracellular
magnesium treatment as fitness. The fitness value correlates to
the probability that a variant has fluorescence in the given
range, where this range was defined as the wild-type-like
activity in the original PhoQ report.”” The fitness landscape
has a nearly complete coverage with 140,517 quality-read
sequences out of 20* = 160,000. However, the fitness defined
in PhoQ is not explicitly correlated to any protein biochemical
property. Due to the lack of existing complete combinatorial
libraries, we consider PhoQ as an alternative data set for
benchmark.

For both GB1 and PhoQ data sets, they are overwhelmed
with low- or zero-fitness sequences. By normalizing the fitness
to its global maximum, 92% of sequences have fitness lower
than 0.01 and 99.3% sequences have fitness lower than 0.3 for
GBL1. Similarly, there are 92% of sequences having fitness lower
than 0.01 and 99.96% of sequences having fitness lower than
0.3 for PhoQ_(Supporting Information Figure S1).”

2.2. Evolutionary Scores Calculation. The evolutionary
density models provide unsupervised approaches to rank
fitness from a set of protein mutations. In this work, we
calculate five evolutionary scores on combinatorial libraries:
profile HMM,” ESM-1v Transformer,'” DeepSequence VAE,"'
EVmutation,'* and MSA transformer.'® Except for the global
ESM-1v Transformer model, construction of other models
requires the MSA of target wild-type protein as input. MSAs
are generated by EVcouplings webapp’® (details see
Supporting Information Section S3). When being applied to
MSA transformer, the MSAs may need to be subsampled to
make the model memory efficient. We used hhfilter function in
HHsuite package’' to subsample the alignments by max-
imizing the diversity as suggested in the original MSA
transformer paper.'® For MSAs of GBI, there are only 56
sequences, and subsampling was omitted. For MSAs of PhoQ,
the —diff parameter in hhfilter was taken as 100, which
generates 128 sequences.

The profile HMM is a probabilistic model that captures
position-specific information about the amino acid distribution
at each site, assuming that the amino acid at a particular
position is independent of the amino acid at all other
positions.” The HMM scores are calculated using profile
HMM software. EVmutation model, one type of Potts models,
captures site-specific information about amino acids, and it
considers the pairwise dependency between amino acids.'’
DeepSequence VAE is a variational autoencoder model that
learns sequence distribution from MSA."" It uses the evidence
lower bound (ELBO) to estimate the sequence log-likelihood
to predict the sequence mutational effect. Followed by the
original DeepSequence, we trained five VAE models with
different random seeds and generated 400 ELBO samples for
each model, and the average of all 2000 ELBO samples is used.

ESM-1v'” is a pretrained Transformer model using global
UniRef90 sequence database, while MSA Transformer is
another pretrained model using MSAs as training data.'®
Both models can calculate the probability distribution for
amino acids at selected positions using the mask-filling
protocol.”® The evolutionary scores are calculated as the

https://doi.org/10.1021/acs.jcim.2c01046
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Figure 1. Schematic graph. (a) MLDE searches for a global max sequence in the fitness landscape. It consists of two major steps: training set
selection and supervised greedy search to select top sequences. (b) CLADE and CLADE 2.0 are two MLDE strategies that are able to select an
informative training set. Initial unsupervised clustering is performed to divide the mutational space into several clusters. CLADE initially uses
uniform sampling over clusters. The selected labeled sequences are used to update sampling probabilities and new hierarchical clustering, and the
training set is iteratively selected. Evolutionary scores predict fitness landscape in an unsupervised approach and initiate the sampling probability for
CLADE 2.0. The later stage clustering sampling of CLADE 2.0 uses the same protocol of CLADE.

pseudo-log-likelihoods by assuming that the distribution of
each residue is independent. Specifically, for a given sequence s
=5}, Sy .57, the log-likelihoods at i position is given as log
P(mls.onet), Where s.o is the sequence s excluding the masked
position m;. In the combinatorial library, the log-likelihoods at
multiple positions, m;, m,,..m;, are estimated by the sum of
the log-likelihood of each single mutation, which is the pseudo-
log likelihoods

k
log P(m;, m; , .., M, ls,g0) % Z log P(mijlsconst) o
j=1 2

For ESM-1v, there are five available models trained on five
random seeds. The pseudo-log likelihoods are evaluated on all
models and averaged.

2.3. Machine Learning-Assisted Directed Evolution.
MLDE is a general two-step framework to exploit protein
fitness™* for DE (Figure 1a). First, it queries a set of sequences
in the mutational space S for experimental fitness measure-
ment. The set of labeled sequences is taken as the training data
for the downstream supervised prediction. CLADE and
CLADE 2.0 presented in this work both belong to MLDE
but use different training set selection strategies. In this work,
physicochemical features are used to encode the sequences in
the mutational space”’ (Supporting Information Section S2).
The supervised model learns from the training set and predicts
fitness for all sequences in the mutational space. At the last step
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of MLDE, the sequences with top predicted fitness from the
supervised model are experimentally screened to exploit the
fitness. Random sampling is a naive approach in generating
training set which showed significant improvement over
traditional DE.* The ftMLDE method uses a zero-shot strategy
to constrain the random sampling within an informative
subspace, and it substantially improves the performance.”

For the supervised model, an ensemble model by integrating
predictions from multiple regression models was used to
accommodate the various sizes of training set.* In this work, we
construct an ensemble of 17 regression models optimized by
Bayesian hyperparameter optimizations.32 The 17 regression
models include scikit-learn models,>® Keras neural network
models,>* and XGBoost models.>®> The five-fold cross
validation is performed on training data and used to evaluate
the performance of each model measured by mean square
errors. Bayesian hyperparameter optimizations are performed
to find the best-performing hyperparameters for each model.
After hyperparameter optimizations, the top three models are
selected and averaged to predict the fitness of unlabeled
sequences. Details are given in the Supporting Information
Section S4 and Tables S2 and S3. The top M sequences
predicted by MLDE are experimentally screened. Then, the
performance of our model is evaluated on the union of training
set and the top M sequences.

2.4. Cluster Learning-Assisted Directed Evolution. To
improve MLDE performance, CLADE generates a more

https://doi.org/10.1021/acs.jcim.2c01046
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informative training set using a clustering sampling via
unsupervised hierarchical clustering”’ (Figure 1b). Particularly,
K-means®® is used here.

Seg;lences are first encoded by physicochemical fea-
tures” % (Supporting Information Section S2). An un-
supervised clustering, K-means, is performed to divide the
mutational space into several subspaces. To select a sequence
for experimental screening, one cluster is selected according to
the predefined cluster-wise sampling probabilities and random
sampling is performed within the selected cluster. The
clustering sampling explores clusters enriched with high-fitness
sequences. The average fitness for each cluster can be
estimated from the labeled samples selected from previous
stages. The cluster-wise sampling probabilities are set to be
proportional to the estimated average fitness over clusters
(Figure 1b). Specifically, in k-th cluster at h-th hierarchy, the
sampling probability is given by
_
#cl

1
1 oy
R 2 Z,ecf Y

0 Zyecl)
P =

3)

where I is the index set of selected sequences, and C,) C I is
the index set of selected sequences I-th cluster at h-th
hierarchy. y; is the fitness of j-th sequence.

With maximum hierarchy N, increment of clusters at h-th (h
< N) hierarchy is given by K;. The total number of clusters at

maximum hierarchy is the sum of these numbers Zthl K,. To
further explore high-fitness clusters, hierarchical clustering
divides clusters into subclusters, and the increments of new
subclusters for parent clusters are proportional to their
estimated average fitness (Figure 1b). The k-th parent cluster
at (h — 1)-th hierarchy will be divided into L{" subclusters at
h-th hierarchy, and LY is given by

Pk, + 1, ifk # k,

)
L=1g, - D PPK + 1, ifk =k
ks

(4)

1

#e

having the largest average fitness from selected sequences over
all clusters. Here, [x] represents the largest integer not greater
than x.

By introducing the key components mentioned above, we
summarize the flow of CLADE. The clustering sampling has N
+ 1 hyperparameters, including maximum hierarchy N and the
increment of clusters at each hierarchy K;. The batch size,
NUM,,, is taken to be the number of sequences being
screened in parallel during the experiment. The batch size
decides the frequency for updating sampling probability and
clusters at new hierarchy, and a lower batch size usually leads
to more accurate CLADE prediction but higher cost in the
experiment. A typical batch size is 96 for a medium
throughput, which is also used in this work, followed by the
small 96-well plate commonly seen in many experimental
systems.””” At the first round of selection, the first-round
clustering is performed to divide the space into K; clusters.
NUM,; sequences are randomly picked over clusters to have a
rough coverage of all clusters. Cluster-wise sampling
probability is updated every batch according to eq 3. A new
hierarchy of clusters is generated after every NUMyerarchy

where k, = arg max,; jech, is the index of the cluster
k
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sequence is screened until reaching the maximum hierarchy
N. In particular, we do not perform the second hierarchical
clustering after NUM,,, sequences are collected but after
NUM,; + NUMyerarchy- This allows the sampling to capture
the cluster-wise average fitness more accurately for the large
space. The labeled data generated from clustering sampling is
then taken as the training data for the downstream ensemble
supervised model, which is the one used in MLDE. Top M
predicted samples are screened experimentally. These
numbers, NUMy, NUMyiearchy NUMy,, and M, are all
required to be multiples of batch size NUMy,.. In this work,
they are all taken as 96, except for NUM,,;,, which is taken as
384.

2.5. CLADE 2.0: Ensemble Evolutionary Score
Enhances Initial Sampling in CLADE. At the initial
sampling stage, no labeled samples are available to estimate
the fitness heterogeneity over space. CLADE initially takes the
uniform cluster-wise sampling probabilities. As a result, early-
stage sampling inefficiently explores the large non-functional
space enriched with low- and zero-fitness sequences.
Alternatively, fMLDE proposed a useful zero-shot strategy
that employs an evolutionary score to rank the sequences in
the mutational space, and the sampling is performed in a small
subspace consisting of top L sequences.

In this work, we proposed CLADE 2.0 that uses an ensemble
evolutionary score to initiate early-stage sampling (Figure 1b).
Five evolutionary scores are used to build the ensemble score:
profile HMM,” ESM-1v Transformer,'> DeepSequence VAE,""
EVmutation,'’ and MSA transformer.'"® The evolutionary
scores have been shown to have a high correlation with
protein fitness.”® With no available labeled data, the evolution-
driven clustering sampling initiates cluster-wise sampling
probabilities when a set of clusters is given. Suppose there
are K clusters, the i-th evolutionary score alone can first define
its cluster-wise sampling probability, P,(Ci), as the softmax
function of the cluster-wise average scores, S,(ci), at k-th cluster
=Ly

]
#Cy jec,

s

e(lS,i‘)

(i)
b’ = 0
K aS;
Z}' e’

(5)

where C; is the index set of all sequences in k-th cluster. The
evolutionary score, s}(i), is linearly normalized into range [0, 1]
for all sequences in the mutational space. Here, a is the
hyperparameter in softmax function where a larger value leads
to higher sampling probabilities on clusters with a high average
score. In this work, we take @ = 10. The ensemble of five
evolutionary scores takes a weighted sum of the individual
cluster-wise sampling probabilities for all scores. The weight is
defined as the heterogeneity index. First, for the i-th
evolutionary score, its cluster-wise average scores, S;(Ci), are
sorted in ascending order with permutation map 7. Then,
linear regression is used to fit the average cluster-wise scores in
ascending order, and the slope of the linear model is taken as
the heterogeneity index

K
HY = argmin Z (Sf(i) - wxj)2

(6)

j=1

https://doi.org/10.1021/acs.jcim.2c01046
J. Chem. Inf. Model. 2022, 62, 4629—4641



Journal of Chemical Information and Modeling

pubs.acs.org/jcim

a GB1 b PhoQ
0.35 05
0.30

oz o4

2 )

é 0.20 é 0.3

g 0.15 §

& 0.0 &§92
0.05 o1

Ensemble
Score

Profile HMM

EVMutation
Potts Model

DeepSequence
VAE

MSA
Transformer

ESM-1v
Transformer

Spearman (p)

0.4 0.6 0.8

Figure 2. Ensemble evolutionary scores accurately rank fitness landscape. The ensemble score is obtained from the weighted sum of all five
evolutionary scores using K., = 4 in calculating the heterogeneity index. Spearman’s correlation p between fitness and an evolutionary score for (a)
GBI data set and (b) PhoQ data set. The pairwise Spearman’s correlation p between different evolutionary scores for (c) GBI data set and (d)

PhoQ data set.

where x; = (i — 1)/(K = 1) uniformly distributes in the unit
interval [0, 1]. The heterogeneity index, HY, is between 0 and
1, and a higher value indicates that the corresponding score is
more important to the clustering and the recognition of fitness
heterogeneity. Taken together, the ensemble cluster-wise
sampling probability for k-th cluster is given as the normalized
weighted sum of probabilities of all five evolutionary scores

i Zi5=1 H(l)PIEI)
T oyK s (Dp(i)
Zk:l Zi=1 H Pk (7)

CLADE 2.0 has N + 2 hyperparameters. It includes N + 1
hyperparameters from CLADE, which are the maximum
hierarchy N and the increment of clusters at each hierarchy
K;,. Additionally, CLADE 2.0 has an extra hyperparameter K,
that is the number of clusters at the initial 0-th hierarchy given
by evolutionary scores. At the initial sampling stage without
labeled data, CLADE 2.0 uses evolutionary scores to encode
the sequences and divides the space into K., clusters. The
initial evolution-driven cluster-wise probabilities are calculated
using eq 7. To focus on the high-evolution clusters, the
hierarchical clustering with cluster increment K; is built on K

B

clusters. Indeed, the physicochemical feature is used for

clustering at higher hierarchy when labeled data are available to
present its partial supervised manner. The first hierarchy
calculates the numbers of subclusters for parent clusters in eq 4
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using the initial evolution-driven cluster-wise probabilities. The
initial sampling uses K, + K; clusters with the cluster-wise
sampling probabilities given in eq 7. After the first NUM,,
sequences are screened, the procedure of CLADE 2.0 is the
same with CLADE for updating sampling probabilities and
constructing new clusters at new hierarchy. Especially, CLADE
2.0 also uses the physicochemical feature for clustering since
the high-dimension feature may have better fitting ability and
the later stage sampling has a supervised manner by utilizing
labeled data.

2.6. Evaluation Metrics. MLDE, CLADE, and CLADE
2.0 are all evaluated on three sets, including training set, the
top M predicted sequences, and their union. In selecting top M
predicted sequences, only sequences that could be constructed
by recombination of sequences in the training set are
considered. This enhances the confidence of predictions by
reducing the extrapolations, especially when a less diverse
training set is available. We mainly assess three metrics: mean
fitness, max fitness, and global maximal fitness hit rate. The
mean fitness is the average fitness for sequences in the given
set. The max fitness is the maximal fitness found in the given
set. The global maximal fitness hit rate calculates the frequency
that the global maximal sequence is successfully picked by the
method, which is counted in multiple independent repeats. In
this work, we take 200 repeats.

https://doi.org/10.1021/acs.jcim.2c01046
J. Chem. Inf. Model. 2022, 62, 4629—4641
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Figure 3. Unsupervised K-means clustering captures fitness heterogeneity. K-means clustering divides the space into K clusters. Plots show average
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data set using the physicochemical feature. (b) GB1 data set using five evolutionary scores as features. (c) PhoQ data set using physicochemical

features. (d) PhoQ_data set using five evolutionary scores as features.

3. RESULTS

3.1. Ensemble Score is Robust and Accurate in
Ranking Fitness. First, we assess individual evolutionary
scores in the ranking fitness landscape. We use Spearman’s
correlation (p) to quantify the rank correlation. For the GB1
data set, four local evolutionary scores have high correlation
above 0.2 in Spearman’s correlation (Figure 2a). Especially,
profile HMM performs best among them with p = 0.33.
However, the ESM-1v score has a low and negative p = —0.02.
For the PhoQ_ data set, all five evolutionary scores have high
and positive correlations (Figure 2b). In contrast to GBI,
profile HMM has the lowest p = 0.15 and ESM-1v score has
the highest p = 0.48. Interestingly, the best individual method
in one data set performs the worst in another data set.
Therefore, the performance of the evolutionary score is
sensitive to data sets. To extend the generalization of the
evolutionary score, we propose the ensemble score by taking a
weighted sum of all scores using the heterogeneity index, as
shown in eq 6. The ensemble score integrates all evolutionary
scores, and the less informative score can be identified by the
heterogeneity index and contributes less to the ensemble one.
As a result, the ensemble score achieves high p with p = 0.26
and p = 0.40 for GB1 and PhoQ, respectively, while the best
individual score on one data set has a poor performance on
another data set. Although the ensemble score ranks the
second and third best on GB1 and PhoQ, it never
underperforms one score on both data sets.

The heterogeneity index can automatically assign lower
weights to a less informative score. As a result, the ensemble
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score using the heterogeneity index as weights has a low
correlation with the poor performing individual scores. For
example, it has the lowest p = 0.45 with ESM-1v Transformer,
while p is above 0.83 for other scores on GB1 (Figure 2c).
Similarly, it has the lowest p = 0.74 with profile HMM, while p
is above 0.84 for other scores on PhoQ (Figure 2d). Moreover,
the ensemble score inherits key information from all individual
scores. For any evolutionary score, its correlation p always
achieves highest values with the ensemble score than other
individual scores. Indeed, our proposed construction of the
ensemble score can selectively integrate advanced scores to
perform robust predictions on protein fitness.

3.2. Evolutionary Scores Capture Fitness Hetero-
geneity via Unsupervised Clustering. The fitness land-
scape is highly heterogeneous with large portions of zero- and
low-fitness sequences (Supporting Information Figure S1).
The unsupervised clustering can capture such fitness
heterogeneous. Here, we examine the heterogeneity levels
revealed by different featurizations (Figure 3).

Physicochemical features were used to encode sequences in
combinatorial libraries for CLADE. K-means clustering was
applied to reveal the fitness heterogeneity over clusters where
average fitness in clusters has a non-uniform distribution®’
(Figure 3a,c). In CLADE 2.0, evolutionary scores are first used
to encode the sequences at the initial stage. The initial
sampling performs the K-means clustering using the evolu-
tionary scores. The fitness heterogeneity can also be revealed
for both GB1 and PhoQ data sets (Figure 3b,d). The level of
fitness heterogeneity over clusters can be quantified by the
heterogeneity index (H) in eq 6 using the cluster-wise average

https://doi.org/10.1021/acs.jcim.2c01046
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Figure 4. Evolutionary scores capture fitness heterogeneity revealed by K-means for GB1 data set. K-means is performed using five evolutionary
scores as features. Clusters are listed in the descending order of their average fitness, as shown in Figure 3. The y-axis shows the average
evolutionary score for (a) Profile HMM, (b) EVmutation, (c) DeepSequence VAE, (d) MSA Transformer, and (e) ESM-1v Transformer.
Spearman’s correlation between the cluster-wise average fitness and the cluster-wise average evolutionary score is shown in each graph.

fitness. The evolutionary score encoding achieves a much
higher heterogeneity index than physicochemical features do
(Figure 3). This result indicates that evolutionary scores can
better divide the mutational space into distinguished fitness
levels. In addition, the larger number of cluster K may be more
efficient to classify the fitness landscape as its heterogeneity
index increases when K increases.

A single evolutionary score alone is able to infer fitness
(Figure 2). However, p is not high enough to have a reliable
prediction on a single sequence. Indeed, we rank fitness at a
low resolution for average fitness over clusters. By clustering
the space into several subspaces using evolutionary features, we
examine the Spearman’s correlation between average fitness
and average evolutionary score over clusters. By listing the
clusters in an descending order for their average fitness, the
distribution of the average evolutionary score over clusters can
also provide a visualization of the rank correlation (Figures 4
and 5). With a small number of clusters (e.g., K = 3), every
evolutionary score achieves the perfect correlation (i.e., p = 1)
for both GB1 and PhoQ data sets. As the number of clusters
increases, the rank correlation goes down. In particular, MSA
Transformer fails to recognize the descending average fitness
with a noisy distribution of average scores on GB1 (Figure 4d).
A similar poor performance from profile HMM was found on
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PhoQ_(Figure 5a). In the initial sampling in CLADE 2.0, the
evolutionary score can rank fitness accurately at the low
resolution only with small number of clusters.

3.3. Evolution-Driven Clustering Sampling Captures
the Cluster-wise Fitness Heterogeneity. After we showed
evolutionary scores accurately rank fitness in an unsupervised
manner, we present the simulation of the evolution-driven
clustering sampling to generate a training set for CLADE 2.0
(Figure 6). In this simulation, we use GB1 data set as an
example. We pick the initial number of clusters K., = 4 and N
= 3 hierarchy with the same increment of the number of
clusters at each hierarchy K; = K, = K; = 4. The initial
sampling selects NUM, = 96 sequences. The batch size and
the hierarchical batch are all taken as 96: NUMy,.,
NUMyerarchy = 96. The number of training data is NUM,;,
= 384.

The initial O-th hierarchical evolution-driven clustering
divides the space into K., = 4 clusters using evolutionary
scores. Among these four clusters, three contain the majority of
sequences with low average fitness (cluster 14—16). The
evolution-driven cluster-wise sampling probabilities in eq 7
successfully identify this high-fitness cluster, and the first
hierarchical clustering only divides the high-fitness cluster into
K, + 1 = 5 subclusters. The initial sampling is performed on

https://doi.org/10.1021/acs.jcim.2c01046
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evolutionary score for (a) Profile HMM, (b) EVmutation, (c) DeepSequence VAE, (d) MSA Transformer, and (e) ESM-1v Transformer.
Spearman’s correlation between the cluster-wise average fitness and the cluster-wise average evolutionary score is shown in each graph.

these K., + K; = 8 clusters to select 96 sequences. This initial
sequence selection oversamples 89.6% = 86/96 sequences
within the K; + 1 = S subclusters generated at the first
hierarchy that only include a minority of sequences in the
mutational space (i.e., 9.4% = 14,044/149,361). The cluster
with lowest average fitness (i.e., cluster 16) containing 29.9% =
44,712/149,361 sequences is never sampled in the initial
sampling and is excluded from the entire sampling process.
The initial evolution-driven sampling shows that evolutionary
scores can accurately identify high-fitness clusters without
using labeled data.

After the initial sampling, CLADE 2.0 follows the same
clustering sampling in CLADE using the previously selected
sequences to update sampling probabilities and new clustering
hierarchy. Specifically, the clustering sampling tends to select
sequences in clusters with high average fitness from the
previously selected sequences. The hierarchical clustering also
tends to divide the high-fitness clusters. As a result, at the
maximal third hierarchy, the newly generated five clusters (i..,
clusters 1—5) are ranked among top six high-fitness clusters
(Figure 6d). By accurately identifying the high-fitness clusters,
the clustering sampling largely oversamples the high-fitness
clusters. The five clusters newly generated at the maximum
hierarchy N = 3 (i.e.,, clusters 1—5) selects 28% = 109/384
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sequences of the training set, while these clusters contain an
extremely small portion sequences of the mutational space
(0.64% = 960/149,361). As a result, the evolution-driven
clustering sampling in CLADE 2.0 efficiently selects
informative training set in a limited size of subspace containing
high-fitness sequences. The heterogeneity of cluster-wise
average fitness can be recapitulated by the selected sequences.

3.4. CLADE 2.0 Exhibits Accurate and Robust
Performance. Here we perform full CLADE 2.0 simulations
by combining evolution-driven clustering sampling and the
downstream supervised learning. We compare CLADE 2.0
with other methods in optimizing fitness. Since many methods
have multiple hyperparameters, we explore them extensively.
In the experimental application, only one set of hyper-
parmeters can be used. Indeed, in the comparisons, we not
only look at the best performing hyperparameters for each
method, but also focus on the worst performing hyper-
parameters to evaluate the method’s robustness.

First we compare CLADE 2.0 with CLADE. For both
methods, we set equal increments of clusters K; = K, = K; and
explore five values with 10, 20, ..., 50. For CLADE 2.0, we only
explore small values of K, below 10, since large K., hinders the
ability of evolutionary scores in capturing the cluster-wise
fitness heterogeneity (Figures S and 6). For the GB1 data set,

https://doi.org/10.1021/acs.jcim.2c01046
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once the evolution-driven sampling is introduced, CLADE 2.0
shows a clear improvement over CLADE for the max fitness
and the global maximal fitness hit rate (Figure 7a,b). With K,
between 4 and 8, the performance of CLADE 2.0 shows
relatively better performance. For the PhoQ data set, CLADE
2.0 consistently shows improvement over CLADE (Figure
7¢,d) with K,, = 2, 3. When K_, increases, the performance
tends to go down. Especially, CLADE 2.0 underperforms
CLADE for K, = 6.

Next, we compare CLADE 2.0 with other existing machine
learning methods for DE with their most optimistic and
pessimistic performance among the hyperparameters explored
according to their expected max fitness (Table 1). First, we
perform comparison with MLDE using random sampling for
training set selection, named random sampling-based MLDE,
which also serves as the standard baseline. Furthermore, we
include comparisons with ftMLDE that uses single evolu-
tionary score to restrict the random sampling within a subspace
containing top sequences given by hyperparameter “Sampling
threshold”, where EVmutation and MSA Transformer scores
are tested. Finally, we include a comparison with CLADE. For
optimistic performance, CLADE 2.0 exhibits dominant
performance for both GB1 and PhoQ with global maximal
fitness hit rate 88 and 27.5%, respectively. Its global maximal
fitness hit rate shows 4.7- and 3.6-fold increase over the
random sampling-based MLDE. With the assistance of
evolutionary score, ffMLDE improves the random sampling-
based MLDE but the optimistic results underperform CLADE
2.0. We further look into the pessimistic performance. On the
GBI data set, the worst performance for CLADE 2.0 can still
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achieve 58% global maximal fitness hit rate, which remarkably
outperforms MLDE and the optimistic CLADE. Performance
of ftMLDE varies depending on the evolutionary score used,
and both pessimistic ftMLDEs underperform CLADE 2.0. On
the PhoQ data set, the pessimistic CLADE 2.0 suffers
reductions on both global maximal fitness hit rate and
expected max fitness from its optimistic results. However,
interestingly, the pessimistic and optimistic CLADE 2.0 have
similar levels of expected mean fitness (Table 1). In contrast to
the highest expected mean fitness achieved by CLADE 2.0
among pessimistic models, pessimistic CLADE 2.0 even
underperforms random sampling-based MLDE and pessimistic
CLADE on global maximal fitness hit rate and expected max
fitness. The performance of pessimistic ftMLDE highly
depends on the evolutionary score used: using EVmutation,
it achieves the highest expected max fitness and global maximal
fitness hit rate among pessimistic methods, but using MSA
Transformer, it results in the worst performance with 0%
global maximal fitness hit rate.

Our CLADE 2.0 shows state-of-art performance on the GB1
data set despite the optimistic or pessimistic results, high-
lighting its accurate and robust performance. The GB1 data set
serves as the primary benchmark to showcase powerful results.
The PhoQ_is an alternative data set, where taking the fitness
measured by enrichment ratio does not indicate any protein
functions. Indeed, the evolutionary score cannot accurately
capture the enrichment ratio, leading to the poor pessimistic
CLADE 2.0 performance. Such fitness in PhoQ usually will not
be used for practical protein engineering. Indeed, CLADE 2.0
with the best optimistic performance on all metrics and best

https://doi.org/10.1021/acs.jcim.2c01046
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pessimistic performance on expected mean fitness confirms its
utility and robustness for DE.

4. CONCLUDING REMARKS

MLDE is a powerful approach for protein engineering. One of
the most effective MLDE tools is CLADE, which iteratively
optimizes protein fitness by navigating a large combinatorial
library. In this study, we introduce CLADE 2.0 that takes the
advantage of evolutionary scoring to further enhance CLADE.
We first show multiple evolutionary scores that can accurately
rank protein fitness in an unsupervised manner. Then, we
develop an ensemble of five evolutionary scores to capture
fitness heterogeneity revealed by unsupervised clustering. The
ensemble evolutionary score is designed to carry out the
evolution-driven clustering sampling. At the initial stage,
sequences are selected within the high-evolution space for
experimental screening. Further sampling stages update
sampling and clustering using the collected labeled data. The
last step invokes an ensemble supervised learning model to
exploit fitness via a greedy search. Two benchmark libraries,
GB1 and PhoQ, are employed to validate the proposed
CLADE 2.0 for ranking global maximal sequences. Perform-
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ance is compared with that of many cutting-edge methods in
MLDE, indicating that CLADE 2.0 is a new state-of-art
method for MLDE.

We further summarize the difference between CLADE and
CLADE 2.0. The major difference relies on the initial stage in
performing clustering and sampling. CLADE uses physico-
chemical features for clustering, and the initial sampling equally
selects mutations over clusters. CLADE 2.0 performs clustering
with two hierarchies at the initial stage where the first hierarchy
uses evolutionary scores as features and the second hierarchy
uses physiochemical features to further partition the space. The
initial sampling in CLADE 2.0 no longer equally samples
clusters. It oversamples the clusters with a high ensemble
evolutionary score. The clusters with low evolutionary scores
are rarely selected and even excluded in the exploration. At the
later stages, CLADE and CLADE 2.0 share the same strategy
in building clusters and selecting mutations. However, the
later-stage selection highly relies on the samples and clustering
architectures from the initial stage. Indeed, the training data
selected by CLADE and CLADE 2.0 have distinct sequence
identity (Supporting Information Figures S2 and S3).

https://doi.org/10.1021/acs.jcim.2c01046
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Table 1. Comparisons with CLADE 2.0“

data set method expected max fitness  expected mean fitness  global maximal fitness hit rate notes
GB1 MLDE (random sampling) 0.774 0.305 18.6%
Optimistic Performance
CLADE 0.876 0.418 44.5% K =K, =Ky =50
ftMLDE (EVmutation) 0.935 0.418 73.0% sampling threshold = 12,800
ftMLDE (MSA Transformer) 0.943 0.422 74.5% sampling threshold = 16,000
CLADE 2.0 0.973 0474 88.0% K,=8 K =K, =K =10
Pessimistic Performance
CLADE 0.859 0.40S5 41.0% K, =K, =K;=10
ftMLDE (EVmutation) 0.850 0.365 35.5% sampling threshold = 64,000
ftMLDE (MSA Transformer) 0.860 0.427 47.0% sampling threshold = 1600
CLADE 2.0 0915 0425 58.0% K,=2K =K =K, =10
PhoQ MLDE (random sampling) 0.387 0.077 7.6%
Optimistic Performance
CLADE 0.493 0.091 15.0% K1 =K2=K3=50
ftMLDE (EVmutation) 0.555 0.103 22.5% sampling threshold = 9600
ftMLDE (MSA Transformer) 0.488 0.096 14.5% sampling threshold = 48,000
CLADE 2.0 0.573 0.106 27.5% K,=3K =K, =K, =10
Pessimistic Performance
CLADE 0.44S 0.086 9.5% K, =K, =K; =30
ftMLDE (EVmutation) 0.477 0.101 13.5% Sampling threshold = 6400
ftMLDE (MSA Transformer) 0.320 0.085 0.0% Sampling threshold = 1600
CLADE 2.0 0.425 0.104 4.5% K, =6 K =K, =K, =40

“Optimistic performance and pessimistic performance are measured by the expected max fitness. To use identical physiochemical encoding for
direct comparisons, results for MLDE and ftMLDE were from ref 27. The results from original ffMLDE" are only for GB1 set with worse
performance than in this table. We reproduced CLADE in this work to have the same set of hyperparameters explored with CLADE 2.0, while the
original CLADE work reported slightly better results with extensive hyperparameter search.”” Each type of ftMLDE only uses one evolutionary
score to rank fitness, and the training set is randomly sampled within the top “Sampling threshold” sequences.

CLADE 2.0 uses an iterative process to combine
computations and experiments. In each iteration, the computa-
tional approach first picks up a few top candidate mutations,
and experiment subsequently screens and evaluates the fitness
of the selected mutations. In our computational benchmarks,
the experimental module is not coupled. When our computa-
tional module picks up the candidate mutations, we need to
find their fitness values from the existing data set. Indeed, huge
combinatorial libraries with almost complete coverage of all
mutations are necessary for the computational benchmarks. In
applications with available experimental modules, only a small
data set is needed to be evaluated by experiments to obtain
their fitness. For example, our setting in this work only needs
the fitness of 480 mutations over 160,000 in the combinatorial
library. Here, 480 mutations are a relatively small portion for
experimental data and the number of mutations may be varied
depending on the specific problems.

In this work, CLADE 2.0 was only tested computationally
on two combinatorial libraries with almost complete coverage
of mutations. In practice with experimental module available,
CLADE 2.0 can be applied to more general mutational
libraries. For example, one can apply CLADE 2.0 to a multi-
domain protein with more mutational sites involved in a
chimera recombinant library, which was studied previously in a
MLDE task using Gaussian process model.”’ Unfortunately,
there is no existing chimera data set with a complete coverage
of mutations for computational benchmark.

The protein design is a complicated process consisting of
multiple stesps, including discovery, clinical trials, and
manufacture.” The discovery process also consists of many
subprocesses. CLADE 2.0 is responsible for the initial
discovery process to select a group of top candidate mutations.
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Further downstream analysis using both computations and
experiments is necessary to screen these top candidates. For
example, we need to examine the structural conformation,
thermostability, and other critical biophysical properties of the
candidate mutations.
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