

ROAM: A Decision Support System for Software-Defined Farms

Shiang-Wan Chin

Cornell University

Ithaca, New York, USA

sc2983@cornell.edu

Gloire Rubambiza

Cornell University

Ithaca, New York, USA

gloire@cs.cornell.edu

Yifan Zhao

Cornell University

Ithaca, New York, USA

yz348@cornell.edu

Keyvan Malek

University of Illinois

Urbana-Champaign

Champaign, Illinois, USA

k1malek@illinois.edu

Hakim Weatherspoon

Cornell University

Ithaca, New York, USA

hweather@cs.cornell.edu

ABSTRACT

1 The growing disparity between food supply and demand requires
2 innovative Digital Agriculture (DA) systems to increase farm sus-
3 tainability and profitability. However, current systems suffer from
4 problems of complexity. To increase farm efficiency and understand
5 the tradeoffs of these new DA innovations we developed ROAM,
6 which is a decision-support system developed to find a Pareto opti-
7 mal architectural design to build DA systems. Based on data from
8 five live deployments at Cornell University, each DA design can
9 be analyzed based on user defined metrics and evaluated under
10 uncertain farming environments with ROAM. Paired with this, we
11 develop a web interface that allows users to define personalized
12 decision spaces and to visualize decision tradeoffs. To help validate
13 ROAM, it was deployed to a commercial farm where the user was
14 recommended a method to increase farm efficiency. ROAM allows
15 users to quickly make key decisions in designing their DA systems
16 to increase farm profitability.

17
18 **Keywords:** Digital agriculture, Decision making under deep un-
19 certainty, Systems optimization, Systems engineering, Internet of
20 Things, Sustainability

21 1 INTRODUCTION

22 The 2018 Global Agricultural Productivity (GAP) index highlights
23 a growing disparity between food supply and demand, for both
24 developed and developing countries [50]. Conservative estimates
25 predict that agricultural production will need to increase by 25-
26 70% above current levels to meet the demand expected by 2050.
27 As a result, the world is likely to face a large-scale food security
28 crisis [50]. A major challenge to increasing food production is farm
29 efficiency which is challenged by limited rural infrastructure [52].

30 Digital Agriculture (DA), which is the use of data-driven tech-
31 niques to increase farm productivity and sustainability, is thought
32 of as a method of addressing the crisis [8]. Research into data-driven
33 agriculture is growing. It envisions a future in which on-farm data
34 collection, processing, and transmission are ubiquitous [22]. Sev-
35 eral start-up companies are developing applications for data-driven
36 farms [24], while major agribusiness firms are developing data
37 collection and processing systems [24].

38 According to Douthwaite et al., DA innovations are complex and
39 require involving farm stakeholders to understand their goals and
40 constraints to successfully deploy [52]. First, current DA solutions
41 are often fragile due to non-interoperable hardware and software

[42]. Second, DA solutions often take a generalized approach that is not suitable for the myriad of farmers, each of whom has unique demands and constraints which require personalized solutions; e.g. a specialty grape farm can focus on achieving a specific taste profile while a row crop corn farm can focus on optimizing yield [8]. These challenges often lead to low understanding, slow adoption, and high costs in implementing DA systems [52].

In this paper, we present the Realtime Optimization and Management System (ROAM), which helps identifies a Pareto optimal set of tradeoffs that helps farmers identify a desired point within the tradeoffs space. Based on several years of experience deploying DA systems in several research farms associated with Cornell University, we have determined which data and decision points should be accounted for, and designed a user-friendly platform for farmers to define the unique goals and constraints for their particular farm. ROAM determines a Pareto front of optimal DA system architectures a farmer can choose between, usually eliminating the vast majority of potential architectures. Thus, ROAM advances the state of the art in deploying DA systems. It performs up-front analysis necessary to deploy DA systems and eliminates major barriers to the diffusion of DA techniques into real-world farms and increasing farm efficiency.

The design of ROAM is based on formalizing a method to evaluate a DA architecture by encoding user generated evaluation metrics and uncertainties to assess each architectural decision into a ROAM Configuration File. An architectural decision is the choice between different components of the DA system such as between a soil moisture or light sensor. Then, the ROAM Configuration File is used to create nodes or objects that represent unique architectural configurations of a DA system. The architectural representation is a subset of architectural decisions made to create a DA system. The nodes are then passed into an optimization function to uncover the one architectural representation most suitable to a user's need. To abstract away the complexity of the ROAM implementation a

front-end user interface is designed and used to allow for easy entry of key features of the user's farm, constraints, and uncertainties. This frontend creates the ROAM Configuration File used for ROAM evaluation. In addition, as output, the frontend displays an interactive 3-D data visualizations of the farmers potential DA system tradespace, which is then used to allow for better understanding of the recommendations of the system. The entire process from beginning to end, from encoding the ROAM Configuration File to the end step of visualization of the analysis is modularized to allow for swapping in and out interchangeable software. For example, different types of optimization models can be used in the ROAM.

To validate the generalizability of ROAM, it was used by Cheng Xin Garden LLC, a commercial California-based viticulture farm. As part of the process, ROAM considered different decisions to create a DA system based on their needs through in-depth user interviews. ROAM identified 324 architectural decisions and narrowed that down to one based on many factors such as climate change and location of the farm. The identified optimal architecture increases Cheng Xin Garden's farm efficiency while accounting for constraints and uncertainties. To summarize our work the research contributions are the following:

- (1) Experience developing and deploying several different DA systems
- (2) Recommendations for a Pareto optimal DA system deployment
- (3) Design and implementation of ROAM
- (4) A commercial farm deployment using and validating ROAM's utility

The rest of this paper will be structured as follows. Digital agriculture systems that motivate the development of ROAM will be outlined in Section 2. Section 3 discusses how the ROAM software is built. The tradespace model formulation is described in Section 4. Section 5 delves into how user inputs are compiled into a configuration file and optimization function are applied. Optimization

110 libraries and concepts are used for deeper analysis in Section 6.
 111 Section 7 outlines the user interface for users to input farm data.
 112 A commercial farm deployment of ROAM is described in Section
 113 8. We conclude with a discussion of our results in Section 9 and
 114 summarize our findings and work in Section 10.

115 2 NETWORK-ENABLED FARM

116 Digital Agriculture (DA) is the use of data to improve farm decision
 117 making that can lead to increased environmental sustainability
 118 and farm profitability [36]. DA is composed of sensing, storing,
 119 computing, and actuating technologies that leverage on-farm data
 120 [44]. Gathering massive amounts of sensor data requires a robust
 121 network, but this is a challenge as farms in rural areas often have
 122 limited or no on-farm networking or Internet access. A Network-
 123 Enabled Farm (NEF) addresses these issues by using new technolo-
 124 gies or old technologies repurposed to provide networking capa-
 125 bilities in the middle of a farm such as, 4G LTE, Long Range Radio
 126 (LoRa), and unlicensed TV White Spaces (TVWS) [5]. A Software-
 127 Defined Farm (SDF) leverages a NEF to sense, transmit, and analyze
 128 farm data to produce actionable insights for farm stakeholders, as
 129 described in *Seamless Visions, Seamful Realities: Anticipating Rural*
 130 *Infrastructural Fragility in Early Design of Digital Agriculture* [42].
 131 The NEF provides the networking infrastructure for the SDF to
 132 enable data-driven DA to optimize farm management.

133 The SDF is a modular abstraction of software and hardware tech-
 134 nologies that is designed to fit the various needs of farmers. The
 135 software abstraction is split into 3 modules: Sensing, Computing,
 136 and Actuating. The Sensing module abstracts away sensors that al-
 137 lows different hardware sensors to be connected through software.
 138 The Computing module allows for different analytics algorithms
 139 to be run to support decision making. The Actuating module per-
 140 forms some type of action such as releasing irrigation valves. These
 141 modules can connect manufacturer agnostic hardware devices such
 142 as computers located at the farmhouse, field sensors, and water

143 valves. With both the software and hardware connected, farmers
 144 can visualize aggregate data from normally incompatible farming
 145 systems on a web application interface [52]. To gain operational
 146 insights, farmers can run analytics on their data to make farm
 147 decisions. Lastly, an SDF enables the creation of digital twins of
 148 the physical farming system to automate farm processes such as
 149 precision irrigation.

150 The SDF interfaces for the Sensing, Computing, and Actuating
 151 modules are well defined and static, but the implementation of the
 152 modules change to fit the need of the SDF user needs. For instance,
 153 different sensors such as soil moisture, light and/or wind can be
 154 used for the Sensing module. Different analytics implementations
 155 such as machine learning disease detection, irrigation scheduling,
 156 and/or cow health monitoring can be run in the Computing module.
 157 Lastly, the Actuating module can be in the form of an email alert,
 158 turning on irrigation value, or controlling greenhouse internal
 159 temperatures. Note that the modules can be hosted by different
 160 cloud providers such as Microsoft Azure, Google Compute Platform
 161 (GCP), or Amazon Web Service (AWS), and/or run in the farm house
 162 at the “edge” of the cloud.

163 We have experience implementing and deploying several SDF in-
 164 stances, including an apple orchard, corn and cannabis greenhouse,
 165 dairy cow farm, and a vineyard [41]. These instances of SDF deploy-
 166 ments utilized research farms associated with Cornell University
 167 and were implemented over a span of three years. These deploy-
 168 ments highlight both the flexibility of the SDF concept, as well as
 169 the importance of tailoring each deployment to fit the needs of each
 170 individual farm. The SDF instances use cutting-edge networking
 171 technologies such as TV White-space, LoRa, and sensors such as
 172 in situ plant water sensors [41] (See Figure 1). Figure 1 shows a
 173 data-driven irrigation graphic of how the SDF connects the Sensing
 174 Module through a sensor (1), sensor box (2), and subedge or edge
 175 computation device (3) to the Computing Module through a cloud

176 software service (4) to the Actuating Module with a raspberry pi
 177 (5) [39] and actuation function (6).

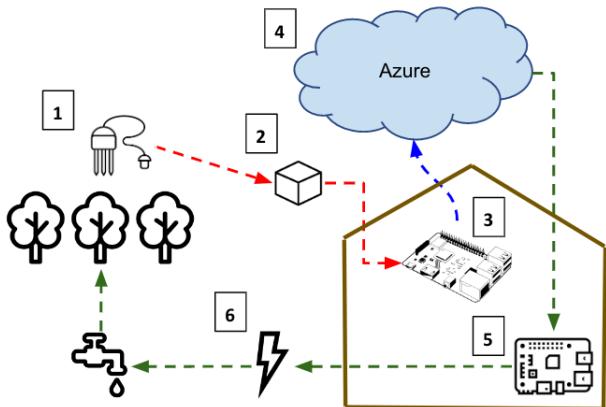


Figure 1: SDF Decision Space

178 One constant throughout our experience implementing these
 179 various SDF deployments was the difficulty in balancing complex,
 180 multifaceted tradeoffs between cost, risk, and performance. Here,
 181 cost refers to the monetary cost of hardware, software, installation,
 182 and maintenance needed to deploy and maintain a SDF. Risk refers
 183 to the potential for interruption of sensor devices and networking.
 184 Performance is an aggregate metric that combines anticipated yield
 185 increase with anticipated water, electricity, and labor cost savings.
 186 Drawing from our three years of experience analyzing these trade-
 187 offs, we present the design and implementation of the Tradespace
 188 Exploration System (ROAM), a tool and computational method to
 189 assist in optimizing cost, risk, and performance of an SDF. Further-
 190 more, the ROAM incorporates user input and uncertainties such as
 191 climate change in a farming environment. In the following section,
 192 we describe ROAM in more detail.

193 3 SOFTWARE DESCRIPTION

194 ROAM is an open-source software. It includes a client-side browser-
 195 based interactive application and a server-side back-end service.
 196 ROAM is designed and developed in a back-end and front-end setup
 197 due to the need for computational resources and data storage in

198 the back-end, as well as the need for a user-friendly interface to
 199 lower technology barriers to our various stakeholders. The server-
 200 side back-end is developed with Python as the core programming
 201 language and hosts most functionalities, including optimization,
 202 analytics, and data storage. We selected the Python Flask framework
 203 to develop the client-side web application with Javascript as a core
 204 programming language. Both the back-end service and the front-
 205 end application integrates functionalities from multiple external
 206 libraries and custom modules.

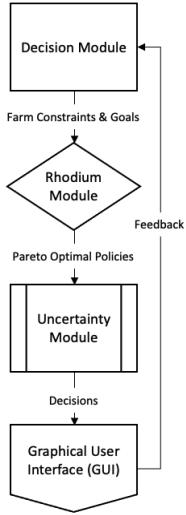
207 The system consists of 4 main modules: the Decision, Rhodium,
 208 Uncertainty, and Graphical User Interface (GUI) modules as seen in
 209 Figure 2. The Decision module defines and maintains the tradespace
 210 architecture from the Decision Configuration File and it hosts the
 211 Tradespace Enumeration and Optimization algorithms. The Un-
 212 certainty module defines the uncertainty variables and models un-
 213 certain farming environments using real-time data. The Rhodium
 214 module hosts functions responsible for extension and orchestration
 215 of the integrated third-party Many-Objective Robust Decision Mak-
 216 ing (MORDM) libraries and provides key analysis of the tradespace.
 217 The GUI hosts the front-end interface and handles user data acqui-
 218 sition and visualization. The external libraries are selected from
 219 popular and regularly maintained open-source communities. A
 220 summary of these systems and libraries is provided in Table 1.

Library	Language	Usage
Rhodium	Python	MORDM
j3	Python	Visualization
oapackage	Python	Optimization
plotly	JavaScript	Visualization
d3	JavaScript	UI, data acquisition, visualization

Table 1: Tools and Libraries

221 4 TRADESPACE MODEL

222 To model and evaluate SDF designs, we draw from the study of
 223 systems architecture for developing configurable complex systems
 224 and evaluating how well they satisfy stakeholder needs [45]. To

**Figure 2: System Modules**

243 where N is the number of alternatives. The next step of creating the
 244 tradespace model is to create decisions to define the architecture
 245 space and subsequently to create metrics to evaluate the architec-
 246 tures. As emphasized, the SDF needs to focus both on pragmatic
 247 deployments of software and hardware components, so in any deci-
 248 sion space we need to consider multiple types of decisions. Table 2 is
 249 an example of a set of decisions, their descriptions and importance,
 250 and the canonical class used to create and evaluate a SDF.

251 **4.1 Problem Formulation**

252 Once the tradespace has been constructed, defining metrics is
 253 needed for the evaluation of each architecture [53]. We conducted
 254 a stakeholder analysis by interviewing 11 farmers in California,
 255 Washington, and New York. We identified 3 metrics (cost, perfor-
 256 mance, and risk) as those most important when evaluating new
 257 technology investments. The farmers we interviewed expressed
 258 sensitivity to decisions that affected these metrics and through our
 259 analysis we understood variations across different architectures
 260 using principles in system architecture [45]. Based on decisions
 261 defined by a user of the system, value functions need to be created
 262 that evaluate each decision based on metrics for each architecture
 263 in the tradespace as will be shown in subsection 5.1 [45]. A value
 264 function, as described by Crawley, can be seen as a “transfer func-
 265 tion” where the input is a system architecture and the output is
 266 an evaluation of the given architecture. Given the complexity of
 267 a real system, metrics need to be backed up via extensive testing,
 268 simulations, and fine tuning in future iterations.

269 The metric formulations and their subsequent values were based
 270 on data from journal publications [19][51], 11 farmer interviews,
 271 and experience with five SDF deployments described in section 2.
 272 Examples of the data include the real yield increment each year,
 273 the production each year, the price of the devices, and the cost of
 274 each component; as well as subsequent maintenance costs. The

#	Decision Name	Why it is important	Importance	Justification
1	Product Information	The type of Product Information to be collected is an important decision that will also impact scalability. Animals will likely require a higher-frequency monitoring as opposed to plants.	Very High	This is a downselecting decision as we are able to decide for multiple alternatives from the initial set. Decisions range from resources that require the lowest-frequency monitoring to animals requiring the highest-frequency monitoring.
2	IoT Devices	IoT devices are a crucial decisions that must be weighed between cost and functionality. The devices that are too costly will not be feasible for farmers to implement, while those that aren't functional will not be able to collect robust enough data.	High	This is a standard form decision because we think that a system with more than one manufacturer would not be scalable enough to accommodate a host of users.
3	User Interface	The type of user interface is an important component which can affect performance and user's attraction. The different user interfaces can provide different functions and it is where the customer can directly interact with our system, so we think it's a high priority.	Medium	We can provide multiple types of user interfaces for our users at the same time, such as message, website, and application. These options are not exclusive to each other.
4	Systems Architecture	The possibility of scaling is important for our system as different system architecture might rule out a growing user base in the future. Similarly, scalable architectures are likely to require more initial effort to set up the system and will only pay off with a large user base.	Medium	This decision is SF since it is formulated as picking one range from a set of options.
5	Data Type	The type of Data Storage is an important decision as it determines the security measures we intend to implement. A blockchain-based data storage would be the most secure decision which will impose constraints on the scalability of the possible user base.	Low	This is a downselection decision as we could think of a hybrid system that uses a cloud-based database and a blockchain backend in concert with each other. A CSV based backend would have the smallest amount of dependencies but would likely lack scalability and performance.
6	Data Collection	One important process in our system is Data Collection from the user side. There are multiple ways we can do them, each method can strongly affect our system architecture and performance. For example, if we choose manual input, then we need to consider a model for human labors. The options are flexible since the method of collecting data does not block our system performance.	Low	Since our system has multiple components for data collecting, such as measuring temperature, track product information. Some of them can be automatic, while some of them have to be manual. We can have manual, automatic, or semi-automatic.
7	Data Storage	The data storage size is used to limit our capacity for storing our product information, user account information, and some intermediate data. The scale of our storage size determines our project scale and server stress.	Low	We consider this decision as SF since the options are exclusive with each other, we can only choose one from them.
8	Notification System	This is a process that is crucial for the functionality of the system. In order for the stakeholders in the network to receive value, they must be able to interface with the system.	Low	We can see this as a down selecting decision as a subset of alternatives would be possible such as Email and real-time display simultaneously.
9	File Exchange Type	File exchange types that are streamlined will allow the system will run more efficiently. If they are not, then the processing time will increase.	Very Low	This is a standard form decision as a system with more than one file format would be very fragile with respect to ensuring data consistency.
10	Machine Learning	Machine learning model allows us to do prediction on yield, risk, weather, etc.	High	This is a standard form decision since it takes too long to do prediction; at present we can try only one option.

Table 2: Description of canonical decisions and their importance for the architecture

275 experience refers to the five SDF deployments that were deployed 283

276 at Cornell University mentioned in section 2.

$$\forall d \in \Omega \quad (4)$$

284 subject to user defined:

$$F_{cost}, F_{risk}, F_{perf} \quad (5)$$

277

4.2 Formulation of Metrics

278 To formulate the Pareto optimal investment operating policy for
 279 a given farmer we create a function composed of three metrics.
 280 From work done by Cohon and Marks, and Reed we can define our
 281 multi-objective problem with a vector, $F(d)$, as demonstrated by
 282 the following equation [13][25].

$$F(d) = (F_{cost}, F_{risk}, F_{perf}) \quad (3)$$

285 Here d is a vector of decision variables in the tradespace Ω .
 286 These decisions can be expressed as real numbers utilizing value
 287 functions. Each $F(d)$ operating policy is evaluated based on its cost,
 288 risk, and performance which can be constrained by user input. For
 289 example, in the SDF referred to in section 2 because we want the
 290 system to be low cost, we can constrain cost to be less than or

equal to \$2000 and it would be denoted as $F_{cost} \leq 2000$. In terms of optimization, the performance metric is maximized while the cost and risk metrics are minimized. Each metric will be explained in the following sections.

4.2.1 Cost Metric. The first goal of the system is to minimize cost as denoted by the equation:

$$F_{cost} = H + M + S + I \quad (6)$$

The cost metric includes the cost of Hardware (H), subsequent Farm Maintenance Cost (M), Software (S), and Installation (I). The hardware and installation costs are vital to minimize the total costs of implementing an SDF. Farmers typically have a limited upfront budget for investments and face many costly decisions in investing in new technologies [49]. For example, the cost of sensors may make deploying full sensor networks prohibitively expensive in this context [28]. Thus, if the sensors are too expensive, they will not be implemented on farms where capital and cash reserves are a constraint. On the other hand, if the sensors are very cheap, the system may display low performance and have a high risks of malfunction when used over time. As a result, cheap sensors that need constant repair would increase the maintenance cost, resulting in large labor costs for the farmer. We factor in the time needed to calibrate sensors, fix devices, clean equipment, and change batteries based on experience from deployments of sensors onto a farm [26]. If the costs to keep the systems running outweigh the benefit of optimizing the farm, it will be ineffective at helping farmers. Lastly, software costs are increasingly important as corporations pivot to Software as a Service (SaaS) models where cost per computation is the norm. As a result, for larger farms with an abundance of sensors, computation costs and software services will be much more expensive. It is also important to note that the type of farm, region, and climate also influence which sensors and decisions are the most suitable. For example, a soil moisture sensor is less suitable

in environments where temperature regularly drops below freezing point and the ground freezes. It is important to note that efforts were made to create a holistic cost metrics, but in complex living systems such as a farm there are many unforeseen costs.

4.2.2 Risk Metric. The second system goal is to minimize risk,

$$F_{risk} = S + N \quad (7)$$

This equation quantifies the interruption risk of the Sensor Devices (S) and Networking (N) of an SDF design. In a deployed SDF, there are two reasons why data from sensors might be incorrect or missing. First, the sensor hardware itself can malfunction due to climate, environmental, or implementation factors. These malfunctions can lead to both gaps in data collection and incorrect data collection, both of which can lead to inaccurate decision support and potentially necessitate costly repairs. These risks are captured by S in the above formula. On the other hand, if the network is unreliable, even if the sensors are collecting data properly, it cannot be transmitted to edge and cloud computers. This risk is captured by N in the above formula.

Understanding S and N are important for the quality of insights the SDF can generate. As a result, if there is a great deal of interruption risk, it can be linked to a bad quality SDF architecture. In ROAM, we define interruption risk as the probability of failure in the S to send and N to transmit data packets. While ROAM can use default quantities for these risks determined through averaging the risks experienced by farmers in our user interview studies, we allow farmers to instead provide their own quantities based on their personal evaluation based on the local conditions at their farm. As systems become ever more complex with many dependencies the risk metric will be all the more important.

4.2.3 Performance Metric. The third system goal is to maximize performance

$$F_{perf} = Y + W + E + L \quad (8)$$

352 The equation above represents the utility of the system's service to
 353 users, a metric directly tied to creating value for users. The perfor-
 354 mance metric is developed as a combination of Yield Increase (Y),
 355 Water Cost Savings (W), Electricity Cost Saving (E), and Labor Cost
 356 Savings (L), representing four ways in which an SDF deployment
 357 can add value for farmers. One of the primary ways in which an
 358 SDF can improve farms is by generating insights that allow farmers
 359 to grow more high-quality crops per acre of farmland. For exam-
 360 ple, the SDF can identify underperforming parts of the field and
 361 suggest how to improve them. In addition, an SDF can improve
 362 water costs by suggesting optimal watering amounts based on sen-
 363 sor data such as soil moisture levels [17]. SDFs also have different
 364 electricity costs depending on the specific technologies used; for
 365 example, solar power may be cheaper than disposable batteries in
 366 the long run. Finally, SDFs can remove the need for human labor in
 367 some cases. For example, one of the farmers we interviewed during
 368 our user research described needing to hire a worker to walk the
 369 field everyday to measure soil moisture in every hectare of the
 370 farm, labor which would not be necessary in an SDF with a sensor
 371 network to measure soil moisture. Performance was often thought
 372 about as the most important metric for our farmers in evaluating
 373 new technology investments.

374 4.3 Uncertainties

375 Once we establish the metrics and value functions for evaluating
 376 architectures in the tradespace, we must define the uncertainties
 377 and their effects on the various architectures within the tradespace.
 378 With the goal to improve farmers' competitiveness and extract
 379 insights from farming for decision-making, the system must be
 380 evaluated under the deeply uncertain farming environment reflect-
 381 ing reality. More formally, an uncertainty in the tradespace model
 382 characterizes the behavior of an uncertain factor affecting a farm
 383 as a variable [25]. The reason for having these uncertainties is
 384 to capture the attributes and metrics of architecture in multiple

385 instances of the uncertain environment, which provides a more
 386 realistic evaluation of the architecture and aids the decision-making
 387 process section 6. This section focuses on the uncertainty variables
 388 constructed in ROAM. In contrast, the relationship between each
 389 uncertainty and metrics of each decision will vary depending on
 390 different tradespace configurations, which is showcased in section 8.

391 *Climate Complexity.* The farm climate is a complex nonlinear
 392 system, where different levels of short-term climate complexity may
 393 affect the performance of the farm. Climate Complexity (CC) can
 394 lead to risks of sensor malfunction and suboptimal performance of
 395 hardware devices as they operate while exposed to outdoor farming
 396 environments. For example, solar power sources can face risks of
 397 interruption in extreme weather events such as large storms. Util-
 398 izing information theory techniques, the CC uncertainty variable
 399 aims to represent an approximate proxy to analyze and predict the
 400 level of regional short-term climate variability in a given farm area.
 401 CC uncertainty is modeled using an entropy-based measurement
 402 that is referred to as SampEn. It provides a nonlinear approach for
 403 analyzing and predicting the entropy or complexity of climatic time
 404 series [47]. It is a probability measure that quantifies the likelihood
 405 that sequences of consecutive data match one another within a
 406 tolerance r and remain similar when the length of the sequences is
 407 increased by one sample. In this way, we quantify the regularity
 408 and the unpredictability of fluctuations in weather to factor into
 409 our model. In order to calculate individual farm level SampEn we
 410 use data from the Global Climate Models (GCMs) dataset [2]. The
 411 data is then processed based on the algorithm introduced in the
 412 paper Approximate Entropy and Sample Entropy: A Comprehen-
 413 sive Tutorial [15]. According to the SampEn calculations of climate
 414 complexity of regional meteorological data found by Shuangcheng
 415 in his paper Measurement of Climate Complexity, he found from
 416 using random climate data that SampEn approached 0 and with
 417 fully homogeneous data that it approached 3 [47]. As a result we

418 use the SampEn range from 0 to 3 with a uniform distribution to
 419 model climate complexity as shown in table 3.

420 *Rainfall*. Rainfall has been directly linked to impacting yield
 421 of agricultural products [23]. According to Hunho, it is seen that
 422 increased rainfall leads to a longer growing season and higher yields
 423 which in turn becomes higher profits for the farmer. On the other
 424 hand, in this study published in the journal Global Change Biology,
 425 rainfall was detrimental to certain crop yield [34]. In the study corn
 426 yields were reduced by as much as 34 percent during years with
 427 excessive rainfall [34]. It was estimated that between 1989 and 2016,
 428 intense rain events caused \$10 billion in agricultural loss [34].

429 The effects of climate change has a large impact on rainfall
 430 [23]. It was cited as a reason for the increased and unpredictable
 431 rainfall [23]. Rainfall is highly regional, so climate change is a
 432 great cause of concern for rainfall in the future as farmers will
 433 need to plan for excessive or shortages in rainfall which will affect
 434 the profitability of the farm. To model rainfall we utilize a normal
 435 distribution of historical annual precipitation and calculate the
 436 mean and standard deviation for the region of the farm area being
 437 studied. To anticipate how precipitation affects the performance of
 438 the farm, we built linear regression models that correlate historical
 439 precipitation measurements with historical crop yield to represent
 440 the effect of precipitation on crop yield. To set the range we use
 441 the empirical rule which states 99.7 percent of values lie above and
 442 below three Standard Deviations (SD) of the mean [35].

Uncertainty Variable	Notation	Lower Bound	Upper Bound
Climate Complexity	C	0	3
Rainfall	R	0	3*Expected Rainfall (user input)

Table 3: Uncertainties Problem Formulation

446 Configuration File, including basic setup information such as num-
 447 ber of decisions, price level, and a network representation of the
 448 tradespace. The initialization of the Tradespace object is invoked by
 449 the ‘Generate Tradespace’ function from the User Interface, which
 450 must be execute prior to any other action.

451 5.1 Tradespace Configuration File

452 The Tradespace Configuration File (TCF) is a JavaScript Object
 453 Notation (JSON) file that describes a set of architectural decisions in
 454 a digital farm system (e.g. farm sensors, data storage method, plant
 455 watering physiological model, etc.). Each decision item describes
 456 the decision type, decision weight (importance), and a range of
 457 implementation options (alternatives) with detailed attributes and
 458 measurement information. The TCF defines the basic elements and
 459 structure of the tradespace, and the Decision Module processes the
 460 extracted data into a Tradespace Object for downstream analytics.

461 5.2 Network Structure

462 Building on the TCF, the Tradespace Network (TSN) data repre-
 463 sentation consists of three layers of data manipulations: decision
 464 pool, policy pool, and tradespace nodes. The decision pool is a
 465 list structure data set generated from the TCF by the function
 466 ‘make_decision_pool’. Each element in decision pool is a dictio-
 467 nary that stores information of a decision and a list of alternatives
 468 instantiated as decision objects. The decision pool represents all
 469 the decisions available in the tradespace. The policy pool is a list
 470 structure dataset generated by the enumeration function (subsec-
 471 tion 5.3), where each element in the policy pool is a list of decision
 472 objects. The policy pool represents all possible policies that can be
 473 formed and validated by the information and rules defined in the
 474 TCF. The tradespace nodes is a list structure dataset generated by
 475 mapping the ‘make_node’ function to each element of the policy
 476 pool, where the ‘make_node’ function calculates metadata for each
 477 policy in the policy pool and produce a node object. Each node

443 5 TRADESPACE OBJECT

444 The Tradespace Object is produced by the Decision Module and
 445 represents an instance of the specific farm setup defined by the

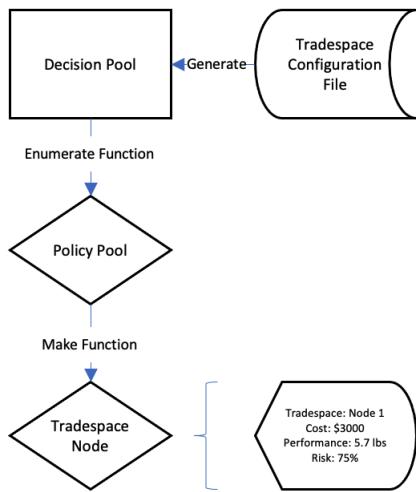


Figure 3: The layers of the Tradespace Network (TSN) structure is represented here.

478 object contains information describing the corresponding policy,
 479 including the metrics, length of the policy, and a link to the policy
 480 object in policy pool.

481 5.3 Enumeration and Optimization

482 In the initial stage of the tradespace exploration, an enumeration of
 483 all possible solution states without uncertainty in the tradespace is
 484 generated using the TCF (subsection 5.1) inputted by the user. Then,
 485 the Pareto front of the generated tradespace is calculated through
 486 an exhaustive search of the enumeration. This frontier represents a
 487 set of equally optimal SDF architectural decisions (policies) for the
 488 user-defined farm environment, without considering the effect of
 489 any uncertainty variables. The Pareto front at this stage presents
 490 a basic understanding of the differences and tradeoffs between
 491 various policies, which are further analyzed in the following stages
 492 with the added effects of uncertainties in the farming environment.

493 Due to the large size (often sized in millions) of the
 494 tradespace and its deterministic nature when calculating without
 495 uncertainty, we created the Enumeration and Optimization Algo-
 496 rithm in the Decision module. This algorithm is used to generate all
 497 possible valid combinations of architectural decisions (policy) and

498 then calculate the Pareto fronts in the tradespace, without consid-
 499 ering the influence of uncertainties. A policy is a set of alternatives
 500 defined by the TCF. A policy is valid only if its composition satis-
 501 fies the rules defined in section 4. Under these rules it can usually
 502 consist of a variable number of alternatives, but these alternatives
 503 should be selected from a fixed number of decisions and in ways
 504 regulated by the type of each decision. The ‘enumerateTS’ function
 505 generates a set of all possible policies that exists in the tradespace
 506 by first calculating a combination/permutation of the alternatives
 507 under each decision depending on the decision type, denoted as
 508 ‘comb’ and then calculating combinations of all comb. After a set of
 509 all possible policies in the tradespace is found, each policy in this
 510 set is then processed into a node, a data structure defined in sub-
 511 section 5.2. Here, a node represents an instance of a possible policy,
 512 with a collection of metadata (performance, cost, risk metrics, and
 513 policy length) used for downstream calculations and visualizations.

514 After the ‘enumerateTS’ function completes, the ‘calcPareto’
 515 function can be invoked to calculate the tradespace Pareto front
 516 without considering an uncertain environment. In this case, a Pareto
 517 front represents a Pareto optimal set of policies calculated by multi-
 518 objective optimization based on the performance, cost, and risk
 519 metrics detailed in subsection 4.3, which means every policy in
 520 this set is equivalently optimal and no metric can be enhanced by
 521 any one alternative decision without compromising at least one
 522 other metric. The calculation of the Pareto front is implemented
 523 by extending the functions from the Orthogonal Array package.
 524 The set of policies found by ‘enumerateTS’, processed and repre-
 525 sented as an array of nodes, is then passed into the extended data
 526 structures and functions to calculate the Pareto front based on the
 527 objectives to maximize performance and minimize cost and risk.
 528 The implementation of this algorithm can be found in our code
 529 repository with the file titled ‘tradespace_explore.py’. Note that
 530 with the custom enumeration and optimization functions and the
 531 decision data structure described above, the resulting Pareto front

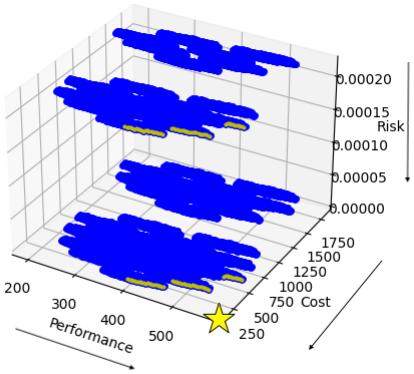


Figure 4: The tradespace enumeration optimizes toward the yellow star (i.e. the ideal state) and displays policies as blue points with those that are Pareto optimal as yellow.

532 can be traced to each ‘policy’ and ‘decision’ endpoints. This trace-
 533 ability is important in the integration of Rhodium models as well
 534 as in extending new functionalities and visualization features in
 535 the future.

536 Using an example TCF from section 2 with an input of 10 deci-
 537 sions and 29 corresponding alternatives (5 standard form decisions
 538 with 3 alternatives each, 1 standard form decision with 2 alter-
 539 natives, and 4 down selecting decisions with 8 alternatives each),
 540 the enumeration algorithm yields a result of 1,166,886 policies. Us-
 541 ing the Enumeration and Optimization Algorithm can determine
 542 a Pareto optimal set of size 142 optimal values and corresponding
 543 284 optimal policies, by searching for policies that increase perfor-
 544 mance, decrease cost, and decrease risk. It is important to note here
 545 that various policies can result in the same optimal values. The
 546 graph in Figure 4 visualizes the process of optimizing toward an
 547 ideal point as depicted by a gold star.

548 6 MORDM USING RHODIUM

549 In creating ROAM, we leverage functionalities provided by the
 550 open-source Python library Rhodium to accomplish Many Objec-
 551 tive Robust Decision Making (MORDM) for our system, especially
 552 in exploring and analyzing the system’s performance in an uncer-
 553 tain environment (subsection 4.3) [20][3]. Robust Decision Making

554 (RDM) is an analytic framework developed by Robert Lempert and
 555 his collaborators at RAND Corporation that helps identify potential
 556 robust strategies for a particular problem, characterize the vulnera-
 557 bilities of such strategies, and evaluate trade-offs among them [25].
 558 MORDM is an extension of RDM to account for problems with
 559 multiple competing performance objectives, enabling the explo-
 560 ration of performance tradeoffs with respect to robustness [13]. We
 561 use the Multi-Objective Evolutionary Algorithm (MOEA) provided
 562 by Rhodium to optimize the Pareto set of ‘policies’ calculated in
 563 the Decision Module (subsection 5.3) under a representative or aver-
 564 age instance of the uncertain environment (State-Of-World, or
 565 SOW). Each representative instance is taken by examining a distri-
 566 bution and utilizing the average. The Pareto efficient policies are
 567 further explored using the uncertainty analysis functions provided
 568 by Rhodium. Finally, the sensitivity analysis provided by SALib
 569 python library [13] is used to analyze and categorize the effect of
 570 different uncertain elements in the farming environment.

571 6.1 Optimization

572 The optimization function in Rhodium Module is a MOEA that
 573 utilizes the NSGA-II algorithm provided by the Rhodium library
 574 [3]. This function is used to find the Pareto optimal set of ‘policies’
 575 based on the performance, cost, and risk metrics ((subsection 4.2)). It
 576 is important to note that the optimization function in the Rhodium
 577 Module differs from the ‘calcPareto’ function in Decision Module
 578 mentioned in subsection 5.3 in that it takes the uncertainty param-
 579 eters into account in order to prioritize policies that are robust.
 580 These two optimization methods serve different purposes in ex-
 581 ploring the Tradespace. The ‘calcPareto’ function in the Decision
 582 Module enumerates all possible policies solely based on the static
 583 decision configurations defined by the Tradespace Configuration
 584 File, which finds the initial optimal set of policies on paper based on
 585 prior knowledge about the decisions. The optimization function in
 586 the Rhodium Module iteratively adjusts the controlled parameters

587 or combination of decisions as discussed in subsection 5.2 while
 588 searching for the optimal set of policies under the mean SOW. This
 589 function then finds the set of policies most optimal in this specific
 590 state of uncertainty model.

591 The optimal set of policies found by the optimization function
 592 in the Rhodium Module is a subset of the set of policies found
 593 earlier in the workflow by the 'calcPareto' function, as the former
 594 function uses outputs of the latter function as inputs. We choose
 595 to have the optimization function in the Rhodium Module only
 596 search through a subset, because the 'calcPareto' function helps
 597 remove less optimal policies from further examination during later
 598 steps. By limiting the scope of input to the optimization function in
 599 the Rhodium module, the amount of computation is substantially
 600 reduced and the user experience is enhanced through a shorter
 601 response time.

6.2 Scenario Discovery

602 The scenario discovery function, imported from the Rhodium li-
 603 brary, is used to explore and analyze the influence from uncertain-
 604 ties in the Pareto optimal set of 'policies' that are found by the
 605 optimize function in the Rhodium module [3]. First, a set of uncer-
 606 tainty variables are defined using the parameters and distributions
 607 on the Uncertainty model (subsection 4.3). Then, a Rhodium in-
 608 ternal function, 'sample_lhs', is called to generate a standard 1000
 609 SOWs through a Latin Hypercube Sample – a technique used to
 610 reflect the true underlying distribution on the uncertain parameters
 611 [3]. Each SOW consists of a combination of uncertainty variables
 612 and represents an instance of the uncertain environment. Then, the
 613 policy evaluation function is executed to evaluate each 'policy' in
 614 the Pareto optimal set on the 1000 SOWs. The results produced from
 615 scenario discovery can be used to visualize and explore different
 616 characteristics of various Pareto policies, such that policies demon-
 617 strate tradeoffs in metrics when evaluating against uncertainties.
 618 The analysis of these tradeoffs can provide us with insights into

620 how different system architectures may be a better fit for certain
 621 scenarios (e.g. excessive rainfall) that causes a policy to fail and be
 622 vulnerable. These tradeoffs will be further explored and conclusions
 623 can be drawn through sensitivity analysis.

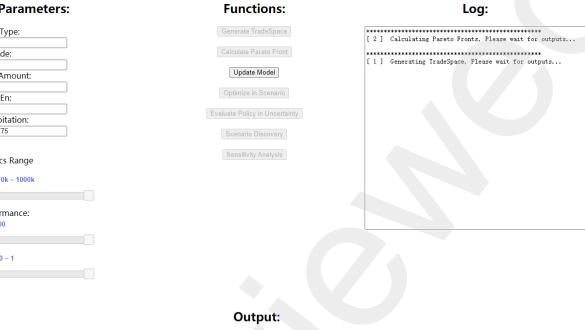
6.3 Sensitivity Analysis

624 The Rhodium library's internal implementation extended from
 625 Python's SALib is used to perform global and regional Sensitiv-
 626 ity Analysis (SA) on modeled uncertainties which are performed to
 627 prioritize the factors (parameters) most significantly affecting the
 628 output and fix those that are not [3]. This functionality is enabled
 629 by the browser-end interface that will be described in section 7;
 630 here users can specify a 'metric' and 'policy' of their interest to
 631 investigate, then the SA function performs global SA using com-
 632 monly used methods. First the Method of Morris is used to analyze
 633 which decisions are most influential to the output metrics and the
 634 effect of uncertainty variables in isolation [10]. Second, the Sobol
 635 method is used to calculate second-order and total-order indices for
 636 capturing the interactional effects between uncertainties [48]. The
 637 function can also perform one-at-a-time (OAT) or regional SA to
 638 explore each parameter in detail. In OAT SA, we fix all parameters
 639 at their default value except one [43]. For this one parameter, we
 640 then sample across its entire range and observe how the metric of
 641 interest changes.

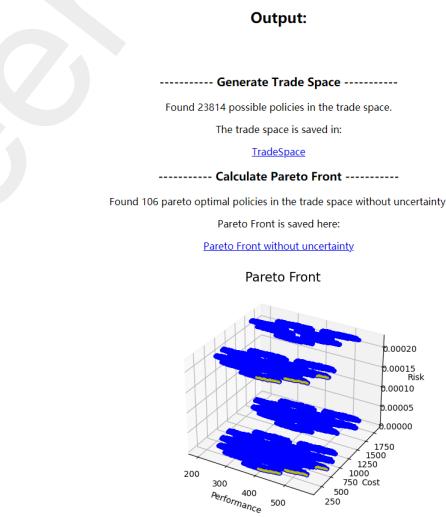
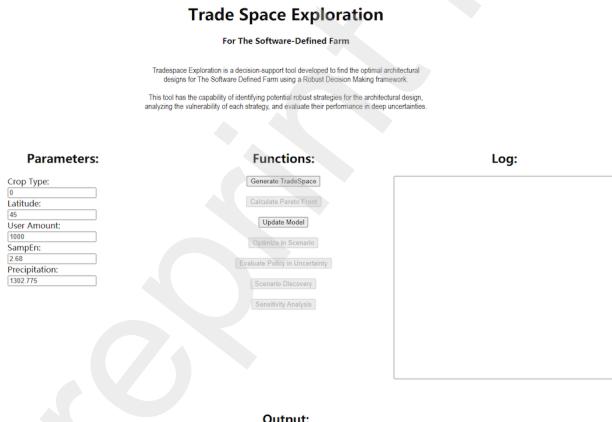
6.4 Rhodium Implementation

642 The Rhodium package is used to help calculate the optimal policy
 643 of the system under uncertainty. The first step is to define the farm
 644 uncertainties and how they affect the architectural policy with the
 645 function "farm_approach". For example, with greater rainfall, yield
 646 may increase and watering costs may decrease. Importantly, we
 647 use the function "setupModel" to allow for user input through the
 648 web interface of what the average uncertainty value will be for
 649 their farm. Once these uncertainty parameters are set, we use the
 650 12

652 "optimizeModel" function to run 10,000 function evaluation calls of
 653 NSGAII to calculate the optimal policy in the uncertain state of the
 654 world. The output is the set of optimal policies and there associated
 655 policy name, subset of decisions, cost, performance, and risk.

656 **7 USER INTERFACE: APPLICATION**657 **STRUCTURE AND FEATURES**

658 The user interface is a dynamically created web-based interface us-
 659 ing a Python Flask framework with HTML, CSS, and JavaScript. The
 660 User Interface includes 5 sections: About section, which provides
 661 an overview of the application and its functionalities; Parameter
 662 section, which takes in user input parameters to modify the Trade
 663 Space Model; Function section, which users can use to invoke dif-
 664 ferent actions; Log section, which records the user action sequence;
 665 and Output section, which displays a series of results, data, and
 666 visualizations based on user actions.

667 **Figure 6: Shows the User Interface after the Generate Tradespace function runs**668 **Figure 7: Workflow shows the Tradespace Exploration Tool workflow for web-end users**669 **Figure 5: User Interface at its initial state, with no action
 670 invoked and no results generated**

671 The Output section displays a brief summary of the results after
 672 execution of each function and provides the ability to download the
 673 results in a comma-separated values (CSV) format. This export gives
 674 users the ability to perform their own analysis. The Output section
 675 plots interactive 3-D visualizations, with performance, cost, risk
 676 metrics on each axis. These visualizations can be inspected through
 677 user actions, including drag, zoom in/out, click, and selection. The
 678 "Optimal Policies in Uncertain SOWs" visualization resulted from
 679

running "Evaluate Policy." In addition this visualization uses color, brightness, and size in the 3-D scatter plot to illustrate policy group and magnitudes of uncertainty.

The interface is designed with simplicity in mind. Ideally it allows can be used by any type of user from farmer to researcher. In addition, the graphs are used to visualize complex trade offs between different design decisions and user constraints that can be dynamically updated. Lastly, this design allows users the flexibility to pursue further modeling of the data.

8 EXAMPLE USE CASE

In this section, we provide an example use case of ROAM using a configuration developed by a farm owner client for his viticulture farm, Cheng Xin Garden LLC (CXG), located in Bakersfield, California. The capabilities and workflow of ROAM will be demonstrated through this use case.

8.1 Stakeholder Analysis

Due to limitations in California's water supply caused by frequent droughts and forest fires, CXG was seeking to increase their farm efficiency. Their wine grapes use a significant amount of water and often need a very precise amount. For example, the amount of water used was highly correlated to the taste profile of the wine produced. As a result, precise levels of water irrigation are needed for water savings and to achieve the optimal grape taste.

To test our software CXG farms served as an ideal use case scenario for our system, where the decision maker of the farm hopes to improve the performance of their farming practices, but is constrained by the lack of knowledge on available technologies or the ability to envision the results from adopting a SDF. By helping the farm owners translate their insights about their farms as well as their requirements into a TCF, we can use ROAM to provide crucial information and suggestions to support their decision making.

After weeks of interviews with relevant stakeholders, we holistically understood the current situation, needs, and challenges of CXG's farming practices and created a configuration for their viticulture farm, which is a 120-acre farm area growing wine grapes. By conducting analysis of the farm's environment, management, labor, and technology use, we learned that one of the major challenges they face on the farm was water management, similar to that of many Californian vineyards. Due to the hot desert-like climate with frequent droughts in Bakersfield as well as the need for irrigation for grape-growing, water usage was the largest factor in the operational cost, and precision irrigation is closely associated with yield quality. Through this process, the farmer shared his data that he has been collecting for over 6 years. Hence, CXG's decision space was constructed with an emphasis on improving the farm's production performance through optimizing water usage, labor size, and cost. A set of decision alternatives are selected for each decision based on the availability and compatibility of the technologies as well as specific needs addressed by the farm owner. So we understand how each decision and alternative affects the farmer and the different interaction effects, for example in the case of CXG a manual water tensiometer saves them 20% of water usage and their cost of water is \$100 per day in California, which can vary from \$50-\$200 per day [4]. The resulting decision space is then translated into a Configuration File format and inputted into ROAM for further decision support.

8.2 Generate Tradespace

The first step of using ROAM was to identify all of CXG's decision points to create the TCF that represents the needs and constraints of their farm environment. The TCF was created from a JSON skeleton provided by ROAM, which consists of a list of decision structures as detailed in section 5. Table 4 shows the various decision points we identified and encoded in the TCF.

#	Decision Name	Description	Alternative 1	Alternative 2	Alternative 3	Class	Importance
1	Water Tensiometer	The methods to collect water stress data	Manual Sampling	Glass	Digital Sensor	SF	1
2	Environment Humidity Sensor	The methods to collect humidity and temperature	Manual Sampling	Digital Sensor	N/A	SF	1
2	Microcontroller	The devices put in the agriculture field	FarmBeats	CR6 datalogger	Arduino	SF	.75
4	Data Storage	The type of storage for product information and user data	Raspberry pi	Cloud	N/A	SF	1
6	Plant watering Physiological model	The model for prediction or applications for analytics of water stress	Model Predictive Control (machine learning model)	On/off control (closed loop)	Scheduling (open loop)	SF	1
8	Irrigation Controller	How to water the plants	B-Hyve Smart Hose Watering Timer	Rachio	Raspberry pi	SF	1

Table 4: Configuration for Cheng Xin Garden LLC

738 After the configuration was imported, Generate Tradespace 751 initiates the Tradespace Exploration workflow by generating the 752 Tradespace Network (subsection 5.2) and enumerating all possible 753 policies that can be constructed based on the given configuration. 754 In the unconstrained architecture space, there are 6 SF decisions 755 with 3 alternatives each and 2 SF decisions with 2 alternatives. 324 756 possible decisions are found in this tradespace, and users are pro- 757 vided with an option to download the tradespace enumeration in a 758 CSV format, as shown in Figure 8. 759

760 tradespace for Cheng Xin Garden’s configuration and can be ex- 761 ported in a CSV format. These 18 policies are a significantly smaller 762 set to proceed with for further analysis in MORDN where we mine 763 for the Pareto optimal set of policies to analyze decision tradeoffs. In 764 Figure 9, the entire tradespace is visualized on a three-dimensional 765 plot, where each axis represents one of the metrics, and the opti- 766 mal set of policies is highlighted to display their relation to the 767 tradespace. In Figure 10, an interactive visualization of the Pareto 768 front allows users to inspect the plot from different perspectives 769 and select policies to display further details. 770

Trade Space Exploration

For The Software-Defined Farm

Tradespace Exploration is a decision-support tool developed to find the optimal architectural designs for The Software Defined Farm using a Robust Decision Making framework. This tool has the capability of identifying potential robust strategies for the architectural design, analyzing the vulnerability of each strategy, and evaluate their performance in deep uncertainties.

Figure 8: Generate Tradespace

8.3 Analysis in MORDM

762 Many-Object Robust Decision Making (MORDM) was then used 763 to decipher the policies’ performance, cost, and risk of CXG un- 764 der simulated uncertain environments. To initiate analysis using 765 MORDM, CXG inputted additional constraints and specifications 766 on the tradespace. This allowed CXG to narrow the scope of analy- 767 sis by specifying the key parameters of their farm region, including 768 the type of crop grown, the area of the farm, the estimated climate 769 complexity, and the average rainfall level. CXG was then also able 770 to specify a set of constraints on the metrics to define the ideal 771 tradeoffs for their farm. Finally, a metric range is used to classify 772 the policies of interest and identify the key uncertainties for later 773

747 Calculate Pareto Front computes the Pareto optimal set of poli- 748 cies in the architectural space without considering uncertain factors 749 in the farming environment. Using the optimization algorithm de- 750 tailed in subsection 5.3, 18 Pareto optimal policies are found in the 751

----- Calculate Pareto Front -----

Found 18 pareto optimal policies in the trade space without uncertainty.

Pareto Front is saved here:

[Pareto Front without uncertainty](#)

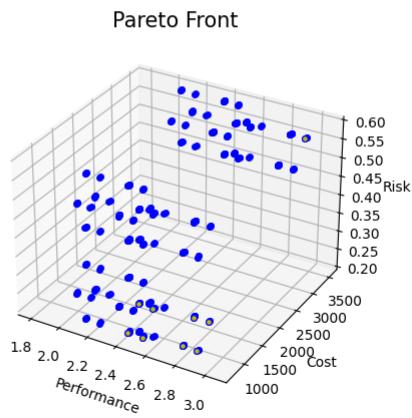


Figure 9: Visualization of the Pareto front and enumeration of trade space

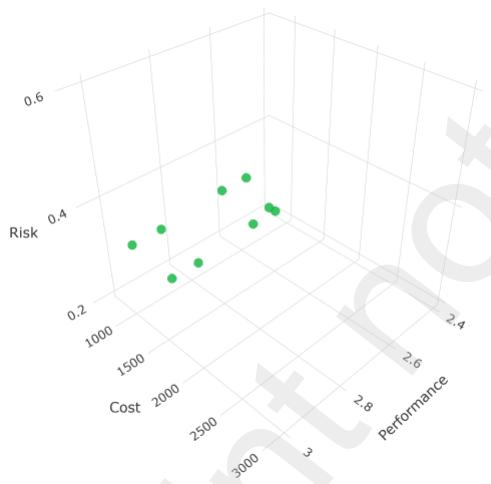


Figure 10: Visualization of the Pareto front

773 analysis. In Figure 11, the parameters are set to represent the attributes of CXG and metric ranges are set to the farm owner's ideal 774 tradeoff. 775

776 With the defined parameters, the software used a many-objective 777 optimization algorithm to calculate the optimal set of policies 778 among the tradespace Pareto front, at the mean state-of-the-world

Parameters:

Crop Type:

Farm Area (acres):

User Amount:

SampEn:

Precipitation:

Metrics Range

Cost: 0K ~ 23K

Performance: 2M ~ 17M

Risk: 0 ~ 6

Figure 11: Parameter inputs for the MORDM model

779 described by the parameters in Figure 11. The new set of policies 780 found by the algorithm are the optimal policies after accounting for 781 the effects of uncertainties, modeled through stakeholder analysis 782 and research detailed in subsection 4.3. As shown in Figure 12, there 783 are 9 optimal policies found among the tradespace Pareto front of 784 18 policies, which demonstrates a significant reduction of the range 785 of policies that we needed to examine.

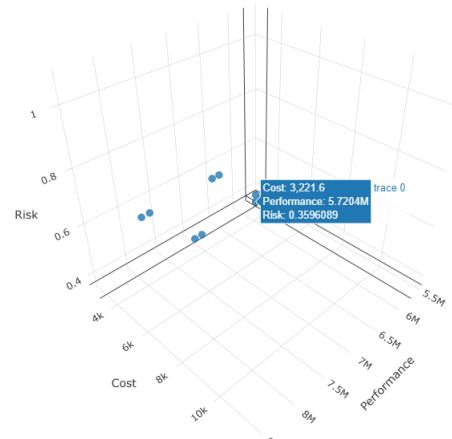


Figure 12: Optimal set of policies under mean state-of-the-world

With the optimal set of policies on the mean state-of-the-world identified, the software performs analysis of each Pareto policy through Scenario Discovery under more robust uncertainties. A set of 1000 states-of-the-world are generated based on the distribution defined for every uncertainty variable. The set of optimal policies are evaluated in the set of 1000 SOWs to reflect each policy's characteristics and vulnerabilities under uncertainty. Consider that each policy consists of various numbers of different decision alternatives, making each policy uniquely exist in the trade space. As uncertainties may affect decisions differently, policies with similar metrics in appearance may demonstrate distinct characteristics under uncertainty. The key objective of Scenario Discovery is to illustrate such distinction among the equivalently optimal set of policies to support further decision making.

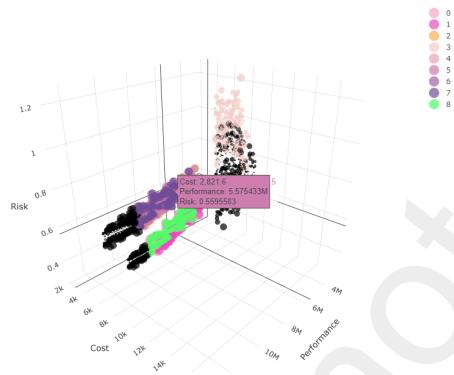


Figure 13: Visualization of optimal decisions in Scenario Discovery

policies demonstrate a similar tradeoff between risk and cost, but with a small difference in their performances, as shown in Figure 14. Then, with the information provided by Scenario Discovery, we learn that Policy 5 is more likely to perform within the decision maker's preferences than Policy 6, as shown when comparing Figure 15 and Figure 16. Figure 16 shows points that fall outside of the accepted system performance as black. Such a difference is likely caused by the difference between policies' sensitivity to the labor cost and area of the farm. Since both of these factors are likely to vary during the operation of the farm, the difference in how the two policies perform under the uncertain environment are important to the evaluation. Hence, we recommended Policy 5 as the system setup for CXG under their reported circumstances. These ideas and results were conveyed to the farm owner who hopes to implement our recommendations in the future.

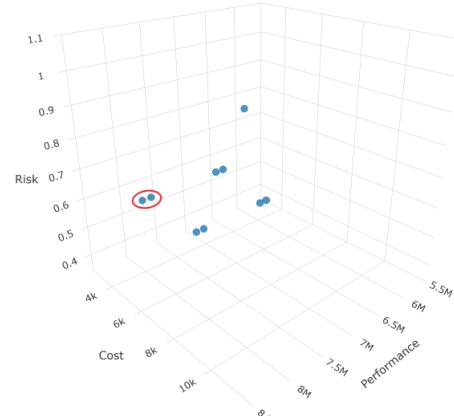


Figure 14: Policy 5 (right) and Policy 6 (left)

8.4 Results

Based on the results generated from the Tradespace Exploration, we are able to zoom in onto 9 policies out of 324 possible policies. According to the farm owner of CXG, he placed more weight on improvements of performance than the cost of the system in the tradeoff between performance and cost, and he has a relatively high tolerance for risk on his farm (Figure 11). The decision maker's preference lead us to only consider Policy 5 and Policy 6. These

9 DISCUSSION

With ROAM, farmers can understand what a Pareto optimal set of choices for a farm of interest might be. The idea of creating a DA system is daunting due to the number of choices that must be made. In section 8 the farm owner had over 324 policies to consider. ROAM simplified the process and allowed the user to understand the trade-offs when examining design decisions and to filter choices based

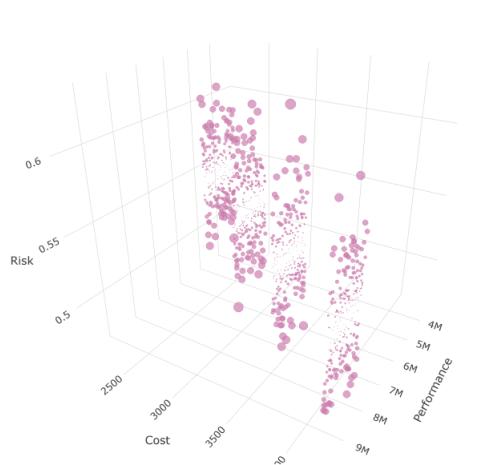


Figure 15: Policy 5 in Scenario Discovery

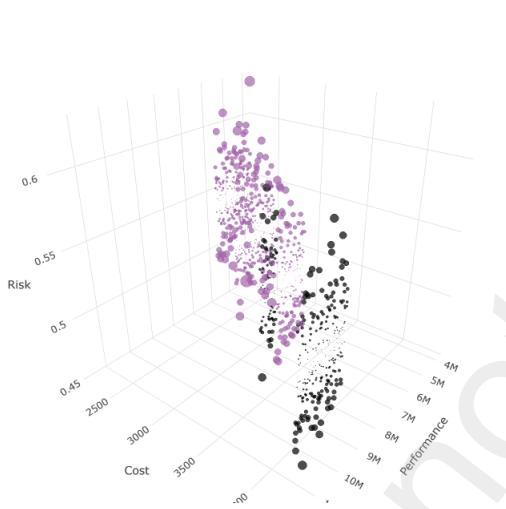


Figure 16: Policy 6 in Scenario Discovery

839 we developed the browser-end interface to host the workflow of
 840 ROAM. Users use ROAM to generate interactive visualizations for
 841 communication and demonstrations with colleagues. Farm-owners
 842 and farm stakeholders specifically utilize the configuration file and
 843 input parameter features to customize and explore the decision
 844 space for their farms. ROAM's current implementation optimizes
 845 for cost, performance, and risk. For additional goals, an extension
 846 on the software and further data analysis must be implemented.

847 **10 CONCLUSION**

848 We presented the Realtime Optimization and Management System
 849 (ROAM). It is designed to identify the Pareto optimal set of tradeoffs
 850 for a Digital Agriculture (DA) based farm, where DA is seen as an
 851 approach to address the Global Agricultural Productivity (GAP)
 852 shortfall [50]. Specifically, DA enables data driven farm manage-
 853 ment, which requires on farm networking. A Software-Defined
 854 Farm (SDF) uses new networking on a farm to enable DA. Based on
 855 deploying five SDFs, 11 farmer interviews, and testing on a farm
 856 in California, ROAM is able to present Pareto optimal SDF archi-
 857 tectures for a given farm area of interest. ROAM presents general
 858 recommendations as to how to best implement a SDF based off of
 859 data inputted by the user and climatic data.

860 **11 MISCELLANEOUS**

862 **Software**

863
 864 Description: The Tradespace Exploration is a decision-support tool
 865 developed to find the optimal architectural design for the Software-
 866 Defined Farm using a Robust Decision Making framework. It iden-
 867 tifies potential robust strategies for architectural design, analyzes
 868 each strategy's vulnerability, and evaluates their attributes under
 869 deeply uncertain farming environments. Paired with a browser-
 870 based application, it hosts the trade space exploration functionalities

and interfaces for user interactions and data visualizations.
 Software name: ROAM
 Developers: Yifan Zhao, Shiang Chin
 Language: Python 3.6+
 Supported systems: Microsoft Windows, GNU/Linux, macOS
 Licence: GNU General Public Licence v3
 Source code: https://github.com/ShiangC/Cornell_SDF

Acknowledgments

This work is supported by the US National Science Foundation (NSF) under grants #1955125, NSF STC under grant #2019674, a Microsoft Investigator Fellowship, and the Cornell Institute for Digital Agriculture (CIDA). Shiang-Wan Chin is supported by the Foundation for Food and Agriculture Research (FFAR) and a Microsoft Cornell Summer Research Fellowship. The authors would like to thank Ranveer Chandra, Sachille Atapattu, Daniel Amir, Patrick Kastner, and Xinpi Du and the anonymous reviewers for their constructive feedback and insightful discussions during the manuscript's preparation. The authors appreciate the support from Microsoft partners, including Tusher Chakraborty, Elizabeth Bruce, and Stacey Wood. All opinions expressed are those of the researchers, not the NSF, Microsoft, or CIDA.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

[1] Thomas A. 2002. Seasonal and spatial variation of evapotranspiration in the mountains of Southwest China. *Journal of Mountain Science* (2002), 20(4):385–393.

[2] J.T. Abatzoglou. 2011. Development of gridded surface meteorological data for ecological applications and modelling. *International Journal of Climatology* (2011).

[3] David H. Patrick R. Antonia H., David G. 2020. Rhodium: Python Library for Many-Objective Robust Decision Making and Exploratory Modeling. *Journal of Open Research Software* (2020).

[4] Aquoso. 2021. California Agricultural Water Price by Water District. (2021).

[5] Moscibroda T. Murty R. Bahl P., Chandra R. and M. Welsh. 2009. White Space Networking with Wi-Fi like Connectivity. *SIGCOMM 2009* (2009).

[6] World Bank. 2018. International Labor Organization. *ILOSTAT Database* (2018).

[7] S. Banks. 2002. Tools and techniques for developing policies for complex and uncertain systems. *Proceedings of the National Academy of Sciences of the United States of America* (2002), 3:7263–7266.

[8] Antle J. Basso, B. 2020. Digital agriculture to design sustainable agricultural systems. *Nature Sustainability* (2020).

[9] Lempert R. Bryant, B. 2010. Thinking inside the box: A participatory, computer-assisted approach to scenario discovery. *Technological Forecasting and Social Change* (2010), 77(1):34–49.

[10] Cariboni J. Saltelli A. Campolongo, F. 2007. An effective screening design for sensitivity analysis of large models. *Environmental Modelling & Software* (2007).

[11] C. Chamberlin. 1890. The method of multiple working hypotheses. *Science* (1890), 15(366):92–96.

[12] C. Clímaco. 2004. A critical reflection on optimal decision. *European Journal of Operational Research* (2004), 153(2):506–516.

[13] Marks D. Cohon, J. 1975. A review and evaluation of multiobjective programming techniques. *Water Resources Research* 11 (1975), 208–220.

[14] Pratap A. Agarwal S. Meyarivan T. Deb, K. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. *IEEE Transactions on Evolutionary Computation* (2002), 6(2):182–197.

[15] Marshak A. Delgado-Bonal, A. 2019. Approximate Entropy and Sample Entropy: A Comprehensive Tutorial. *Entropy* (2019).

[16] Marshak A. Delgado-Bonal, A. 2019. Approximate Entropy and Sample Entropy: A Comprehensive Tutorial. *Entropy* (2019).

[17] Jaskulska I. Jaskulska D. Szczepanczyk M. Galejewski, L. 2021. Analysis of the need for soil moisture, salinity and temperature sensing in agriculture: a case study in Poland. *Scientific Reports* (2021).

[18] Tanabut C. Gertphol S., Pariyanuj C. 2018. Predictive models for Lettuce quality from Internet of Things-based hydroponic farm. *2018 22nd International Computer Science and Engineering Conference* (2018).

[19] P. Gralla. 2018. Precision Agriculture Yields Higher Profits, Lower Risks. *Enterprise.nxt* (2018).

[20] Herman J. Reed P.M. Keller K Hadka, D. 2015. An Open Source Framework for Many-Objective Robust Decision Making. *Environmental Modelling & Software* (2015), 74:114–129.

[21] Reed P. Herman, J. 2015. How Should Robustness Be Defined for Water Systems Planning under Change? *Journal of Water Resources Planning and Management* (2015), 141(10).

951 [22] MacDonald J. Hoppe R. 2016. America's Diverse Family Farms. *Economic 998*
952 *Information Bulletin* (2016), 16.

953 [23] Ngaira J. Ogindo H. Masayi N. Hunho, J. 2012. The changing rainfall pattern 1000
954 and the associated impacts on subsistence agriculture in Laikipia East District, 1001
955 Kenya. *Journal of Geography and Regional Planning* (2012).

956 [24] Schipanski M. Atwood L. Mortensen D. Hunter M., Smith R. 2017. Agriculture in 1003
957 2050: Recalibrating Targets for Sustainable Intensification. *Management Science 1004*
958 (2017), 386–391.

959 [25] S. Nataraj P. M. Reed Kasprzyk, J. R. and R. J. Lempert. 2013. Many objective 1006
960 robust decision making for complex environmental systems undergoing change. 1007
961 *Environmental Modelling & Software* (2013), 42:55–71.

962 [26] Thessler S. Koskiaho J. Hannukkala A. Huitu H. Huttula T. Havento J. Jarven- 1009
963 paa M. Kotamaki, N. 2009. Wireless in-situ Sensor Network for Agriculture and 1010
964 Water Monitoring on a River Basin Scale in Southern Finland: Evaluation from a 1011
965 Data User's Perspective. *Sensors* (2009), 9(4), 2862–2883.

966 [27] Pruyt E. Kwakkel, H. 2013. Exploratory modeling and analysis, an approach for 1013
967 model-based foresight under deep uncertainty. *Technology Forecasting Social 1014*
968 *Change* (2013), 80(3):419–431.

969 [28] Sasloglou K. Goh H. Wu T. Stephen B. Gilroy M. Tachtatzis C. Glover I. Michie C. 1016
970 Andonovic I. Kwong, K. 2009. Adaptation of wireless sensor network for farming 1017
971 industries. *2009 Sixth International Conference on Networked Sensing Systems 1018*
972 (INSS) (2009).

973 [29] Griffin P. Moorman J. Lake D., Richman J. 2002. Sample entropy analysis of neonatal 1020
974 heart rate variability. *American Journal of Physiology-Regulatory Integrative 1021*
975 and Comparative Physiology (2002), 283: R789–R797.

976 [30] Kirshen H. Vogel M. Lane, E. 1999. Indicators of impacts of global climate change 1023
977 on U.S. water resources. *Journal of Water Resource Planning and Management 1024*
978 (1999), 4(194):194–204.

979 [31] Cosgel M. Langlois, N. 1993. Frank Knight on risk, uncertainty, and the firm: A 1026
980 new interpretation. *Economic Inquiry* (1993), 32(3):456–465.

981 [32] Groves D. Popper S. Bankes S. Lempert, R. 2006. A General, Analytic Method for 1028
982 Generating Robust Strategies and Narrative Scenarios. *Management Science 1029*
983 (2006), 52(4):514–528.

984 [33] J. Lempert. 2002. A new decision sciences for complex systems. *Proceedings of the 1031*
985 *National Academy of Sciences of the United States of America* (2002), 99(3):7309– 1032
986 7313.

987 [34] Guan K. Schnitkey G. DeLucia E. Peng B. Li, Y. 2019. Excessive rainfall leads to 1034
988 maize yield loss of a comparable magnitude to extreme drought in the United 1035
989 States. *Global Change Biology* (2019).

990 [35] Serlin R.C. Marasculio, L.A. 1988. Statistical methods for the social and behavioral 1036
991 sciences. *American Psychological Association* (1988).

992 [36] Gerber J. Johnston M. Ray D. Ramankutty N. Foley J. Mueller, N. 2012. Closing 1037
993 yield gaps through nutrient and water management. *Nature* (2012), 254–257.

994 [37] O'Hare G. O'Grady M. 2017. Modeling the smart farm. *Information Processing in 1038*
995 *Agriculture* (2017), 4(3):179–187.

996 [38] V. Pareto. 1896. Cours d'économie politique professé à l'Université de Lausanne. 1039
997 *Travaux de Sciences Sociales* (1896).

[39] Raspberry Pi. 2022. Raspberry Pi 3 Model B. (2022).

[40] Reed P. Giuliani M. Castelletti A. Quinn, J. 2019. What Is Controlling Our Control Rules? Opening the Black Box of Multireservoir Operating Policies Using Time-Varying Sensitivity Analysis. *Water Resources Research* (2019), 55(7), 5962–5984.

[41] Chin S. Atapattu S. Rehman M. Jose M. Weatherspoon H. Rubambiza, G. 2022. Comosum: Design Experiences with An Extensible Hybrid Cloud Architecture for Digital Agriculture. *TBD* (2022).

[42] Sengers P. Weatherspoon H. Rubambiza, G. 2021. Paradoxes in Producing the Future of Farm Work: Anticipating Social Impact through the Lens of Early Adopters. *CHI* (2021).

[43] A. Saltelli. 2008. Global sensitivity Analysis. *The Primer* (2008).

[44] Lampiotti J. Elabed G. Schroeder, K. 2021. What's Cooking : Digital Transformation of the Agrifood System. *Agriculture and Food Series, World Bank* (2021), <https://openknowledge.worldbank.org/handle/10986/35216>

[45] Cameron B. Crawley E. Selva, D. 2016. Patterns in System Architecture Decisions. *Systems Engineering* (2016), 19(6): 477–497.

[46] National Agricultural Statistics Service. 2017. Census of Agriculture. *United States Department of Agriculture* (2017).

[47] Qiaofu Z. Shaohong W. Erfu D. Shuangcheng, L. 2006. Measurement of climate complexity using sample entropy. *International Journal of Climatology. International Journal of Climatology* (2006), 2131–2139.

[48] I.M. Sobol. 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. *Mathematics and Computers in Simulation* (2001).

[49] Rutten C.J. Oude Lansink A.G.J.M. Hogeweegen H. Steeneveld, W. 2017. Why not investing in sensors is logical for dairy farmers. *Paper presented at 8th European Conference on Precision Livestock Farming* (2017).

[50] Zeigler M. Steensland, A. 2018. Global Agricultural Productivity Report. *Global Harvest Initiative* (2018), 1–2.

[51] B. Tekinderdogan. 2020. Systems Architecture Design Pattern Catalog for Developing Digital Twins. *Sensors* (2020), 20(18), 5103.

[52] J.S. Wallace. 2000. Increasing agricultural water use efficiency to meet future food production. *Agriculture, Ecosystems Environment* (2000).

[53] Singh R. Reed P. Keller K. Ward, V. 2015. Confronting tipping points: can multi-objective evolutionary algorithms discover pollution control tradeoffs given environmental thresholds? *Environmental Modeling Software* (2015), 73:27–43.

[54] Reed M. Simpson T. Woodruff, J. 2015. Many objective visual analytics: Rethinking the design of complex engineered systems. *Ecology and Society* (2015), 20(3):12.