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ABSTRACT

The growing disparity between food supply and demand requires
innovative Digital Agriculture (DA) systems to increase farm sus-
tainability and profitability. However, current systems suffer from
problems of complexity. To increase farm efficiency and understand
the tradeoffs of these new DA innovations we developed ROAM,
which is a decision-support system developed to find a Pareto opti-
mal architectural design to build DA systems. Based on data from
five live deployments at Cornell University, each DA design can
be analyzed based on user defined metrics and evaluated under
uncertain farming environments with ROAM. Paired with this, we
develop a web interface that allows users to define personalized
decision spaces and to visualize decision tradeoffs. To help validate
ROAM, it was deployed to a commercial farm where the user was
recommended a method to increase farm efficiency. ROAM allows
users to quickly make key decisions in designing their DA systems

to increase farm profitability.

Keywords: Digital agriculture, Decision making under deep un-
certainty, Systems optimization, Systems engineering, Internet of
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1 INTRODUCTION

The 2018 Global Agricultural Productivity (GAP) index highlights
a growing disparity between food supply and demand, for both
developed and developing countries [50]. Conservative estimates
predict that agricultural production will need to increase by 25-
70% above current levels to meet the demand expected by 2050.
As a result, the world is likely to face a large-scale food security
crisis [50]. A major challenge to increasing food production is farm
efficiency which is challenged by limited rural infrastructure [52].

Digital Agriculture (DA), which is the use of data-driven tech-
niques to increase farm productivity and sustainability, is thought
of as a method of addressing the crisis [8]. Research into data-driven
agriculture is growing. It envisions a future in which on-farm data
collection, processing, and transmission are ubiquitous[22]. Sev-
eral start-up companies are developing applications for data-driven
farms [24], while major agribusiness firms are developing data
collection and processing systems [24].

According to Douthwaite et al., DA innovations are complex and
require involving farm stakeholders to understand their goals and
constraints to successfully deploy [52]. First, current DA solutions

are often fragile due to non-interoperable hardware and software
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[42]. Second, DA solutions often take a generalized approach that
is not suitable for the myriad of farmers, each of whom has unique
demands and constraints which require personalized solutions; e.g.
a specialty grape farm can focus on achieving a specific taste profile
while a row crop corn farm can focus on optimizing yield [8]. These
challenges often lead to low understanding, slow adoption, and
high costs in implementing DA systems [52].

In this paper, we present the Realtime Optimization and Man-
agement System (ROAM), which helps identifies a Pareto optimal
set of tradeoffs that helps farmers identify a desired point within
the tradeoffs space. Based on several years of experience deploying
DA systems in several research farms associated with Cornell Uni-
versity, we have determined which data and decision points should
be accounted for, and designed a user-friendly platform for farmers
to define the unique goals and constraints for their particular farm.
ROAM determines a Pareto front of optimal DA system architec-
tures a farmer can choose between, usually eliminating the vast
majority of potential architectures. Thus, ROAM advances the state
of the art in deploying DA systems. It performs up-front analysis
necessary to deploy DA systems and eliminates major barriers to
the diffusion of DA techniques into real-world farms and increasing
farm efficiency.

The design of ROAM is based on formalizing a method to evalu-
ate a DA architecture by encoding user generated evaluation met-
rics and uncertainties to assess each architectural decision into a
ROAM Configuration File. An architectural decision is the choice
between different components of the DA system such as between a
soil moisture or light sensor. Then, the ROAM Configuration File is
used to create nodes or objects that represent unique architectural
configurations of a DA system. The architectural representation
is a subset of architectural decisions made to create a DA system.
The nodes are then passed into an optimization function to uncover
the one architectural representation most suitable to a user’s need.

To abstract away the complexity of the ROAM implementation a
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front-end user interface is designed and used to allow for easy entry
of key features of the user’s farm, constraints, and uncertainties.
This frontend creates the ROAM Configuration File used for ROAM
evaluation. In addition, as output, the frontend displays an inter-
active 3-D data visualizations of the farmers potential DA system
tradespace, which is then used to allow for better understanding
of the recommendations of the system. The entire process from
beginning to end, from encoding the ROAM Configuration File to
the end step of visualization of the analysis is modularized to allow
for swapping in and out interchangeable software. For example,
different types of optimization models can be used in the ROAM.
To validate the generalizability of ROAM, it was used by Cheng
Xin Garden LLC, a commercial California-based viticulture farm.
As part of the process, ROAM considered different decisions to
create a DA system based on their needs through in-depth user
interviews. ROAM identified 324 architectural decisions and nar-
rowed that down to one based on many factors such as climate
change and location of the farm. The identified optimal architecture
increases Cheng Xin Garden’s farm efficiency while accounting for
constraints and uncertainties. To summarize our work the research

contributions are the following:

(1) Experience developing and deploying several different DA
systems

(2) Recommendations for a Pareto optimal DA system deploy-
ment

(3) Design and implementation of ROAM

(4) A commercial farm deployment using and validating ROAM’s

utility

The rest of this paper will be structured as follows. Digital agri-
culture systems that motivate the development of ROAM will be
outlined in Section 2. Section 3 discusses how the ROAM software
is built. The tradespace model formulation is described in Section
4. Section 5 delves into how user inputs are compiled into a con-

figuration file and optimization function are applied. Optimization
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libraries and concepts are used for deeper analysis in Section 6.
Section 7 outlines the user interface for users to input farm data.
A commercial farm deployment of ROAM is described in Section
8. We conclude with a discussion of our results in Section 9 and

summarize our findings and work in Section 10.

2 NETWORK-ENABLED FARM

Digital Agriculture (DA) is the use of data to improve farm decision
making that can lead to increased environmental sustainability
and farm profitability [36]. DA is composed of sensing, storing,
computing, and actuating technologies that leverage on-farm data
[44]. Gathering massive amounts of sensor data requires a robust
network, but this is a challenge as farms in rural areas often have
limited or no on-farm networking or Internet access. A Network-
Enabled Farm (NEF) addresses these issues by using new technolo-
gies or old technologies repurposed to provide networking capa-
bilities in the middle of a farm such as, 4G LTE, Long Range Radio
(LoRa), and unlicensed TV White Spaces (TVWS) [5]. A Software-
Defined Farm (SDF) leverages a NEF to sense, transmit, and analyze
farm data to produce actionable insights for farm stakeholders, as
described in Seamless Visions, Seamful Realities: Anticipating Rural
Infrastructural Fragility in Early Design of Digital Agriculture [42].
The NEF provides the networking infrastructure for the SDF to
enable data-driven DA to optimize farm management.

The SDF is a modular abstraction of software and hardware tech-
nologies that is designed to fit the various needs of farmers. The
software abstraction is split into 3 modules: Sensing, Computing,
and Actuating. The Sensing module abstracts away sensors that al-
lows different hardware sensors to be connected through software.
The Computing module allows for different analytics algorithms
to be run to support decision making. The Actuating module per-
forms some type of action such as releasing irrigation valves. These
modules can connect manufacturer agnostic hardware devices such

as computers located at the farmhouse, field sensors, and water
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valves. With both the software and hardware connected, farmers
can visualize aggregate data from normally incompatible farming
systems on a web application interface [52]. To gain operational
insights, farmers can run analytics on their data to make farm
decisions. Lastly, an SDF enables the creation of digital twins of
the physical farming system to automate farm processes such as
precision irrigation.

The SDF interfaces for the Sensing, Computing, and Actuating
modules are well defined and static, but the implementation of the
modules change to fit the need of the SDF user needs. For instance,
different sensors such as soil moisture, light and/or wind can be
used for the Sensing module. Different analytics implementations
such as machine learning disease detection, irrigation scheduling,
and/or cow health monitoring can be run in the Computing module.
Lastly, the Actuating module can be in the form of an email alert,
turning on irrigation value, or controlling greenhouse internal
temperatures. Note that the modules can be hosted by different
cloud providers such as Microsoft Azure, Google Compute Platform
(GCP), or Amazon Web Service (AWS), and/or run in the farm house
at the “edge” of the cloud.

We have experience implementing and deploying several SDF in-
stances, including an apple orchard, corn and cannabis greenhouse,
dairy cow farm, and a vineyard [41]. These instances of SDF deploy-
ments utilized research farms associated with Cornell University
and were implemented over a span of three years. These deploy-
ments highlight both the flexibility of the SDF concept, as well as
the importance of tailoring each deployment to fit the needs of each
individual farm. The SDF instances use cutting-edge networking
technologies such as TV White-space, LoRa, and sensors such as
in situ plant water sensors [41] (See Figure 1). Figure 1 shows a
data-driven irrigation graphic of how the SDF connects the Sensing
Module through a sensor (1), sensor box (2), and subedge or edge

computation device (3) to the Computing Module through a cloud
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software service (4) to the Actuating Module with a raspberry pi

(5) [39] and actuation function (6).

Figure 1: SDF Decision Space

One constant throughout our experience implementing these
various SDF deployments was the difficulty in balancing complex,
multifaceted tradeoffs between cost, risk, and performance. Here,
cost refers to the monetary cost of hardware, software, installation,
and maintenance needed to deploy and maintain a SDF. Risk refers
to the potential for interruption of sensor devices and networking.
Performance is an aggregate metric that combines anticipated yield
increase with anticipated water, electricity, and labor cost savings.
Drawing from our three years of experience analyzing these trade-
offs, we present the design and implementation of the Tradespace
Exploration System (ROAM), a tool and computational method to
assist in optimizing cost, risk, and performance of an SDF. Further-
more, the ROAM incorporates user input and uncertainties such as
climate change in a farming environment. In the following section,

we describe ROAM in more detail.

3 SOFTWARE DESCRIPTION

ROAM is an open-source software. It includes a client-side browser-
based interactive application and a server-side back-end service.
ROAM is designed and developed in a back-end and front-end setup

due to the need for computational resources and data storage in

198

199

200

201

202

203

204

205

206

207

208

209

210

21

212

213

214

215

216

217

218

219

220

221

222

223

224

Chin et al.

the back-end, as well as the need for a user-friendly interface to
lower technology barriers to our various stakeholders. The server-
side back-end is developed with Python as the core programming
language and hosts most functionalities, including optimization,
analytics, and data storage. We selected the Python Flask framework
to develop the client-side web application with Javascript as a core
programming language. Both the back-end service and the front-
end application integrates functionalities from multiple external
libraries and custom modules.

The system consists of 4 main modules: the Decision, Rhodium,
Uncertainty, and Graphical User Interface (GUI) modules as seen in
Figure 2. The Decision module defines and maintains the tradespace
architecture from the Decision Configuration File and it hosts the
Tradespace Enumeration and Optimization algorithms. The Un-
certainty module defines the uncertainty variables and models un-
certain farming environments using real-time data. The Rhodium
module hosts functions responsible for extension and orchestration
of the integrated third-party Many-Objective Robust Decision Mak-
ing (MORDM) libraries and provides key analysis of the tradespace.
The GUI hosts the front-end interface and handles user data acqui-
sition and visualization. The external libraries are selected from
popular and regularly maintained open-source communities. A

summary of these systems and libraries is provided in Table 1.

Library Language | Usage

Rhodium | Python MORDM

j3 Python Visualization

oapackage | Python Optimization

plotly JavaScript | Visualization

d3 JavaScript | Ul data acquisition, visualization

Table 1: Tools and Libraries

4 TRADESPACE MODEL

To model and evaluate SDF designs, we draw from the study of
systems architecture for developing configurable complex systems

and evaluating how well they satisfy stakeholder needs [45]. To
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Decision Module +—

Farm Constraints & Goals

Rhodium
Module

Feedback

Pareto Optimal Policies

'

Uncertainty
Module

Decisions

¥

Graphical User
Interface (GUI)

v

Figure 2: System Modules

decompose a complex system, we formulate a systems architecting
optimization problem that represents a complex architecture as a
set of decisions using an encoding scheme. Generally, optimiza-
tion problems that result from decisions in systems architecture
are combinatorial. To treat programmed decisions analytically we
segment the decisions into six canonical decisions classes using
real-world problems: standard form, assigning, partitioning, per-
muting, downselecting, and connecting [45]. These patterns are
interlinked and have some overlap, so we can think of the six classes
as combinations of standard form and down-selecting decisions.
The standard form (SF) decisions are decisions in which a user
can only select one option from a set of alternatives. When mak-
ing multiple SF decisions, the number of possible combinations of

decisions is given by

N

[ ]mi (1)
i=1

where m; is the number of alternatives for an i decision and N

is the number of decisions to be made [45]. In contrast, down-

selecting (DS) decisions are where a user can choose more than one

alternative. The number of possible choices is given by
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where N is the number of alternatives. The next step of creating the
tradespace model is to create decisions to define the architecture
space and subsequently to create metrics to evaluate the architec-
tures. As emphasized, the SDF needs to focus both on pragmatic
deployments of software and hardware components, so in any deci-
sion space we need to consider multiple types of decisions. Table 2 is
an example of a set of decisions, their descriptions and importance,

and the canonical class used to create and evaluate a SDF.

4.1 Problem Formulation

Once the tradespace has been constructed, defining metrics is
needed for the evaluation of each architecture [53]. We conducted
a stakeholder analysis by interviewing 11 farmers in California,
Washington, and New York. We identified 3 metrics (cost, perfor-
mance, and risk) as those most important when evaluating new
technology investments. The farmers we interviewed expressed
sensitivity to decisions that affected these metrics and through our
analysis we understood variations across different architectures
using principles in system architecture [45]. Based on decisions
defined by a user of the system, value functions need to be created
that evaluate each decision based on metrics for each architecture
in the tradespace as will be shown in subsection 5.1 [45]. A value
function, as described by Crawley, can be seen as a “transfer func-
tion” where the input is a system architecture and the output is
an evaluation of the given architecture. Given the complexity of
a real system, metrics need to be backed up via extensive testing,
simulations, and fine tuning in future iterations.

The metric formulations and their subsequent values were based
on data from journal publications [19][51], 11 farmer interviews,
and experience with five SDF deployments described in section 2.
Examples of the data include the real yield increment each year,
the production each year, the price of the devices, and the cost of

each component; as well as subsequent maintenance costs. The
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Decision s & i
# Name Why it is important Importance | Justification
This i lecti isi ! i
The type of Product Information to be collected is an 1918 a‘downse ectn?g decision as weare able to cAle‘cu:le
. L. . X L . for multiple alternatives from the initial set. Decisions
Product Infor- | important decision that will also impact scalability. Ani- . .
1 . J— . . S Very High range from resources that require the lowest-frequency
mation mals will likely require a higher-frequency monitoring - . L .
monitoring to animals requiring the highest-frequency
as opposed to plants. -
monitoring,.
I0T devices are a crucial decisions that must be weighed
between cost and functionality. The devices that are too This is a standard form decision because we think that a
2 IoT Devices costly will not be feasible for farmers to implement, while | High system with more than one manufacturer would not be
those that aren’t functional will not be able to collect scalable enough to accommodate a host of users.
robust enough data.
Thy f interface i i
¢ type of user interface is an 1mp0{tant corl?ponent We can provide multiple types of user interfaces for
which can affect performance and user’s attraction. The . .
. . . . . . our users at the same time, such as message, website,
3 User Interface | different user interfaces can provide different functions | Medium o . .
L . . R and application. These options are not exclusive to each
and it is where the customer can directly interact with other
our system, so we think it’s a high priority. ’
The possibility of scaling is important for our system as
diff t hit ight rul i
Systems ifferent sys em arci eCFulre might rule out a growmg . This decision is SF since it is formulated as picking one
4 X user base in the future. Similarly, scalable architectures | Medium .
Architecture R . - range from a set of options.
are likely to require more initial effort to set up the sys-
tem and will only pay off with a large user base.
This i selecti isi Id think of
The type of Data Storage is an important decision as sisa dowggelegtion dggision as we could think of a
. . , . . hybrid system that uses a cloud-based database and a
it determines the security measures we intend to im- . . .
. blockchain backend in concert with each other. A CSV
5 Data Type plement. A blockchain-based data storage would be the | Low
L . a1 . based backend would have the smallest amount of de-
most secure decision which will impose constraints on . . g
s . pendencies but would likely lack scalability and perfor-
the scalability of the possible user base.
mance.
One important process in our system is Data Collection
from the user side. There are multiple ways we can do Since our system has multiple components for data col-
them, each method can strongly affect our system ar- lecting, such as measuring temperature, track product
Data Collec- . . . . . .
6 K chitecture and performance. For example, if we choose | Low information. Some of them can be automatic, while some
tion . .
manual input, then we need to consider a model for hu- of them have to be manual. We can have manual, auto-
man labors. The options are flexible since the method of matic, or semi-automatic.
collecting data does not block our system performance.
The data st izei d to limit ity for stor-
e cafa storage size 15 usec Lo imit our capacity 1or siof We consider this decision as SF since the options are
ing our product information, user account information, . .
7 Data Storage . . | Low exclusive with each other, we can only choose one from
and some intermediate data. The scale of our storage size them
determines our project scale and server stress. ’
This i that i ial for the functionality of
. . 1S 1S & process Hiat 1s crucla 1or tie nci g g We can see this as a down selecting decision as a subset
Notification | the system. In order for the stakeholders in the network . R .
8 . . . Low of alternatives would be possible such as Email and real-
System to receive value, they must be able to interface with the . . R
time display simultaneously.
system.
. File exchange types that are streamlined will allow the This is a standard form decision as a system with more
File Exchange . . . .
9 Tvpe system will run more efficiently. If they are not, then the | Very Low than one file format would be very fragile with respect
yp processing time will increase. to ensuring data consistency.
10 Machine Machine learning model allows us to do prediction on Hich This is a standard form decision since it takes too long
Learning yield, risk, weather, etc. & to do prediction; at present we can try only one option.
Table 2: Description of canonical decisions and their importance for the architecture

experience refers to the five SDF deployments that were deployed

283

at Cornell University mentioned in section 2.

284

4.2 Formulation of Metrics

To formulate the Pareto optimal investment operating policy for
a given farmer we create a function composed of three metrics.
From work done by Cohon and Marks, and Reed we can define our
multi-objective problem with a vector, F(d), as demonstrated by

the following equation [13][25].

F(d) = (Feost, Frisks Fperf)

285
286
287
288
289

290

®)

Vd € Q

subject to user defined:

FCOSta Frisks Fperf (5)

Here d is a vector of decision variables in the tradespace Q .
These decisions can be expressed as real numbers utilizing value
functions. Each F(d) operating policy is evaluated based on its cost,
risk, and performance which can be constrained by user input. For
example, in the SDF referred to in section 2 because we want the

system to be low cost, we can constrain cost to be less than or
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equal to $2000 and it would be denoted as F.os; < 2000. In terms of
optimization, the performance metric is maximized while the cost
and risk metrics are minimized. Each metric will be explained in

the following sections.

4.2.1 Cost Metric. The first goal of the system is to minimize cost

as denoted by the equation:

Feost =H+M+S+1 6)

The cost metric includes the cost of Hardware (H), subsequent
Farm Maintenance Cost (M), Software (S), and Installation (I). The
hardware and installation costs are vital to minimize the total costs
of implementing an SDF. Farmers typically have a limited upfront
budget for investments and face many costly decisions in investing
in new technologies [49]. For example, the cost of sensors may
make deploying full sensor networks prohibitively expensive in
this context [28]. Thus, if the sensors are too expensive, they will
not be implemented on farms where capital and cash reserves are
a constraint. On the other hand, if the sensors are very cheap, the
system may display low performance and have a high risks of
malfunction when used over time. As a result, cheap sensors that
need constant repair would increase the maintenance cost, resulting
in large labor costs for the farmer. We factor in the time needed to
calibrate sensors, fix devices, clean equipment, and change batteries
based on experience from deployments of sensors onto a farm [26].
If the costs to keep the systems running outweigh the benefit of
optimizing the farm, it will be ineffective at helping farmers. Lastly,
software costs are increasingly important as corporations pivot to
Software as a Service (SaaS) models where cost per computation
is the norm. As a result, for larger farms with an abundance of
sensors, computation costs and software services will be much
more expensive. It is also important to note that the type of farm,
region, and climate also influence which sensors and decisions are

the most suitable. For example, a soil moisture sensor is less suitable
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in environments where temperature regularly drops below freezing
point and the ground freezes. It is important to note that efforts
were made to create a holistic cost metrics, but in complex living

systems such as a farm there are many unforeseen costs.

4.2.2  Risk Metric. The second system goal is to minimize risk,

Frisk =S+N 7)

This equation quantifies the interruption risk of the Sensor De-
vices (S) and Networking (N) of an SDF design. In a deployed SDF,
there are two reasons why data from sensors might be incorrect or
missing. First, the sensor hardware itself can malfunction due to
climate, environmental, or implementation factors. These malfunc-
tions can lead to both gaps in data collection and incorrect data
collection, both of which can lead to inaccurate decision support
and potentially necessitate costly repairs. These risks are captured
by S in the above formula. On the other hand, if the network is
unreliable, even if the sensors are collecting data properly, it cannot
be transmitted to edge and cloud computers. This risk is captured
by N in the above formula.

Understanding S and N are important for the quality of insights
the SDF can generate. As a result, if there is a great deal of inter-
ruption risk, it can be linked to a bad quality SDF architecture. In
ROAM, we define interruption risk as the probability of failure in
the S to send and N to transmit data packets. While ROAM can
use default quantities for these risks determined through averaging
the risks experienced by farmers in our user interview studies, we
allow farmers to instead provide their own quantities based on their
personal evaluation based on the local conditions at their farm. As
systems become ever more complex with many dependencies the

risk metric will be all the more important.

4.2.3 Performance Metric. The third system goal is to maximize
performance

Foerp=Y+W+E+L (8)
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The equation above represents the utility of the system’s service to
users, a metric directly tied to creating value for users. The perfor-
mance metric is developed as a combination of Yield Increase (Y),
Water Cost Savings (W), Electricity Cost Saving (E), and Labor Cost
Savings (L), representing four ways in which an SDF deployment
can add value for farmers. One of the primary ways in which an
SDF can improve farms is by generating insights that allow farmers
to grow more high-quality crops per acre of farmland. For exam-
ple, the SDF can identify underperforming parts of the field and
suggest how to improve them. In addition, an SDF can improve
water costs by suggesting optimal watering amounts based on sen-
sor data such as soil moisture levels [17]. SDFs also have different
electricity costs depending on the specific technologies used; for
example, solar power may be cheaper than disposable batteries in
the long run. Finally, SDFs can remove the need for human labor in
some cases. For example, one of the farmers we interviewed during
our user research described needing to hire a worker to walk the
field everyday to measure soil moisture in every hectare of the
farm, labor which would not be necessary in an SDF with a sensor
network to measure soil moisture. Performance was often thought
about as the most important metric for our farmers in evaluating

new technology investments.

4.3 Uncertainties

Once we establish the metrics and value functions for evaluating
architectures in the tradespace, we must define the uncertainties
and their effects on the various architectures within the tradespace.
With the goal to improve farmers’ competitiveness and extract
insights from farming for decision-making, the system must be
evaluated under the deeply uncertain farming environment reflect-
ing reality. More formally, an uncertainty in the tradespace model
characterizes the behavior of an uncertain factor affecting a farm
as a variable [25]. The reason for having these uncertainties is

to capture the attributes and metrics of architecture in multiple
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instances of the uncertain environment, which provides a more
realistic evaluation of the architecture and aids the decision-making
process section 6. This section focuses on the uncertainty variables
constructed in ROAM. In contrast, the relationship between each
uncertainty and metrics of each decision will vary depending on

different tradespace configurations, which is showcased in section 8.

Climate Complexity. The farm climate is a complex nonlinear
system, where different levels of short-term climate complexity may
affect the performance of the farm. Climate Complexity (CC) can
lead to risks of sensor malfunction and suboptimal performance of
hardware devices as they operate while exposed to outdoor farming
environments. For example, solar power sources can face risks of
interruption in extreme weather events such as large storms. Uti-
lizing information theory techniques, the CC uncertainty variable
aims to represent an approximate proxy to analyze and predict the
level of regional short-term climate variability in a given farm area.
CC uncertainty is modeled using an entropy-based measurement
that is referred to as SampEn. It provides a nonlinear approach for
analyzing and predicting the entropy or complexity of climatic time
series [47]. It is a probability measure that quantifies the likelihood
that sequences of consecutive data match one another within a
tolerance r and remain similar when the length of the sequences is
increased by one sample. In this way, we quantify the regularity
and the unpredictability of fluctuations in weather to factor into
our model. In order to calculate individual farm level SampEn we
use data from the Global Climate Models (GCMs) dataset [2]. The
data is then processed based on the algorithm introduced in the
paper Approximate Entropy and Sample Entropy: A Comprehen-
sive Tutorial [15]. According to the SampEn calculations of climate
complexity of regional meteorological data found by Shuangcheng
in his paper Measurement of Climate Complexity, he found from
using random climate data that SampEn approached 0 and with

fully homogeneous data that it approached 3 [47]. As a result we
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use the SampEn range from 0 to 3 with a uniform distribution to

model climate complexity as shown in table 3.

Rainfall. Rainfall has been directly linked to impacting yield
of agricultural products [23]. According to Hunho, it is seen that
increased rainfall leads to a longer growing season and higher yields
which in turn becomes higher profits for the farmer. On the other
hand, in this study published in the journal Global Change Biology,
rainfall was detrimental to certain crop yield [34]. In the study corn
yields were reduced by as much as 34 percent during years with
excessive rainfall [34]. It was estimated that between 1989 and 2016,
intense rain events caused $10 billion in agricultural loss [34].

The effects of climate change has a large impact on rainfall
[23]. It was cited as a reason for the increased and unpredictable
rainfall [23]. Rainfall is highly regional, so climate change is a
great cause of concern for rainfall in the future as farmers will
need to plan for excessive or shortages in rainfall which will affect
the profitability of the farm. To model rainfall we utilize a normal
distribution of historical annual precipitation and calculate the
mean and standard deviation for the region of the farm area being
studied. To anticipate how precipitation affects the performance of
the farm, we built linear regression models that correlate historical
precipitation measurements with historical crop yield to represent
the effect of precipitation on crop yield. To set the range we use
the empirical rule which states 99.7 percent of values lie above and

below three Standard Deviations (SD) of the mean [35].

Uncertainty Variable | Notation | Lower Bound | Upper Bound
Climate Complexity C 0 3
Rainfall R 0 3*Expected Rainfall (user input)

Table 3: Uncertainties Problem Formulation

5 TRADESPACE OBJECT

The Tradespace Object is produced by the Decision Module and

represents an instance of the specific farm setup defined by the
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Configuration File, including basic setup information such as num-
ber of decisions, price level, and a network representation of the
tradespace. The initialization of the Tradespace object is invoked by
the ‘Generate Tradespace’ function from the User Interface, which

must be execute prior to any other action.

5.1 Tradespace Configuration File

The Tradespace Configuration File (TCF) is a JavaScript Object
Notation (JSON) file that describes a set of architectural decisions in
a digital farm system (e.g. farm sensors, data storage method, plant
watering physiological model, etc.). Each decision item describes
the decision type, decision weight (importance), and a range of
implementation options (alternatives) with detailed attributes and
measurement information. The TCF defines the basic elements and
structure of the tradespace, and the Decision Module processes the

extracted data into a Tradespace Object for downstream analytics.

5.2 Network Structure

Building on the TCF, the Tradespace Network (TSN) data repre-
sentation consists of three layers of data manipulations: decision
pool, policy pool, and tradespace nodes. The decision pool is a
list structure data set generated from the TCF by the function
‘make_decision_pool’. Each element in decision pool is a dictio-
nary that stores information of a decision and a list of alternatives
instantiated as decision objects. The decision pool represents all
the decisions available in the tradespace. The policy pool is a list
structure dataset generated by the enumeration function (subsec-
tion 5.3), where each element in the policy pool is a list of decision
objects. The policy pool represents all possible policies that can be
formed and validated by the information and rules defined in the
TCF. The tradespace nodes is a list structure dataset generated by
mapping the ‘make_node’ function to each element of the policy
pool, where the ‘make_node’ function calculates metadata for each

policy in the policy pool and produce a node object. Each node
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Figure 3: The layers of the Tradespace Network (TSN) struc-
ture is represented here.

object contains information describing the corresponding policy,
including the metrics, length of the policy, and a link to the policy

object in policy pool.

5.3 Enumeration and Optimization

In the initial stage of the tradespace exploration, an enumeration of
all possible solution states without uncertainty in the tradespace is
generated using the TCF (subsection 5.1) inputted by the user. Then,
the Pareto front of the generated tradespace is calculated through
an exhaustive search of the enumeration. This frontier represents a
set of equally optimal SDF architectural decisions (policies) for the
user-defined farm environment, without considering the effect of
any uncertainty variables. The Pareto front at this stage presents
a basic understanding of the differences and tradeoffs between
various policies, which are further analyzed in the following stages
with the added effects of uncertainties in the farming environment.
Due to the large size (often sized in millions) of the
tradespace and its deterministic nature when calculating without
uncertainty, we created the Enumeration and Optimization Algo-
rithm in the Decision module. This algorithm is used to generate all

possible valid combinations of architectural decisions (policy) and
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then calculate the Pareto fronts in the tradespace, without consid-
ering the influence of uncertainties. A policy is a set of alternatives
defined by the TCF. A policy is valid only if its composition satis-
fies the rules defined in section 4. Under these rules it can usually
consist of a variable number of alternatives, but these alternatives
should be selected from a fixed number of decisions and in ways
regulated by the type of each decision. The ‘enumerateTS’ function
generates a set of all possible policies that exists in the tradespace
by first calculating a combination/permutation of the alternatives
under each decision depending on the decision type, denoted as
‘comb’ and then calculating combinations of all comb. After a set of
all possible policies in the tradespace is found, each policy in this
set is then processed into a node, a data structure defined in sub-
section 5.2. Here, a node represents an instance of a possible policy,
with a collection of metadata (performance, cost, risk metrics, and
policy length) used for downstream calculations and visualizations.

After the ‘enumerateTS’ function completes, the ‘calcPareto’
function can be invoked to calculate the tradespace Pareto front
without considering an uncertain environment. In this case, a Pareto
front represents a Pareto optimal set of policies calculated by multi-
objective optimization based on the performance, cost, and risk
metrics detailed in subsection 4.3, which means every policy in
this set is equivalently optimal and no metric can be enhanced by
any one alternative decision without compromising at least one
other metric. The calculation of the Pareto front is implemented
by extending the functions from the Orthogonal Array package.
The set of policies found by ‘enumerateTS’, processed and repre-
sented as an array of nodes, is then passed into the extended data
structures and functions to calculate the Pareto front based on the
objectives to maximize performance and minimize cost and risk.
The implementation of this algorithm can be found in our code
repository with the file titled ‘tradespace_explore.py. Note that
with the custom enumeration and optimization functions and the

decision data structure described above, the resulting Pareto front
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.00020
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Risk
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Figure 4: The tradespace enumeration optimizes toward the
yellow star (i.e. the ideal state) and displays policies as blue
points with those that are Pareto optimal as yellow.

can be traced to each ‘policy” and ‘decision’ endpoints. This trace-
ability is important in the integration of Rhodium models as well
as in extending new functionalities and visualization features in
the future.

Using an example TCF from section 2 with an input of 10 deci-
sions and 29 corresponding alternatives (5 standard form decisions
with 3 alternatives each, 1 standard form decision with 2 alter-
natives, and 4 down selecting decisions with 8 alternatives each),
the enumeration algorithm yields a result of 1,166,886 policies. Us-
ing the Enumeration and Optimization Algorithm can determine
a Pareto optimal set of size 142 optimal values and corresponding
284 optimal policies, by searching for policies that increase perfor-
mance, decrease cost, and decrease risk. It is important to note here
that various policies can result in the same optimal values. The
graph in Figure 4 visualizes the process of optimizing toward an

ideal point as depicted by a gold star.

6 MORDM USING RHODIUM

In creating ROAM, we leverage functionalities provided by the
open-source Python library Rhodium to accomplish Many Objec-
tive Robust Decision Making (MORDM) for our system, especially
in exploring and analyzing the system’s performance in an uncer-

tain environment (subsection 4.3) [20][3]. Robust Decision Making
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(RDM) is an analytic framework developed by Robert Lempert and
his collaborators at RAND Corporation that helps identify potential
robust strategies for a particular problem, characterize the vulnera-
bilities of such strategies, and evaluate trade-offs among them [25].
MORDM is an extension of RDM to account for problems with
multiple competing performance objectives, enabling the explo-
ration of performance tradeoffs with respect to robustness [13]. We
use the Multi-Objective Evolutionary Algorithm (MOEA) provided
by Rhodium to optimize the Pareto set of ‘policies’ calculated in
the Decision Module (subsection 5.3) under a representative or av-
erage instance of the uncertain environment (State-Of-World, or
SOW). Each representative instance is taken by examining a distri-
bution and utilizing the average. The Pareto efficient policies are
further explored using the uncertainty analysis functions provided
by Rhodium. Finally, the sensitivity analysis provided by SALib
python library [13] is used to analyze and categorize the effect of

different uncertain elements in the farming environment.

6.1 Optimization

The optimization function in Rhodium Module is a MOEA that
utilizes the NSGA-II algorithm provided by the Rhodium library
[3]. This function is used to find the Pareto optimal set of ‘policies’
based on the performance, cost, and risk metrics ((subsection 4.2)). It
is important to note that the optimization function in the Rhodium
Module differs from the ‘calcPareto’ function in Decision Module
mentioned in subsection 5.3 in that it takes the uncertainty param-
eters into account in order to prioritize policies that are robust.
These two optimization methods serve different purposes in ex-
ploring the Tradespace. The ’calcPareto’ function in the Decision
Module enumerates all possible policies solely based on the static
decision configurations defined by the Tradespace Configuration
File, which finds the initial optimal set of policies on paper based on
prior knowledge about the decisions. The optimization function in

the Rhodium Module iteratively adjusts the controlled parameters
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or combination of decisions as discussed in subsection 5.2 while
searching for the optimal set of policies under the mean SOW. This
function then finds the set of policies most optimal in this specific
state of uncertainty model.

The optimal set of policies found by the optimization function
in the Rhodium Module is a subset of the set of policies found
earlier in the workflow by the ’calcPareto’ function, as the former
function uses outputs of the latter function as inputs. We choose
to have the optimization function in the Rhodium Module only
search through a subset, because the ’calcPareto’ function helps
remove less optimal policies from further examination during later
steps. By limiting the scope of input to the optimization function in
the Rhodium module, the amount of computation is substantially
reduced and the user experience is enhanced through a shorter

response time.

6.2 Scenario Discovery

The scenario discovery function, imported from the Rhodium li-
brary, is used to explore and analyze the influence from uncertain-
ties in the Pareto optimal set of ‘policies’ that are found by the
optimize function in the Rhodium module [3]. First, a set of uncer-
tainty variables are defined using the parameters and distributions
on the Uncertainty model (subsection 4.3). Then, a Rhodium in-
ternal function, ‘sample_lhs, is called to generate a standard 1000
SOWs through a Latin Hypercube Sample - a technique used to
reflect the true underlying distribution on the uncertain parameters
[3]. Each SOW consists of a combination of uncertainty variables
and represents an instance of the uncertain environment. Then, the
policy evaluation function is executed to evaluate each ‘policy’ in
the Pareto optimal set on the 1000 SOWs. The results produced from
scenario discovery can be used to visualize and explore different
characteristics of various Pareto policies, such that policies demon-
strate tradeoffs in metrics when evaluating against uncertainties.

The analysis of these tradeoffs can provide us with insights into
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how different system architectures may be a better fit for certain
scenarios (e.g. excessive rainfall) that causes a policy to fail and be
vulnerable. These tradeoffs will be further explored and conclusions

can be drawn through sensitivity analysis.

6.3 Sensitivity Analysis

The Rhodium library’s internal implementation extended from
Python’s SALib is used to perform global and regional Sensitiv-
ity Analysis (SA) on modeled uncertainties which are performed to
prioritize the factors (parameters) most significantly affecting the
output and fix those that are not [3]. This functionality is enabled
by the browser-end interface that will be described in section 7;
here users can specify a ‘metric’ and ‘policy’ of their interest to
investigate, then the SA function performs global SA using com-
monly used methods. First the Method of Morris is used to analyze
which decisions are most influential to the output metrics and the
effect of uncertainty variables in isolation [10]. Second, the Sobol
method is used to calculate second-order and total-order indices for
capturing the interactional effects between uncertainties [48]. The
function can also perform one-at-a-time (OAT) or regional SA to
explore each parameter in detail. In OAT SA, we fix all parameters
at their default value except one [43]. For this one parameter, we
then sample across its entire range and observe how the metric of

interest changes.

6.4 Rhodium Implementation

The Rhodium package is used to help calculate the optimal policy
of the system under uncertainty. The first step is to define the farm
uncertainties and how they affect the architectural policy with the
function "farm_approach". For example, with greater rainfall, yield
may increase and watering costs may decrease. Importantly, we
use the function “setupModel” to allow for user input through the
web interface of what the average uncertainty value will be for

their farm. Once these uncertainty parameters are set, we use the
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"optimizeModel" function to run 10,000 function evaluation calls of
NSGALII to calculate the optimal policy in the uncertain state of the
world. The output is the set of optimal policies and there associated

policy name, subset of decisions, cost, performance, and risk.

7 USER INTERFACE: APPLICATION

STRUCTURE AND FEATURES

The user interface is a dynamically created web-based interface us-
ing a Python Flask framework with HTML, CSS, and JavaScript. The
User Interface includes 5 sections: About section, which provides
an overview of the application and its functionalities; Parameter
section, which takes in user input parameters to modify the Trade
Space Model; Function section, which users can use to invoke dif-
ferent actions; Log section, which records the user action sequence;

and Output section, which displays a series of results, data, and

visualizations based on user actions.

Parameters:
Crop Type:
Latitude:
3
User Amount
SampEn:
26
Predipitation:
1302775

Figure 5: User Interface at its initial state, with no action

Trade Space Exploration

For The Software-Defined Farm

Functions:

Gonerale Tradespace |

Update Modal

Output:

invoked and no results generated

Log:
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Parameters: Functions: Log:
Crop Type:
0
Latitude:
0 ]
User Amount: Update Model
[ —
SampEn:
260
Precipitation:
02775
Metics Range
Cost: 0k~ 1000k
Performance:
Riske 0-1
Output:

Found 23814 possible policies in the trade space.
The trade space is saved in

TradeSpace

Figure 6: Shows the User Interface after the Generate
Tradespace function runs

Output:

Found 23814 possible policies in the trade space.
The trade space s saved in:

TradeSpace

Found 106 pareto optimal policies in the trade space without uncertainty.
Pareto Front is saved here:

Pareto Front without uncertainty

Pareto Front

Figure 7: Workflow shows the Tradespace Exploration Tool
workflow for web-end users

The Output section displays a brief summary of the results after
execution of each function and provides the ability to download the
results in a comma-separated values (CSV) format. This export gives
users the ability to perform their own analysis. The Output section
plots interactive 3-D visualizations, with performance, cost, risk
metrics on each axis. These visualizations can be inspected through
user actions, including drag, zoom in/out, click, and selection. The

"Optimal Policies in Uncertain SOWs" visualization resulted from
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running "Evaluate Policy." In addition this visualization uses color,
brightness, and size in the 3-D scatter plot to illustrate policy group
and magnitudes of uncertainty.

The interface is designed with simplicity in mind. Ideally it al-
lows can be used by any type of user from farmer to researcher.
In addition, the graphs are used to visualize complex trade offs
between different design decisions and user constraints that can be
dynamically updated. Lastly, this design allows users the flexibility

to pursue further modeling of the data.

8 EXAMPLE USE CASE

In this section, we provide an example use case of ROAM using a

configuration developed by a farm owner client for his viticulture

farm, Cheng Xin Garden LLC (CXG), located in Bakersfield, Califor- 72

nia. The capabilities and workflow of ROAM will be demonstrated

through this use case.

8.1 Stakeholder Analysis

Due to limitations in California’s water supply caused by frequent
droughts and forest fires, CXG was seeking to increase their farm
efficiency. Their wine grapes use a significant amount of water
and often need a very precise amount. For example, the amount of
water used was highly correlated to the taste profile of the wine
produced. As a result, precise levels of water irrigation are needed
for water savings and to achieve the optimal grape taste.

To test our software CXG farms served as an ideal use case
scenario for our system, where the decision maker of the farm
hopes to improve the performance of their farming practices, but is
constrained by the lack of knowledge on available technologies or
the ability to envision the results from adopting a SDF. By helping
the farm owners translate their insights about their farms as well as
their requirements into a TCF, we can use ROAM to provide crucial

information and suggestions to support their decision making.
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After weeks of interviews with relevant stakeholders, we holis-
tically understood the current situation, needs, and challenges of
CXG’s farming practices and created a configuration for their viti-
culture farm, which is a 120-acre farm area growing wine grapes. By
conducting analysis of the farm’s environment, management, labor,
and technology use, we learned that one of the major challenges
they face on the farm was water management, similar to that of
many Californian vineyards. Due to the hot desert-like climate with
frequent droughts in Bakersfield as well as the need for irrigation
for grape-growing, water usage was the largest factor in the opera-
tional cost, and precision irrigation is closely associated with yield
quality. Through this process, the farmer shared his data that he has
been collecting for over 6 years. Hence, CXG’s decision space was
constructed with an emphasis on improving the farm’s production
performance through optimizing water usage, labor size, and cost.
A set of decision alternatives are selected for each decision based
on the availability and compatibility of the technologies as well as
specific needs addressed by the farm owner. So we understand how
each decision and alternative affects the farmer and the different
interaction effects, for example in the case of CXG a manual water
tensiometer saves them 20% of water usage and their cost of water
is $100 per day in California, which can vary from $50-$200 per
day [4]. The resulting decision space is then translated into a Con-
figuration File format and inputted into ROAM for further decision

support.

8.2 Generate Tradespace

The first step of using ROAM was to identify all of CXG’s decision
points to create the TCF that represents the needs and constraints of
their farm environment. The TCF was created from a JSON skeleton
provided by ROAM, which consists of a list of decision structures
as detailed in section 5. Table 4 shows the various decision points

we identified and encoded in the TCF.
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Decision

Alternative

Alternative | Alternative

# Name Description 1 9 3 Class Importance
1 Water Ten- The methods to collect water stress data M.anual Sam- Glass Digital Sensor | SF 1
siometer pling
Environment o
2 Humidity The methods to collect humidity and tem- M.anual Sam- Digital Sensor | N/A SF 1
perature pling
Sensor
2 | Microcontroller The devices put in the agriculture field FarmBeats gC;{:; datalog- Arduino SF .75
4 | Data Storage "I.‘he type of storage for product informa- Raspberry pi | Cloud N/A SF 1
tion and user data
Model Predic-
_Plant Wat(_er- The model for prediction or applications tive (_Zontrol On/off _con- Scheduling
6 | ing Physio- . (machine trol  (closed SF 1
. for analytics of water stress - (open loop)
logical model learning loop)
model)
Irrigation B-Hyve Smart
8 & How to water the plants Hose Water- | Rachio Raspberry pi | SF 1
Controller . )
ing Timer

Table 4: Configuration for Cheng Xin Garden LLC

After the configuration was imported, Generate Tradespace
initiates the Tradespace Exploration workflow by generating the
Tradespace Network (subsection 5.2) and enumerating all possible
policies that can be constructed based on the given configuration.
In the unconstrained architecture space, there are 6 SF decisions
with 3 alternatives each and 2 SF decisions with 2 alternatives. 324
possible decisions are found in this tradespace, and users are pro-
vided with an option to download the tradespace enumeration in a

CSV format, as shown in Figure 8.

Trade Space Exploration

For The Software-Defined Farm

o find he optmal archtectural

designs for T

analyzing

Parameters: Functions: Log:

Crop Type:
0

(Caleiat Pareto Front |

Updato Mogel

Farm Area (acres).
Qs

Precipitation
102775 ]

Figure 8: Generate Tradespace

Calculate Pareto Front computes the Pareto optimal set of poli-
cies in the architectural space without considering uncertain factors
in the farming environment. Using the optimization algorithm de-

tailed in subsection 5.3, 18 Pareto optimal policies are found in the
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tradespace for Cheng Xin Garden’s configuration and can be ex-
ported in a CSV format. These 18 policies are a significantly smaller
set to proceed with for further analysis in MORDN where we mine
for the Pareto optimal set of policies to analyze decision tradeoffs. In
Figure 9, the entire tradespace is visualized on a three-dimensional
plot, where each axis represents one of the metrics, and the opti-
mal set of policies is highlighted to display their relation to the
tradespace. In Figure 10, an interactive visualization of the Pareto
front allows users to inspect the plot from different perspectives

and select policies to display further details.

8.3 Analysis in MORDM

Many-Object Robust Decision Making (MORDM) was then used
to decipher the policies’ performance, cost, and risk of CXG un-
der simulated uncertain environments. To initiate analysis using
MORDM, CXG inputted additional constraints and specifications
on the tradespace. This allowed CXG to narrow the scope of analy-
sis by specifying the key parameters of their farm region, including
the type of crop grown, the area of the farm, the estimated climate
complexity, and the average rainfall level. CXG was then also able
to specify a set of constraints on the metrics to define the ideal
tradeoffs for their farm. Finally, a metric range is used to classify

the policies of interest and identify the key uncertainties for later
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Figure 10: Visualization of the Pareto front

analysis. In Figure 11, the parameters are set to represent the at-

tributes of CXG and metric ranges are set to the farm owner’s ideal

tradeoff.

With the defined parameters, the software used a many-objective

optimization algorithm to calculate the optimal set of policies

among the tradespace Pareto front, at the mean state-of-the-world
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Parameters:
Crop Type:

Farm Area (acres):

I
=

User Amount:
0
SampEn:
.68
Precipitation:
1302.775

Metrics Range

Cost: 0K ~ 23K

Performance:
M- 1TM

Risk: 0~

Figure 11: Parameter inputs for the MORDM model

described by the parameters in Figure 11. The new set of policies
found by the algorithm are the optimal policies after accounting for
the effects of uncertainties, modeled through stakeholder analysis
and research detailed in subsection 4.3. As shown in Figure 12, there
are 9 optimal policies found among the tradespace Pareto front of
18 policies, which demonstrates a significant reduction of the range

of policies that we needed to examine.

Risk

Figure 12: Optimal set of policies under mean state-of-world
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With the optimal set of policies on the mean state-of-the-world
identified, the software performs analysis of each Pareto policy
through Scenario Discovery under more robust uncertainties. A
set of 1000 states-of-the-world are generated based on the distri-
bution defined for every uncertainty variable. The set of optimal
policies are evaluated in the set of 1000 SOWs to reflect each pol-
icy’s characteristics and vulnerabilities under uncertainty. Consider
that each policy consists of various numbers of different decision
alternatives, making each policy uniquely exist in the trade space.
As uncertainties may affect decisions differently, policies with simi-
lar metrics in appearance may demonstrate distinct characteristics
under uncertainty. The key objective of Scenario Discovery is to
illustrate such distinction among the equivalently optimal set of

policies to support further decision making.

Figure 13: Visualization of optimal decisions in Scenario Dis-
covery

8.4 Results

Based on the results generated from the Tradespace Exploration,
we are able to zoom in onto 9 policies out of 324 possible policies.
According to the farm owner of CXG, he placed more weight on
improvements of performance than the cost of the system in the
tradeoff between performance and cost, and he has a relatively high
tolerance for risk on his farm (Figure 11). The decision maker’s

preference lead us to only consider Policy 5 and Policy 6. These
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policies demonstrate a similar tradeoff between risk and cost, but
with a small difference in their performances, as shown in Figure 14.
Then, with the information provided by Scenario Discovery, we
learn that Policy 5 is more likely to perform within the decision
maker’s preferences than Policy 6, as shown when comparing Fig-
ure 15 and Figure 16. Figure 16 shows points that fall outside of the
accepted system performance as black. Such a difference is likely
caused by the difference between policies’ sensitivity to the labor
cost and area of the farm. Since both of these factors are likely to
vary during the operation of the farm, the difference in how the two
policies perform under the uncertain environment are important
to the evaluation. Hence, we recommended Policy 5 as the system
setup for CXG under their reported circumstances. These ideas and
results were conveyed to the farm owner who hopes to implement

our recommendations in the future.
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Figure 14: Policy 5 (right) and Policy 6 (left)

9 DISCUSSION

With ROAM, farmers can understand what a Pareto optimal set of
choices for a farm of interest might be. The idea of creating a DA
system is daunting due to the number of choices that must be made.
In section 8 the farm owner had over 324 policies to consider. ROAM
simplified the process and allowed the user to understand the trade-

offs when examining design decisions and to filter choices based
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Figure 15: Policy 5 in Scenario Discovery
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Figure 16: Policy 6 in Scenario Discovery

on their needs. ROAM presents Pareto optimal farm architectures
based on performance, cost, and risk and climatic uncertainties.
Further, ROAM is extensible, as the code is written in an object-
oriented manner, and allows interchanging new parameters and
analytical optimization models. ROAM users can conceptualize
what a data-driven farm management system might look like based
on their specific goals and farming environment.

To allow for ease of use for our target users, farm-owners, sci-

entific researchers, industry professionals, and decision makers,
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we developed the browser-end interface to host the workflow of
ROAM. Users use ROAM to generate interactive visualizations for
communication and demonstrations with colleagues. Farm-owners
and farm stakeholders specifically utilize the configuration file and
input parameter features to customize and explore the decision
space for their farms. ROAM’s current implementation optimizes
for cost, performance, and risk. For additional goals, an extension

on the software and further data analysis must be implemented.

10 CONCLUSION

We presented the Realtime Optimization and Management System
(ROAM). It is designed to identify the Pareto optimal set of tradeoffs
for a Digital Agriculture (DA) based farm, where DA is seen as an
approach to address the Global Agricultural Productivity (GAP)
shortfall [50]. Specifically, DA enables data driven farm manage-
ment, which requires on farm networking. A Software-Defined
Farm (SDF) uses new networking on a farm to enable DA. Based on
deploying five SDFs, 11 farmer interviews, and testing on a farm
in California, ROAM is able to present Pareto optimal SDF archi-
tectures for a given farm area of interest. ROAM presents general
recommendations as to how to best implement a SDF based off of

data inputted by the user and climatic data.

11 MISCELLANEOUS

Software

Description: The Tradespace Exploration is a decision-support tool
developed to find the optimal architectural design for the Software-
Defined Farm using a Robust Decision Making framework. It iden-
tifies potential robust strategies for architectural design, analyzes
each strategy’s vulnerability, and evaluates their attributes under
deeply uncertain farming environments. Paired with a browser-

based application, it hosts the trade space exploration functionalities
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ROAM: A Decision Support System for Software-Defined Farms

and interfaces for user interactions and data visualizations.
Software name: ROAM

Developers: Yifan Zhao, Shiang Chin

Language: Python 3.6+

Supported systems: Microsoft Windows, GNU/Linux, macOS
Licence: GNU General Public Licence v3

code:

Source https://github.com/ShiangC/Cornell SDF
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