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ABSTRACT

The growing disparity between food supply and demand requires1

innovative Digital Agriculture (DA) systems to increase farm sus-2

tainability and profitability. However, current systems suffer from3

problems of complexity. To increase farm efficiency and understand4

the tradeoffs of these new DA innovations we developed ROAM,5

which is a decision-support system developed to find a Pareto opti-6

mal architectural design to build DA systems. Based on data from7

five live deployments at Cornell University, each DA design can8

be analyzed based on user defined metrics and evaluated under9

uncertain farming environments with ROAM. Paired with this, we10

develop a web interface that allows users to define personalized11

decision spaces and to visualize decision tradeoffs. To help validate12

ROAM, it was deployed to a commercial farm where the user was13

recommended a method to increase farm efficiency. ROAM allows14

users to quickly make key decisions in designing their DA systems15

to increase farm profitability.16

17

Keywords: Digital agriculture, Decision making under deep un-18

certainty, Systems optimization, Systems engineering, Internet of19

Things, Sustainability20

1 INTRODUCTION21

The 2018 Global Agricultural Productivity (GAP) index highlights22

a growing disparity between food supply and demand, for both23

developed and developing countries [50]. Conservative estimates24

predict that agricultural production will need to increase by 25-25

70% above current levels to meet the demand expected by 2050.26

As a result, the world is likely to face a large-scale food security27

crisis [50]. A major challenge to increasing food production is farm28

efficiency which is challenged by limited rural infrastructure [52].29

Digital Agriculture (DA), which is the use of data-driven tech-30

niques to increase farm productivity and sustainability, is thought31

of as a method of addressing the crisis [8]. Research into data-driven32

agriculture is growing. It envisions a future in which on-farm data33

collection, processing, and transmission are ubiquitous[22]. Sev-34

eral start-up companies are developing applications for data-driven35

farms [24], while major agribusiness firms are developing data36

collection and processing systems [24].37

According to Douthwaite et al., DA innovations are complex and38

require involving farm stakeholders to understand their goals and39

constraints to successfully deploy [52]. First, current DA solutions40

are often fragile due to non-interoperable hardware and software41
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[42]. Second, DA solutions often take a generalized approach that42

is not suitable for the myriad of farmers, each of whom has unique43

demands and constraints which require personalized solutions; e.g.44

a specialty grape farm can focus on achieving a specific taste profile45

while a row crop corn farm can focus on optimizing yield [8]. These46

challenges often lead to low understanding, slow adoption, and47

high costs in implementing DA systems [52].48

In this paper, we present the Realtime Optimization and Man-49

agement System (ROAM), which helps identifies a Pareto optimal50

set of tradeoffs that helps farmers identify a desired point within51

the tradeoffs space. Based on several years of experience deploying52

DA systems in several research farms associated with Cornell Uni-53

versity, we have determined which data and decision points should54

be accounted for, and designed a user-friendly platform for farmers55

to define the unique goals and constraints for their particular farm.56

ROAM determines a Pareto front of optimal DA system architec-57

tures a farmer can choose between, usually eliminating the vast58

majority of potential architectures. Thus, ROAM advances the state59

of the art in deploying DA systems. It performs up-front analysis60

necessary to deploy DA systems and eliminates major barriers to61

the diffusion of DA techniques into real-world farms and increasing62

farm efficiency.63

The design of ROAM is based on formalizing a method to evalu-64

ate a DA architecture by encoding user generated evaluation met-65

rics and uncertainties to assess each architectural decision into a66

ROAM Configuration File. An architectural decision is the choice67

between different components of the DA system such as between a68

soil moisture or light sensor. Then, the ROAM Configuration File is69

used to create nodes or objects that represent unique architectural70

configurations of a DA system. The architectural representation71

is a subset of architectural decisions made to create a DA system.72

The nodes are then passed into an optimization function to uncover73

the one architectural representation most suitable to a user’s need.74

To abstract away the complexity of the ROAM implementation a75

front-end user interface is designed and used to allow for easy entry76

of key features of the user’s farm, constraints, and uncertainties.77

This frontend creates the ROAM Configuration File used for ROAM78

evaluation. In addition, as output, the frontend displays an inter-79

active 3-D data visualizations of the farmers potential DA system80

tradespace, which is then used to allow for better understanding81

of the recommendations of the system. The entire process from82

beginning to end, from encoding the ROAM Configuration File to83

the end step of visualization of the analysis is modularized to allow84

for swapping in and out interchangeable software. For example,85

different types of optimization models can be used in the ROAM.86

To validate the generalizability of ROAM, it was used by Cheng87

Xin Garden LLC, a commercial California-based viticulture farm.88

As part of the process, ROAM considered different decisions to89

create a DA system based on their needs through in-depth user90

interviews. ROAM identified 324 architectural decisions and nar-91

rowed that down to one based on many factors such as climate92

change and location of the farm. The identified optimal architecture93

increases Cheng Xin Garden’s farm efficiency while accounting for94

constraints and uncertainties. To summarize our work the research95

contributions are the following:96

(1) Experience developing and deploying several different DA97

systems98

(2) Recommendations for a Pareto optimal DA system deploy-99

ment100

(3) Design and implementation of ROAM101

(4) A commercial farm deployment using and validating ROAM’s102

utility103

The rest of this paper will be structured as follows. Digital agri-104

culture systems that motivate the development of ROAM will be105

outlined in Section 2. Section 3 discusses how the ROAM software106

is built. The tradespace model formulation is described in Section107

4. Section 5 delves into how user inputs are compiled into a con-108

figuration file and optimization function are applied. Optimization109
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libraries and concepts are used for deeper analysis in Section 6.110

Section 7 outlines the user interface for users to input farm data.111

A commercial farm deployment of ROAM is described in Section112

8. We conclude with a discussion of our results in Section 9 and113

summarize our findings and work in Section 10.114

2 NETWORK-ENABLED FARM115

Digital Agriculture (DA) is the use of data to improve farm decision116

making that can lead to increased environmental sustainability117

and farm profitability [36]. DA is composed of sensing, storing,118

computing, and actuating technologies that leverage on-farm data119

[44]. Gathering massive amounts of sensor data requires a robust120

network, but this is a challenge as farms in rural areas often have121

limited or no on-farm networking or Internet access. A Network-122

Enabled Farm (NEF) addresses these issues by using new technolo-123

gies or old technologies repurposed to provide networking capa-124

bilities in the middle of a farm such as, 4G LTE, Long Range Radio125

(LoRa), and unlicensed TV White Spaces (TVWS) [5]. A Software-126

Defined Farm (SDF) leverages a NEF to sense, transmit, and analyze127

farm data to produce actionable insights for farm stakeholders, as128

described in Seamless Visions, Seamful Realities: Anticipating Rural129

Infrastructural Fragility in Early Design of Digital Agriculture [42].130

The NEF provides the networking infrastructure for the SDF to131

enable data-driven DA to optimize farm management.132

The SDF is a modular abstraction of software and hardware tech-133

nologies that is designed to fit the various needs of farmers. The134

software abstraction is split into 3 modules: Sensing, Computing,135

and Actuating. The Sensing module abstracts away sensors that al-136

lows different hardware sensors to be connected through software.137

The Computing module allows for different analytics algorithms138

to be run to support decision making. The Actuating module per-139

forms some type of action such as releasing irrigation valves. These140

modules can connect manufacturer agnostic hardware devices such141

as computers located at the farmhouse, field sensors, and water142

valves. With both the software and hardware connected, farmers143

can visualize aggregate data from normally incompatible farming144

systems on a web application interface [52]. To gain operational145

insights, farmers can run analytics on their data to make farm146

decisions. Lastly, an SDF enables the creation of digital twins of147

the physical farming system to automate farm processes such as148

precision irrigation.149

The SDF interfaces for the Sensing, Computing, and Actuating150

modules are well defined and static, but the implementation of the151

modules change to fit the need of the SDF user needs. For instance,152

different sensors such as soil moisture, light and/or wind can be153

used for the Sensing module. Different analytics implementations154

such as machine learning disease detection, irrigation scheduling,155

and/or cow health monitoring can be run in the Computing module.156

Lastly, the Actuating module can be in the form of an email alert,157

turning on irrigation value, or controlling greenhouse internal158

temperatures. Note that the modules can be hosted by different159

cloud providers such as Microsoft Azure, Google Compute Platform160

(GCP), or AmazonWeb Service (AWS), and/or run in the farm house161

at the “edge” of the cloud.162

We have experience implementing and deploying several SDF in-163

stances, including an apple orchard, corn and cannabis greenhouse,164

dairy cow farm, and a vineyard [41]. These instances of SDF deploy-165

ments utilized research farms associated with Cornell University166

and were implemented over a span of three years. These deploy-167

ments highlight both the flexibility of the SDF concept, as well as168

the importance of tailoring each deployment to fit the needs of each169

individual farm. The SDF instances use cutting-edge networking170

technologies such as TV White-space, LoRa, and sensors such as171

in situ plant water sensors [41] (See Figure 1). Figure 1 shows a172

data-driven irrigation graphic of how the SDF connects the Sensing173

Module through a sensor (1), sensor box (2), and subedge or edge174

computation device (3) to the Computing Module through a cloud175
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software service (4) to the Actuating Module with a raspberry pi176

(5) [39] and actuation function (6).177

Figure 1: SDF Decision Space

One constant throughout our experience implementing these178

various SDF deployments was the difficulty in balancing complex,179

multifaceted tradeoffs between cost, risk, and performance. Here,180

cost refers to the monetary cost of hardware, software, installation,181

and maintenance needed to deploy and maintain a SDF. Risk refers182

to the potential for interruption of sensor devices and networking.183

Performance is an aggregate metric that combines anticipated yield184

increase with anticipated water, electricity, and labor cost savings.185

Drawing from our three years of experience analyzing these trade-186

offs, we present the design and implementation of the Tradespace187

Exploration System (ROAM), a tool and computational method to188

assist in optimizing cost, risk, and performance of an SDF. Further-189

more, the ROAM incorporates user input and uncertainties such as190

climate change in a farming environment. In the following section,191

we describe ROAM in more detail.192

3 SOFTWARE DESCRIPTION193

ROAM is an open-source software. It includes a client-side browser-194

based interactive application and a server-side back-end service.195

ROAM is designed and developed in a back-end and front-end setup196

due to the need for computational resources and data storage in197

the back-end, as well as the need for a user-friendly interface to198

lower technology barriers to our various stakeholders. The server-199

side back-end is developed with Python as the core programming200

language and hosts most functionalities, including optimization,201

analytics, and data storage.We selected the Python Flask framework202

to develop the client-side web application with Javascript as a core203

programming language. Both the back-end service and the front-204

end application integrates functionalities from multiple external205

libraries and custom modules.206

The system consists of 4 main modules: the Decision, Rhodium,207

Uncertainty, and Graphical User Interface (GUI) modules as seen in208

Figure 2. The Decision module defines and maintains the tradespace209

architecture from the Decision Configuration File and it hosts the210

Tradespace Enumeration and Optimization algorithms. The Un-211

certainty module defines the uncertainty variables and models un-212

certain farming environments using real-time data. The Rhodium213

module hosts functions responsible for extension and orchestration214

of the integrated third-party Many-Objective Robust Decision Mak-215

ing (MORDM) libraries and provides key analysis of the tradespace.216

The GUI hosts the front-end interface and handles user data acqui-217

sition and visualization. The external libraries are selected from218

popular and regularly maintained open-source communities. A219

summary of these systems and libraries is provided in Table 1.220

Library Language Usage
Rhodium Python MORDM
j3 Python Visualization
oapackage Python Optimization
plotly JavaScript Visualization
d3 JavaScript UI, data acquisition, visualization

Table 1: Tools and Libraries

4 TRADESPACE MODEL221

To model and evaluate SDF designs, we draw from the study of222

systems architecture for developing configurable complex systems223

and evaluating how well they satisfy stakeholder needs [45]. To224
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Figure 2: System Modules

decompose a complex system, we formulate a systems architecting225

optimization problem that represents a complex architecture as a226

set of decisions using an encoding scheme. Generally, optimiza-227

tion problems that result from decisions in systems architecture228

are combinatorial. To treat programmed decisions analytically we229

segment the decisions into six canonical decisions classes using230

real-world problems: standard form, assigning, partitioning, per-231

muting, downselecting, and connecting [45]. These patterns are232

interlinked and have some overlap, so we can think of the six classes233

as combinations of standard form and down-selecting decisions.234

The standard form (SF) decisions are decisions in which a user235

can only select one option from a set of alternatives. When mak-236

ing multiple SF decisions, the number of possible combinations of237

decisions is given by238

𝑁∏
𝑖=1

𝑚𝑖 (1)

where 𝑚𝑖 is the number of alternatives for an i decision and N239

is the number of decisions to be made [45]. In contrast, down-240

selecting (DS) decisions are where a user can choose more than one241

alternative. The number of possible choices is given by242

2𝑁 (2)

where N is the number of alternatives. The next step of creating the243

tradespace model is to create decisions to define the architecture244

space and subsequently to create metrics to evaluate the architec-245

tures. As emphasized, the SDF needs to focus both on pragmatic246

deployments of software and hardware components, so in any deci-247

sion space we need to consider multiple types of decisions. Table 2 is248

an example of a set of decisions, their descriptions and importance,249

and the canonical class used to create and evaluate a SDF.250

4.1 Problem Formulation251

Once the tradespace has been constructed, defining metrics is252

needed for the evaluation of each architecture [53]. We conducted253

a stakeholder analysis by interviewing 11 farmers in California,254

Washington, and New York. We identified 3 metrics (cost, perfor-255

mance, and risk) as those most important when evaluating new256

technology investments. The farmers we interviewed expressed257

sensitivity to decisions that affected these metrics and through our258

analysis we understood variations across different architectures259

using principles in system architecture [45]. Based on decisions260

defined by a user of the system, value functions need to be created261

that evaluate each decision based on metrics for each architecture262

in the tradespace as will be shown in subsection 5.1 [45]. A value263

function, as described by Crawley, can be seen as a “transfer func-264

tion” where the input is a system architecture and the output is265

an evaluation of the given architecture. Given the complexity of266

a real system, metrics need to be backed up via extensive testing,267

simulations, and fine tuning in future iterations.268

The metric formulations and their subsequent values were based269

on data from journal publications [19][51], 11 farmer interviews,270

and experience with five SDF deployments described in section 2.271

Examples of the data include the real yield increment each year,272

the production each year, the price of the devices, and the cost of273

each component; as well as subsequent maintenance costs. The274
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# Decision
Name Why it is important Importance Justification

1 Product Infor-
mation

The type of Product Information to be collected is an
important decision that will also impact scalability. Ani-
mals will likely require a higher-frequency monitoring
as opposed to plants.

Very High

This is a downselecting decision as we are able to decide
for multiple alternatives from the initial set. Decisions
range from resources that require the lowest-frequency
monitoring to animals requiring the highest-frequency
monitoring.

2 IoT Devices

IoT devices are a crucial decisions that must be weighed
between cost and functionality. The devices that are too
costly will not be feasible for farmers to implement, while
those that aren’t functional will not be able to collect
robust enough data.

High
This is a standard form decision because we think that a
system with more than one manufacturer would not be
scalable enough to accommodate a host of users.

3 User Interface

The type of user interface is an important component
which can affect performance and user’s attraction. The
different user interfaces can provide different functions
and it is where the customer can directly interact with
our system, so we think it’s a high priority.

Medium

We can provide multiple types of user interfaces for
our users at the same time, such as message, website,
and application. These options are not exclusive to each
other.

4 Systems
Architecture

The possibility of scaling is important for our system as
different system architecture might rule out a growing
user base in the future. Similarly, scalable architectures
are likely to require more initial effort to set up the sys-
tem and will only pay off with a large user base.

Medium This decision is SF since it is formulated as picking one
range from a set of options.

5 Data Type

The type of Data Storage is an important decision as
it determines the security measures we intend to im-
plement. A blockchain-based data storage would be the
most secure decision which will impose constraints on
the scalability of the possible user base.

Low

This is a downselection decision as we could think of a
hybrid system that uses a cloud-based database and a
blockchain backend in concert with each other. A CSV
based backend would have the smallest amount of de-
pendencies but would likely lack scalability and perfor-
mance.

6 Data Collec-
tion

One important process in our system is Data Collection
from the user side. There are multiple ways we can do
them, each method can strongly affect our system ar-
chitecture and performance. For example, if we choose
manual input, then we need to consider a model for hu-
man labors. The options are flexible since the method of
collecting data does not block our system performance.

Low

Since our system has multiple components for data col-
lecting, such as measuring temperature, track product
information. Some of them can be automatic, while some
of them have to be manual. We can have manual, auto-
matic, or semi-automatic.

7 Data Storage

The data storage size is used to limit our capacity for stor-
ing our product information, user account information,
and some intermediate data. The scale of our storage size
determines our project scale and server stress.

Low
We consider this decision as SF since the options are
exclusive with each other, we can only choose one from
them.

8 Notification
System

This is a process that is crucial for the functionality of
the system. In order for the stakeholders in the network
to receive value, they must be able to interface with the
system.

Low
We can see this as a down selecting decision as a subset
of alternatives would be possible such as Email and real-
time display simultaneously.

9 File Exchange
Type

File exchange types that are streamlined will allow the
system will run more efficiently. If they are not, then the
processing time will increase.

Very Low
This is a standard form decision as a system with more
than one file format would be very fragile with respect
to ensuring data consistency.

10 Machine
Learning

Machine learning model allows us to do prediction on
yield, risk, weather, etc. High This is a standard form decision since it takes too long

to do prediction; at present we can try only one option.

Table 2: Description of canonical decisions and their importance for the architecture

experience refers to the five SDF deployments that were deployed275

at Cornell University mentioned in section 2.276

4.2 Formulation of Metrics277

To formulate the Pareto optimal investment operating policy for278

a given farmer we create a function composed of three metrics.279

From work done by Cohon and Marks, and Reed we can define our280

multi-objective problem with a vector, 𝐹 (𝑑), as demonstrated by281

the following equation [13][25].282

𝐹 (𝑑) = (𝐹𝑐𝑜𝑠𝑡 , 𝐹𝑟𝑖𝑠𝑘 , 𝐹𝑝𝑒𝑟 𝑓 ) (3)

283

∀𝑑 ∈ Ω (4)

subject to user defined:284

𝐹𝑐𝑜𝑠𝑡 , 𝐹𝑟𝑖𝑠𝑘 , 𝐹𝑝𝑒𝑟 𝑓 (5)

Here d is a vector of decision variables in the tradespace Ω .285

These decisions can be expressed as real numbers utilizing value286

functions. Each 𝐹 (𝑑) operating policy is evaluated based on its cost,287

risk, and performance which can be constrained by user input. For288

example, in the SDF referred to in section 2 because we want the289

system to be low cost, we can constrain cost to be less than or290

6
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equal to $2000 and it would be denoted as 𝐹𝑐𝑜𝑠𝑡 ≤ 2000. In terms of291

optimization, the performance metric is maximized while the cost292

and risk metrics are minimized. Each metric will be explained in293

the following sections.294

4.2.1 Cost Metric. The first goal of the system is to minimize cost295

as denoted by the equation:296

𝐹𝑐𝑜𝑠𝑡 = 𝐻 +𝑀 + 𝑆 + 𝐼 (6)

The cost metric includes the cost of Hardware (H), subsequent297

Farm Maintenance Cost (M), Software (S), and Installation (I). The298

hardware and installation costs are vital to minimize the total costs299

of implementing an SDF. Farmers typically have a limited upfront300

budget for investments and face many costly decisions in investing301

in new technologies [49]. For example, the cost of sensors may302

make deploying full sensor networks prohibitively expensive in303

this context [28]. Thus, if the sensors are too expensive, they will304

not be implemented on farms where capital and cash reserves are305

a constraint. On the other hand, if the sensors are very cheap, the306

system may display low performance and have a high risks of307

malfunction when used over time. As a result, cheap sensors that308

need constant repair would increase the maintenance cost, resulting309

in large labor costs for the farmer. We factor in the time needed to310

calibrate sensors, fix devices, clean equipment, and change batteries311

based on experience from deployments of sensors onto a farm [26].312

If the costs to keep the systems running outweigh the benefit of313

optimizing the farm, it will be ineffective at helping farmers. Lastly,314

software costs are increasingly important as corporations pivot to315

Software as a Service (SaaS) models where cost per computation316

is the norm. As a result, for larger farms with an abundance of317

sensors, computation costs and software services will be much318

more expensive. It is also important to note that the type of farm,319

region, and climate also influence which sensors and decisions are320

the most suitable. For example, a soil moisture sensor is less suitable321

in environments where temperature regularly drops below freezing322

point and the ground freezes. It is important to note that efforts323

were made to create a holistic cost metrics, but in complex living324

systems such as a farm there are many unforeseen costs.325

4.2.2 Risk Metric. The second system goal is to minimize risk,326

𝐹𝑟𝑖𝑠𝑘 = 𝑆 + 𝑁 (7)

This equation quantifies the interruption risk of the Sensor De-327

vices (S) and Networking (N) of an SDF design. In a deployed SDF,328

there are two reasons why data from sensors might be incorrect or329

missing. First, the sensor hardware itself can malfunction due to330

climate, environmental, or implementation factors. These malfunc-331

tions can lead to both gaps in data collection and incorrect data332

collection, both of which can lead to inaccurate decision support333

and potentially necessitate costly repairs. These risks are captured334

by S in the above formula. On the other hand, if the network is335

unreliable, even if the sensors are collecting data properly, it cannot336

be transmitted to edge and cloud computers. This risk is captured337

by N in the above formula.338

Understanding S and N are important for the quality of insights339

the SDF can generate. As a result, if there is a great deal of inter-340

ruption risk, it can be linked to a bad quality SDF architecture. In341

ROAM, we define interruption risk as the probability of failure in342

the S to send and N to transmit data packets. While ROAM can343

use default quantities for these risks determined through averaging344

the risks experienced by farmers in our user interview studies, we345

allow farmers to instead provide their own quantities based on their346

personal evaluation based on the local conditions at their farm. As347

systems become ever more complex with many dependencies the348

risk metric will be all the more important.349

4.2.3 Performance Metric. The third system goal is to maximize350

performance351

𝐹𝑝𝑒𝑟 𝑓 = 𝑌 +𝑊 + 𝐸 + 𝐿 (8)
7
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The equation above represents the utility of the system’s service to352

users, a metric directly tied to creating value for users. The perfor-353

mance metric is developed as a combination of Yield Increase (Y),354

Water Cost Savings (W), Electricity Cost Saving (E), and Labor Cost355

Savings (L), representing four ways in which an SDF deployment356

can add value for farmers. One of the primary ways in which an357

SDF can improve farms is by generating insights that allow farmers358

to grow more high-quality crops per acre of farmland. For exam-359

ple, the SDF can identify underperforming parts of the field and360

suggest how to improve them. In addition, an SDF can improve361

water costs by suggesting optimal watering amounts based on sen-362

sor data such as soil moisture levels [17]. SDFs also have different363

electricity costs depending on the specific technologies used; for364

example, solar power may be cheaper than disposable batteries in365

the long run. Finally, SDFs can remove the need for human labor in366

some cases. For example, one of the farmers we interviewed during367

our user research described needing to hire a worker to walk the368

field everyday to measure soil moisture in every hectare of the369

farm, labor which would not be necessary in an SDF with a sensor370

network to measure soil moisture. Performance was often thought371

about as the most important metric for our farmers in evaluating372

new technology investments.373

4.3 Uncertainties374

Once we establish the metrics and value functions for evaluating375

architectures in the tradespace, we must define the uncertainties376

and their effects on the various architectures within the tradespace.377

With the goal to improve farmers’ competitiveness and extract378

insights from farming for decision-making, the system must be379

evaluated under the deeply uncertain farming environment reflect-380

ing reality. More formally, an uncertainty in the tradespace model381

characterizes the behavior of an uncertain factor affecting a farm382

as a variable [25]. The reason for having these uncertainties is383

to capture the attributes and metrics of architecture in multiple384

instances of the uncertain environment, which provides a more385

realistic evaluation of the architecture and aids the decision-making386

process section 6. This section focuses on the uncertainty variables387

constructed in ROAM. In contrast, the relationship between each388

uncertainty and metrics of each decision will vary depending on389

different tradespace configurations, which is showcased in section 8.390

Climate Complexity. The farm climate is a complex nonlinear391

system, where different levels of short-term climate complexity may392

affect the performance of the farm. Climate Complexity (CC) can393

lead to risks of sensor malfunction and suboptimal performance of394

hardware devices as they operate while exposed to outdoor farming395

environments. For example, solar power sources can face risks of396

interruption in extreme weather events such as large storms. Uti-397

lizing information theory techniques, the CC uncertainty variable398

aims to represent an approximate proxy to analyze and predict the399

level of regional short-term climate variability in a given farm area.400

CC uncertainty is modeled using an entropy-based measurement401

that is referred to as SampEn. It provides a nonlinear approach for402

analyzing and predicting the entropy or complexity of climatic time403

series [47]. It is a probability measure that quantifies the likelihood404

that sequences of consecutive data match one another within a405

tolerance r and remain similar when the length of the sequences is406

increased by one sample. In this way, we quantify the regularity407

and the unpredictability of fluctuations in weather to factor into408

our model. In order to calculate individual farm level SampEn we409

use data from the Global Climate Models (GCMs) dataset [2]. The410

data is then processed based on the algorithm introduced in the411

paper Approximate Entropy and Sample Entropy: A Comprehen-412

sive Tutorial [15]. According to the SampEn calculations of climate413

complexity of regional meteorological data found by Shuangcheng414

in his paper Measurement of Climate Complexity, he found from415

using random climate data that SampEn approached 0 and with416

fully homogeneous data that it approached 3 [47]. As a result we417
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use the SampEn range from 0 to 3 with a uniform distribution to418

model climate complexity as shown in table 3.419

Rainfall. Rainfall has been directly linked to impacting yield420

of agricultural products [23]. According to Hunho, it is seen that421

increased rainfall leads to a longer growing season and higher yields422

which in turn becomes higher profits for the farmer. On the other423

hand, in this study published in the journal Global Change Biology,424

rainfall was detrimental to certain crop yield [34]. In the study corn425

yields were reduced by as much as 34 percent during years with426

excessive rainfall [34]. It was estimated that between 1989 and 2016,427

intense rain events caused $10 billion in agricultural loss [34].428

The effects of climate change has a large impact on rainfall429

[23]. It was cited as a reason for the increased and unpredictable430

rainfall [23]. Rainfall is highly regional, so climate change is a431

great cause of concern for rainfall in the future as farmers will432

need to plan for excessive or shortages in rainfall which will affect433

the profitability of the farm. To model rainfall we utilize a normal434

distribution of historical annual precipitation and calculate the435

mean and standard deviation for the region of the farm area being436

studied. To anticipate how precipitation affects the performance of437

the farm, we built linear regression models that correlate historical438

precipitation measurements with historical crop yield to represent439

the effect of precipitation on crop yield. To set the range we use440

the empirical rule which states 99.7 percent of values lie above and441

below three Standard Deviations (SD) of the mean [35].442

Uncertainty Variable Notation Lower Bound Upper Bound

Climate Complexity C 0 3

Rainfall R 0 3*Expected Rainfall (user input)

Table 3: Uncertainties Problem Formulation

5 TRADESPACE OBJECT443

The Tradespace Object is produced by the Decision Module and444

represents an instance of the specific farm setup defined by the445

Configuration File, including basic setup information such as num-446

ber of decisions, price level, and a network representation of the447

tradespace. The initialization of the Tradespace object is invoked by448

the ‘Generate Tradespace’ function from the User Interface, which449

must be execute prior to any other action.450

5.1 Tradespace Configuration File451

The Tradespace Configuration File (TCF) is a JavaScript Object452

Notation (JSON) file that describes a set of architectural decisions in453

a digital farm system (e.g. farm sensors, data storage method, plant454

watering physiological model, etc.). Each decision item describes455

the decision type, decision weight (importance), and a range of456

implementation options (alternatives) with detailed attributes and457

measurement information. The TCF defines the basic elements and458

structure of the tradespace, and the Decision Module processes the459

extracted data into a Tradespace Object for downstream analytics.460

5.2 Network Structure461

Building on the TCF, the Tradespace Network (TSN) data repre-462

sentation consists of three layers of data manipulations: decision463

pool, policy pool, and tradespace nodes. The decision pool is a464

list structure data set generated from the TCF by the function465

‘make_decision_pool’. Each element in decision pool is a dictio-466

nary that stores information of a decision and a list of alternatives467

instantiated as decision objects. The decision pool represents all468

the decisions available in the tradespace. The policy pool is a list469

structure dataset generated by the enumeration function (subsec-470

tion 5.3), where each element in the policy pool is a list of decision471

objects. The policy pool represents all possible policies that can be472

formed and validated by the information and rules defined in the473

TCF. The tradespace nodes is a list structure dataset generated by474

mapping the ‘make_node’ function to each element of the policy475

pool, where the ‘make_node’ function calculates metadata for each476

policy in the policy pool and produce a node object. Each node477
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Figure 3: The layers of the Tradespace Network (TSN) struc-
ture is represented here.

object contains information describing the corresponding policy,478

including the metrics, length of the policy, and a link to the policy479

object in policy pool.480

5.3 Enumeration and Optimization481

In the initial stage of the tradespace exploration, an enumeration of482

all possible solution states without uncertainty in the tradespace is483

generated using the TCF (subsection 5.1) inputted by the user. Then,484

the Pareto front of the generated tradespace is calculated through485

an exhaustive search of the enumeration. This frontier represents a486

set of equally optimal SDF architectural decisions (policies) for the487

user-defined farm environment, without considering the effect of488

any uncertainty variables. The Pareto front at this stage presents489

a basic understanding of the differences and tradeoffs between490

various policies, which are further analyzed in the following stages491

with the added effects of uncertainties in the farming environment.492

Due to the large size (often sized in millions) of the493

tradespace and its deterministic nature when calculating without494

uncertainty, we created the Enumeration and Optimization Algo-495

rithm in the Decision module. This algorithm is used to generate all496

possible valid combinations of architectural decisions (policy) and497

then calculate the Pareto fronts in the tradespace, without consid-498

ering the influence of uncertainties. A policy is a set of alternatives499

defined by the TCF. A policy is valid only if its composition satis-500

fies the rules defined in section 4. Under these rules it can usually501

consist of a variable number of alternatives, but these alternatives502

should be selected from a fixed number of decisions and in ways503

regulated by the type of each decision. The ‘enumerateTS’ function504

generates a set of all possible policies that exists in the tradespace505

by first calculating a combination/permutation of the alternatives506

under each decision depending on the decision type, denoted as507

‘comb’ and then calculating combinations of all comb. After a set of508

all possible policies in the tradespace is found, each policy in this509

set is then processed into a node, a data structure defined in sub-510

section 5.2. Here, a node represents an instance of a possible policy,511

with a collection of metadata (performance, cost, risk metrics, and512

policy length) used for downstream calculations and visualizations.513

After the ‘enumerateTS’ function completes, the ‘calcPareto’514

function can be invoked to calculate the tradespace Pareto front515

without considering an uncertain environment. In this case, a Pareto516

front represents a Pareto optimal set of policies calculated by multi-517

objective optimization based on the performance, cost, and risk518

metrics detailed in subsection 4.3, which means every policy in519

this set is equivalently optimal and no metric can be enhanced by520

any one alternative decision without compromising at least one521

other metric. The calculation of the Pareto front is implemented522

by extending the functions from the Orthogonal Array package.523

The set of policies found by ‘enumerateTS’, processed and repre-524

sented as an array of nodes, is then passed into the extended data525

structures and functions to calculate the Pareto front based on the526

objectives to maximize performance and minimize cost and risk.527

The implementation of this algorithm can be found in our code528

repository with the file titled ‘tradespace_explore.py.’ Note that529

with the custom enumeration and optimization functions and the530

decision data structure described above, the resulting Pareto front531
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Figure 4: The tradespace enumeration optimizes toward the
yellow star (i.e. the ideal state) and displays policies as blue
points with those that are Pareto optimal as yellow.

can be traced to each ‘policy’ and ‘decision’ endpoints. This trace-532

ability is important in the integration of Rhodium models as well533

as in extending new functionalities and visualization features in534

the future.535

Using an example TCF from section 2 with an input of 10 deci-536

sions and 29 corresponding alternatives (5 standard form decisions537

with 3 alternatives each, 1 standard form decision with 2 alter-538

natives, and 4 down selecting decisions with 8 alternatives each),539

the enumeration algorithm yields a result of 1,166,886 policies. Us-540

ing the Enumeration and Optimization Algorithm can determine541

a Pareto optimal set of size 142 optimal values and corresponding542

284 optimal policies, by searching for policies that increase perfor-543

mance, decrease cost, and decrease risk. It is important to note here544

that various policies can result in the same optimal values. The545

graph in Figure 4 visualizes the process of optimizing toward an546

ideal point as depicted by a gold star.547

6 MORDM USING RHODIUM548

In creating ROAM, we leverage functionalities provided by the549

open-source Python library Rhodium to accomplish Many Objec-550

tive Robust Decision Making (MORDM) for our system, especially551

in exploring and analyzing the system’s performance in an uncer-552

tain environment (subsection 4.3) [20][3]. Robust Decision Making553

(RDM) is an analytic framework developed by Robert Lempert and554

his collaborators at RAND Corporation that helps identify potential555

robust strategies for a particular problem, characterize the vulnera-556

bilities of such strategies, and evaluate trade-offs among them [25].557

MORDM is an extension of RDM to account for problems with558

multiple competing performance objectives, enabling the explo-559

ration of performance tradeoffs with respect to robustness [13]. We560

use the Multi-Objective Evolutionary Algorithm (MOEA) provided561

by Rhodium to optimize the Pareto set of ‘policies’ calculated in562

the Decision Module (subsection 5.3) under a representative or av-563

erage instance of the uncertain environment (State-Of-World, or564

SOW). Each representative instance is taken by examining a distri-565

bution and utilizing the average. The Pareto efficient policies are566

further explored using the uncertainty analysis functions provided567

by Rhodium. Finally, the sensitivity analysis provided by SALib568

python library [13] is used to analyze and categorize the effect of569

different uncertain elements in the farming environment.570

6.1 Optimization571

The optimization function in Rhodium Module is a MOEA that572

utilizes the NSGA-II algorithm provided by the Rhodium library573

[3]. This function is used to find the Pareto optimal set of ‘policies’574

based on the performance, cost, and risk metrics ((subsection 4.2)). It575

is important to note that the optimization function in the Rhodium576

Module differs from the ‘calcPareto’ function in Decision Module577

mentioned in subsection 5.3 in that it takes the uncertainty param-578

eters into account in order to prioritize policies that are robust.579

These two optimization methods serve different purposes in ex-580

ploring the Tradespace. The ’calcPareto’ function in the Decision581

Module enumerates all possible policies solely based on the static582

decision configurations defined by the Tradespace Configuration583

File, which finds the initial optimal set of policies on paper based on584

prior knowledge about the decisions. The optimization function in585

the Rhodium Module iteratively adjusts the controlled parameters586
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or combination of decisions as discussed in subsection 5.2 while587

searching for the optimal set of policies under the mean SOW. This588

function then finds the set of policies most optimal in this specific589

state of uncertainty model.590

The optimal set of policies found by the optimization function591

in the Rhodium Module is a subset of the set of policies found592

earlier in the workflow by the ’calcPareto’ function, as the former593

function uses outputs of the latter function as inputs. We choose594

to have the optimization function in the Rhodium Module only595

search through a subset, because the ’calcPareto’ function helps596

remove less optimal policies from further examination during later597

steps. By limiting the scope of input to the optimization function in598

the Rhodium module, the amount of computation is substantially599

reduced and the user experience is enhanced through a shorter600

response time.601

6.2 Scenario Discovery602

The scenario discovery function, imported from the Rhodium li-603

brary, is used to explore and analyze the influence from uncertain-604

ties in the Pareto optimal set of ‘policies’ that are found by the605

optimize function in the Rhodium module [3]. First, a set of uncer-606

tainty variables are defined using the parameters and distributions607

on the Uncertainty model (subsection 4.3). Then, a Rhodium in-608

ternal function, ‘sample_lhs,’ is called to generate a standard 1000609

SOWs through a Latin Hypercube Sample – a technique used to610

reflect the true underlying distribution on the uncertain parameters611

[3]. Each SOW consists of a combination of uncertainty variables612

and represents an instance of the uncertain environment. Then, the613

policy evaluation function is executed to evaluate each ‘policy’ in614

the Pareto optimal set on the 1000 SOWs. The results produced from615

scenario discovery can be used to visualize and explore different616

characteristics of various Pareto policies, such that policies demon-617

strate tradeoffs in metrics when evaluating against uncertainties.618

The analysis of these tradeoffs can provide us with insights into619

how different system architectures may be a better fit for certain620

scenarios (e.g. excessive rainfall) that causes a policy to fail and be621

vulnerable. These tradeoffs will be further explored and conclusions622

can be drawn through sensitivity analysis.623

6.3 Sensitivity Analysis624

The Rhodium library’s internal implementation extended from625

Python’s SALib is used to perform global and regional Sensitiv-626

ity Analysis (SA) on modeled uncertainties which are performed to627

prioritize the factors (parameters) most significantly affecting the628

output and fix those that are not [3]. This functionality is enabled629

by the browser-end interface that will be described in section 7;630

here users can specify a ‘metric’ and ‘policy’ of their interest to631

investigate, then the SA function performs global SA using com-632

monly used methods. First the Method of Morris is used to analyze633

which decisions are most influential to the output metrics and the634

effect of uncertainty variables in isolation [10]. Second, the Sobol635

method is used to calculate second-order and total-order indices for636

capturing the interactional effects between uncertainties [48]. The637

function can also perform one-at-a-time (OAT) or regional SA to638

explore each parameter in detail. In OAT SA, we fix all parameters639

at their default value except one [43]. For this one parameter, we640

then sample across its entire range and observe how the metric of641

interest changes.642

6.4 Rhodium Implementation643

The Rhodium package is used to help calculate the optimal policy644

of the system under uncertainty. The first step is to define the farm645

uncertainties and how they affect the architectural policy with the646

function "farm_approach". For example, with greater rainfall, yield647

may increase and watering costs may decrease. Importantly, we648

use the function “setupModel” to allow for user input through the649

web interface of what the average uncertainty value will be for650

their farm. Once these uncertainty parameters are set, we use the651

12

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4314567

Pr
ep

rin
t n

ot 
pe

er
 re

vie
wed



ROAM: A Decision Support System for Software-Defined Farms

"optimizeModel" function to run 10,000 function evaluation calls of652

NSGAII to calculate the optimal policy in the uncertain state of the653

world. The output is the set of optimal policies and there associated654

policy name, subset of decisions, cost, performance, and risk.655

7 USER INTERFACE: APPLICATION656

STRUCTURE AND FEATURES657

The user interface is a dynamically created web-based interface us-658

ing a Python Flask framework with HTML, CSS, and JavaScript. The659

User Interface includes 5 sections: About section, which provides660

an overview of the application and its functionalities; Parameter661

section, which takes in user input parameters to modify the Trade662

Space Model; Function section, which users can use to invoke dif-663

ferent actions; Log section, which records the user action sequence;664

and Output section, which displays a series of results, data, and665

visualizations based on user actions.666

Figure 5: User Interface at its initial state, with no action
invoked and no results generated

Figure 6: Shows the User Interface after the Generate
Tradespace function runs

Figure 7: Workflow shows the Tradespace Exploration Tool
workflow for web-end users

The Output section displays a brief summary of the results after667

execution of each function and provides the ability to download the668

results in a comma-separated values (CSV) format. This export gives669

users the ability to perform their own analysis. The Output section670

plots interactive 3-D visualizations, with performance, cost, risk671

metrics on each axis. These visualizations can be inspected through672

user actions, including drag, zoom in/out, click, and selection. The673

"Optimal Policies in Uncertain SOWs" visualization resulted from674
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running "Evaluate Policy." In addition this visualization uses color,675

brightness, and size in the 3-D scatter plot to illustrate policy group676

and magnitudes of uncertainty.677

The interface is designed with simplicity in mind. Ideally it al-678

lows can be used by any type of user from farmer to researcher.679

In addition, the graphs are used to visualize complex trade offs680

between different design decisions and user constraints that can be681

dynamically updated. Lastly, this design allows users the flexibility682

to pursue further modeling of the data.683

8 EXAMPLE USE CASE684

In this section, we provide an example use case of ROAM using a685

configuration developed by a farm owner client for his viticulture686

farm, Cheng Xin Garden LLC (CXG), located in Bakersfield, Califor-687

nia. The capabilities and workflow of ROAM will be demonstrated688

through this use case.689

8.1 Stakeholder Analysis690

Due to limitations in California’s water supply caused by frequent691

droughts and forest fires, CXG was seeking to increase their farm692

efficiency. Their wine grapes use a significant amount of water693

and often need a very precise amount. For example, the amount of694

water used was highly correlated to the taste profile of the wine695

produced. As a result, precise levels of water irrigation are needed696

for water savings and to achieve the optimal grape taste.697

To test our software CXG farms served as an ideal use case698

scenario for our system, where the decision maker of the farm699

hopes to improve the performance of their farming practices, but is700

constrained by the lack of knowledge on available technologies or701

the ability to envision the results from adopting a SDF. By helping702

the farm owners translate their insights about their farms as well as703

their requirements into a TCF, we can use ROAM to provide crucial704

information and suggestions to support their decision making.705

After weeks of interviews with relevant stakeholders, we holis-706

tically understood the current situation, needs, and challenges of707

CXG’s farming practices and created a configuration for their viti-708

culture farm, which is a 120-acre farm area growing wine grapes. By709

conducting analysis of the farm’s environment, management, labor,710

and technology use, we learned that one of the major challenges711

they face on the farm was water management, similar to that of712

many Californian vineyards. Due to the hot desert-like climate with713

frequent droughts in Bakersfield as well as the need for irrigation714

for grape-growing, water usage was the largest factor in the opera-715

tional cost, and precision irrigation is closely associated with yield716

quality. Through this process, the farmer shared his data that he has717

been collecting for over 6 years. Hence, CXG’s decision space was718

constructed with an emphasis on improving the farm’s production719

performance through optimizing water usage, labor size, and cost.720

A set of decision alternatives are selected for each decision based721

on the availability and compatibility of the technologies as well as722

specific needs addressed by the farm owner. So we understand how723

each decision and alternative affects the farmer and the different724

interaction effects, for example in the case of CXG a manual water725

tensiometer saves them 20% of water usage and their cost of water726

is $100 per day in California, which can vary from $50-$200 per727

day [4]. The resulting decision space is then translated into a Con-728

figuration File format and inputted into ROAM for further decision729

support.730

8.2 Generate Tradespace731

The first step of using ROAM was to identify all of CXG’s decision732

points to create the TCF that represents the needs and constraints of733

their farm environment. The TCF was created from a JSON skeleton734

provided by ROAM, which consists of a list of decision structures735

as detailed in section 5. Table 4 shows the various decision points736

we identified and encoded in the TCF.737
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# Decision
Name Description Alternative

1
Alternative
2

Alternative
3 Class Importance

1 Water Ten-
siometer The methods to collect water stress data Manual Sam-

pling Glass Digital Sensor SF 1

2
Environment
Humidity
Sensor

The methods to collect humidity and tem-
perature

Manual Sam-
pling Digital Sensor N/A SF 1

2 Microcontroller The devices put in the agriculture field FarmBeats CR6 datalog-
ger Arduino SF .75

4 Data Storage The type of storage for product informa-
tion and user data Raspberry pi Cloud N/A SF 1

6
Plant water-
ing Physio-
logical model

The model for prediction or applications
for analytics of water stress

Model Predic-
tive Control
(machine
learning
model)

On/off con-
trol (closed
loop)

Scheduling
(open loop) SF 1

8 Irrigation
Controller How to water the plants

B-Hyve Smart
Hose Water-
ing Timer

Rachio Raspberry pi SF 1

Table 4: Configuration for Cheng Xin Garden LLC

After the configuration was imported, Generate Tradespace738

initiates the Tradespace Exploration workflow by generating the739

Tradespace Network (subsection 5.2) and enumerating all possible740

policies that can be constructed based on the given configuration.741

In the unconstrained architecture space, there are 6 SF decisions742

with 3 alternatives each and 2 SF decisions with 2 alternatives. 324743

possible decisions are found in this tradespace, and users are pro-744

vided with an option to download the tradespace enumeration in a745

CSV format, as shown in Figure 8.746

Figure 8: Generate Tradespace

Calculate Pareto Front computes the Pareto optimal set of poli-747

cies in the architectural space without considering uncertain factors748

in the farming environment. Using the optimization algorithm de-749

tailed in subsection 5.3, 18 Pareto optimal policies are found in the750

tradespace for Cheng Xin Garden’s configuration and can be ex-751

ported in a CSV format. These 18 policies are a significantly smaller752

set to proceed with for further analysis in MORDN where we mine753

for the Pareto optimal set of policies to analyze decision tradeoffs. In754

Figure 9, the entire tradespace is visualized on a three-dimensional755

plot, where each axis represents one of the metrics, and the opti-756

mal set of policies is highlighted to display their relation to the757

tradespace. In Figure 10, an interactive visualization of the Pareto758

front allows users to inspect the plot from different perspectives759

and select policies to display further details.760

8.3 Analysis in MORDM761

Many-Object Robust Decision Making (MORDM) was then used762

to decipher the policies’ performance, cost, and risk of CXG un-763

der simulated uncertain environments. To initiate analysis using764

MORDM, CXG inputted additional constraints and specifications765

on the tradespace. This allowed CXG to narrow the scope of analy-766

sis by specifying the key parameters of their farm region, including767

the type of crop grown, the area of the farm, the estimated climate768

complexity, and the average rainfall level. CXG was then also able769

to specify a set of constraints on the metrics to define the ideal770

tradeoffs for their farm. Finally, a metric range is used to classify771

the policies of interest and identify the key uncertainties for later772
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Figure 9: Visualization of the Pareto front and enumeration
of trade space

Figure 10: Visualization of the Pareto front

analysis. In Figure 11, the parameters are set to represent the at-773

tributes of CXG and metric ranges are set to the farm owner’s ideal774

tradeoff.775

With the defined parameters, the software used a many-objective776

optimization algorithm to calculate the optimal set of policies777

among the tradespace Pareto front, at the mean state-of-the-world778

Figure 11: Parameter inputs for the MORDMmodel

described by the parameters in Figure 11. The new set of policies779

found by the algorithm are the optimal policies after accounting for780

the effects of uncertainties, modeled through stakeholder analysis781

and research detailed in subsection 4.3. As shown in Figure 12, there782

are 9 optimal policies found among the tradespace Pareto front of783

18 policies, which demonstrates a significant reduction of the range784

of policies that we needed to examine.785

Figure 12: Optimal set of policies under mean state-of-world
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With the optimal set of policies on the mean state-of-the-world786

identified, the software performs analysis of each Pareto policy787

through Scenario Discovery under more robust uncertainties. A788

set of 1000 states-of-the-world are generated based on the distri-789

bution defined for every uncertainty variable. The set of optimal790

policies are evaluated in the set of 1000 SOWs to reflect each pol-791

icy’s characteristics and vulnerabilities under uncertainty. Consider792

that each policy consists of various numbers of different decision793

alternatives, making each policy uniquely exist in the trade space.794

As uncertainties may affect decisions differently, policies with simi-795

lar metrics in appearance may demonstrate distinct characteristics796

under uncertainty. The key objective of Scenario Discovery is to797

illustrate such distinction among the equivalently optimal set of798

policies to support further decision making.799

Figure 13: Visualization of optimal decisions in Scenario Dis-
covery

8.4 Results800

Based on the results generated from the Tradespace Exploration,801

we are able to zoom in onto 9 policies out of 324 possible policies.802

According to the farm owner of CXG, he placed more weight on803

improvements of performance than the cost of the system in the804

tradeoff between performance and cost, and he has a relatively high805

tolerance for risk on his farm (Figure 11). The decision maker’s806

preference lead us to only consider Policy 5 and Policy 6. These807

policies demonstrate a similar tradeoff between risk and cost, but808

with a small difference in their performances, as shown in Figure 14.809

Then, with the information provided by Scenario Discovery, we810

learn that Policy 5 is more likely to perform within the decision811

maker’s preferences than Policy 6, as shown when comparing Fig-812

ure 15 and Figure 16. Figure 16 shows points that fall outside of the813

accepted system performance as black. Such a difference is likely814

caused by the difference between policies’ sensitivity to the labor815

cost and area of the farm. Since both of these factors are likely to816

vary during the operation of the farm, the difference in how the two817

policies perform under the uncertain environment are important818

to the evaluation. Hence, we recommended Policy 5 as the system819

setup for CXG under their reported circumstances. These ideas and820

results were conveyed to the farm owner who hopes to implement821

our recommendations in the future.822

Figure 14: Policy 5 (right) and Policy 6 (left)

9 DISCUSSION823

With ROAM, farmers can understand what a Pareto optimal set of824

choices for a farm of interest might be. The idea of creating a DA825

system is daunting due to the number of choices that must be made.826

In section 8 the farm owner had over 324 policies to consider. ROAM827

simplified the process and allowed the user to understand the trade-828

offs when examining design decisions and to filter choices based829
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Figure 15: Policy 5 in Scenario Discovery

Figure 16: Policy 6 in Scenario Discovery

on their needs. ROAM presents Pareto optimal farm architectures830

based on performance, cost, and risk and climatic uncertainties.831

Further, ROAM is extensible, as the code is written in an object-832

oriented manner, and allows interchanging new parameters and833

analytical optimization models. ROAM users can conceptualize834

what a data-driven farm management system might look like based835

on their specific goals and farming environment.836

To allow for ease of use for our target users, farm-owners, sci-837

entific researchers, industry professionals, and decision makers,838

we developed the browser-end interface to host the workflow of839

ROAM. Users use ROAM to generate interactive visualizations for840

communication and demonstrations with colleagues. Farm-owners841

and farm stakeholders specifically utilize the configuration file and842

input parameter features to customize and explore the decision843

space for their farms. ROAM’s current implementation optimizes844

for cost, performance, and risk. For additional goals, an extension845

on the software and further data analysis must be implemented.846

10 CONCLUSION847

We presented the Realtime Optimization and Management System848

(ROAM). It is designed to identify the Pareto optimal set of tradeoffs849

for a Digital Agriculture (DA) based farm, where DA is seen as an850

approach to address the Global Agricultural Productivity (GAP)851

shortfall [50]. Specifically, DA enables data driven farm manage-852

ment, which requires on farm networking. A Software-Defined853

Farm (SDF) uses new networking on a farm to enable DA. Based on854

deploying five SDFs, 11 farmer interviews, and testing on a farm855

in California, ROAM is able to present Pareto optimal SDF archi-856

tectures for a given farm area of interest. ROAM presents general857

recommendations as to how to best implement a SDF based off of858

data inputted by the user and climatic data.859

11 MISCELLANEOUS860

861

Software862

863

Description: The Tradespace Exploration is a decision-support tool864

developed to find the optimal architectural design for the Software-865

Defined Farm using a Robust Decision Making framework. It iden-866

tifies potential robust strategies for architectural design, analyzes867

each strategy’s vulnerability, and evaluates their attributes under868

deeply uncertain farming environments. Paired with a browser-869

based application, it hosts the trade space exploration functionalities870
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and interfaces for user interactions and data visualizations.871

Software name: ROAM872

Developers: Yifan Zhao, Shiang Chin873

Language: Python 3.6+874

Supported systems: Microsoft Windows, GNU/Linux, macOS875

Licence: GNU General Public Licence v3876

Source code: https://github.com/ShiangC/Cornell_SDF877
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