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Abstract: Max-pressure control is a new approach to signal timing with mathematically proven network throughput properties. Over the past
decade, max-pressure control has emerged from a novel mathematical idea in a simple store-and-forward queueing model to include practical
aspects like a signal cycle, realistic traffic flow models, measurement errors, and intersection access for alternative modes. Furthermore,
max-pressure control is adaptive to local queues and to changes in network demand. Max-pressure control is also decentralized and easy
to compute. A broad range of numerical results in calibrated microsimulation models have mostly demonstrated superior performance from
max-pressure control compared with existing signal timing methods, and some researchers have started to experiment with max-pressure
control on actual roads. Given these benefits, the purpose of this review paper is to provide a summary of the mathematical approach,
methodological improvements, and numerical results. This summary is intended for researchers interested in continuing methodological
or numerical work and for practitioners exploring the potential use of this state-of-the-art signal timing method. DOI: 10.1061/
JTEPBS.TEENG-7578. © 2023 American Society of Civil Engineers.

Introduction

Intersections controlled by traffic signals are a major bottleneck for
traffic in many urban road networks. Consequently, effective timing
of traffic signals is highly important for improving traffic flow
through cities. Waiting times for vehicles must be balanced with
providing sufficient throughput because capacity is lost from phase
changes. Even after decades of implementation in practice, new re-
search is still being conducted on various approaches for improved
signal timing. From the practical side, traffic engineers use a mix of
fixed, adaptive, and coordinated signal timing plans for the different
demand periods throughout the day. Traffic signal timing plans are
also revised every few years based on changes to demand patterns.

This review article summarizes the progress on a novel approach
to signal timing known as max-pressure or back-pressure control,
which provides new methods for addressing many of the challenges
of timing traffic signals. Max-pressure control is based on work
by Tassiulas and Ephremides (1990) on network communications
packet routing with mathematically proven throughput properties.
However, vehicles moving through a traffic network behave much
differently than the movement of packets through communications
networks. Network communications involves computers sending
packets of data through a network at nearly the speed of light.
Transmission between computers is therefore almost instantaneous.
Furthermore, packet size is tiny relative to computer memory, so the
space required for storing packets is rarely a concern. The move-
ment of packets can also violate first-in-first-out behavior because
there are not any physical constraints to enforce it. Tassiulas and
Ephremides (1990) were also concerned with the routing of packets,
not only their transmission by computers. In contrast, vehicle travel
times on roads are significant, and the space available for queueing
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is limited. First-in-first-out discipline is usually required, and drivers

choose their routes independently. Therefore, the application of

max-pressure control to traffic networks requires significant study.

In building from the work of Tassiulas and Ephremides (1990),
most methodological studies of max-pressure control for traffic net-
works used one or more of the previous assumptions designed for
network communications. Although these assumptions are not real-
istic, they simplified the already-complex mathematics to admit for-
mal proofs of mathematical properties. Therefore, it is currently
unknown whether the favorable mathematical properties hold in
realistic traffic. However, many max-pressure papers have worked
on incorporating more realistic assumptions into methodology and/
or numerical results. For example, microsimulation studies have
demonstrated numerical benefits in realistic simulation models,
and Li and Jabari (2019) derived mathematical properties using
the kinematic wave theory to model traffic flow. These results sug-
gest significant potential for using max-pressure control in traffic
networks.

Max-pressure concepts were applied to an isolated intersection
by Wunderlich et al. (2007), but Wongpiromsarn et al. (2012) and
Varaiya (2013) developed the first max-pressure controls for net-
works of signalized intersections. Although the use of long queues
in adaptive signal timing existed previously (e.g., Arel et al. 2010),
this paper specifically focuses on methods that aim to use the math-
ematical throughput properties possible with max-pressure control.
Max-pressure control specifies a phase selection algorithm that se-
lects phases in real time based on the most recent traffic conditions.
This selection is significantly different from typical actuated or
adaptive signal timings due to its mathematical properties, and the
name max-pressure comes from the mathematical form of a key
calculation used in the control policy. Max-pressure control has
several key benefits that make it potentially attractive:

* Throughput/stability properties: Methodological work on max-
pressure control usually defines it within a model of network
traffic flow including stochasticity in vehicle demand, and vari-
ous forms of max-pressure control have all been mathematically
proven to serve all network demand whenever possible. These
properties apply to a city road network and not just one in-
tersection or corridor, and reduce the bottleneck limitations of
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signalized intersections on the movement of vehicles through

networks. These are also referred to as stability properties be-

cause the mathematical proofs are based on an equivalent def-
inition of network stability.

* Adaptive: Max-pressure control selects phases in real time based
on actual traffic conditions, which makes it fairly responsive to
those traffic conditions at a local level. At the network level,
max-pressure control can serve all demand whenever possible,
but does not depend on information about vehicle trips. There-
fore, it can respond effectively to unusual demand patterns as-
sociated with evacuations, events, or other circumstances for
which engineers have not developed timing plans.

e Decentralized control: Despite its network-level throughput
properties, most forms of max-pressure control can be decentral-
ized or distributed, meaning the phase selection at any individual
intersection depends only on the traffic conditions at incoming or
outgoing roads to that intersection. This makes the control easy
to compute and reduces the input data needed at any individual
intersection.

The purpose of this review article is to accelerate research on
and implementation of max-pressure control in three ways. First,
max-pressure methodologies are complex, involve some difficult
mathematical proofs, and include mathematical subtleties that are
not always explained well. We present a summary of the methodo-
logical approach to help readers understand the general concepts in
papers on max-pressure control. Second, we review methodologi-
cal developments to describe the current state of max-pressure con-
trol, build intuition about possible extensions, and discuss open
problems. Finally, we summarize the simulation work that has been
conducted on comparing max-pressure control to other signal timing
methods. We hope these aggregate simulation results will encourage
practitioners to seriously investigate whether max-pressure control
might be effective in their jurisdictions.

The remainder of this paper is organized as follows. We first
present an explanation of the methodological approach to max-
pressure control, followed by a review of improvements made to
the methodologies. We then summarize the simulation results, and
briefly dicuss some applications of max-pressure control beyond
traffic signals. Finally, we conclude and discuss important open
problems with max-pressure control.

Methodological Approach

Developing a max-pressure control with the desired throughput
properties involves several complex mathematical components.
Identifying these components in papers focused on methodological
extensions may be difficult, and certain important subtleties may
not be well explained. In this section, we present the general ap-
proach to help readers understand the methodological process.
Afterward, we discuss methodological changes and improvements
that other papers have made to this general form.

The approach starts by describing a typical network model of
the signalized traffic for max-pressure control. This model must
capture the time-dependent impacts of signal phase selection on the
stochastic movement of vehicles while being simple enough to
work with mathematically. Once the model is established, we de-
fine the max-pressure control. Afterward, we give a mathematical
definition of stability that is equivalent to the desired throughput
properties, and discuss methods of proving the stability properties.

Network Model

Consider a network G = (N, A) with nodes A and directed links
A. The set of links is further divided into A,, the set of source links,
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A, the set of sink links, and .A;, the set of internal links. Source
links represent entry points to the network for parked vehicles, such
as parking garages and other similar locations. Sink links represent
vehicles exiting to those same locations. Internal links connect two
intersections. Each type of link has a different flow model. Source
and internal links have similar flow models that are discussed sub-
sequently, and vehicles that reach sink links are assumed to exit the
network immediately.

Most papers on max-pressure control discretize time and use the
store-and-forward queueing model developed by Wongpiromsarn
et al. (2012) or Varaiya (2013). The store-and-forward queue as-
sumes that each link has a free-flow travel time of one time step.
Vehicles that enter a link are stored there, and can be forwarded on
to downstream links at subsequent time steps depending on the sig-
nal activation and link capacity. The assumption on one time step of
free-flow time is not limiting because a long road can be separated
into multiple links connected in series. The nodes in between such
links can be thought of as having an imaginary traffic signal that is
always green. Consequently, the store-and-forward queueing model
is equivalent to the point queue model of traffic flow.

The store-and-forward queueing model can either be based on
link occupancies (Wongpiromsarn et al. 2012) or turning movement
occupancies (Varaiya 2013). We describe the turning movement
version and discuss the changes involved for the link occupancy
version subsequently. For link occupancies, let x;;(¢) be the number
of vehicles on link i that will next move to link j at time 7. Some-
times x;;(¢) is called the queue on link 7 waiting for j, but that should
not be confused with a queue of stopped vehicles at a red light. In its
count, x; j(t) includes vehicles that are moving, even at free-flow
speed, but within the bounds of link i. In other words, xij(t) is
a measure of occupancy, or the number of vehicles on the link.
Occupancy differs from the density, or the number of vehicles
per mile. Let y;;(7) be the number of vehicles leaving link i for
jattime 7. Let p;;(¢) be the turning ratio at time #, and it is usually
assumed that p;;(7) is independent random variables that are iden-
tically distributed over time with known mean p;;. However, the
distribution of p;;(7) can vary with i and j. We want to define
the evolution of occupancies from time 7 to time ¢ + 1. For internal
links, the state evolution is given by

X (t+ 1) = x(1) — yu(t) + Z)’ij(t)ij(f) (la)
icA
where ;. 4v;;(7) = flow entering link j; and y ;(¢) = flow moving
from link j to link k at time #. For entry links, a similar conservation
law applies, but entering flow is based on demand d;(7):

Xje(t 4 1) = x(t) — y (1) +d; () pjs(2) (1p)

The entering demand d;(z) is usually assumed to be an indepen-
dent random variable that is identically distributed over time with
mean c_l j- Max-pressure papers usually do not make any assumptions
on the distribution of d;(t). Furthermore, demand can have a differ-
ent distribution (and different mean) for each j; it does not have to be
evenly distributed over the network. Egs. (1a) and (10) is therefore
stochastic due to the inclusion of p () and d;(z).

The outflows y;;(t) are defined in terms of signal activation
s;;(t) € {0,1}, turning movement capacity Q;;, and occupancy
x;(1):

yij(t) = min{Q;;s;;(1), x;; (1)} (2)

If desired, it is possible to replace a deterministic Q;; with
a capacity that varies randomly over time with known mean
(Varaiya 2013).
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The symbol s;;(¢) € {0, 1} represents either a protected green
light or a red light for movement from i to j. In other words,
the turning movement model is effective when individual turning
movements have separate right-of-way, e.g. left- and right-turn bays.
Let s(¢) be the vector of all s;;(¢) activations; s(¢) could also be
described as a block-diagonal matrix where the block-diagonal form
comes from the fact that s;;(#) = 0 if i and j are not upstream and
downstream links to the same node, respectively (Varaiya 2013).
For safety reasons we cannot have s;;(z) = 1 (representing a green
light) for all turning movements simultaneously. Let S be the set of
feasible phase activations, i.e., those determined by a dual-ring con-
troller. At any time step, s(¢) € S. Eq. (2) therefore suggests a con-
straint on the length of a time step; a time step should be at least as
long as the minimum activation time of any phase.

Max-Pressure Control

Varaiya (2013) gives the max-pressure control for the turning oc-
cupancy model as follows. Define the weight w;;() for movement
(i,j) at time ¢ as

wi;(t ijk Pijk (3)

ke A

Then the max-pressure control is to choose

s*(1r) € argmax{ Z
(

Wij(t)Qiijj(f)} (4)
s(1)eS i j)eA

There is some intuition behind why this control might be a good
idea. Eq. (3) increases with upstream occupancy x;;(¢) and de-
creases with downstream occupancies x (), so Eq. (4) is essen-
tially trying to move vehicles from long queues to short queues.
However, it is not obvious from intuition why p; appears in
Eq. (3). This demonstrates how relying on an intuitive explanation
can be misleading. Because the primary goal of max-pressure con-
trol is usually to establish mathematical stability properties, those
stability properties necessitate that the max-pressure control takes
on a certain form. In other words, when deriving a max-pressure
control, it is usually more efficient to attempt a proof of the stability
properties and identify the precise form of the max-pressure control
that will make the proof hold.

Stability Definition

The throughput properties depend on the following definition of
stability:

Definition 1: The network is strongly stable if there exists a
K < oo such that

lirglosup Z Z xi;(1)] < (5)

=1 (i,j)eA?

where 7' = time horizon. In other words, stability means that the
average number of vehicles in the network remains bounded. This
is useful because the number of vehicles in the network will on
average increase by the inflow (demand) and decrease by the out-
flow each time step. For Definition 1 to hold, the average outflow
must be greater than or equal to the average inflow, meaning ve-
hicles exit the network at the same rate at which they enter. In other
words, stability implies that all demand is served.

Stability is related to positive recurrence of Markov chains,
but is a stronger condition. Although the throughput properties do
not explicitly require a Markov chain, they are highly related to
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Fig. 1. Example network to demonstrate the relationship between
demand, capacity, and stability.

Markov chain theory. Indeed, the network model given here de-
scribes a Markov decision process (MDP) with state variables x;; (),
transition function given by Egs. (1) and (2), and decision variables
5;j(1). Solving this MDP computationally suffers from the curse of
dimensionality. Instead, the approach is to define the max-pressure
control policy, converting the MDP into a Markov chain, and prove
that certain favorable properties hold. These properties are still valid
for non-Markovian network models, although the method to estab-
lish them mathematically may change.

The objective is to prove that max-pressure control achieves sta-
bility whenever possible, which we refer to as maximum stability.
It is trivial to create an example that is impossible to stabilize. Con-
sider the network in Fig. 1 in which movement (1,2) and movement
(3.,4) conflict and cannot simultaneously be given green lights.
Suppose that capacities are Q1, = Q34 = 1,800 vehicles per hour
(vph). Any demand that exceeds d; + d3 > 1,800 vph is impossible
to be served by any feasible signal control. We define D to be the
stable region, or the set of demands for which there exists a signal
timing 7 that will stabilize the network. Maximum stability means a
control will achieve stability for any demand d € D. Because max-
pressure control does not make any assumptions about the distri-
bution of the random variables, the magnitude of the variance, or
deviations from the mean, does not affect the stability properties.
Mathematically, stability properties hold even under large variances
because Definition 1 is a property of the long-run average.

Every signal timing will achieve stability for some set of de-
mand, but may not achieve maximum stability. Therefore, the goal
of the stability properties is to prove that max-pressure control
achieves maximum stability. However, maximum stability is not
quite the same as achieving maximum throughput. Maximum sta-
bility is equivalent to maximum throughput for any demand d € D,
but does not say anything about the throughput for demand d ¢ D.

Characterizing the Stable Region

In the process of proving stability, papers often give equations that
explicitly define D. Typically, papers prove stability only for the in-
terior of the stable region (excluding its boundary). Let D be the
interior of D so there is an e difference between any d € D° and the
boundary of D. This e can be obtained by recalling the definition of
D as the set of demands that can be stabilized by some control
(Wongpiromsarn et al. 2012) or by an explicit analytical characteri-
zation. For instance, we can define the average demand for link i
as f; via

fi=d YieA, (6a)
f;ZZfipij VijeA (6b)
icA

Then we define D as the set of demands such that there exists an
S in the convex hull of S satisfying
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fiPi; £5Qi; ¥ (i.)) € A (6¢)

For demands in the interior of the stable region, Eq. (6¢) should
be a strict inequality.

Eq. (6) defines a set of demand rates D. 1t is not immediately
obvious that D = D, but that can be proven. We first prove that if
d ¢ D, then the network cannot satisfy Definition 1 of stability for
any control policy. If we also prove that d € D° (where D’ is the
interior of f)) implies the network can be stabilized, then we estab-
lish that D = D. Typically, the latter proof is conducted for the
max-pressure control: we prove that the max-pressure control will
stabilize the network if d € D°.

The § used in Eq. (6¢) can equivalently be defined as the average
proportion of time that (i, j) gets a green light in some signal ac-
tivation sequence s(z) (Varaiya 2013)

I
= m 3800 )

Note that s;;(r) € {0, 1}, representing the activation of a red
light or a green light, whereas 5;; € [0, 1] is the proportion of time
that s;;(f) = 1. In other words, s(z) € S and § is in the convex hull
of S. This demonstrates that the signal activation proportions used
by max-pressure control to achieve maximum stability can also be
replicated by a fixed-time signal control. However, finding such a
fixed-time signal control would require solving Eq. (6) with correct
knowledge of d, whereas max-pressure control adapts to any d € D
without explicit knowledge of d.

Proof of Stability Properties

We will not give a full proof here, but we will provide an outline of
the methods used to develop a proof. The general approach is based
to define a Lyapunov function v(#) satisfying the following condi-
tion: there exists a K < oo and € > 0 such that

Elv(r+1) —v(0)[x(1)] < K — e|x(1)] (8)

where x(¢) = vector of x;;(¢); and |x(¢)| = L1 norm. Eq. (8) implies
that Definition 1 of stability holds (Theorem 2 of Varaiya 2013).
The problem then involves finding an appropriate () function. Let
6;;(t) = x;;(t 4+ 1) — x;;(t). We can usually show that

E5(x(1] < K + | 00| ~ Elsu()0] S K=

©)

by converting Eq. (2) to K — E[s () Q] (see Varaiya 2013). Note
that |x (7 + 1)| — |x()| will not achieve the —e|x(¢)| term in Eq. (8).
Using

v(t) = Z (x;i(1)? (10)

results in
E[u(t+ 1) —v(0)[x(6)] = 2> _xi;(0)6;(1) + Y (8;;())% (1)
(N) (i.)

Then the goal is to show that (6;;(¢))* is bounded and that
> i) %ii(0)0i(1) < K —e[x(1)].

The remaining piece is to show that E[>;y;;(1)p(r)] —
E[s;x(1)Qx] < —e. This holds by rewriting Eq. (6¢), which is a
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strict inequality when d € D. Then proving stability usually re-
quires getting to the following comparison:

SI(I}?E);{ Z wii(0)(fipij — sij(l)Qi.i)}
(i

Jed
< Z wii (1) (fiPij — 5,04 (12)
(i.j)eA?
<-—ce¢ Z wi; (1) (13)
(i.j)eA?

where a phase s*() satisfying

s*(1) € argmax{ Z wii (0 (fibij — Sij(t)Qij)} (14)
(i.j)eA?

s(r)eS

is compared with a control § that satisfies Eq. (6¢). Eq. (12) holds
because § is in the convex hull of S, which is totally unimodular,
and Eq. (13) holds from Eq. (6¢), which is a strict inequality when
d € D°. Because f; and p; ; are constants for the purposes of phase
selection, the choice of s*(7) defined by Eq. (14) is equivalent to the
max-pressure control of Eq. (4).

Some papers explicitly characterize D (Varaiya 2013; Xiao et al.
2015a; Xu et al. 2022). Other papers do not explicitly write Eq. (6¢)
(Wongpiromsarn et al. 2012), or even leave out Eq. (6) entirely
(Li and Jabari 2019). The reader is referred to the these papers
for more details on different proof strategies.

Implementation Properties

Eq. (4) could potentially find it optimal to give a green light fewer
turning movements than is typical for traffic signal phases, or even
no movements at all. This is because the weight function in Eq. (3)
decreases with downstream vehicle occupancies, so long down-
stream queues could cause w;;(#) to be negative for all turning move-
ments at an intersection. It is possible to restrict S to be the set of
dual-ring signal controller phases and exclude the selection of an all-
red phase. Alternatively, Noaeen et al. (2021) proposed a phase im-
provement step in which turning movements that do not conflict
with the s*(#) from Eq. (4) would also be given a green light. Chang
et al. (2020) discussed the implementation of max-pressure control
from the perspective of cyberphysical system design.

As specified by Eq. (4), the required information to implement
max-pressure control is the turning movement occupancies x;;(7)
for the current time step, capacities Q;;, and average turning pro-
portions p;;. Most forms of max-pressure control do not depend on
either d or d(¢), so their existence is used only to establish through-
put properties. The lack of dependency on demand could admit
some potential robustness against changes to d. If d changes to
d’, as long as d’ is in the stable region D, then max-pressure control
should achieve long-run stability.

Most forms of max-pressure control also exhibit the decentral-
ized or distributed property. The signal phase selection at node 7 in
Eq. (4) does not depend on any constraints that would affect the
phase selection at another node n’ # n. Therefore, these phase se-
lections can be made independently while still achieving the maxi-
mum objective value. In other words, the signal controller at each
intersection can independently select the correct max-pressure phase
without any central system coordination. Furthermore, the phase
selection at node 7 is the activation of a green light for some turn-
ing movements (i, j) centered around n. That selection is based
on w;;(1), which is a function of upstream occupancies x;;(¢) and
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downstream occupancies x;(f). Consequently, the only informa-
tion required for the phase selection at node » is the occupancies
of links immediately upstream and downstream of 7.

Previous Methodological Work

Many studies have made various methodological improve-
ments or modifications to the original max-pressure controls of
Wongpiromsarn et al. (2012) and Varaiya (2013). Using the basic
max-pressure control framework described previously as a starting
point, we discuss various modifications to the original structure.

Link Occupancy Model

An alternative approach to the turning movement occupancy model
x;;(1) is to define link occupancies x;(t), where x;(t) is the number
of vehicles on link 7 at time ¢ (Wongpiromsarn et al. 2012). The
occupancy evolution Egs. (1) and (2) are modified accordingly,
although they still retain the familiar conservation of vehicles
structure. Then maximum stability can be achieved with a weight
function of

wij = x;(1) — x;(t) (15)

This max-pressure control does not require knowledge of the
turning proportions p;; (Gregoire et al. 2014a), which can be ad-
vantageous when those turning proportions are unknown or ex-
pected to change. However, the link occupancy model x;(¢) also
assumes that all vehicles on link i share the same right-of-way,
which may not accurately represent left- or right-turn bays. Never-
theless, this link occupancy model has been used in some other
extensions of max-pressure control (e.g., Le et al. 2015; Liu et al.
2018).

Realistic Traffic Flow

The store-and-forward queueing model lacks both jam density and
a realistic flow-density relationship, so any throughput properties
proven in the store-and-forward model may not apply to actual
traffic. Therefore, extending the throughput properties to a more
realistic traffic flow model is important for achieving those benefits
in practice. Furthermore, a more realistic flow model will likely
necessitate a change to the specific form of the max-pressure con-
trol, resulting in a control that may perform better for actual traffic.
The relevant methodological papers are summarized in Table 1.
Many other papers conducted simulations using more realistic traf-
fic models, but did not incorporate those traffic models into their
methodologies, and will be discussed subsequently in the section
on simulation results.

The first change was to add a jam density to the store-and-
forward queueing model by preventing x;;(7) from exceeding a
maximum occupancy X;;. Some papers (e.g., Xiao et al. 2014) refer
to the maximum occupancy as the queue capacity. To distinguish
between road capacity (maximum vph), we refer to the maximum

Table 1. Methodological work on realistic traffic flow models

Paper Realistic aspects Stability proof?
Gregoire et al. (2014b) Maximum occupancy No
Xiao et al. (2014) Maximum occupancy Yes
Li and Jabari (2019) Kinematic wave theory Yes
Noaeen et al. (2021) Maximum occupancy Yes
Yu et al. (2021) Kinematic wave theory No
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occupancy via the jam density (maximum vehicles per mile). Given
a link of fixed length, the jam density can be converted into maxi-
mum occupancy. Constraining the maximum occupancy involves
adding the constraint

Z)’ij(l)ij(f) +x(t) < Xji (16)

icA

This constraint can be implemented as a restriction on forward
movement in Eq. (2) (Gregoire et al. 2014b). Alternatively, Noaeen
et al. (2021) use Eq. (16) as a constraint on s,-j(t) so a green light
activation for (i, j) may result in s;;(f) < 1 (i.e., part of the green
light cannot be used). Either way, the addition of finite maximum
occupancies creates the potential for loss of work conservation
(Gregoire et al. 2014b). In other words, a signal activation pattern
s(#) with corresponding § satisfying Eq. (6¢) may not provide suf-
ficient capacity because vehicles cannot move forward during a
green light due to the occupancy constraint.

The use of Definition 1 for stability is not immediately clear
under these changes. Definition 1 requires that vehicle occupancies
remain bounded on average, which would seem to be trivally true
if queues have a finite occupancy. Typically, studies assume that
queue lengths on entry links remain unbounded so that unserved
demand will accumulate in the network and result in instability
even though internal road links have a finite maximum occupancy.

Gregoire et al. (2014a) demonstrated how the loss of work con-
servation could prevent max-pressure control from achieving sta-
bility guarantees, and proposed a new pressure term that achieves
work conservation. However, they did not prove any stability prop-
erties of their modified max-pressure control. Xiao et al. (2014)
proposed a different pressure term and proved limited stability
properties. Their policy achieves stability for a subset of D°, but
requires a larger gap between any d and the boundary of D for their
stability proof to hold and therefore does not achieve maximum
stability.

Adding a maximum occupancy essentially converts the store-
and-forward queueing model from a point queue to a spatial queue
model of traffic flow. However, mesoscopic traffic flow models have
coalesced around extending the kinematic wave theory (Lighthill
and Whitham 1955; Richards 1956), and several of those models
are potentially well suited for max-pressure control. For instance,
the cell transmission model (Daganzo 1994) has a similar state evo-
lution as the store-and-forward queueing model with a maximum
occupancy constraint. Li and Jabari (2019) identified a position-
weighted back-pressure policy that was proven to achieve maximum
stability for traffic flow following a very general kinematic wave
model. Unlike previous work, their control is also defined in con-
tinuous time as opposed to discrete time steps. Their weight function
involved integrals of position and density, unlike Eq. (3), which in-
volves only the occupancies. This appears to be the first successful
max-pressure control for a kinematic wave model of traffic flow, and
could be a useful starting point for later work. Noaeen et al. (2021)
developed a different pressure calculation based on the saturated
green time and effective outflow under the assumption of a triangu-
lar flow-density relationship and with discretized time, and were
able to prove maximum stability for their control. Yu et al. (2021)
also developed a pressure-based phase selection for the link trans-
mission model (Yperman et al. 2005), but did not study the stability
properties.

Cycle-Based Max-Pressure Control

The selection of phases by max-pressure control is simply the phase
defined by Eq. (4). Because this phase is based on link occupancies,
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Table 2. Methodological work on cycle-based max-pressure control

Fixed

cycle Stability
Paper length? Pressure calculation proof?
Le et al. (2015) Yes Logit model Yes
Pumir et al. (2015) Yes Link occupancy Yes
Anderson et al. (2018) Yes Link occupancy Yes
Levin et al. (2020) No Link occupancy Yes
Xu et al. (2021) No Path-based occupancy No
Ma et al. (2020) No Link occupancy No

which are stochastic, the phase selection is not guaranteed to fol-
low any cycle structure. This can cause two potential problems for
implementation in practice. First, drivers who are accustomed to
observing traffic signal cycles may become confused when they
observe their phase being skipped due to the alternating selection
of other phases by Eq. (4). Second, any individual turning move-
ment could have an arbitrarily long time before getting a green
light, resulting in high waiting times for individual vehicles. Both
of these situations could lead to repeated driver complaints or, in
the worst case, drivers believing the signal controller to be errone-
ous and running a red light.

Consequently, several studies have taken various approaches to
adding a signal cycle to max-pressure control. These studies are
summarized in Table 2. In this context, a signal cycle is an exog-
enous and fixed ordering of a set of phases, and the signal controller
must iterate through each phase in sequence. However, the duration
of each phase and of the cycle could change in real time. Le et al.
(2015) and Pumir et al. (2015) both proposed cycle-based max-
pressure controls with a fixed cycle length but changing durations
of each phase, and both proved that their controls achieved maxi-
mum stability. Pumir et al.’s (2015) work was closely based on
Varaiya’s (2013) control, using the turning movement occupancies
of Eq. (1) and selecting phase durations based on Eq. (3). Le et al.
(2015) used a link occupancy model, but the main difference is
their use of a logit model to determine phase durations. Also, their
time step represented one cycle instead of one phase selection,
which seems to require that all intersections have the same cycle
length. Anderson et al. (2018) extended the phase duration selec-
tion of Pumir et al. (2015) with each time step representing one
signal cycle as in Le et al. (2015).

Levin et al. (2020) extended the model of Le et al. (2015), but
instead of using a fixed cycle duration, they proposed a model pre-
dictive control (MPC) approach to updating the phase durations
each time step. They assumed that each time step activated exactly
one phase, and that each phase had to be activated at least once
per cycle, although cycle durations could vary up to an exogenous
maximum. This ensures that each turning movement gets green
time at least once per cycle, but also reduces the size of the stable
region because the range of possible values for §;; is smaller than
[0,1]. They proved the maximum stability property among all sig-
nal controls with a similar limitation, and also simplified the MPC
to a single phase selection each time step. Xu et al. (2021) and Ma
et al. (2020) also used MPC in their cycle-based max-pressure con-
trol, but did not prove maximum stability. Xu et al. (2021) used a
path-based queueing model by adding a path index to each x;;(¢)
variable, which ignores first-in-first-out interactions between ve-
hicles on different paths using the same link. Ma et al. (2020) applied
the max-pressure approach to a central intersection coordinating
phases with peripheral intersections.
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Lost Time

Most methodological studies have ignored lost time due to phase
switching. Lost time includes both the all-red actuation in between
phases and any time lost due to change intervals and startup delays.
Lost time could be modeled by representing a green light with
s;7(t) <1 to represent that part of the green light activation time
is lost. However, this approach adds lost time when s;;(t + 1) =
S; j(t), i.e., the signal activation does not change. Le et al. (2015)
and Anderson et al. (2018) included lost time by assuming that
some time per cycle is lost. Levin et al. (2020) modeled lost time
by setting the green light signal value to O < s;;(#) < 1 when switch-
ing phases. Wang et al. (2022) suggested modifying the weight
function w;;(¢) into a more general form and adjusting it with
reinforcement learning to reduce the impacts of lost time on
performance.

Handling Measurement Errors

Implementation in practice requires measurement of x;;(¢), Q;;, and
Dj» all of which are subject to errors due to sensor malfunctions or
data limitations. Therefore, several studies have investigated the
stability properties of max-pressure control under measurement
noise. Varaiya (2013) briefly discussed that if Q;; and p;; had meas-
urement noise but converged to the true values, then the max-
pressure control would still achieve maximum stability. Xiao et al.
(2015b, a) explicitly added measurement errors to their model and
used an online estimation for the turning proportions. The proof
of maximum stability is achieved by hiding the error terms in the
constant K in Eq. (8).

Alternatively, Cao et al. (2020) and Zhang et al. (2020) sug-
gested using connected vehicle data to estimate queue lengths, and
integrated a triangular flow-density relationship into their estima-
tion. However, the stability properties of their control are not clear.
Li et al. (2021a) also used estimated queue lengths from connected
vehicles for their max-pressure control. Their method converted
speed estimations from connected vehicles into density estimations,
which were then used in the pressure calculation.

Yen et al. (2021) considered the impact of deliberate measure-
ment errors introduced by a cyberattacker on max-pressure control,
and used a 0-1 knapsack problem to choose the optimal attack
strategy. Unfortunately, traffic signal systems are generally vulner-
able to cyberattacks (Ghena et al. 2014) with potentially large im-
plications for network performance (Perrine et al. 2019). However,
the security of signal controllers is mostly outside the scope of this

paper.

Integration with Reinforcement Learning

Although the maximum stability property is beneficial, max-pressure
control does not make any claims about achieving optimality in other
performance characteristics such as vehicle delay. Furthermore, be-
cause multiple policies can achieve maximum stability, there are op-
tions to choose a policy out of the class of maximum-stable policies
with favorable performance in other areas. For instance, Xiao et al.
(2015a) added phase weights to prioritize certain phases. Other stud-
ies have combined reinforcement learning with max-pressure control
to improve performance while retaining maximum stability. Wang
et al. (2022) proved maximum stability for a generalized weight
function w;;(¢) that is monotonically increasing with respect to
queue length x;;(1). They then applied reinforcement learning to de-
termine wy;(t), with favorable simulation comparisons to other max-
pressure methods. Wei et al. (2019) proposed a Q-learning approach
that was combined with the max-pressure weight function. Other
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studies added reinforcement learning without explicitly retaining the
stability properties. Boukerche et al. (2021) suggested using the
pressure as the reward function for signal control, and included data
transmission delays. Maipradit et al. (2019, 2021) used Q-learning to
estimate route congestion for the traffic phase selection.

Alternative Modes with Separate Right-Of-Way

Egs. (1) and (2) define links as separate rights-of-way that interact
only at intersections. This model is applicable to some degree
for road links because there are still some right-of-way interactions
between turning movements sharing the same approach. More gen-
erally, the same concept can be applied to other types of right-
of-way that only interact with roads at intersections. For instance,
Xu et al. (2022) modified max-pressure control to include bus rapid
transit driving on separate bus lanes with transit signal priority. Bus
lanes interact with private vehicle lanes only at intersections where
conflicts between bus movement and private vehicle movement
can occur. They proved that their max-pressure control achieved
maximum stability among all other controls providing transit signal
priority. Chen et al. (2020) used max-pressure control to decide how
to activate a combination of pedestrian crosswalks and vehicle
movement, with pedestrians traveling on separate pedestrian links
that only interact with road links through crosswalks. Although
they used autonomous intersection management (Dresner and
Stone 2004) for their intersection vehicle control, the concept could
also be applied to traffic signals.

Simulation and Experimental Results

Although the throughput properties of max-pressure control are
well established mathematically, at best it is proven to achieve the
maximum throughput possible. The mathematical results establish
that a properly designed fixed-time control could achieve the same
throughput as max-pressure control. Therefore, alternative signal
timing methods might perform better than max-pressure control
in terms of other metrics, such as delay. Furthermore, the math-
ematical properties of max-pressure control are usually based on

Table 3. Comparisons with alternative signal controls

an unrealistic model of traffic flow, so it is unclear how well they
will apply to actual traffic. The purpose of this section is to sum-
marize the extensive simulation and experimental results that have
been published so far. Many studies include some simulation re-
sults as part of their presentation. In this section, we focus on papers
that attempted a comparison with realistic traffic conditions. Those
include simulations that were calibrated based on real-world mea-
surements and experiments on actual roads.

Comparisons with Alternative Signal Timing Methods

Many papers compared max-pressure control with fixed or actuated
signals. Some of the aforementioned studies conducted simulations
in artificial grid networks. Although these studies are valuable for
comparison purposes, other studies included simulations on cali-
brated models of actual roads in commercial microsimulation,
and we believe these studies are more convincing for obtaining
insights about the performance on actual roads. By calibration,
we mean models that were based on observations of approach
volumes, turning ratios, and current signal timings.

Because current microsimulators do not natively support max-
pressure control, such studies had to create a modified signal con-
trol in the microsimulation software of choice. As a result, some of
the studies mentioned here were entirely about simulation compar-
isons. Some other studies included simulations as part of a meth-
odological contribution. Most studies used Wongpiromsarn et al.’s
(2012) and Varaiya’s (2013) acyclic max-pressure control and/or
Le et al.’s (2015) cyclic max-pressure controls in their simulations.
Overall, most studies report that max-pressure performs better than
fixed-time or actuated-coordinated signal timing methods. Table 3
summarizes simulation results comparing max-pressure control with
more standard signal timing methods using realistic simulations.
Many of the methodological papers included simple simulations
using store-and-forward queueing models on grid networks, but
those are not included in Table 3 to highlight the comparisons using
realistic simulation.

Simulation studies generally looked for changes to through-
put, delay, travel times, vehicle occupancies, vehicle speeds, and/or
number of stops. Reductions in delay are related to increases in

Max-pressure Simulation No. of
Paper control software intersections Location Comparison control Improvements
Wongpiromsarn et al. (2012) Acyclic MITSIMLab 15, network ~ Sweden SCATS Queue length
Xiao et al. (2015a) Cyclic Vissim 5, corridor Singapore Fixed time Delay, stops
Xiao et al. (2015¢) Cyclic Vissim 14, network  Singapore Fixed time Delay
Le et al. (2015) Acyclic, cyclic SUMO 72, network  Melbourne, Australia  Proportional Delay, queue length
Dakic et al. (2015) Acyclic Vissim 5, corridor Salt Lake City Fixed time, actuated =~ None
Pumir et al. (2015) Cyclic Aimsun 11, network  San Diego Fixed time, actuated  Queue length, stops
coordinated
Lioris et al. (2016) Acyclic PointQ 16, corridor ~ Los Angeles Fixed time Decongestion
Le et al. (2017) Acyclic SUMO 16, network  Melbourne, Australia  Fixed time Travel time
Sun and Yin (2018) Acyclic, cyclic Vissim 12, corridor  Gainesville, Florida Actuated coordinated  Delay, stops
Anderson et al. (2018) Cyclic Aimsun 11, network  San Diego Actuated coordinated  None
Wang and Abbas (2019) Acyclic Vissim 3, corridor Blacksburg, Virginia Optimized Delay
Li and Jabari (2019) Acyclic SCOOT 12, network ~ Abu Dhabi, Fixed time Queue lengths,
United Arab Emirates delay
Sha and Chow (2019) Acyclic, cyclic SUMO 12, network  Grid Centralized None
Ramadhan et al. (2020) Acyclic, cyclic Vissim 6, network Bandung, Indonesia Fixed Queue lengths
Bai and Bai (2021) Acyclic SUMO 2, isolated Changchun, China Fixed time Travel time,
25, network queue lengths
Li et al. (2021a) Acyclic Microsimulation 12, network ~ Abu Dhabi, Fixed time Delay, queue
United Arab Emirates lengths
Barman and Levin (2022) Acyclic, cyclic SUMO 7, corridor Minneapolis Actuated coordinated  Delay
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throughput because vehicle demand around peak hours is usually
much less than the network capacity. For instance, over a 4-h sim-
ulation comparing actuated and max-pressure controls, all vehi-
cles might exit for both types of signal timing resulting in similar
average throughput measurements (Barman and Levin 2022).
However, if peak hour traffic can pass through the network with
higher throughput from max-pressure control, that higher through-
put may appear in the aggregate results as smaller average travel
times or delays.

Wongpiromsarn et al.’s (2012) Acyclic

Max-Pressure Control

Several studies compared Wongpiromsarn et al.’s (2012) acyclic
max-pressure control with alternative signal timing methods in
calibrated microsimulation models. Wongpiromsarn et al. (2012)
compared their own max-pressure control with sydney coordinated
adaptive traffic system (SCATS) on a 14-intersection corridor in
Sweden using MITSIMLab, and found that max-pressure control
reduced queue lengths. Le et al. (2017) and Bai and Bai (2021)
compared Wongpiromsarn et al.’s (2012) control to fixed-time traffic
signals in SUMO and found reductions in delay. Le et al.’s (2017)
results used SUMO to model a 16-intersection network from
Melbourne, Australia. Bai and Bai (2021) modeled a 25-intersection
network in Changchun, China. Unlike other studies, Dakic et al.
(2015) found that optimized fixed-time or actuated signal timings
performed better than max-pressure control on five intersections
in Salt Lake City using Vissim.

Varaiya’s (2013) Acyclic Max-Pressure Control

Varaiya (2013) presented an alternate acyclic max-pressure con-
trol tracking vehicle occupancies per turning movement instead
of per link like Wongpiromsarn et al. (2012). Varaiya’s (2013) max-
pressure control has been the subject of more simulation studies.
However, we did not find any studies directly comparing Varaiya’s
(2013) control with Wongpiromsarn et al.’s (2012) control in
simulation.

Wang and Abbas (2019) compared Varaiya’s (2013) control
with several signal optimizations including Vistro and a model pre-
dictive control method they proposed in a Vissim model of a cor-
ridor in Blacksburg, Virginia. Li and Jabari (2019) compared their
control, Varaiya’s (2013) and Gregoire et al.’s (2014b) controls, and
fixed-time signals in a network from Abu Dhabi, United Arab
Emirates, in SCOOT. Li et al. (2021a) simulated fixed-time signals
and Varaiya’s (2013) max-pressure control with and without esti-
mating queue lengths from connected vehicles on calibrated mod-
els in Abu Dhabi, United Arab Emirates. The three aforementioned
studies observed that max-pressure control reduced delays, with Li
and Jabari (2019) and Li et al. (2021a) also observing reductions in
vehicle occupancies. However, Lioris et al. (2016) found that pre-
timed signals achieved lower delays on a corridor in Los Angeles
using the PointQ discrete event simulation. Max-pressure control
was still observed to be more effective at handling periods of high
congestion.

Le et al.’s (2015) Cyclic Max-Pressure Control

After the development of Le et al.’s (2015) cyclic max-pressure con-
trol, some studies started using it in simulation due to the practical
benefits of having a signal cycle. Xiao et al. (2015a, c) compared
it with fixed-time signals using Webster’s formula on networks in
Singapore using Vissim. They observed reductions in delay and
the average number of stops. Xiao et al. (2015c) further explored
through simulation the integration of bus and pedestrian intersection
behaviors, which adds additional constraints to max-pressure con-
trol. Xu et al. (2022) developed a modified max-pressure control
specifically to integrate bus rapid transit.
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Other studies compared Le et al’s (2015) control with both
Varaiya’s (2013) control and alternative methods. Le et al. (2015)
themselves compared their cyclic control, Varaiya’s (2013) acyclic
control, and proportional signal timings on a 72-intersection net-
work based on Melbourne, Australia, in SUMO. Sun and Yin
(2018) modeled a 12-intersection corridor from Gainsville, Florida,
in Vissim to compare the existing actuated-coordinated control.
Ramadhan et al. (2020) modeled a six-intersection network in
Bandung, Indonesia, in Vissim based on observed data. Sun and
Yin (2018) and Ramadhan et al. (2020) found that both types of
max-pressure control performed better than the alternative signal
timings. Furthermore, they observed that Varaiya’s (2013) control
had lower delays than Le et al.’s (2015) control, which is possibly
because Varaiya (2013) is not constrained to follow a signal cycle
and can respond at shorter time steps. Varaiya’s (2013) control se-
lects one phase per time step, whereas Le et al.’s (2015) time step
represents an entire signal cycle. However, Le et al. (2015) found
that their control achieved lower delays than Varaiya’s (2013)
control. Le et al. (2015) and Ramadhan et al. (2020) also found
that max-pressure control reduced queue lengths. In particular,
Ramadhan et al. (2020) observed that max-pressure control could
prevent gridlock in a disturbed network caused by a partial road
closure.

In contrast, Sha and Chow (2019) compared Varaiya’s (2013) and
Le et al’s (2015) controls with the centralized (non-max-pressure)
control of Diakaki et al. (2002). With fixed route choice, the cen-
tralized control had lower delays, but after route choices were up-
dated it performed similarly to max-pressure control.

Other Cyclic Max-Pressure Controls

Besides the cyclic control of Le et al. (2015), other studies have
proposed alternative cyclic max-pressure controls and compared
them in simulation. Pumir et al. (2015) and Anderson et al. (2018)
modeled 11 intersections in San Diego in Aimsun and compared
their cycle-based max-pressure controls with actuated-coordinated
signals. Performance was similar between the max-pressure and
actuated-coordinated controls, with Pumir et al. (2015) observing
some reductions in queue lengths. Barman and Levin (2022) con-
ducted detailed SUMO microsimulations of seven intersections
across two corridors at different time periods, calibrated to match
Hennepin County, Minnesota, data. They compared the current
actuated-coordinated signals with Varaiya’s (2013) acyclic and
Levin et al.’s (2020) cyclic controls. Although performance varied,
most intersections had some max-pressure parameters that would
increase performance.

Comparisons between Different Types of
Max-Pressure Controls

Several studies compared several variants of max-pressure con-
trol against each other in realistic networks, and these are worth
mentioning separately. Levin et al. (2020) compared Varaiya’s
(2013), Le et al.’s (2015), and their cyclic max-pressure control
in a mesoscopic point queue model of Austin, Texas, and found
that Varaiya’s (2013) acyclic control had lower delays than both
cyclic max-pressure controls. Also, Levin et al.’s (2020) cyclic
control performed better than Le et al.’s (2015) cyclic control
due to the variable cycle lengths. Robbennolt et al. (2022) studied
Varaiya’s (2013) and Levin et al.’s (2020) cyclic control, and a new
semicyclic control in a SUMO model of Austin, Texas. They also
found that Varaiya’s (2013) control had lower network occupan-
cies than Levin et al.’s (2020) control. Their new semicyclic con-
trol achieved similar performance to Varaiya’s (2013) control
while retaining some aspects of a signal cycle.
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Experiments on Actual Roads

Implementation on actual roads is made difficult by the fact that most
current signal controller hardware does not support the implemen-
tation of novel adaptive algorithms such as max-pressure control.
Nevertheless, two studies were still able to implement max-pressure
control in reality by installing their own hardware. Unfortunately,
both studies relied on waiting times or travel times instead of
road occupancies, leaving open the question of how conventional
occupancy-based max-pressure control performs on actual roads.
Mercader et al. (2020) implemented a max-pressure control based
on waiting times, which were obtained by a Bluetooth detector that
registered nearby Bluetooth devices. Their max-pressure controller
appeared to perform better than a fixed-time controller in a compari-
son to historic data, but their results were limited. Their estimation
of waiting times was also incomplete because not all vehicles con-
tained Bluetooth devices. Dixit et al. (2020) used crowdsourced
travel time data from Google Maps to determine phase durations
within a fixed cycle similar to Le et al. (2015). They conducted field
experiments on seven intersections across Indonesia and India using
an Arduino control board to replace the signal controller with multi-
ple days of experiments. They reported a net decrease in intersection
delay at all intersections, with most individual approaches receiving
statistically significant benefits.

Applications beyond Traffic Signals

Max-pressure control itself is adapted from back-pressure routing
of communications networks (Tassiulas and Ephremides 1990), so
it is natural to apply the concepts of max-pressure control to other
transportation systems where achieving maximum throughput is
challenging. We discuss three such applications that have been
studied in the literature. There are probably more problems within
transportation engineering that could benefit from max-pressure
concepts.

Combined Signal and Route Control

Since Tassiulas and Ephremides (1990) combined route choice and
node service of communications networks, several studies inte-
grated route choice and traffic signals. Because drivers ultimately
control their vehicle movements, route choice can be modeled as an
imposed control or instead as an advisory, and both assumptions
have been studied. There are at least two approaches to including
destinations. Gregoire et al. (2016) and Le et al. (2017) assumed that
the turning movements p;;(¢) were controllable within Wongpirom-
sarn et al.’s (2012) link occupancy model. Other studies added a
destination index to the occupancies, i.e., defining x!(7) to be the
number of vehicles on link i at time ¢ destined for s (Zaidi et al.
2016; Maipradit et al. 2021). The latter approach is useful for en-
suring that vehicles are routed toward their actual destination, but
potentially introduces first-in-first-out issues in the flow modeling
on link 7 because vehicle queues are separated by destination. An-
other common modeling choice is the use of a shadow or virtual
network that tracks all real vehicles but also has a small e probability
of adding an additional fake vehicle when a real vehicle enters the
network. This e probability was said to help with stability, although
many of the route control studies did not discuss the mathematical
details of stability properties.

Most studies assumed that route controls are imposed. Zaidi
et al. (2015, 2016) used a model with virtual link queues tracking
a destination index. Liu et al. (2018) presented a similar model with
a bias term that encouraged following the shortest path. Taale et al.
(2015) used a route-based pressure model with a cyclic max-pressure
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control based on Le et al. (2015). Maipradit et al. (2019, 2021) used
a shadow network with a destination index, but also added a bias
term to their weight function that was determined by Q-learning.
None of the aforementioned papers included a proof of the stability
properties.

Gregoire et al. (2016) and Le et al. (2017) both modeled a partial
compliance scenario in which a limited proportion of vehicles
would comply with route controls. Both Gregoire et al. (2016)
and Le et al. (2017) used link occupancy models without explicit
tracking of destination indexes, and included a proof of the stability
properties. The proof technique is generally similar to stability
proofs for max-pressure control without route control, but includes
additional complexity around the turning proportions.

Overall, simulation results generally showed that max-pressure
with route control reduced travel times beyond max-pressure alone.
However, Le et al. (2017) observed that a large proportion of vehicles
following route control could increase travel times due to a large
emphasis in their max-pressure on routing to avoid congestion.

Automated Intersection Control

Autonomous intersection management (Dresner and Stone 2004)
is very different from the phase-based structure of traffic signals
because vehicles in conflicting turning movements use the intersec-
tion simultaneously, with the speed and timing of individual ve-
hicles controlled by the intersection to prevent conflicts (Levin and
Rey 2017). This precise individualized control is designed for au-
tomated vehicles, and all relevant max-pressure studies have as-
sumed that only automated vehicles use autonomous intersection
management. Nevertheless, a similar max-pressure approach can be
applied to achieve maximum stability of autonomous vehicle net-
work flows, except with s;;(7) € [0, 1] instead of in {0,1} to model
simultaneous activation of conflicting turning movements. A differ-
ent model, such as the conflict region model (Levin et al. 2016), is
then applied to describe how conflicts restrict intersection flows.
Rey and Levin (2019) used max-pressure control to decide between
activating a traffic signal phase for human-driven vehicles or autono-
mous intersection management for automated vehicles, which were
on separate rights-of-way. They were the only study to include a
mixture of human-driven and automated vehicles, and modeled the
mixed behavior by separating human-driven and automated ve-
hicles on different lanes and preventing simultaneous intersection
use. Chen et al. (2020) integrated automated intersection manage-
ment and pedestrian crosswalk activation, and used max-pressure
control to decide when to activate crosswalks. Levin et al. (2019)
controlled a combination of autonomous intersection management
and dynamic lane reversals (Hausknecht et al. 2011). Both Chen et al.
(2020) and Levin et al. (2019) assumed that all vehicles were auto-
mated. All of these studies presented proofs of maximum stability.

Ridesharing Dispatch

Although unrelated to intersection control, the dispatch of rideshar-
ing or (autonomous) mobility-on-demand vehicles benefits from
throughput guarantees in terms of serving passenger requests. Kang
and Levin (2021), Li et al. (2021b), and Levin (2022) applied max-
pressure concepts to this setting with proofs of maximum stability.
Kang and Levin (2021) tracked the number of passengers waiting
for service, and used a model predictive control approach for the
max-pressure control. Li et al. (2021b) and Levin (2022) instead
tracked the waiting time of the longest-waiting customer at each
location, and developed a maximum-stable control based on required
service times. Although max-pressure control does not translate di-
rectly into ridesharing due to differences in the network evolution
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dynamics, these papers demonstrate that the maximum stability
concept may be useful in other contexts.

Conclusions and Future Work

The previous discussion has several main takeaways. First, we
summarized the methodological approach to max-pressure control.
Although other methodological papers have varying organizations,
we suggest that readers look for the individual components pre-
sented here. We also hope that the discussion will explain some
methodological concepts that may not have been made clear in other
papers. Next, we discussed several methodological improvements to
max-pressure control. Researchers have found ways to add more
realistic traffic flow models and practical constraints such as cycle
structure and lost time while retaining the maximum stability prop-
erties. These results suggest that further methodological extensions
are possible without giving up the nice mathematical properties.

Of course, the main determinant for use in practice is its perfor-
mance. Many studies included microsimulations on networks based
on using data from observing actual roads. Most of these simula-
tions observed benefits in delay, queue lengths, travel times,
vehicle speeds, and/or number of stops compared with alternative
signal timing methods. A few studies suggested that optimized
fixed-time or centrally controlled signal timings would perform
better than max-pressure control. Based on the theoretical guaran-
tees, it is likely that optimized signals could achieve better delays
than max-pressure control on some networks, but that optimization
must be adaptive to variations in demand both due to stochasti-
city and time-of-day changes. Max-pressure control may be able
to achieve good performance with less extensive engineering
effort.

Finally, we discuss some open problems with max-pressure
control that could improve its performance. We hope that future
researchers will address these issues in their work.

Network impacts have mostly been measured through average
delays, travel times, queue lengths, or number of stops. However,
alternative metrics exist, and an analysis of max-pressure control
using these could yield different insights. For instance, Salomons
and Hegyi (2016) derived macroscopic fundamental diagrams from
a comparison of Wongpiromsarn et al.’s (2012) control with actu-
ated signals on 16 intersections in Vissim. They found that actu-
ated signals accumulated flow faster in uncongested situations, but
max-pressure control was more effective in reducing queues when
the network was congested. However, more realistic data on max-
pressure performance would be beneficial, both in highly congested
scenarios and in low-demand periods with sparse occupancy where
max-pressure phase activation may be based on vehicles that are on
a link but far from the intersection.

Most methodological and simulation studies of max-pressure
control are based on the store-and-forward queueing model, which
lacks some aspects of realistic traffic behavior. Although some stud-
ies have started developing max-pressure control based on more
realistic traffic flow models, they have yet to be used by many of
the other methodological and numerical studies. In particular, Li and
Jabari’s (2019) max-pressure control established throughput proper-
ties for kinematic wave models, which are standard tools for traffic
flow modeling. Nevertheless, stability properties of max-pressure
control have not been established for the most realistic car-following
models. Therefore, it is unclear whether the stability properties
apply to actual traffic. Simulation studies designed to probe the
boundaries of the stable region might answer this question, but
prior microsimulation studies have focused on comparing max-
pressure with other signal timing methods.
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Dixit et al. (2020) and Mercader et al. (2020) both conducted
experiments on actual roads, but both used modified versions of
max-pressure control that may have different performance. Future
experimental work, especially involving max-pressure controls
based on methodologies with mathematical throughput properties,
would be beneficial for achieving a better understanding of actual
road performance.

Many corridors of traffic signals have their signal timings co-
ordinated to reduce the number of stops for corridor travel. Some
degree of coordination implicitly exists in max-pressure control. As
a platoon of vehicles moves along a corridor, the presence of the
platoon vehicles will affect pressure calculations and corresponding
phase selections. However, platoons may be interrupted and pos-
sibly separated when side queues are longer than the remaining
platoon due to the pressure-based phase selection. Only the link
occupancy from the vehicles comprising the platoon is used in pres-
sure calculations, not the existence of a platoon itself. No explicit
coordination exists yet, and it is not known how to modify max-
pressure control to include signal coordination while retaining its
throughput properties.

Most existing signal controllers are not equipped to implement
the novel algorithm of max-pressure control. Consequently, imple-
menting max-pressure control could involve expensive replacement
of signal control hardware. The corresponding network design prob-
lem has yet to be addressed: given a limited budget for max-pressure
signal controllers, where are the optimal locations to install them in
a network of signalized intersections?

The mathematical throughput properties of max-pressure con-
trol usually assume that demand and turning proportions are iden-
tically distributed over time. Obviously, that is not true for most city
networks; peak periods exhibit different trip demands and route
choices than other times. Although some simulation results have
explored the performance of max-pressure control at varying times
of day, it is not known how the mathematical throughput properties
apply to these daily variations in demand.

Traffic signal timing in general is often optimized for observed
link demands and turning ratios, but signal timing itself can affect
the route choices that determine link demands (Smith 1979). Max-
pressure control is no exception; some versions (e.g., Varaiya 2013)
use turning ratios explicitly, and the mathematical proofs of through-
put properties usually assume fixed route choices. Very little work
has been done on how max-pressure control affects the route choices
of independent vehicles. Smith et al. (2019) showed that max-
pressure control’s throughput properties do not apply under route
choice changes, and developed a modified pressure-based policy
that maximizes throughput under route choices changes. However,
it is not even clear whether this is a common issue in practice.

In summary, the relatively recent emergence of max-pressure
control has left many questions unanswered. However, the many
performance results on different calibrated networks even from ini-
tial versions of max-pressure control suggest that further research
could be highly beneficial for traffic performance.
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Notation

The following symbols are used in this paper:
A =set of links;
A; C A=set of internal links;
A, C A=set of source links;
D = stable region of demand with D° being the
interior of D;
d;(t) =number of vehicles entering source link i during
time step ¢, with mean L_ii and vector of means d;
f: =average volume on link i;
G =network;
K =positive constant;
N =set of nodes;
p;j(t) = proportion of vehicles entering link i during time step
t that will next move to link j, with mean p;;;
Q,; = capacity for movement from link i to link j;
S =set of feasible phase activations;
5;; = average proportion of time that movement (i, j) gets a
green light;
5;j(1) = signal activation for turning movement (i,) during
time step ¢, with vector s(7);
T =time horizon;
w;;(t) = weight (pressure) for movement (i, ) at time t;
X;; = maximum occupancy possible for the queue on link i
waiting to turn to link j;
x;;(t) = number of vehicles on link i waiting to turn to link j
at time t;
¥;j(t) = number of vehicles moving from link i to link j during
time step #;
6ij(1) = x5 (1 4+ 1) —x;;(1);
€ =small positive constant; and
v(t) =Lyapunov function.
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