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Maximum Throughput Dispatch for Shared
Autonomous Vehicles Including

Vehicle Rebalancing
Jake Robbennolt and Michael W. Levin

Abstract— Shared autonomous vehicles (SAVs) provide on

demand point-to-point transportation for passengers. This ser-

vice has been extensively studied using dispatch heuristics and

agent based simulations of large urban areas. However, these

approaches make no mathematical guarantees of the passenger

throughput for the SAV network. This study builds on the

dynamic queuing model design of Kang and Levin which provides

a maximum stability dispatch policy for SAVs. This model is

extended to include rebalancing of empty vehicles to regions of

high demand. The modified dispatch policy is proven to maximize

throughput. Simulation results show that this dispatch policy

reduces waiting times (between vehicle dispatch and passenger

pickup) compared to the original formulation. However, vehicle

time traveling empty increases in some scenarios. Simulation

results also show that rebalancing often reduces passenger

waiting times, but not when too many vehicles rebalance at once

and are not available for dispatch.

Index Terms— Maximum throughout, shared autonomous

vehicles, rebalancing.

I. INTRODUCTION

T
HE use of shared autonomous vehicles (SAVs) can intro-
duce many societal benefits. This transportation mode

combines the emerging technology of autonomous vehicles
with on demand taxi dispatching services using a shared
fleet of vehicles to meet traveler demand. Several stud-
ies have shown benefits to the introduction of SAVs such
as reduced parking needs, environmental benefits, and cost
reductions [2], [3], [4], [5].

However, there are still open questions about the operation
of SAVs, including the fleet size and the dispatch policy. Most
studies of SAV operations have utilized agent based simula-
tions to determine characteristics of network, demand, and dis-
patch policy that affect the fleet requirements. The results vary
significantly with the dispatch policy used, so it is valuable to
develop dispatch policies that achieve mathematical guarantees
of performance. One such mathematical guarantee is stability
of passenger queue lengths and/or waiting times, which also
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guarantees that SAV service rate will be equal to customer
demand.

Kang and Levin [1] and Li et al. [6] have both developed
dispatch policies with mathematical guarantees of maximum
throughput. The dispatch policy developed by Kang and
Levin [1] allows vehicle rebalancing and utilizes the same
network structure as this paper. However, they rely on a
planning horizon for their proof of stability. Li et al. [6]
utilizes a different network structure and requires dispatch
costs to be computed using an S-only algorithm which requires
a probability distribution of service times that may not be
known in practice. Their proposed policy also does not allow
for vehicle rebalancing. Finally, Xu et al. [7] found a dispatch
policy that can be proven to stabilize the network using the
same network structure as Kang and Levin [1], but without the
need for a planning horizon. As in Xu et al. [7], we define
a fleet of single occupancy SAVs giving passengers rides on
demand from specified origins to destinations. We build on this
methodology by incorporating a vehicle rebalancing scheme
into the dispatch policy. This is an important modification
since it anticipates future demand and moves vehicles to it
before travelers enter the network, reducing waiting times.
However, such a policy must balance the reduction in waiting
times with an increase in vehicles driving empty to locations
where they are unnecessary. The proposed dispatch policy can
still be proven to be stable and is shown to reduce waiting
times for travelers.

The contributions of this paper are as follows: We formulate
an SAV dispatch problem and propose a dispatch policy which
incorporates rebalancing. We prove that the proposed dispatch
policy can serve all demand if any policy can serve all demand.
We demonstrate the minimum fleet size necessary to stabilize
any demand (for any dispatch policy). We create a simulation
model and use the Sioux Falls and Winnipeg networks to
demonstrate the reduction of passenger waiting times when
rebalancing is included. Finally, we compare the function of
the proposed dispatch policy with another from the literature
and show the benefits of the maximum throughput property.

II. BACKGROUND

A. Max-Pressure Control

Tassiulas and Ephremides [8] first proposed a maximum
stability policy called backpressure control to schedule data
transfers in multihop radio networks. Later, Varaiya [9] and
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Wongpiromsarn et al. [10] realized the similarities to traffic
networks and separately developed max-pressure traffic signal
control for traffic networks. The controllers developed by
Wongpiromsarn et al. and Varaiya are very similar, and both
have been proven to have a maximum stability property. This
means that even though they are decentralized, they can serve
any demand that can be served by any signal timing scheme.

Based on these initial max-pressure traffic signal control
schemes, several other authors made some modifications
such as utilizing vehicle delay and travel times [11], [12].
In addition, Xiao et al. [13] included the jam-density of
each turning movement. Later, Gregoire et al. [14] defined
a pressure function which continued to take queue length
as an input but also considered the buffer size of the link.
Several authors suggested modifications to ensure the traffic
signal control remained cyclic [15], [16], [17]. Finally, Sun and
Yin [18] and [19] studied max-pressure traffic signal control in
microsimulation to demonstrate travel time and queue length
reduction. Simulation studies on max-pressure control have
demonstrated the value of the maximum stability property.
However, stability does not provide any guarantees on travel
times, delay, or environmental impacts.

The proof of maximum stability has also been used
to incorporate route choice into traffic signal timing [20],
[21], [22], [23]. In addition, Chen et al. [24] considered
max-pressure algorithms for pedestrian access to autonomous
intersections. Finally, Levin et al. [25] considered how
max-pressure algorithms can be used for dynamic lane rever-
sals at intersections with autonomous vehicles. These studies
provided a framework for adopting a similar methodology for
SAV dispatch.

The fundamental idea behind max-pressure control is that
when signal timing is insufficient to meet demand, queue
lengths grow with no bound. Levin et al. [9] formulated traffic
signal timing as a Markov decision process and proved that
some traffic signal controllers cause the queue length to be
bounded if any traffic signal timing can bound the queues.
A similar methodology can be applied to a system of SAVs
in which the fleet size is fixed and the goal is to stabilize
the number of waiting passengers. In this paper we build on
previous work on traffic stability to prove that a proposed SAV
dispatch policy is stable.

B. SAVs

In general, the SAV dispatch problem is similar to a taxi
routing problem or a dial-a-ride problem. Much previous work
on SAVs has taken the form of agent based simulation. Fagnant
and Kockelman [4] showed environmental benefits of SAVs
and demonstrated that 1 SAV could replace 10 private vehicles.
Chen et al. [26] examined electric SAVs and found them
to be cost-competitive with other transit modes. Other agent
based simulations have shown that SAVs have the potential to
reduce congestion, parking needs, and emissions [2], [6], [27],
[28], [29], [30].

Of particular concern is the vehicle dispatch policy which
determines which vehicles to assign to each customer. This is
very closely related to the taxi dispatching problem studied

by Seow et al. [31] and Maciejewski and Nagel [32]. These
problems involve assigning passengers to either the near-
est idle taxi, or include taxis still en-route to drop off
passengers. Ge et al. [33], Hyland and Mahmassani [34],
Gurumurthy et al. [35], and Xu et al. [36] have applied similar
strategies to optimize SAV dispatch. However, none of these
approached have considered the long-run network throughput
of the policy.

Some research has been done specifically on vehicle repo-
sitioning (rebalancing). This approach was first proposed
in by Pavone et al. [37] and has since been studied in
detail [38], [39]. Rebalancing is intended to bring vehicles
to locations where they are needed before passengers request
them in order to reduce waiting times. Though waiting times
can often be reduced, research has suggested that reposition-
ing can increase vehicle miles traveled and increase con-
gestion [40], [41]. Based on app based ride hailing, these
studies show up to 45% of vehicle miles are traveled empty.
However, other work suggests that large benefits in mode
switching outweigh these costs [42]. In addition, there are
large travel time savings for passengers if the repositioning is
optimized [43]. Though previous studies have shown benefits
of rebalancing schemes, few have shown mathematical proofs
of stability. This is a drawback because rebalancing can reduce
the number of vehicles available to carry passengers for a
given fleet size. This can result in an unstable network where
the number of waiting passengers grows to an arbitrarily large
number.

Finally, a distinction should be made between model based
dispatch policies (such as the one developed here) and model
free policies such as reinforcement learning. Many of the
previously listed studies are model based, which means they
use the known system dynamics to make optimal decisions.
Such studies approach the problem either through mathemat-
ical optimization or through simulation [38], [44], [45], [46].
Reinforcement learning is a newer approach to solving
the SAV dispatch problem that does not need to rely on
system dynamics. Various studies have demonstrated that
reinforcement learning dispatch policies can have strong
performance [47], [48], [49], [50], [51], [52], [53]. However,
these methods can lead to less intuitive results and they do not
lend themselves well to an analytical characterization of their
properties. This is of notable importance in comparison to the
policy developed in this study which can be demonstrated to
maximize throughput.

Three studies examined maximum throughput dispatch
for SAVs. Kang and Levin [1] used a similar queuing model
to that presented in this paper, though they utilized a planning
horizon in their stability proof. Their model allows vehicle
rebalancing, and their results show benefits when demand is
asymmetric. However, the required planning horizon reduced
the computational efficiency of their dispatch policy, and
preemptive rebalancing was not an emphasis of their paper.
Li et al. [6] examined the stability of an electrified SAV
fleet. Though they include electric vehicle charging constraints
in their model, they do not include any vehicle rebalancing.
In addition, they modeled the vehicles and passengers as nodes
in their network. The proof of stability requires dispatch costs
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to be computed using an S-only algorithm, assuming that
network service times are known at all times. These service
times are generally not known in advance, so this assumption
is often unrealistic. Finally, Xu et al. [7] utilized a network
of zones where passengers are picked up and dropped off
and proved that their policy stabilized demand. They did not
require a planning horizon in their proof, but did not include
rebalancing. Other policies in the literature may maximize
throughput, but have not yet been proven to. We extend the
mixed integer linear program defined by Xu et al. [7] to include
vehicle rebalancing between trips and prove that the network
remains stable.

III. BASIC STABILITY ANALYSIS

In this section we define an SAV dispatch policy and prove
that it is stable. We assume that passengers send requests
for pickup on-demand and include a requested origin and
destination. The dispatcher then sends a vehicle to pick them
up and take them to their destination as soon as possible.
In this study we assume that the dispatcher has full knowledge
and control of each SAV in the network and that each SAV
serves only 1 passenger at a time. We also assume that no
passengers exit the network unserved, and that once an SAV
is dispatched to serve a passenger it cannot be reassigned.
Finally, we assume that links in the network have constant
travel times (that SAVs do not affect the level of congestion).

A. Queueing Model

Consider a network G = (N ,A) with nodes N and links A.
Passengers can be picked up or dropped off only at nodes.
SAVs have unlimited parking at nodes when between trips
and can carry only one passenger at a time. We also assume
constant travel times on all arcs and define Cqrs to be the
travel time from node q to node r to node s. Similarly, Cqs is
the travel time from q to s. These travel times could include
congestion, but are constant with respect to SAV dispatch.

Let drs(t) be the new demand for travel from r to s at
time t . drs(t) is a random variable with mean d̄rs . wrs(t) is
defined as the number of travelers at node r waiting to be
picked up to travel to destination s and not yet assigned to a
vehicle. To assign SAVs to each of these passengers the vehicle
must travel from its starting location to pick up the passenger
and then continue to the drop off. Let vqrs(t) be the number
of SAVs assigned to travel from q to r to carry a passenger
from r to s (it is possible to have q = r ). Then, wrs(t) evolves
as follows:

wrs(t + 1) = wrs(t) + drs(t) �

X

q2N
vqrs(t) (1)

Vehicles dispatched on a trip from q to r to s, will travel
for time Cqrs before arriving at their destination. In addition,
we can imagine another set of vehicles that are dispatched
for rebalancing trips straight from q to s without picking up
any passengers (eqs). This set of vehicles will travel through
the network with time Cqs before also arriving at s. To track
SAVs that are enroute, let x

⌧
q
(t) be the number of vehicles that

are ⌧ time steps away from q:

x
⌧
q
(t + 1) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

x
⌧+1
q

(t) +

X

(s,r)2N 2:Csrq�1=⌧

vsrq(t)

+

X

s2N :Csq�1=⌧

esq(t) ⌧ � 1

x
0
q
(t) + x

1
q
(t) �

X

(r,s)2N 2

vqrs(t)

�

X

s2N
eqs(t) ⌧ = 0

(2)

When a SAV departs on trip [q, r, s] at time t , the SAV will
arrive at s at time t + Cqrs . Then at time t + 1 it will have
Cqrs � 1 travel time remaining, so that SAV is added to

x
Cqrs�1
s (t + 1). The same logic is used for rebalancing trips

with travel times Cqs . From this formulation, we define
xq(t) = x

0
q
(t) to be the number of SAVs available at node q

at time t .
Two additional constraints bound the dispatch of SAVs.

Vehicles cannot be assigned to carry a passenger unless a
traveler is waiting:

X

q2N
vqrs(t)  wrs(t) 8r, s 2 N 2 (3)

In addition, the number of waiting vehicles xq(t) bounds the
number of SAVs that can carry passengers:

X

(r,s)2N 2

vqrs(t)  xq(t) 8q 2 N (4)

We assume that the fleet size of SAVs is a constant F .
Therfore, the fleet size F can be related to SAV locations by
summing over the number of SAVs at each location:

F =

X

q2N

1X

⌧=0

x
⌧
q
(t) (5)

The state consists of the waiting passengers and SAV loca-
tions (w(t) and x(t)). The control is the vehicle dispatching
via vqrs(t) and eqs(t), and the control space varies based on
the available SAVs defined by x(t).

B. Stable Network

Using the network model defined in Section III-A, our goal
is to define a dispatch policy for which the network remains
stable. Stability is defined so that it is equivalent to serving
all demand. Following the logic of Varaiya [9], we define the
stability of the network as follows:

Definition 1: The network is stable if the expected number
of waiting passengers remains bounded over time. Thus, the
network is stable if there exists a  < 1 such that

lim
T !1

1
T

TX

t=1

X

(r,s)2N 2

E [wrs(t)]   (6)

Definition 1 can only be achieved if SAVs are dispatched
for passengers at the same rate at which passenger demand
enters the network. Otherwise, the average number of waiting
passengers would gradually increase over time past any bound.
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C. Maximum-Stability Policy

A dispatch policy ⇡? is proposed which incorporates the
network constraints listed in Section III-A. This policy seeks
to minimize the total travel time SAVs need to travel to serve
demand as well as minimizing a penalty to ensure rebalancing.
This policy will be proven to be stable in Section III-E.

The proposed policy ⇡? is defined as follows. At each time
step t , solve the integer linear program:

min
X

(q,r,s)2N 3

vqrs(t)Cqrs +

X

(q,s)2N 2

eqs(t)Cqs

+ �(t) ⇥

X

s2N
as(k, zs(t), xs(t), eqs(t), vqrs(t)) (7a)

s.t.
X

q2N
vqrs(t)  wrs(t) 8(r, s) 2 N 2 (7b)

X

(r,s)2N 2

vqrs(t) +

X

s2N
eqs(t)  xq(t) 8q 2 N (7c)

X

(q,r,s)2N 3

vqrs(t)

= min

8
<

:
X

(r,s)2N 2

wrs(t),
X

q2N
xq(t)

9
=

; (7d)

vqrs(t) 2 Z+ 8(q, r, s) 2 N 3 (7e)

eqs(t) 2 Z+ 8(q, r, s) 2 N 3 (7f)
�(t) 2 {0, 1} (7g)

To avoid the solution vqrs(t) = 0, equation (7d) sets the
number of vehicles dispatched equal to the number of waiting
passengers or the number of available vehicles, whichever
is more limiting. In addition, this term ensures that as the
number of waiting passengers increases the rebalancing term
will approach zero. If there are fewer available vehicles than
there are waiting passengers, all vehicles will be assigned to
waiting passengers. This property is important in the proof of
stability as described in Section III-D and III-E.

In the objective function, as(·) is a penalty for a large
imbalance of vehicles (too few or too many) at node s.
as(·) is used to encourage rebalancing to avoid these large
imbalances. This penalty is left general for now, and an
example is provided later on. The penalty will be a function
of zs , an exogenous variable denoting the ideal number of
vehicles in each zone s, as well as xq(t), vqrs(t), and eqs(t).
This term sets a penalty for a large imbalance of vehicles,
and can be controlled by the scalar parameter k which can be
optimized in simulation.

The parameter � is a function of w(t) and x(t). It needs to
be defined each timestep, but is constant with respect to this
integer linear program. We define � = 0 if

P

(r,s)2N 2
wrs(t) �

P

q2N
xq(t). Otherwise, � = 1. Then, the penalty as will be

removed unless
P

(r,s)2N 2
wrs(t) 

P

q2N
xq(t)  F , which is an

important requirement for stability as shown in Section III-E.
Also important for the proof of stability is the requirement

that as be bounded when
P

(r,s)2N 2
wrs(t) 

P

q2N
xq(t)  F .

An example of a function matching these requirements is
given in Section III-F.

The resulting optimal solution v?
qrs

(t) is used to deter-
mine which SAVs to dispatch and which passengers they are
assigned to serve. e

?
qs

(t) is used to determine which vehicles
will be rebalanced and to where. The stability properties of
⇡? are proved in Section III-E.

Before proceeding to the stability analysis, it is important to
note the relationship between the exogenous demand and the
number of rebalancing trips. As demand increases the number
of rebalancing trips must decrease, leading to Proposition 1:

Proposition 1: As the number of people waiting to be
picked up wrs(t) increases, the number of rebalancing trips
eqs(t) will become zero.

Proposition 1 and future Propositions and Lemmas are
proved in the Appendix.

D. Stable Region

For any dispatch policy, it is possible for demand to be so
high that it is impossible to serve all passengers. This results
in an unstable network where passenger queues grow with no
bound. We will prove that ⇡? stabilizes the network whenever
possible. In order to prove that the proposed policy ⇡? achieves
maximum stability, we first must establish when it is possible
for the network to be stable.

The SAV dispatch policy defines vehicle trips vqrs(t) and
eqs(t) each time step. We define v̄qrs and ēqs to be the average
number of SAVs dispatched per time step. We use v̄qrs and ēqs

to refer to the dispatch behavior from any dispatch policy. The
stable region is intended to describe the possible passenger
service of any dispatch policy so we can compare ⇡? to it
analytically.

v̄qrs = lim
T !1

1
T

TX

t=1

vqrs(t) (8)

ēqs = lim
T !1

1
T

TX

t=1

eqs(t) (9)

The average dispatch rate to pick up passengers v̄qrs can
be related to passenger demand. This makes it possible to
determine a fleet size F necessary to serve the average demand
rate d̄. Since it is necessary to serve all demand:

X

q2N
v̄qrs = d̄rs 8(r, s) 2 N 2 (10)

Constraint (10) is given with strict equality because SAVs
trips vqrs(t) are made only when a passenger is waiting and
all rebalancing trips are encompassed by eqs(t). SAVs must
obey conservation of flow:

X

(q,r)2N 2

v̄qrs +

X

q2N
ēqs (11)

=

X

(q,r)2N 2

v̄sqr +

X

r2N
ēsr 8s 2 N (12)
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The fleet size F bounds the number of SAVs that can be
dispatched at any time step. Dispatched vehicles vqrs and eqs

travel for Cqrs and Cqs time steps respectively. Over a long
time horizon T :

TX

t=1

2

4
X

(q,r,s)2N 3

vqrs(t)Cqrs +

X

(q,s)2N 2

eqs(t)Cqs

3

5  F ⇥ T

(13)

Taking the limit as T ! 1:

lim
T !1

1
T

TX

t=1

2

4
X

(q,r,s)2N 3

vqrs(t)Cqrs +

X

(q,s)2N 2

eqs(t)Cqs

3

5 F

(14)

Equivalently:

X

(q,r,s)2N 3

v̄qrsCqrs +

X

(q,s)2N 2

ēqsCqs  F (15)

To simplify this equation we eliminate the
P

(q,s)2N 2
ēqsCqs

term since the stable region should not decrease as rebalancing
trips are added.

Proposition 2: The stable region will stay the same ifP

(q,s)2N 2
ēqsCqs = 0.

Proposition 2 and Equation (15) yield:

X

(q,r,s)2N 3

v̄qrsCqrs  F (16)

Based on equation (16), we can define an average time C̄rs

required to serve a passenger from r to s. This time includes
Crs and also the empty travel required to send a vehicle to r ,
but does not include travel times for rebalancing vehicles:

C̄rs =

P

q2N
v̄qrsCqrs

P

q2N
v̄qrs

(17)

Using the average time to serve each passenger,
equation (16) can be rewritten as:

X

(r,s)2N 2

C̄rs

X

q2N
v̄qrs  F (18)

Using equation (10), the demand can be substituted for the
average dispatch:

X

(r,s)2N 2

C̄rs d̄rs  F (19)

Let the stable region D be the set of demands for which
there exists a v̄ and ē satisfying constraints (10), (12), and (16).
Let D0 be the interior of D, (where constraint (16) holds with
strict inequality). Then there exists an ✏ > 0 such that

X

(r,s)2N 2

C̄rs d̄rs � F =

X

(q,r,s)2N 3

v̄qrsCqrs � F  �✏ (20)

Proposition 3: If d̄ /2 D, then there does not exist a
stabilizing control.

Proposition 3 shows that any demand outside of D cannot
be stabilized, i.e. it cannot be served by any dispatch policy.
In Section III-E we show that the dispatch policy ⇡? serves
any demand d̄ 2 D0. Though no policy can serve demand on
the boundary of D, ⇡? serves as much demand as any other
dispatch policy and achieves maximum throughput.

E. Stability Analysis

For any demand d̄ 2 D0, the dispatch policy ⇡? defined
in Section III-C is now proven to be stable. This means that
it can serve all demand whenever possible by any dispatch
policy. Proposition 3 proved that any demand d̄ /2 D cannot
be stabilized, so this will prove that ⇡? achieves the maximum
stability property. Based on Theorem 2 of Leonardi et al. [54],
Definition 1 can be achieved by proving the following:

Lemma 1: When policy ⇡? is used and d̄ 2 D0, there
exists a Lyapunov function ⌫(w(t)) � 0 and constants  > 0,
✏ > 0 such that

E [⌫(w(t + 1)) � ⌫(w(t))| w(t), x(t)]   � ✏|w(t)| (21)

Finally, based on Lemma 1, Proposition 4 demonstrates that
the proposed dispatch policy ⇡? can serve all demand if any
policy can:

Proposition 4: When policy ⇡? is used and d̄ 2 D0, the
network is stable.

F. Rebalancing Penalty Function

In Section III-C, the term as was left general in the objective
function. This allowed a proof of stability for a class of
rebalancing strategies with different as terms. This term is
a penalty on an imbalance of vehicle throughout the network.
The only requirement of this function is that it be bounded
when

P

(r,s)2N 2
wrs(t) 

P

q2N
xq(t)  F .

Such a function is simple to create when bounded by the
fleet size. For example, we define as(t) as a constant times
the absolute difference between the ideal vehicles in each
zone and the number parked or rebalancing there. Recall
that zs is an exogenous variable denoting the ideal num-
ber of vehicles in each zone. as can be controlled by the
scalar parameter k which can be optimized in simulation.
We note that xs +

P

(q)2N
eqs(t) �

P

(q)2N
esq(t) denotes the

number of vehicles at or rebalancing to node s. Thus, zs �√

xs +
P

(q)2N
eqs(t) �

P

(q)2N
esq(t)

!

is bounded by at most the

fleet size. Thus, we define as(t):

as(t) = k ⇥

����zs �

✓
xs +

X

(q)2N
eqs(t)

�

X

(q)2N
esq(t)

◆���� 8(s) 2 N (22)
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To linearize this function, we add the following constraints
to policy ⇡?:

as(t) � k ⇥

✓
zs �

✓
xs +

X

(q)2N
eqs(t)

�

X

(q)2N
esq(t)

◆◆
8(s) 2 N (23)

as(t) � �k ⇥

✓
zs �

✓
xs +

X

(q)2N
eqs(t)

�

X

(q)2N
esq(t)

◆◆
8(s) 2 N (24)

There are many other functions satisfying the proof of
stability above. However, Equations (23) and (24) are used
to define as(t) in the numerical examples below.

G. Fleet Size Optimization

One of the important implications of the stability analysis
is that the minimum stable fleet size (F

?) to serve all demand
can be determined exactly. That solution is presented below:

min F (25a)

s.t.
X

q,r,s2N 3

Cqrs v̄qrs(t)  F (25b)

X

(q)2N
v̄qrs(t) = d̄rs 8r, s 2 N 2 (25c)

X

(q,r)2N 2

v̄qrs(t) =

X

(q,r)2N 2

v̄sqr (t) 8s 2 N (25d)

v̄qrs(t) 2 Z+ 8(q, r, s) 2 N 3 (25e)

We note that this formulation does not include the rebal-
ancing vehicles eqs since maximum stability can be achieved
without rebalancing as proven in Proposition 2.

IV. SIMULATION AND RESULTS

The Sioux Falls and Winnipeg networks were used for
simulation to demonstrate the impact of rebalancing on per-
formance [55]. Since stability with and without rebalancing
has already been proven, the purpose of these results is to
show that the inclusion of rebalancing improves performance
when the fleet size is greater than the minimum (F > F

?).
The Sioux Falls network includes 24 nodes and 76 links, and
the Winnipeg network has 1052 nodes and 2836 links. For the
Sioux Falls network, two demand scenarios are included to
demonstrate the effects of symmetric and asymmetric demand.
The first is the base scenario from [55] which has a demand
of 15,025 trips per hour. Modifying this slightly, we used
150% of the demand from nodes 1–13 and only 50% of the
demand from nodes 13–24 to create an asymmetric demand
scenario. The Winnipeg network is included to demonstrate the
performance of the dispatch policy on a more realistic network.
This scenario has a total of 64,784 trips per hour. In both cases
demand is stochastic and added following a Poisson distribu-
tion. These scenarios are run an a simulation created in Java

Fig. 1. Sioux Falls - Total rebalancing trips throughout the simulation.

using IBM ILOG CPLEX version 12.9 to solve the dispatch
optimization. The dispatch policy is real-time implementable,
as the optimization program takes approximately 13.3 seconds
to run per timestep (in a real-world implementation, dispatch
would take place every 15–30 seconds). Simulations were run
on a laptop computer with an Intel Core i7-1165 at 2.80 GHz
and 16 GB of RAM.

A. Impact of Demand Distribution

These results will examine the effects of modifying the
parameter k on performance for the symmetric and asymmet-
ric demand scenarios for the Sioux Falls network. Included
metrics are the total number of rebalancing trips, the average
time between vehicle dispatch and passenger pickup, the total
trip time for a passenger (includes waiting time post-dispatch
and driving time) and the average driving time per trip
(includes driving empty to a pickup, driving with a passenger
to destination, and average rebalancing time).

To ensure there are sufficient SAVs available for rebal-
ancing, the minimum fleet size is increased by 5% of that
found using the minimization in Section III-G. A fleet size
of F = 2520 SAVs was used for the symmetric scenario,
and F = 2880 SAVs was used for the asymmetric demand
scenario.

Figure 1 demonstrates how the number of rebalancing trips
changes as the parameter k increases. In both the symmetric
and asymmetric demand there is a maximum number of
rebalancing trips based on the available vehicles. In both cases
when k reaches about 5 this maximum is hit and the number of
trips levels out to keep the network stable. This is the effect of
the � term in the rebalancing penalty. This demonstrates that
regardless of the rebalancing policy, the network will remain
stable if it was stable with no rebalancing.

When rebalancing vehicle are included in the simulation,
vehicles are more likely to arrive at the pickup location prior
to a passenger. This means a large portion of trips vqrs will
have a larger portion of q = r , reducing average times
between vehicle dispatch and passenger pickup. On the other
hand, when too many vehicles are rebalanced, they will all
be moving and not available for dispatch, which is counter
productive. As shown in Figure 2, there is a clear valley in
dispatch-pickup time for the asymmetric demand before it
starts to climb again. This means that when k = 5, waiting
times for passengers will be minimized. On the other hand, the
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Fig. 2. Sioux Falls - Average time between vehicle dispatch and passenger
pickup.

Fig. 3. Sioux Falls - Average driving time per passenger including driving
to pickup, driving with passenger to destination, and rebalancing.

symmetric demand shows less of a positive impact due to the
rebalancing. This is because symmetric demand already has a
large portion of trips where the vehicle starting location q is
already the same as the pickup location r (hence the much
lower dispatch-pickup times). In this case, rebalancing is often
counterproductive as the SAVs are moving, and not available
for dispatch.

It is also important to consider the total time spent driving
for each passenger trip and the average travel time for each
passenger. These values are shown in Figures 3 and 4. We see
in these figures that no rebalancing can reduce the driving
time. However, there is a significant decrease in the travel time
when rebalancing is high for the asymmetric demand scenario.
As above, there is only slight improvement when demand is
symmetric. Figures 3 and 4 demonstrate a trade-off between
the additional driving time and the travel time reduction for
passengers when rebalancing is included. This is because
SAVs rebalance to locations that aren’t exactly where they
are needed so end up driving slightly more as a result. As k

increases more, SAVs may even be rebalancing multiple times
between passenger trips, further increasing time traveling
empty. It is interesting to note that for the asymmetric demand
k = 4 scenario, there is a significant decrease in travel time for
passengers without much increase in overall driving for SAVs.

To help visualize the effects of demand symmetry on the
rebalancing policy, a graph of the network is shown with
the net rebalancing vehicles displayed at each node for each
demand scenario (positive means vehicles are rebalancing
to this node and negative means vehicles are leaving this
node). As Figures 5 and 6 show, the demand pattern has
a large influence on where rebalancing vehicles are moving

Fig. 4. Sioux Falls - Average time for passenger to make a trip including
waiting and driving time.

Fig. 5. Sioux Falls - Net number of vehicles rebalancing to each node in
the symmetric demand scenario (k = 5, F = 2520).

throughout the network and the magnitude of the flows.
In addition, even though the k value and total demand for
these two scenarios was the same, the net rebalancing is much
higher in the asymmetric demand scenario. This demonstration
highlights the need for a policy that is adaptable to different
demand patterns as they can change across days, weeks, and
years for a real network.

B. Impact of Fleet Size on Performance

To dig deeper into the results for the asymmetric demand
scenario on the Sioux Falls Network, the same metrics are used
to examine the impacts of increasing fleet size. The fleet size
was varied between 2520 SAVs and 3072 SAVs to see how
rebalancing changed. Also shown are 5 different values of the
parameter k to demonstrate the relationship with fleet size. The
metrics calculated here are only for passengers arriving at their
destination, so wait time are even longer for passengers when
the fleet size is below 2800 vehicles when the network is no
longer stable.
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Fig. 6. Sioux Falls - Net number of vehicles rebalancing to each node in
the asymmetric demand scenario (k = 5, F = 2880).

Fig. 7. Sioux Falls - Total rebalancing trips throughout the simulation.

Similar to the figures shown above, Figure 7 shows that
as k increases, the number of rebalancing trips increases.
However, it is also important that there be sufficient vehicles
for rebalancing, so additional fleet size also vastly increase
the number of rebalancing trips. This suggests that as demand
changes throughout the day k should be modified to match
those changes.

The fleet size also has a very big difference in the
dispatch-pickup time for passengers. The smallest fleet size
that stabilizes this demand is 2688, and this fleet size allows
for almost no rebalancing. This means that even large values
of k do not reduce the dispatch-pickup time significantly.
However, as the fleet size increases, there is sufficient demand
to rebalance some vehicles while still serving all passengers.

Finally, Figures 9 and 10 demonstrate the relationship
between the time it takes a vehicle to serve a passenger and
the time it takes a passenger to make a trip. Based on these
figures k = 10 is demonstrated to not be the best policy; it
has the most driving time for vehicles but does not improve
the passenger time over the k = 5 value. Again, at low values

Fig. 8. Sioux Falls - Average time between vehicle dispatch and passenger
pickup.

Fig. 9. Sioux Falls - Average driving time per passenger including driving
to pickup, driving with passenger to destination, and rebalancing.

Fig. 10. Sioux Falls - Average time for passenger to make a trip including
waiting and driving time.

of k there is a trade-off between the travel time reduction
for passengers and the extra time that vehicles spend driving
empty. We also note that without any rebalancing, the time
to serve passengers does not increase even as the fleet size
increases. However, when rebalancing is included the increases
in fleet size benefits the passengers to a much greater extent.

Finally, we note that increasing rebalancing does not always
reduce passenger time. This is because we do not dispatch
vehicles that are enroute on a rebalancing (or passenger
pickup) trip; they have to finish their trip before they can be
rebalanced. Therefore, higher k values result in longer waiting
times for vehicles to finish their rebalancing trips before they
can be dispatched to pick up passengers.
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Fig. 11. Winnipeg - Total rebalancing trips throughout the simulation.

Fig. 12. Winnipeg - Average time between vehicle dispatch and passenger
pickup.

C. Realistic Traffic Scenario - Winnipeg Network

The same performance metrics can be evaluated for the
Winnipeg network using a realistic demand scenario. These
results show very similar trends as those for the Sioux Falls
Network. This network has longer average trip lengths and
much higher demand, so the fleet size is correspondingly
higher.

Figure 11 shows that k values greater than 10 stop affecting
the number of vehicles rebalancing (as all vehicles that can
rebalance are already assigned to rebalance). Taken to an
extreme, we confirm that for a fleet size of 17,000 and a k

value of 100, there are still about 25,000 rebalancing trips
and the driving time for trip is still approximately 16 minutes.

As in the case of Sioux Falls, adding rebalancing can reduce
the time between dispatch and pickup. Since the demand in
this network is more symmetric, there is always a reduction in
dispatch-pickup times as k increases for this specific network
and demand scenario. For low fleet sizes the time can be
reduced by 30 seconds, but that drops further as fleet size
grows and more vehicles are available for rebalancing trips.
Based on this reduction, the results in Figures 13 and 14 are
intuitive; there is a decrease in travel times for passengers
but an increase in driving time for the vehicles. As with
the Sioux Falls network, we note a trade off between empty
driving and reduced travel times for passengers as more
rebalancing trips are added. This trade-off has been shown
in multiple other simulation studies where waiting times for
passengers are reduced at the expense of more vehicle miles
traveled [5], [4], [56].

Fig. 13. Winnipeg - Average driving time per passenger including driving
to pickup, driving with passenger to destination, and rebalancing.

Fig. 14. Winnipeg - Average time for passenger to make a trip including
waiting and driving time.

Fig. 15. Winnipeg - Total rebalancing trips throughout the simulation.

D. Comparison With Literature

Finally, the dispatch policy developed in this study is
compared with a policy in the literature. The chosen policy
(load balancing heuristic) assigns all requests to the closest
vehicle if there are more available vehicles than requests or
all vehicles to the closest request if there are more requests.
Then, the optimal rebalancing flow are computed using a
feedforward fluidic optimal rebalancing policy. These poli-
cies were proposed in Bischoff and Maciejewski [57] and
Pavone et al. [37] respectively and have been studied in more
depth and compared to additional literature in Hörl et al. [43]
and Ruch et al. [58].

In Figures 15, 16, 17 and 18, the same metrics are plotted
as above. These plots show the maximum throughput policy
(MT) with k = 0 and k = 15, as well as the results
from the load balancing heuristic with feedforward fluidic
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Fig. 16. Winnipeg - Average time between vehicle dispatch and passenger
pickup.

Fig. 17. Winnipeg - Average driving time per passenger including driving
to pickup, driving with passenger to destination, and rebalancing.

Fig. 18. Winnipeg - Average time for passenger to make a trip including
waiting and driving time.

rebalancing (LBH-FF) for the Winnipeg network. When it
comes to the rebalancing vehicles, the calculated optimal
number of rebalancing trips by the LBH-FF policy is relatively
high. In addition, even though there are fewer rebalancing trips
than the MT (k=15) policy, they tend to be longer as evidenced
by the higher driving times per trip for all fleet sizes.

It is interesting to note that at a higher fleet size the LBH-FF
policy performs better than either of the other two in terms
of time for passengers. However, this is not the case at low
fleet sizes. The issues with the LBH-FF at low fleet sizes
are compounded since the calculated statistics only consider
vehicles that have completed their trips, and in some scenarios
there are a significant number of passengers who have yet to be
assigned a vehicle. To highlight this issue we plot the number
of passengers that have not been assigned a vehicle as a
function of time in Figure 19 for a fleet size of 17500 vehicles.

Fig. 19. Winnipeg - Number of waiting passengers throughout a single
simulation (F = 17500).

The network is not stable when the LBH-FF policy is used
since the queues of passengers are shown to increase over
time. Though there are time periods when queues form for
the MT policy these queue eventually dissipate and the policy
remains stable.

Though the proof of maximum throughput does not make
any guarantees on travel times or empty driving amounts,
there are some clear benefits. In particular, the total time
for a passenger to be served is the time for a vehicle to
be dispatched, the dispatch-pickup time, and then the driving
time. However, with the LBH-FF policy in the scenario above,
as the queue grow very large waiting times or a vehicle
to be dispatched also grow. This causes total travel times
to be much larger even when passenger travel times from
dispatch to drop-off are very similar. This example highlights
the importance of maintaining stability wherever possible in
the dispatch decision.

V. CONCLUSION

This paper builds on the work of Xu et al. [7] to develop
a maximum stability dispatch policy for SAVs including
rebalancing. We prove the stability of this dispatch policy and
show that it can serve as much demand as any other policy.
This is an important improvement on previous research on
rebalancing because there is a mathematical guarantee that
this policy is throughput optimal. This is particularly valuable
since rebalancing vehicles take away fleet capacity from the
total vehicles service passenger trips each timestep but in this
policy we prove that the stable region is not affected. This
policy is also an improvement on previous work on stable
dispatch since rebalancing vehicles reduce passenger waiting
times. We also demonstrate that the minimum fleet size for
vehicles using this policy can be determined exactly for a given
level of demand.

The simulation model demonstrates the superior perfor-
mance of this policy compared one where rebalancing is not
allowed. We demonstrate a trade-off between the number of
rebalancing trips and the travel time benefits to passengers.
In particular, this dispatch policy can reduce waiting times
for passengers between dispatch and pickup when demand is
asymmetric and the fleet size is greater than the minimum.
Future simulation work should examine additional dispatch
policies to find ways to further reduce travel times for passen-
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TABLE I
LIST OF NOTATION

gers while limiting empty traveling. In addition, as this policy
is centralized, a comparison with a decentralized controller or
multiple competing control strategies would be of interest.

There are many extensions to this maximum stability
dispatch policy to be considered in the future. This study
assumes constant travel times on links, so future work should
examine the impacts of congestion. We also assumed that each
SAV only had capacity for one passenger, which eliminated
the complication of ridesharing. In addition, this formulation
assumed that vehicles could not reroute once dispatched.
Relaxing these constraints would allow for better performance
at low fleet sizes and as the number of rebalancing trips
increase, but stability would need to be proved under this new
set of assumptions. Finally, more study should be done on
the rebalancing policy. We assumed that the optimal number
of SAVs in each zone was known, which may not always be
true in practice. This assumption can be relaxed for future
modifications to the rebalancing penalty function. This study
proved that a class of rebalancing policies are stable, but
only tested one example in simulation. There are many other
rebalancing strategies fitting the requirements in Section III-F
which might perform better in certain scenarios.

APPENDIX A
NOTATION

See Table I.

APPENDIX B
PROOF OF PROPOSITION 1

Proof: If the number if waiting customers is low, i.e.
X

rs2N 2

wrs(t) 

X

q2N
xq(t) (26)

Then, we know based on equation (7d):
X

q2N
vqrs(t) =

X

rs2N
wrs(t) (27)

This means
P

rs2N
wrs(t) is bounded by the fleet size F as

defined in (5). There will also be rebalancing trips in the range
0 

P

qs2N
eqs(t)  F �

P

qrs2N
vqrs(t).

However, when the number of waiting passengers is high:

X

rs2N 2

wrs(t) �

X

q2N
xq(t) (28)

Then, we know based on equation (7d):
X

q2N
vqrs(t) =

X

q2N
xq(t) (29)

This means there are no vehicles left to assign to rebalancing
trips.

APPENDIX C
PROOF OF PROPOSITION 2

Proof: When rebalancing trips are included, demand
is served by vehicles which first rebalance and then serve
passengers. However, this rebalancing behavior (described
by ēqs) can be replaced with the with the rebalancing inherent
in v̄qrs .

Define an intermediate node i . A rebalancing trip from q

to i via ēqi then a trip from i to r to s via v̄irs is equivalent
to ēqi = 0 with the trip described by v̄qrs . Thus, by setting
ēqi = 0, there are still the same number of trips from q to r

to s.
Using this logic, equation (10) can rewritten as:

X

(q,i)2N 2

ēqi +

X

i2N
v̄irs (30)

=

X

q2N
v̄qrs 8(r, s) 2 N 2 (31)

= d̄rs 8(r, s) 2 N 2 (32)

By assumption, Cqi + Cirs � cqrs so that equation (15) is
still satisfied.

APPENDIX D
PROOF OF PROPOSITION 3

Proof:

When d̄ /2 D, equation (10) must be rewritten to account
for some additional demand � � 0:

X

q2N
v̄qrs + �  d̄rs 9(r, s) 2 N 2 (33)

We can then return to equation (1) to track the progression
of waiting passengers between timesteps:

wrs(t + 1) � wrs(t) = drs(t) �

X

q2N
vqrs(t) (34)

The expected value of this formulation summed from t =

0 to t = ⌧ � 1 and all locations can be rewritten as:

E

2

4
⌧�1X

t=0

X

(r,s)2N 2

(wrs(t + 1) � wrs(t))

3

5 (35)
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= E

2

4
X

(r,s)2N 2

(wrs(⌧ ) � wrs(0))

3

5 (36)

= E

2

4
X

(r,s)2N 2

(d̄rs �

X

q2N
v̄qrs)

3

5 (37)

However, equation 33 gives us:

E

2

4
X

(r,s)2N 2

(d̄rs �

X

q2N
v̄qrs)

3

5 � ⌧� (38)

Combining equations (37) and (38) gives us a relationship
between the expected value of the state at time ⌧ and the state
at time 0.

E [w(⌧ )] � E [w(0)] + ⌧� (39)

Taking the limit as T ! 1 yields:

lim
T !1

1
T

TX

t=1

E [w(⌧ )] � lim
T !1

1
T

TX

t=1

[E [w(0)] + ⌧�] = 1

(40)

Equation (40) shows that with each additional timestep
wrs(t) will increase by �. As t grows, this will cause the
number of waiting passengers to grow to infinity. This violates
the constraint in equation (6), meaning the network will be
unstable.

APPENDIX E
PROOF OF LEMMA 1

Proof: We utilize the same Lyapunov function defined in
Xu et al. [7]:

⌫(t) =

0

@
X

(r,s)2N 2

wrs(t)

1

A

0

@
X

(r,s)2N 2

C̄rswrs(t)

2

1

A

+

0

@
X

(r,s)2N 2

wrs(t)

1

A
√
X

s2N

1X

⌧=1

⌧ x
⌧
s
(t)

!

(41)

Set ⌫(t) = ⌫1(t) + ⌫2(t) where ⌫1(t) and ⌫2(t) are defined
as:

⌫1(t) =

0

@
X

(r,s)2N 2

wrs(t)

1

A

0

@
X

(r,s)2N 2

C̄rswrs(t)

2

1

A (42)

⌫2(t) =

0

@
X

(r,s)2N 2

wrs(t)

1

A
√
X

s2N

1X

⌧=1

⌧ x
⌧
s
(t)

!

(43)

To examine the difference ⌫(t + 1) � ⌫(t) we begin
with ⌫1(t + 1) � ⌫1(t). For simplicity, define �rs(t) = wrs(t +

1) � wrs(t):

⌫1(t + 1) � ⌫1(t)

=

0

@
X

(r,s)2N 2

wrs(t + 1)

1

A

⇥

0

@
X

(r,s)2N 2

C̄rswrs(t + 1)

2

1

A

�

0

@
X

(r,s)2N 2

wrs(t)

1

A

0

@
X

(r,s)2N 2

C̄rswrs(t)

2

1

A (44)

=

0

@
X

(r,s)2N 2

wrs(t) + �rs(t)

1

A

⇥

0

@
X

(r,s)2N 2

C̄rs

2
(wrs(t) + �rs(t))

1

A

�

0

@
X

(r,s)2N 2

wrs(t)

1

A

0

@
X

(r,s)2N 2

C̄rswrs(t)

2

1

A (45)

=

0

@
X

(r,s)2N 2

�rs(t)

1

A

0

@
X

(r,s)2N 2

C̄rs�rs(t)

2

1

A

+

0

@
X

(r,s)2N 2

C̄rs�(t)

1

A

0

@
X

(r,s)2N 2

wrs(t)

1

A (46)

√
P

(r,s)2N 2
�rs(t)

!√
P

(r,s)2N 2

C̄rs�rs (t)
2

!

is bounded as

shown (47) since the difference in wrs between timesteps
is bounded by the incremental increase in demand d̂rs . This
term will become part of the  term in (21). The second term
will be combined with the ⌫2(t) term.

0

@
X

(r,s)2N 2

�rs(t)

1

A

0

@
X

(r,s)2N 2

C̄rs�rs(t)

2

1

A



0

@
X

(r,s)2N 2

d̂rs(t)

1

A

0

@
X

(r,s)2N 2

C̄rs d̂rs(t)

2

1

A (47)

Now we continue working with ⌫2(t + 1) � ⌫2(t).

⌫2(t + 1)⌫2(t)

=

0

@
X

(r,s)2N 2

wrs(t + 1)

1

A

⇥

√
X

s2N

1X

⌧=1

⌧ x
⌧
s
(t + 1)

!

�

0

@
X

(r,s)2N 2

wrs(t)

1

A
√
X

s2N

1X

⌧=1

⌧ x
⌧
s
(t)

!

(48)

=

0

@
X

(r,s)2N 2

wrs(t) + �rs(t)

1

A

⇥

√
X

s2N

1X

⌧=1

⌧ x
⌧
s
(t + 1)

!

�

0

@
X

(r,s)2N 2

wrs(t)

1

A
√
X

s2N

1X

⌧=1

⌧ x
⌧
s
(t)

!

(49)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University Of Minnesota Duluth. Downloaded on April 30,2023 at 00:42:45 UTC from IEEE Xplore.  Restrictions apply. 



ROBBENNOLT AND LEVIN: MAXIMUM THROUGHPUT DISPATCH FOR SAVs INCLUDING VEHICLE REBALANCING 13

= �(t)

√
X

s2N

1X

⌧=1

⌧ x
⌧
s
(t + 1)

!

+

0

@
X

(r,s)2N 2

wrs(t)

1

A

⇥

√
X

s2N

1X

⌧=1

⌧
�
x

⌧
s
(t + 1) � x

⌧
s
(t)

�
!

(50)

The first term is bounded because we know
1P

⌧=1
x

⌧
s
(t +1) 

F , so:

�(t)

√
X

s2N

1X

⌧=1

⌧ x
⌧
s
(t + 1)

!



0

@
X

(r,s)2N 2

d̂rs

1

A
✓

F ⇥ max
(q,r,s)2N 3

�
Cqrs

 ◆
(51)

Combining the remaining terms from ⌫1(t) and ⌫2(t) (the
second terms from equations (46) and (50)). We are now left
with the term:
0

@
X

(r,s)2N 2

wrs(t)

1

A

⇥

0

@
X

(r,s)2N 2

C̄rs�rs(t) +

X

s2N

1X

⌧=1

⌧
�
x

⌧
s
(t + 1) � x

⌧
s
(t)

�
1

A

(52)

Based on equation (2):
1X

⌧=1

⌧ x
⌧
s
(t + 1) �

1X

⌧=1

⌧ x
⌧
s
(t)

=

1X

⌧=1

(⌧ � 1)x
⌧�1
s

(t + 1) �

1X

⌧=1

⌧ x
⌧
s
(t) (53)

=

1X

⌧=1

(⌧ � 1)x
⌧
s
(t) �

1X

⌧=1

⌧ x
⌧
s
(t)

+

X

(q,r,s)2N 3

vqrs(t)Cqrs +

X

(q,s)2N 2

eqs(t)Cqs (54)

= �

1X

⌧=0

x
⌧
s
(t) +

X

(q,r,s)2N 3

vqrs(t)Cqrs

+

X

(q,s)2N 2

eqs(t)Cqs (55)

= �F +

X

(q,r,s)2N 3

vqrs(t)Cqrs

+

X

(q,s)2N 2

eqs(t)Cqs (56)

Based on equation (34):

C̄rs�rs(t) = C̄rs

0

@drs(t) �

X

q2N
vqrs(t)

1

A (57)

From equations (56) and (57), equation (52) becomes:

E
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(58)

= E
✓ X

(r,s)2N 2

wrs(t)

◆✓ X

(r,s)2N 2
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✓
drs(t)

�

X

q2N
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◆
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(q,r,s)2N 3
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+

X

(q,s)2N 2
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◆����w(t), x(t)

�
(59)

Recall, v?
qrs

(t), e
?
qs

(t), and as(t) be chosen by ⇡?, where
as(t) is a function of e

?
qs

(t) and v?
qrs

(t). Then we have:

E
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(r,s)2N 2

wrs(t)
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(q,r,s)2N 3

v?
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e
?
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�
(60)

We know,
P

(r,s)2N 2
wrs(t) ⇥

P

s2N
a

?
s

is bounded. This is

because the term is bounded by at most the fleet size when
the number of waiting passengers is smaller than the available
vehicles. In addition, the parameter � will remove as unlessP

(r,s)2N 2
wrs(t) 

P

q2N
xq(t)  F . Together, this causes as to

be bounded in all scenarios. This term can become part of  ,
leaving:

By this logic, we can show that:
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(q,r,s)2N 3
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qrs
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+
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?
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(61)

 E
✓ X

(r,s)2N 2

wrs(t)
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vqrs(t)Cqrs

+

X

(q,s)2N 2
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◆����w(t), x(t)

�
(62)

We note that the terms of equation 62 show up in equa-
tion 59. We will show below how these terms simplify out.

Since policy ⇡? is a minimization,
P

(q,r,s)2N 2
C̄rsvqrs(t) �

P

(q,r,s)2N 3
Cqrsvqrs(t). This means these two terms are

bounded and drop out of equation (59). The termP

(r,s)2N 2
wrs(t)⇥

P

(q,s)2N 2
eqs(t)Cqs is also bounded by Propo-

sition 2. This leaves:
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(63)
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=

0

@
X

(r,s)2N 2

wrs(t)

1

A

0

@�F +

X

(r,s)2N 2

C̄rs d̄rs(t)

1

A (64)

 �✏|w(t)| (65)

since F >
P

(r,s)2N 2
C̄rs d̄rs by equation (19).

Equation (21) follows from equations (59), (62) and (65).

APPENDIX F
PROOF OF PROPOSITION 4

Proof: Based on Lemma 1 summed from t = 1 to t = T :

E [⌫(w(T + 1)) � ⌫(w(1))| w(t), x(t)]  T � ✏

TX

(t=1)

|w(t)|

(66)

Equation (66) can be simplified to:

✏
1
T

TX

(t=1)

E [w(t)]

  �
1
T

E [⌫(w(T + 1))] +
1
T

E [⌫(w(1))]

  +
1
T

E [⌫(w(1))] (67)

Equation (67) is equivalent to the definition of stability in
Definition 1.
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