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ABSTRACT
Shared autonomous vehicles (SAVs) are a fleet of autonomous taxis
that provide point-to-point transportation services for travellers, and
have the potential to reshape the nature of the transportation mar-
ket in termsof operational costs, environmental outcomes, increased
tolling efficiency, etc. However, the number of waiting passengers
could become arbitrarily large when the fleet size is too small for
travel demand, which could cause an unstable network. An unsta-
ble network will make passengers impatient and some people will
choose some other alternative travel modes, such as metro or bus.
To achieve stable and reliable SAV services, this study designs a
dynamic queueingmodel for waiting passengers and provides a fast
maximum stability dispatch policy for SAVs when the average num-
ber of waiting for passengers is bounded in expectation, which is
analytically proven by the Lyapunov drift techniques. After that, we
expand the stability proof to a more realistic scenario accounting for
the existence of exiting passengers. Unlike previous work, this study
considers exiting passengers in stability analyses for the first time.
Moreover, the maximum stability of the network doesn’t require a
planning horizon based on the proposed dispatch policy. The simu-
lation results show that the proposed dispatch policy can ensure the
waiting queues and the number of exiting passengers remain bound
in several experimental settings.
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1. Introduction

With the combination of shared mobility-on-demand service and vehicle connection and
automation (Tu et al. 2019; Ma, Wang, and Ruan 2021; Ma et al. 2022; Zhou et al. 2021),
a new travel mode choice of shared autonomous vehicles (SAVs), also known as auto-
matedmobility-on-demand or shared autonomous vehicles’ mobility service, may reshape
the transportation market (Fagnant and Kockelman 2014; Fagnant, Kockelman, and
Bansal 2015; Fagnant and Kockelman 2015; Boesch, Ciari, and Axhausen 2016; Hyland and
Mahmassani 2017). Specifically, an SAV service is a fleet of autonomous taxis that provide
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point-to-point transportation services for travellers. Researchers have found that SAVsmay
be beneficial to society in terms of operational cost, environment, policies, tolling, etc. For
example, Fagnant and Kockelman (2014) and Fagnant, Kockelman, and Bansal (2015) found
that SAVs could reduce the usage of private vehicles significantly. Specifically, they pre-
dicted that one SAV would replace 11 privately-owned vehicles. The reduction in private
car usage can have significant environmental benefits. For governments, SAVs are benefi-
cial to road-tolling system operations (Narayanan, Chaniotakis, and Antoniou 2020). From
the supply side, SAVs are also beneficial to the implementation of transportation manage-
ment policies like parking management (Zhang and Guhathakurta 2017) and intersection
management (Chen et al. 2020). For individuals, SAVsmay become highly competitive with
traditional car ownership when considering the long-term cost (Hörl et al. 2019). Over-
all, based on the past literature, SAVs would enable future transportation systems to have
higher safety (Fagnant and Kockelman 2015; Teoh and Kidd 2017) and reduced emissions
(Greenblatt and Saxena 2015; Lokhandwala and Cai 2018).

In reality, the number of waiting travellers is uncertain and stochastic. If the fleet size is
too small for travel demand, some passengers would be unserved. That would cause the
number of waiting passengers to become arbitrarily large, which we call an unstable net-
work. In other words, stability means that all passengers are served. Moreover, as travel
time is the chief concern for passenger mode of choice, if SAV queues grow longer than
alternative travel modes such as transit, taxi, or walking, people aremore likely to use those
alternates than SAVs. Therefore, unstable and unreliable SAV services cannot maximise the
benefits of SAVs (Li et al. 2021). Thus, the stability of transportation systems is a topicworthy
of attention. The first paper discussing stability is developed for scheduling communication
and power network (Tassiulas and Ephremides 1990). To achieve transportation network
stability, Varaiya (2013) proposed a max-pressure traffic signal control policy and proved
their policy could achieve network stability whenever possible. Further studies based on
Varaiya (2013)’s max-pressure control have received growing attention due to its advan-
tages, such as maximising passenger throughput without requiring arrival rates (Levin, Hu,
and Odell 2020; Xu et al. 2022; Xu, Bika, Levin n.d. a). These properties of max-pressure
control could be useful for SAV systems since we want to minimise the queue length of
passenger queues and provide stable service for travellers.

Inspired by max-pressure policies, this study successfully develops a fast maximum sta-
bility dispatch policy for SAVs. Although some studies have included ride-sharing (Farhan
and Chen 2018; Gurumurthy, Kockelman, and Simoni 2019; Hyland andMahmassani 2020),
which can be defined as driving multiple passengers with near origins, destinations and
similar departure times, or electric SAVs and charging behaviours (Loeb and Kockel-
man 2019; Chen and Kockelman 2016; Li et al. 2021), or dynamic rebalancing (Zhang and
Pavone 2016), we do not include these behaviours in this study due to the analytical com-
plexity of our presented work. Our results focus on an analytical dispatch method for SAVs
without ride-sharing, and we hope these results will be extended to ride-sharing in the
future.

Our research is focussed on queue length stability for waiting passengers. The practical
meaning of ‘stability’ in the paper is that the passenger demand rate is the same as the SAV
service rate, and then the passenger waiting queue length will not grow up as time goes
on. Li et al. (2021), Kang and Levin (2021), and Levin (2022) are the only three studies on
the stability of passenger queues for SAVs. Li et al. (2021) defined the nodes as SAVs and



TRANSPORTMETRICA A: TRANSPORT SCIENCE 3

passengers and proposed a minimum drift plus penalty approach for SAEV systems that
can ensure the stability of customer waiting time and vehicle dispatching cost can be con-
trolled. Although they analytically proved the stability of the SAEV systems, they did not
characterise the stable region with specific mathematical equations, which prevents accu-
rately obtaining themaximum stable trips under a given fleet size. Note that Li et al. (2021)
use waiting time as the state, instead of the size of the waiting queue, and they also prove
stability for any arrival rate in the stable region. The reason we use the passengers’ waiting
queue length as the state is that we want to characterise the stable region with specific
mathematical equations, which give the set of passengers’ travel demands that can be
served by a given SAVs fleet size, and find a dispatch policy that can make SAVs serve any
demand in the stable region.Whendemand is in the stable region,we cananalytically prove
the stability of our dispatch policy and find the solution of maximum stable trips per hour
under a given fleet size. Kang and Levin (2021) used a similar queueing model waiting for
passengers and characterise the stable region, but their maximum-stability dispatch pol-
icy requires a time horizon to achieve stability, which takes much more computation time.
Later on, Levin (2022) proposed a general maximum-stability dispatch policy for SAV dis-
patch, which considered a general class of SAV behaviours such as ridesharing, charging,
and integration with public transit and characterise the maximum throughput. Further-
more, Levin (2022) usedwaiting time as the state, which is the same as Li et al. (2021). None
of the previous studies considered the possibility of waiting for passengers to leave the
waiting queues due to the complexity of the stability proof and simulation.

The contributions of this paper are as follows: (1) We design a dynamic queuing model
for waiting passengers that considers the possibility of exiting passengers for the first time.
(2) We leverage a policy for stabilising the transportation network under stochastic travel
demand. (3) The assignmentmethod calculates the optimal dispatch policy for which SAVs
in the network are assigned to the matching passengers in the network. (4) We analytically
characterise the stable region or the sets of demand that could be served by any dispatch
policy. Then, we analyse the stability when demand is within and outside the stable region
when theproposeddispatchpolicy is used. (5)Weprove theproposed fastmaximumstabil-
ity dispatch policy can stabilise the network when the average waiting passenger is bound
in expectation based on Lyapunov drift techniques. (6) We extend the proposed policy to
a more realistic scenario, considering the possibility of exiting passengers for the first time,
andprove theproposeddispatchpolicy can still achievemaximumstability using Lyapunov
drift techniques. (7) Finally, we test the performance of proposed SAV dispatch policies in
simulation.

The remainder of this paper is organised as follows: Section 2 summarises the relevant
literature about SAVs, such as agent-based simulation and optimal dispatch algorithms.
Section 3 introduces the stability analysis used to determine the queuing model on the
network. Section 4 extends thismodel to consider exiting passengers in the queuingmodel
and proves that the maximum-stability policy is still valid when some passengers exit the
queues. Section 5 presents the simulation results, and we conclude in Section 6.

2. Literature review

The dispatch model in this work is mainly inspired by the shared autonomous vehicle-
to-customer assignment problem. In this part, we first review related papers focussing
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on shared autonomous vehicles. Then we review the existing literature on max-pressure
control.

2.1. Shared autonomous vehicles

The mobility-on-demand system has emerged as a new competitive mode choice for pas-
sengers around the world. Companies such as DiDi Chuxing in China, Uber, and Lyft in the
United States have been widely used (Wang and Yang 2019; Liu et al. 2022). Wang and
Yang (2019) provided a general framework for understanding interactions between the
demand and supply side of ride-sourcing systems. With the rapid development and pop-
ularisation of autonomous vehicles, SAVs may reshape the existing urban transportation
system (Becker andAxhausen 2017; Hyland andMahmassani 2017;Mourad, Puchinger, and
Chu2019;Narayanan, Chaniotakis, andAntoniou2020).Over thepast fewyears, researchers
began to focus on the new trend of shared autonomous vehicles from the perspectives
of transportation environment and sustainability, transportation economy, traffic policies,
modechoicepreference, traffic supply anddemand, and soon.Narayanan, Chaniotakis, and
Antoniou (2020) and Golbabaei, Yigitcanlar, and Bunker (2020) present literature surveys
of SAVs. Generally, SAV modelling problems can be characterised as optimal SAV dispatch
problems and agent-based simulation problems (Levin 2022).

The optimal SAV dispatch problem is a well-studied topic in the realm of the vehicle
routeing problem. The optimal SAV dispatch problem is to find the optimal assignment
of SAVs to passengers. These studies used optimisation techniques on the problem struc-
ture to improve performance. Some researchers proposed simplistic first-come-first-serve
(FCFS) methods to assign travellers to the nearest idle SAVs (Fagnant, Kockelman, and
Bansal 2015; Chen, Kockelman, andHanna 2016). Several researchers split the city intomul-
tiple service regions and then assigned the waiting passengers to the nearest idle SAVs
in their waiting sub-region. However, the simplified nearest dispatch or assignment may
not achieve optimal results for passenger waiting time and SAV travel times. To improve
the operational performance of shared autonomous vehicle services and reduce opera-
tional costs, some researchers applied mathematical programming to the SAVs dispatch
or assignment problem. Hanna et al. (2016) applied the collision-avoiding role assign-
ment with minimal-makespan (SCRAM) for matching vehicles and passengers and then
dispatch the matching vehicles to pick up waiting for customers. After comparing the four
algorithms, SCRAM could reduce the variance in the waiting time of passengers by pro-
ducing a fair assignment. Hyland and Mahmassani (2018) compared a SAV service system
with no shared rides by two first-come-first-served vehicle dispatching strategies and four
optimisation-based strategies, and found that the strategies that divert dispatching when
new traveller requests appear would have better results when the SAV fleet size is small.
But when the SAV fleet size increased, the simple first-come-first-served strategies could
become more competitive with advanced optimisation-based approaches. Model predic-
tive control is another modelling method in optimal SAV dispatching problems (Zhang
and Pavone 2016; Zhang, Rossi, and Pavone 2016). Yu et al. (2022) presented an integrated
optimisation framework for locating depots in a SAV systems under demand uncertainty.

Recently, user equilibrium, competition between human-driven vehicles, mixed-fleet
size, and electrification were included in SAV optimal matching and routeing problems
(Ge, Han, and Liu 2021). Specifically, Ge, Han, and Liu (2021) constructed a bi-level problem,
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where the upper-level is a matching and routeing problem and the lower level involves a
user equilibrium among conventional vehicles. Guo, Chen, and Liu (2022) proposed a time-
space network flow model to optimise SAV dispatch and relocation when mode choices
between SAVs and human-driven private vehicles are considered. Santos and de Almeida
Correia (2021) proposed a flow-based integer programming approach to optimise the fleet
size andSAVmovements. The fleet size in their researchwas combinedwith cars,minibuses,
or a mixed fleet of both. Boewing et al. (2020) presented a mixed-integer programme to
optimise vehicle coordination and charge scheduling problems into mobility-on-demand
systems with electrical autonomous taxis.

Agent-based simulation is another approach to studying SAV performance (Khan and
Habib 2023; Poulhès and Berrada 2020). Fagnant and Kockelman (2014) used an agent-
based model to simulate the potential travel and environmental influences of SAVs after
more than one hundred days in a grid-based city. The simulation results show that one
SAV would replace 11 private vehicles. Since ride-sharing has been proven to provide
more benefits for taxi services (Vazifeh et al. 2018), many researchers find that ride-sharing
applications in SAVs could bring further benefits to the SAV system. To better understand
the ride-sharing implementation with SAVs, Fagnant and Kockelman (2018) and Guru-
murthy, Kockelman, and Simoni (2019) used MATsim, an agent-based simulation tool to
test the operation of SAVs by enabling dynamic ride-sharing in Austin, Texas, and found
that dynamic ride-sharing could reduce the average service time. Hyland and Mahmas-
sani (2018, 2020) used an agent-basedmodel to compare the SAV systemwith andwithout
ride-sharing. The results showed that ride-sharing with SAVs could reduce traveller’s wait-
ing time and vehicle kilometres travelled (VKT) while using a smaller fleet size to provide
the same level of service. Furthermore, Hyland andMahmassani (2020) also found that ride-
sharing could provide the same level of service by operating smaller fleet sizes of SAVs and
even reduce the congestion, emission, and energy consumption. Gurumurthy and Kock-
elman (2020) analysed Americans’ preferences for dynamic ride-sharing with SAVs, and
found that Americans expect much of their long-distance travel (for trips over 50 miles,
one-way) to shift towards AVs and SAVs. Overall, shared autonomous vehicles have great
impacts on the environment regarding emissions and energy consumption. The reduced
fleet size of SAVs could further reduce CO2 emissions (Greenblatt and Saxena 2015; Mar-
tinez and Viegas 2017; Lokhandwala and Cai 2018). Some researchers have predicted that
SAVs will use electric vehicles to reduce vehicle emissions, and they extended agent-based
models to study the charging and energy consumption of shared autonomous electrical
vehicles (Chen, Kockelman, and Hanna 2016; Loeb, Kockelman, and Liu 2018; Farhan and
Chen 2018; Zhang and Chen 2020; Becker et al. 2020; Liang et al. 2023). Some studies used
agent-based simulation to study the SAV system performance after integrating with public
transit (Huang, Kockelman, and Garikapati 2022).

Previous studies gave limited attention to the stability of SAV systems and cannot guar-
antee the long-termperformanceofheuristics or agent-based simulationmodels. Although
Wang, Agatz, and Erera (2018) first mentioned the concept of stability for ride-sharing sys-
tems, their stability concept is the stable matching problem (Gusfield and Irving 1989). In
contrast, the stability definition in our research is the boundedness of the queue lengths
of waiting passengers. Furthermore, some experimental settings like fixed traveller agent
waiting times lacked realism. Hörl, Becker, and Axhausen (2021) used MATsim to test the
waiting time relationship with SAV sizes and found that different SAV sizes can result in
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different passenger waiting times. Moreover, if passengers wait for a long time, some of
themmay leave the waiting queue to choose other alternative travel modes such as public
transit and human-driven vehicles. Guo, Chen, and Liu (2022) aimed to optimise the SAV
assignment and SAV relocation decisions based on a mixed-integer non-convex problem
that integrates a discrete choice model to consider the alternative travel modes, human-
driven vehicles. Reinforcement learning has been widely used in transportation studies
recently (Liu et al. 2022; Ke et al. 2020; Yang et al. 2019). Liu et al. (2022) proposed a
deep reinforcement learning approach for vehicle dispatching on the online ride-hailing
platform with order cancellation data. Although they used real-world data, they studied
the human-driven taxi market. Overall, no previous studies addressed the optimal SAV
dispatching problem, stability of SAV systems, and modelling the passenger queueing
dynamic with exiting passengers at the same time. This paper aims to provide an optimal
SAV dispatch policy with a dynamic queuing model for waiting passengers that consider
the possibility of exiting passengers and provide stability analysis when demand is within
and outside of the stable region (Li et al. 2021; Kang and Levin 2021; Levin 2022).

2.2. Max-pressure control

Initially, max-pressure control was introduced as a scheduling strategy in communica-
tion and power systems (Tassiulas and Ephremides 1990). Varaiya (2013) converted it to a
decentralised traffic signal control policy that guarantees network stability whenever pos-
sible. Max-pressure control defines the pressures of each turning movement then find the
phase with the maximum pressure for each iteration. In addition, it is also a decentralised
algorithm that can be computed separately for each individual intersection.

The excellent properties of max-pressure control have led many researchers to intro-
duce it into the area of traffic signal control (Barman and Levin 2022, 2023; Xu et al. 2022;
Xu, Bika, Levin n.d. b). Sun and Yin (2018) used the Vissim platform to study several recently
proposed traffic signal control methods. The results showed that max-pressure control
achieved better control performance of adaptive signal control systems. Also, the cycle-
based max-pressure control seems to perform worse than the original non-cyclic max-
pressure control.

Inspired by Varaiya (2013), we propose a linear programme to determine a stable SAVs
dispatch policy without ride-sharing. Unlike the previous queuing models (Zhang, Rossi,
and Pavone 2016), this model explicitly matches passengers to vehicles at different loca-
tions, meaning that we assign specific vehicles to specific passengers. Ideally, this dispatch
strategy for SAVs services would maintain the stability of the largest set of demands possi-
ble. The only other studies on the stability of passenger waiting for queue lengths for SAVs,
Li et al. (2021), Kang and Levin (2021), and Levin (2022), did not take exiting passengers into
consideration due to the complexity of the stability proof. However, in reality, waiting for
passengers will not wait indefinitely for SAVs and will instead switch to other travel modes,
like public transit. Li et al. (2021) used a different state than the version presented here: they
model the state as the waiting time of passengers. Since we want to characterise the sta-
ble regionwith specific mathematical equations that are related to demand and SAVs’ fleet
size, we use the passengers’ waiting queue length as the state. The stable region is the set of
passengers’ travel demands that canbe servedby a given SAVs fleet size. Based on the char-
acterised stable region with passengers’ waiting queue length, we can analytically prove
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the stability of our proposed dispatch policy and find the maximum stable demand. Kang
and Levin (2021) used a similar queueing model and developed a max-stability dispatch
policy based on the model predictive control. The output of their optimisation problem
includes a sequence of controls for a planning horizon, which requires muchmore compu-
tation time. In this paper, we first prove the maximum stability property of a mixed integer
linear programme for a queueing model without exiting passengers. Then, we extend the
queueing model to exiting passengers, and show that the proposed fast maximum sta-
bility SAV dispatch policy still achieves maximum stability. Levin (2022) is the most recent
paper that provided amaximum stability dispatch policy considering SAV behaviours such
as charging, ridesharing, and integrationwithbus vehicles. Levin (2022) used the same state
model as Li et al. (2021) However, they did not model the complex dynamic of exiting pas-
sengers into passenger queueing dynamics. To the best of our knowledge, this study is the
first to provide maximum stability dispatching policy and models the dynamics of waiting
for passengers and exiting passengers at the same time.

3. Basic stability analysis

3.1. Math notations

Table 1. Notation (without exiting passengers).

N Set of nodes
A Set of links
Cqrs Travel time from node q to node r to s
wrs(t) Number of travellers at r waiting to be picked up to travel to s
drs(t) The additional demand for travel from r to s at time t
vqrs(t) Number of SAVs assigned to travel from q to r to carry a passenger from r to s
xτq (t) Number of vehicles that are τ time steps away from arriving at q
F Fleet size of SAVs

3.2. Queueingmodel

In this section, we do not include exiting passengers; we will consider exiting passengers
in Section 4. Consider a network G = (N ,A) with nodes N and links A. Nodes represent
locations where passengers are picked up and dropped off. We assume that SAVs have
unlimited parking at nodes. We assume constant travel times. Links between nodes are not
explicitly characterised, but are used to define the travel times. Let Cqrs be the travel time
from node q to node r to node s. Note that, once a passenger is matched with a SAV, we
assume that the passenger accepts the match. Let wrs(t) be the number of travellers at r
waiting to be picked up to travel to s. Let drs(t) be the additional demand for travel from r
to s at time t. drs(t) is a random variable with mean d̄rs and maximum value d̂rs. Let vqrs(t)
be the number of SAVs assigned to travel from q to r to carry a passenger from r to s. In
defining vqrs(t), it is possible to have q = r. We assume that vehicles carry one passenger at
a time. Then wrs(t) evolves as follows:

wrs(t + 1) = wrs(t) + drs(t) −
∑

q∈N
vqrs(t) (1)
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We require that
∑

q∈N vqrs(t) ≤ wrs(t), i.e. vehicles cannot be dispatched to serve a passen-
ger from r to s unless a traveller is waiting. Equation (1) does not model passengers exiting
the system due to high waiting times. We will address such behaviour in Section 4 as it
makes the stability analysis more complex.

We also track SAV locations. Let xq(t) be the number of SAVs parked at node q at time t.
xq(t) bounds the number of vehicles that can be dispatched via

∑

(r,s)∈N 2

vqrs(t) ≤ xq(t) ∀q ∈ N (2)

Once dispatched on a trip from q to r to s, vehicles will travel through the network for some
time Cqrs before arriving at s. Therefore, wemust also track SAVs that are enroute. Note that
we assume the fleet size in the network is fixed, which means no SAV enters or exits the
network. Although a fleet of human-driven ride-sharing vehicles will vary over time, a fleet
of company-owned SAVs is not limited by driver working hours. Specifically, human drivers
may reject the request from the central dispatcher due to some reasons such as fatigue or
lower compensation. However, we assume that the operator can control all SAVs without
limitation. Specifically, once a SAV finishes one trip, this SAV can be dispatched again on an
empty trip to serve the next waiting passenger, the total number of serving vehicles in the
system will not change (including vehicles in service and vehicles not in service). Let xτ

q(t)
be the number of vehicles that are τ time steps away from arriving at q. xq(t) = x0q(t). x

τ
q(t)

evolves as follows:

xτ
q(t + 1) =






xτ+1
q (t) +

∑

(s,r)∈N 2:Csrq−1=τ

vsrq(t) τ ≥ 1

x0q(t) + x1q(t) −
∑

(r,s)∈N 2

vqrs(t) τ = 0
(3)

When a SAVdeparts on trip [q, r, s] at time t, then the SAVwill arrive at s at time t + Cqrs. Then

at time t+ 1 itwill haveCqrs − 1 travel time remaining, so that SAV is added to x
Cqrs−1
s (t + 1).

xτ
q(t) defines the locations of all SAVs in the network. Therefore, the fleet size F can be

related to SAV locations via

F =
∑

q∈N

∞∑

τ=0

xτ
q(t) (4)

The state consists of thewaiting passenger queues and SAV locations, i.e.w(t) and x(t). The
control is vqrs(t), and the control space varies based on the available SAVs defined by x(t).

3.3. Stable network

We define the stability of the network as follows:

Definition 3.1: The network is stable if the number of waiting passengers remains bound
on average, i.e. there exists a κ < ∞ such that

lim
T→∞

1
T

T∑

t=1

∑

(r,s)∈N 2

wrs(t) ≤ κ (5)
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Equation (5) means that the number of passengers remains bounded over time. We also
want to emphasise the practical meaning of stable and unstable networks. In practice, the
network is stable if the passenger demand rate is the same as the SAV service rate, so SAVs
will serve all passengers with finite waiting times. Ensuring a stable network is hard in real-
ity, but it is an importantmodelling concept since it requires that passengers can be served
as soon as possible. Since passengers can only exit the network by travelling via SAV, stabil-
ity requires that sufficient SAV service throughput is provided to ensure passenger queues
will not grow to infinity. Contrary to a stable network, an unstable network means that
the number of waiting passengers is not bound over time. Intuitively, an unstable network
means that the rate of passengers’ requests is larger than the SAV service rate. Thus some
passengers will not be served.

3.4. FMS-dispatch: fast maximum stability dispatch policy

The proposed policy π$ is defined as follows. At each time step t, solve the integer linear
program

min
∑

(q,r,s)∈N 3

vqrs(t)Cqrs (6a)

s.t.
∑

q∈N
vqrs(t) ≤ wrs(t) ∀(r, s) ∈ N 2 (6b)

∑

(r,s)∈N 2

vqrs(t) ≤ xq(t) ∀q ∈ N (6c)

∑

(q,r,s)∈N 3

vqrs(t) = min





∑

(r,s)∈N 2

wrs(t),
∑

q∈N
xq(t)




 (6d)

vqrs(t) ∈ Z+ ∀(q, r, s) ∈ N 3

(6e)

Equation (6a)means that this dispatchpolicy is basedonminimising the total SAVs travel
time at each time step. Idle SAVs can accept passengers’ requests right away, but vehicles in
service cannot accept passengers’ requests until they finish their trips. Thedispatcherwants
to achieve its objective at the time of SAVs assignment without requiring a planning time
horizon. Furthermore, this dispatcher only focuses on real-time demand and does not con-
sider the empty vehicle relocation based on the near-future demand. We are working on
integrating empty vehicle relocation into themaximum stability dispatch policy in another
paper. Equation (6b) indicates that SAVs can only be dispatched unless there are passen-
gers waiting. Consequently, our model does not account for a preemptive rebalancing of
SAVs. However, if Equation (6b) is violated, then it is possible that SAVs are assigned to pre-
emptive rebalancing. Consequently, the systemswill not reachmaximum stability since the
SAVs assigned topreemptive relocation are not servingpassengers,which could reduce the
rate of passengers served. Furthermore, Equation (6d) is necessary to avoid the trivial solu-
tion vqrs(t) = 0 by requiring that the number of vehicles dispatched is either equal to the
number of waiting passengers or the number of available vehicles, whichever is smaller. In
problem (6a), wrs(t) and xq(t) are exogenous. xτ

q(t) is the current state of systems, i.e. the
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current location of SAVs.We cannot change the current state; we can only control decisions
affecting the future state. The decision variables are vqrs(t). The resulting optimal solution
v$
qrs(t) is used to determinewhich SAVs to dispatch andwhich passengers they are assigned
to serve. We will prove the stability properties of π$ in Section 3.6. If vqrs(t) = 0, there is no
SAV to serve passengers, which results in the average number of waiting for passengers
growing to infinity. In other words, the network would be always unstable since somewait-
ing passengers would not be served. Note that Cqrs is deterministic, and we can not handle
time-dependent travel time due to the complexity of stability analysis in this paper. We
hope to conduct time-dependent travel time analysis in the future with traffic flow mod-
els such as the cell transmission model to consider congestion-aware travel time for future
study. However, we can handle independent and identical distributed random travel times
in this model. For instance, we could generate travel times for different trips from q to r to s
based on some distributions (such as poisson distribution), the evolutions of Equations (3)
and (4) are related to the newly independent and identical travel times. The stable region
will not change either since it it related to average travel time, which can be obtained based
on the distribution of travel times. Furthermore, the maximum-stability dispatching pol-
icy will not change either, the corresponding travel time Cqrs will become a random and
identical variable based on some distributions.

3.5. Stable region

For any given fleet size, it is easily possible to find an average demand rate that cannot be
stabilised. If the demand is sufficiently high, no SAV dispatch policy will be able to serve
all passengers. Therefore, it is necessary to characterise the stable region of demand given
a fleet size. Stable region is the set of demands that could be served by a given fleet size
under any dispatch policy. We then show that the max-pressure policy will stabilise any
demandwithin the stable region. Consider a dispatch policy defining a sequence of vehicle
trips vqrs(t). Let v̄qrs be the average number of vehicles dispatched from q to r to s per time
step, defined as

v̄qrs = lim
T→∞

1
T

T∑

t=1

vqrs(t) (7)

This v̄qrs can be related to passenger demand to determine which average demand rates d̄
can be served by a given fleet size F. These constraints hold on average, but stochastic vari-
ations in demand necessitate a corresponding response. Even with deterministic demand,
it may not be possible to dispatch SAVs according to the values of v̄qrs because v̄qrs ∈ R+
whereas vqrs(t) ∈ Z+.

First, it is necessary to serve all demands, resulting in the constraint

∑

q∈N
v̄qrs = d̄rs ∀(r, s) ∈ N 2 (8)

Constraint (8) is given with strict equality because SAVs are assumed to only make trips
when a passenger is waiting. SAVs must obey conservation of flow, so the number of SAVs
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incoming to smust equal the number of SAVs outgoing from s:
∑

(q,r)∈N 2

v̄qrs =
∑

(q,r)∈N 2

v̄sqr ∀s ∈ N (9)

The number of SAVs that can be dispatched at any time step is bounded by F. Once dis-
patched on a trip from q to r to s, which dispatch affects Cqrs time steps. Consequently, over
a long time horizon T,

T∑

t=1

∑

(q,r,s)∈N 3

vqrs(t)Cqrs ≤ F × T (10)

Here is an example for better understanding Equation (10). Suppose that we have only one
SAV (fleet size F = 1) in the entire network with simulation time horizon T = 10 time steps,
and this SAV is dispatched travel from q to serve a passenger goes from r to s. The travel
time for SAV is Cqrs = 6 time steps. At this point, no SAVs in the network can be dispatched
until this vehicle finishes this trip, which costs Cqrs time steps. Therefore, Equation (10) gives
us the constraints 1 × 6 ≤ 1 × 10.

Moving on, we take the limit as T → ∞ for Equation (10) yields

lim
T→∞

1
T

T∑

t=1

∑

(q,r,s)∈N 3

vqrs(t)Cqrs ≤ F (11)

or equivalently
∑

(q,r,s)∈N 3

v̄qrsCqrs ≤ F (12)

Based on Equation (12), we can define an average time C̄rs required to serve a passenger
from r to s. This time includes Crs and the empty travel time required to send a vehicle to r:

C̄rs =
∑

q∈N v̄qrsCqrs∑
q∈N v̄qrs

(13)

Using Equations (12) and (13) can be rewritten as
∑

(r,s)∈N 2

C̄rs
∑

q∈N
v̄qrs ≤ F (14)

Combining Equations (7) and (14) yields
∑

(r,s)∈N 2

C̄rsd̄rs ≤ F (15)

LetD be the set of demands for which there exists a v̄ satisfying constraints (8), (9) and (12).
LetD0 be the interior ofD, i.e. where constraint (12) holds with strict inequality. Then there
exists an ε > 0 such that

∑

(r,s)∈N 2

C̄rsd̄rs − F =
∑

(q,r,s)∈N 3

v̄qrsCqrs − F ≤ −ε (16)
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Proposition 3.1: If d̄ /∈ D, then there does not exist a stabilising control.

D is the set of demands that can be served by any dispatch policy, including others
that have previously been published in the literature (Kang and Levin 2021; Li et al. 2021;
Levin 2022). However, d̄ does not belong to D means the demand for passengers is too
large and no dispatch policy can serve this set of demands.

Proof: If the network is unstable, the passengers’ demand is greater than the SAVs’ supply.
Since d̄ /∈ D,∀

∑
q∈N v̄qrs(t), there exists θ > 0 andorigin-destinationpair (r, s) satisfy d̄rs ≥∑

q∈N v̄qrs + θ .
Based on Equation (1) we further obtain:

wrs(t + 1) − wrs(t) = drs(t) −
∑

q∈N
vqrs(t) (17)

Based on Equation (17) we can derive the following relationship:

E




τ−1∑

t=0

∑

(r,s)∈N 2

(wrs(t + 1) − wrs(t))



 = E




∑

(r,s)∈N 2

wrs(τ ) − wrs(0)



 (18)

= E




∑

(r,s)∈N 2

(d̄rs −
∑

q∈N
v̄qrs)



 (19)

≥ E [τθ)] = τθ (20)

Move wrs(0) to the right hand side, we obtain:

E




∑

(r,s)∈N 2

(wrs(τ ))



 ≥ θτ + E




∑

(r,s)∈N 2

(wrs(0))



 (21)

or equivalently

E [|w(τ )|] ≥ θτ + E [|w(0)|] (22)

From Equation (22), we get

lim
T→∞

E
[
1
T

T∑

t=1

|w(t)|
]

≥ lim
T→∞

1
T

T∑

t=1

E
[
θ t + E [|w(0)|]

]
= ∞ (23)

Based on (22), wrs(t) will increase by θ in each step. Therefore, we can conclude based on
Equation (23),wrs(t) will increase to infinity, which violates Equation (5). !

3.6. Stability analysis

Wenowproceed toprove that the policyπ$ defined in Section 3.4will stabilise any demand
d̄ ∈ D0. Since any demand d̄ /∈ D cannot be stabilised by Proposition 3.1, this essentially
proves that π$ achieves maximum stability. The only excluded demand is on the bound-
ary of D, for which the Markov chain can be shown to be null recurrent but not positive
recurrent.
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Lemma 3.1: When policy π$ is used and d̄ ∈ D0, there exists a Lyapunov function ν(t) ≥ 0
and constants κ > 0, ε > 0 such that

E [ν(t + 1) − ν(t)|w(t), x(t)] ≤ κ − ε|w(t)| (24)

Proof: Consider the Lyapunov function

ν(t) =




∑

(r,s)∈N 2

wrs(t)








∑

(r,s)∈N 2

C̄rswrs(t)
2



+




∑

(r,s)∈N 2

wrs(t)




(
∑

s∈N

∞∑

τ=1

τxτ
s (t)

)

(25)

For ease of presentation, define ν(t) = ν1(t) + ν2(t) where

ν1(t) =




∑

(r,s)∈N 2

wrs(t)








∑

(r,s)∈N 2

C̄rswrs(t)
2



 (26)

and

ν2(t) =




∑

(r,s)∈N 2

wrs(t)




(
∑

s∈N

∞∑

τ=1

τxτ
s (t)

)

(27)

First, we expand the difference ν1(t + 1) − ν1(t). Let δrs(t) = wrs(t + 1) − wrs(t). Then

ν1(t + 1) − ν1(t) =




∑

(r,s)∈N 2

wrs(t + 1)








∑

(r,s)∈N 2

C̄rswrs(t + 1)
2





−




∑

(r,s)∈N 2

wrs(t)








∑

(r,s)∈N 2

C̄rswrs(t)
2



 (28)

=




∑

(r,s)∈N 2

wrs(t) + δrs(t)








∑

(r,s)∈N 2

C̄rs
2

(wrs(t) + δrs(t))





−




∑

(r,s)∈N 2

wrs(t)








∑

(r,s)∈N 2

C̄rswrs(t)
2



 (29)

=




∑

(r,s)∈N 2

δrs(t)








∑

(r,s)∈N 2

C̄rsδrs(t)
2





+




∑

(r,s)∈N 2

C̄rsδ(t)








∑

(r,s)∈N 2

wrs(t)



 (30)

We will show that (
∑

(r,s)∈N 2 δrs(t))(
∑

(r,s)∈N 2
C̄rsδrs(t)

2 ) is bounded and leave the second
term for later.




∑

(r,s)∈N 2

δrs(t)








∑

(r,s)∈N 2

C̄rsδrs(t)
2



 ≤




∑

(r,s)∈N 2

d̂rs








∑

(r,s)∈N 2

C̄rsd̂rs(t)
2



 (31)

sincewrs(t + 1) − wrs(t) increases by at most d̂rs, the maximum value of drs(t).
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Now we continue working with ν2(t + 1) − ν2(t).

ν2(t + 1) − ν2(t)

=




∑

(r,s)∈N 2

wrs(t + 1)




(
∑

s∈N

∞∑

τ=1

xτ
s (t + 1)

)

−




∑

(r,s)∈N 2

wrs(t)




(
∑

s∈N

∞∑

τ=1

τxτ
s (t)

)

(32)

= δ(t)

(
∑

s∈N

∞∑

τ=1

τxτ
s (t + 1)

)

−




∑

(r,s)∈N 2

wrs(t)




(
∑

s∈N

∞∑

τ=1

τ
(
xτ
s (t + 1) − xτ

s (t)
)
)

(33)

The first term is bound because
∑∞

τ=1 x
τ
s (t + 1) ≤ F, so

δ(t)

(
∑

s∈N

∞∑

τ=1

τxτ
s (t + 1)

)

≤




∑

(r,s)∈N 2

d̂rs




(
F × max

(q,r,s)∈N 3

{
Cqrs

})
(34)

We are now left with the difference (
∑

(r,s)∈N 2 wrs(t))(
∑

(r,s)∈N 2 C̄rsδrs(t) +
∑

s∈N
∑∞

τ=1 τ

(xτ
s (t + 1) − xτ

s (t))). First, observe that from Equation (3),

∞∑

τ=1

τxτ
s (t + 1) −

∞∑

τ=1

τxτ
s (t) =

∞∑

τ=1

(τ − 1)xτ−1
s (t + 1) −

∞∑

τ=1

τxτ
s (t) (35)

=
∞∑

τ=1

(τ − 1)xτ
s (t) −

∞∑

τ=1

τxτ
s (t) +

∑

(q,r,s)∈N 3

vqrs(t)Cqrs (36)

= −
∞∑

τ=0

xτ
s (t) +

∑

(q,r,s)∈N 3

vqrs(t)Cqrs (37)

= − F +
∑

(q,r,s)∈N 3

vqrs(t)Cqrs (38)

From Equation (17),

C̄rsδrs(t) = C̄rs



drs(t) −
∑

q∈N
vqrs(t)



 (39)

Combining Equations (33) and (39) yields

E








∑

(r,s)∈N 2

wrs(t)








∑

(r,s)∈N 2

C̄rsδrs(t) +
∑

s∈N

∞∑

τ=1

τ
(
xτ
s (t + 1) − xτ

s (t)
)




∣∣∣∣∣∣
w(t), x(t)





= E








∑

(r,s)∈N 2

wrs(t)












∑

(r,s)∈N 2

C̄rs



drs(t) −
∑

q∈N
vqrs(t)







− F

+
∑

(q,r,s)∈N 3

vqrs(t)Cqrs





∣∣∣∣∣∣
w(t), x(t)



 (40)
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Notice that

E








∑

(r,s)∈N 2

wrs(t)







−F +
∑

(r,s)∈N 2

C̄rsdrs(t)





∣∣∣∣∣∣
w(t), x(t)





=




∑

(r,s)∈N 2

wrs(t)







−F +
∑

(r,s)∈N 2

C̄rsd̄rs



 (41)

= −ε|w(t)| (42)

since F ≥
∑

(r,s)∈N 2 C̄rsd̄rs by Equation (12). Let v$
qrs(t) be chosen by π$. Recall that there

exists a vqrs(t) defining the stable region such that the average travel time required to serve
origin-destination pair (r, s) is C̄rs. Then we have

E








∑

(r,s)∈N 2

wrs(t)








∑

(q,r,s)∈N 3

v$
qrs(t)Cqrs





∣∣∣∣∣∣
w(t), x(t)





≤ E








∑

(r,s)∈N 2

wrs(t)








∑

(q,r,s)∈N 3

vqrs(t)Cqrs





∣∣∣∣∣∣
w(t), x(t)





=
∑

(q,r,s)∈N 3

vqrs(t)C̄rs (43)

Equation (24) follows from Equations (42) and (43). !

Proposition 3.2: When policy π$ is used and d̄ ∈ D0, the network is stable.

Proof: Follows fromLemma3.1. For inequality (24), taking expectations and summingover
t = 1, . . . , T yields the following inequality:

E [ν(T + 1) − ν(1)|w(t), x(t)] ≤ κT − ε

T∑

t=1

|w(t)| (44)

and so,

ε
1
T

T∑

t=1

E [|w(t)|] ≤ κ − 1
T

E [ν(T + 1)] +
1
T

E [ν(1)] ≤ κ + 1
T

E [ν(1)] (45)

which immediately implies that the stability Definition 3.1 is satisfied. !

Proposition 3.3: Themaximum stable demand
∑

(r,s)∈N 2 d̄rs increases linearly with the fleet
size F

Proof: Consider a certain fleet size F. Combining constraints (8), (9) and (12), we obtain:

α
∑

(r,s)∈N 2

d̄rsC̄rs = α
∑

(q,r,s)∈N 3

v̄qrsCqrs ≤ αF (46)

Multiplying F by the factor α results in a same proportion change in
∑

(r,s)∈N 2 d̄rs. !
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4. Extension to exiting passengers

4.1. Math notation considering exiting passengers

Table 2. Notation (exiting passengers).

N Set of nodes
A Set of links
wφ
rs(t) Number of travellers at r waiting to be picked up to travel to swho have been

waiting for φ time step at time step t
eφrs(t) Number of travellers that exit due to waiting times who have been waiting

for φ time steps at time step t
vφ
qrs(t) Number of SAVs assigned to travel from q to r to carry passengers who have been

waiting for φ time step to be picked up from r to s
xτq (t) Number of vehicles that are τ time steps away from arriving at q
+ Maximumwaiting time of passengers in a city network

In Section 3, travellers were modelled as waiting at their origin until they are served. In
reality, travellers are likely to exit the system if waiting times become too high. Notice that
the number of exiting passengers depends on the waiting time. The longer the waiting
times, the higher the rate at which passengers leave the queue. Therefore, we define the
number of travellers at r waiting to be picked up to travel to s at time steps t who have
been waiting for φ time step aswφ

rs(t). For instance, the number of travellers at r waiting to
be picked up to travel to s at time step 3who haswaiting for 2-time steps can be denoted as
w2
rs(3). Let e

φ
rs(t) be the number of travellers that exit due to waiting times who have been

waiting for φ time steps. Let vφ
qrs(t) be the number of SAVs assigned to travel from q to r to

carry passengers who have been waiting for φ time step to be picked up from r to s. Then
Equation (1) is modified to include waiting times φ and exiting passengers eφ

rs(t) as follows:

wφ+1
rs (t + 1) =






wφ
rs(t) − eφ

rs(t) −
∑

q∈N
vφ
qrs(t) φ ≥ 1

drs(t) −
∑

q∈N
vφ
qrs(t) φ = 0

(47)

We assume that e0rs(t) = 0, and max{φ} = +, where + is defined as the maximum waiting
timeofpassengers in a citynetwork. It is reasonable tohave+ ≤ ∞becausepassengerswill
not wait infinitely long for pick-up. Furthermore, eφ

rs(t) is a randomvariable that is related to
waiting time φ, and

∑
q∈N vφ

qrs(t) will first pick up travellers who have waiting for a longer

time φ. Also, v1qrs(t) > 0 only if v2qrs(t) = w2
rs(t).

∑
q∈N

∑+
φ=0 v

φ
qrs(t) is the total number of

dispatched vehicles for (r, s), i.e.
∑

q∈N
∑+

φ=0 v
φ
qrs(t) =

∑
q∈N vqrs(t).

We use a small example to explain the evolution of waiting for passengers includ-
ing exiting passengers: Assuming w1

rs(t) = 10, w2
rs(t) = 8, since the higher waiting time

φ, the smaller the number of waiting passengers. Suppose that e1rs(t) = 2 and e2rs(t) = 4.
Therefore, the evolution is shown as follows:

w2
rs(t + 1) = w1

rs(t) − e1rs(t) −
∑

q∈N
v1qrs(t) = 10 − 2 − 1 = 7 (48)

w3
rs(t + 1) = w2

rs(t) − e2rs(t) −
∑

q∈N
v2qrs(t) = 8 − 4 − 4 = 0 (49)
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4.2. Stable network

Stability must now be redefined because passengers will exit the system regardless of
whether SAV service is provided. Therefore, queue lengths may remain bounded even if
SAV service is insufficient. On average, |d̄| new demand arrives each time step. Therefore,
the average number of passengers exiting the system per time step because they are not
served will also be bound by definition. Instead, we can define the cumulative number of
unserved passengers ω(t) as

ω(t) =
t∑

t′=1

∑

(r,s)∈N 2

+∑

φ=0

eφ
rs(t

′) (50)

Equivalently, we can write a Markov equation for the cumulative number of unserved
passengers:

ω(t + 1) = ω(t) +
∑

(r,s)∈N 2

+∑

φ=0

eφ
rs(t) (51)

Ideally, the SAV system will serve almost all passengers. Network stability that relies on
some origin-destinations being underserved does not achieve maximum throughput. In
Section 3, it was required that all passengers were served for stability. However, due to
stochasticity, it is possible that an unusually large number of passengers arrive at one time
step. That will result in a correspondingly higher value of eφ

rs(t), but should be balanced out
with less demand and eφ

rs(t) = 0 at later time steps. If we take an average value of ω(t) over
time, it should be zero if the network is stable.

Definition 4.1: The network is stable if the average cumulative number of unserved
passengers in the long run equals zero.

lim
T→∞

E
[
1
T

ω(T)

]
= 0 (52)

Readers may notice that we use different indicators between Definitions 3.1 and 4.1 to
represent the stable network. The reason we use different indicators is when we do not
include exiting passengers, the evolution of the average number of waiting for passengers
can reflect the stable and unstable network. However, the average number of waiting pas-
sengers is not a good indicator to a evaluate stable andunstable networkwhen considering
exiting passengers. The average number of waiting passengers can always be bounded
when we allow passengers to exit the waiting queue at each time step if they do not want
to wait (given a certain tolerance time). However, Definitions 3.1 and 4.1 have strong con-
nections since they are both used to define whether all passengers are being served. We
used the same dispatch policy for exiting and no exiting passengers scenarios. The only dif-
ference between the two scenarios is the queueingmodel. Please refer to Equations (1) and
(48) for comparison.

4.3. Stable regionwith exiting passengers

Consider a dispatch policy defining a sequence of vehicle trips vqrs(t). The average number
of vehicles dispatched from q to r to s is defined like Equation (7). As some passengers are
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exiting the queuing system per time step, and the dispatched vehicle will pick up passen-
gers who have been waiting for a longer time. Therefore, the dispatched vehicle at t time
step has the following relationship with vφ

qrs(t).

∑

q∈N

+∑

φ=0

vφ
qrs(t) =

∑

q∈N
vqrs(t) (53)

This v̄qrs can be related to passenger demand with average exiting passengers ērs to
determine which average demand rates d̄ can be served by a given fleet size F. These
constraints hold on average, but stochastic variations in demand necessitate a correspond-
ing response. Even with a deterministic demand, it may not be possible to dispatch SAVs
according to the values of v̄qrs because v̄qrs ∈ R+ whereas vqrs(t) ∈ Z+.

First, it is necessary to serve all demands except average exiting passengers ērs, resulting
in the below constraint.

∑

q∈N
v̄qrs = d̄rs − ērs ∀(r, s) ∈ N 2 (54)

Constraint (54) is given with strict equality because SAVs are assumed to only make trips
when a passenger is waiting. SAVs must obey the conservation of flow, which means that
Equation (9) holds here too. The number of SAVs that can be dispatched at any time step
is bound by the fleet size F. Once dispatched on a trip from q to r to s, that dispatch affects
Cqrs time steps. Consequently, over a long time horizon T, we can get the same inequality
as Equations (10)–(12).

We already defined an average time C̄rs in Equations (13)–(14), which is required to serve
a passenger from r to s. This time includes Crs and also the empty travel required to send a
vehicle to r.

Combining Equations (7) and (12) yields

∑

(r,s)∈N 2

C̄rs(d̄rs − ērs) ≤ F (55)

D is defined as the set of demands already, for which there exists a v̄ satisfying constraints
(8), (9) and (12).D0 is the interior ofD, which is alsodefinedalready, i.e.where constraint (11)
holds with strict inequality. Then there exists an ε > 0 such that

∑

(r,s)∈N 2

C̄rs(d̄rs − ērs) − F =
∑

(q,r,s)∈N 3

v̄qrsCqrs − F ≤ −ε (56)

4.4. Stability analysis with exiting passengers

Wenowneed toprove that thepolicyπ$ defined in Section3.4will stabilise demand d̄ ∈ D0

when some exiting passengers ē(t) are leaving the queuing system in each time step. The
evolution of waiting for passengers can be described by the discrete-time Markov Chain
with the state vector w(t) and x(t), and using Equation (47) for the evolution of w(t). We
first prove Lemmas 4.1 and 4.2 to assist with the proof of stability.
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Lemma 4.1: E
[∑+

φ=1 w
φ
rs(t)

]
is bounded by the positive constant+d̂rs.

E




+∑

φ=1

wφ
rs(t)



 ≤ +d̂rs (57)

The practical meaning of+d̂rs is the sum of total maximum demand from time step 1 to
time step φ.

Proof: Since the number of waiting passengers at time step t should be less than or equal
to the maximum demand d̂r at each time step, we have:

wφ
rs(t) ≤ d̂rs φ ≥ 1 (58)

We sum from 1 to + for eachwφ
rs(t) at time step t:

E



w1
rs(t) + w2

rs(t) + · · · + w+
rs (t)︸ ︷︷ ︸

+



 ≤ +d̂rs (59)

Then we have the following inequality

E




+∑

φ=1

wφ
rs(t)



 ≤ +d̂rs (60)

!

Lemma 4.2:

E [ω(t + 1) − ω(t)] ≤
∑

(r,s)∈N 2

(
+d̂rs

)
(61)

Proof: The Markovian equation of the accumulative number of unserved passengers ω(t)
is represented by Equation (51). After combining with and

∑+
φ=0 e

φ
rs(t) = 0, we have

E [ω(t + 1) − ω(t)|e(t)] = E




∑

(r,s)∈N 2

+∑

φ=0

eφ
rs(t)

∣∣∣∣∣∣
e(t)



 (62)

= E




∑

(r,s)∈N 2

+∑

φ=1

eφ
rs(t)

∣∣∣∣∣∣
e(t)



 (63)

= E




∑

(r,s)∈N 2

+∑

φ=1



wφ
rs(t) − wφ+1

rs (t + 1) −
∑

q∈N
vφ
qrs(t)





∣∣∣∣∣∣
w(t)





(64)
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≤ E




∑

(r,s)∈N 2

+∑

φ=1

wφ
rs(t)

∣∣∣∣∣∣
w(t)



 (65)

=
∑

(r,s)∈N 2

(
+d̂rs

)
(66)

!

Lemma 4.3: When policy π$ is used and d̄ ∈ D0, with exiting passengers e(t) at each time
step, there exists a Lyapunov function ν(t) ≥ 0 and constants κ < ∞, ε > 0 such that

E [ν(t + 1) − ν(t)| ω(t)] ≤ κ − εω(t) (67)

Proof: Consider the following Lyapunov function, which includes the waiting passengers
wrs(t) and exiting passengers ers(t).

ν(t) = ω(t)




∑

(r,s)∈N 2

+∑

φ=1

C̄rsw
φ
rs(t)



+ ω(t)

(
∑

s∈N

∞∑

τ=1

τxτ
s (t)

)

(68)

For ease of presentation, define ν(t) = ν1(t) + ν2(t) where

ν1(t) = ω(t)




∑

(r,s)∈N 2

+∑

φ=1

C̄rsw
φ
rs(t)



 (69)

and

ν2(t) = ω(t)

(
∑

s∈N

∞∑

τ=1

τxτ
s (t)

)

(70)

First, we expand the difference ν1(t + 1) − ν1(t). Then

ν1(t + 1) − ν1(t) = ω(t + 1)




∑

(r,s)∈N 2

+∑

φ=1

C̄rsw
φ+1
rs (t + 1)





− ω(t)




∑

(r,s)∈N 2

+∑

φ=1

C̄rsw
φ
rs(t)



 (71)

= (ω(t + 1) − ω(t) + ω(t))




∑

(r,s)∈N 2

+∑

φ=1

C̄rsw
φ+1
rs (t + 1)





− ω(t)




∑

(r,s)∈N 2

+∑

φ=1

C̄rsw
φ
rs(t)



 (72)
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= (ω(t + 1) − ω(t))




∑

(r,s)∈N 2

+∑

φ=1

C̄rs
(
wφ+1
rs (t + 1)

)




+ ω(t)




∑

(r,s)∈N 2

+∑

φ=1

C̄rs(w
φ+1
rs (t + 1) − wφ

rs(t))



 (73)

E
[
(ω(t+ 1)− ω(t))(

∑
(r,s)∈N 2

∑+
φ=1 C̄rs(w

φ+1
rs (t + 1)))

]
is bounded based on Lemmas 4.1

and 4.2. We leave the second term for later. Now we continue working with ν2(t + 1) −
ν2(t).

ν2(t + 1) − ν2(t)

= ω(t + 1)

(
∑

s∈N

∞∑

τ=1

τxτ
s (t + 1)

)

− ω(t)

(
∑

s∈N

∞∑

τ=1

τxτ
s (t)

)

(74)

= (ω(t + 1) − ω(t) + ω(t))

(
∑

s∈N

∞∑

τ=1

τxτ
s (t + 1)

)

− ω(t)

(
∑

s∈N

∞∑

τ=1

τxτ
s (t)

)

(75)

= (ω(t + 1) − ω(t)))

(
∑

s∈N

∞∑

τ=1

τ (xτ
s (t + 1))

)

+ ω(t)

(
∑

s∈N

∞∑

τ=1

τ (xτ
s (t + 1) − xτ

s (t))

)

(76)

The first termof Equation (76) is still boundbecauseof Lemma4.2 and
∑∞

τ=0 x
τ
s (t) = F. Note

that themaximum travel time is still bound althoughwe use∞ here instead of defining the
maximum.

After that, we combine ν1(t + 1) − ν1(t) and ν2(t + 1) − ν2(t).

ν(t + 1) − ν(t) = (ν1(t + 1) + ν2(t + 1)) − (ν1(t) − ν2(t))

= ν1(t + 1) − ν1(t) + ν2(t + 1) − ν2(t)

= (ω(t + 1) − ω(t))




∑

(r,s)∈N 2

+∑

φ=1

C̄rs
(
wφ+1
rs (t + 1)

)




+ ω(t)




∑

(r,s)∈N 2

+∑

φ=1

C̄rs(w
φ+1
rs (t + 1) − wφ

rs(t))





+ (ω(t + 1) − ω(t))

(
∑

s∈N

∞∑

τ=1

τ (xτ
s (t + 1)

)

+ ω(t)

(
∑

s∈N

∞∑

τ=1

τ (xτ
s (t + 1) − xτ

s (t))

)

(77)

Based on Lemma 4.1 and 4.2, E
[
(ω(t + 1) − ω(t))(

∑
(r,s)∈N 2

∑+
φ=1 C̄rs(w

φ+1
rs (t + 1)))

]

is bounded by
∑

(r,s)∈N 2(+d̂rs)C̄rs(+d̂rs). Because we know
∑∞

τ=1 x
τ
s (t + 1) ≤ F, term
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E
[
(ω(t + 1) − ω(t))(

∑
s∈N

∑∞
τ=1 τ (xτ

s (t + 1))
]
is bounded by

∑
(r,s)∈N 2(+d̂rs) × (F ×

max(q,r,s)∈N 3{Cqrs}). We can obtain the following equation:

ν(t + 1) − ν(t) ≤




∑

(r,s)∈N 2

(
+d̂rs

)
C̄rs
(
+d̂rs

)


+
(
+d̂rs

)
×
(
F × max

(q,r,s)∈N 3

{
Cqrs

})

+ ω(t)
[


∑

(r,s)∈N 2

+∑

φ=1

C̄rs(w
φ+1
rs (t + 1) − wφ

rs(t))





+
(
∑

s∈N

∞∑

τ=1

τ (xτ
s (t + 1) − xτ

s (t)

)]
(78)

We now consider the third term of the above equation:

E
[
ω(t)




( ∑

(r,s)∈N 2

+∑

φ=1

C̄rs(w
φ+1
rs (t + 1) − wφ

rs(t))
)

+
(
∑

s∈N

∞∑

τ=1

τ (xτ
s (t + 1) − xτ

s (t))

)


∣∣∣∣

t∑

t′=1

e(t),w(t), x(t)
]

(79)

Based on Equation (47), we sum all waiting passengers from φ = 0 to φ = + at time t,
(
∑+

φ=1(w
φ+1
rs (t + 1) − wφ

rs(t))) in Equation (79) can be rewritten as follows

+∑

φ=0

wφ+1
rs (t + 1) =

+∑

φ=0

wφ
rs(t) −

+∑

φ=0

eφ
rs(t) −

∑

q∈N

+∑

φ=0

vqrs(t) (80)

Equation (80) can be rewritten as

+∑

φ=1

wφ+1
rs (t + 1) + w1

rs(t + 1) =
+∑

φ=1

wφ
rs(t) + w0

rs(t) −
+∑

φ=0

eφ
rs(t) −

∑

q∈N

+∑

φ=0

vφ
qrs(t) (81)

Since e0rs(t) = 0 andw0
rs(t) = drs(t), we have the following equation

+∑

φ=1

wφ+1
rs (t + 1) + w1

rs(t + 1) =
+∑

φ=1

wφ
rs(t) + drs(t) −

+∑

φ=1

eφ
rs(t) −

∑

q∈N

+∑

φ=0

vφ
qrs(t) (82)

Moving on, we have

+∑

φ=1

wφ+1
rs (t + 1) −

+∑

φ=1

wφ
rs(t) = drs(t) −

+∑

φ=1

eφ
rs(t) −

∑

q∈N

+∑

φ=0

vφ
qrs(t) − w1

rs(t + 1) (83)
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Combining Equations (79) and (83) yields

E
[
ω(t)




∑

(r,s)∈N 2

C̄rs



drs(t) −
+∑

φ=1

eφ
rs(t) −

+∑

φ=0

∑

q∈N
vφ
qrs(t) − w1

rs(t + 1)









−
(
∑

s∈N

∞∑

τ=1

τ (xτ
s (t + 1) − xτ

s (t))

) ∣∣∣∣
t∑

t′=1

e(t),w(t), x(t)
]

(84)

Let us focus on the term (
∑

s∈N
∑∞

τ=1 τ (xτ
s (t + 1) − xτ

s (t))) of Equations (78), (79)
and (84), which satisfies the same derivation as Equations (35) to (38). We can
get (

∑
s∈N

∑∞
τ=1 τ (xτ

s (t + 1) − xτ
s (t))) = −F +

∑
(q,r,s)∈N 3 vqrs(t)Cqrs. Therefore, Equation

(79), which is also the third term of (78), can be rewritten as follows

E
[
ω(t)




∑

(r,s)∈N 2

C̄rs



drs(t) −
+∑

φ=1

eφ
rs(t) −

+∑

φ=0

∑

q∈N
vφ
qrs(t) − w1

rs(t + 1)









−



F +
∑

(q,r,s)∈N 3

vqrs(t)Cqrs




∣∣∣∣

+∑

φ=1

e(t),w(t)
]

(85)

Because policy π$ is used, v$
qrs(t) will be chosen by the policy. and the dispatched vehi-

cle by policy π$ at time step t satisfies Equation (53) .Therefore we have the inequal-
ity
∑

q∈N
∑+

φ=0 v
φ
qrs(t)Cqrs =

∑
(q,r,s)∈N 3 v$

qrs(t)Cqrs ≤
∑

(q,r,s)∈N 3 v̄qrsCqrs =
∑

(q,r,s)∈N 3 v̄qrs
C̄rs. Now we can reform Equation (85) based on the proposed policy.

E
[
ω(t)




∑

(r,s)∈N 2

C̄rs



drs(t) −
+∑

φ=1

eφ
rs(t) −

∑

q∈N

+∑

φ=0

vφ
qrs(t) − w1

rs(t + 1)









−



F +
∑

(q,r,s)∈N 3

+∑

φ=0

vφ
qrs(t)Cqrs





∣∣∣∣∣∣

+∑

φ=1

e(t),w(t)
]

≤ E



ω(t)




∑

(r,s)∈N 2

C̄rs



drs(t) −
+∑

φ=1

eφ
rs(t) −

∑

q∈N

+∑

φ=0

vφ
qrs(t)









∣∣∣∣∣∣

+∑

φ=1

e



 (t)

≤ E



ω(t)



−F +
∑

(r,s)∈N 2

C̄rs



drs(t) −
+∑

φ=1

ers(t)









∣∣∣∣∣∣

+∑

φ=1

e(t)



 (86)

Based on the definition of the stable region with exiting passengers, we have the rela-
tionship of Equations (50), (55) and (56). Therefore, Equation (86) can be rewritten as
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follows:

E



ω(t)



−F +
∑

(r,s)∈N 2

C̄rs



drs(t) −
+∑

φ=1

eφ
rs(t)







 |
+∑

φ=1

e(t), x(t)





≤




∑

(q,r,s)∈N 3

v̄qrsCqrs − F



ω(t) (87)

= −ε|ω(t)| (88)

Looking back to the first and second terms of Equation (78). We find they are bounded by
constant by κ1 = [

∑
(r,s)∈N 2(+d̂rs)C̄rs(+d̂rs)] and κ2 = (+d̂rs) × (F × max(q,r,s)∈N 3{Cqrs})

respectively, so there exists a constant κ = (κ1 + κ2) < ∞ and a constant ε > 0 from
Equation (88) that makes function ν(t) = ω(t)(

∑
(r,s)∈N 2

∑+
φ=1 C̄rsw

φ
rs(t)) + ω(t)(

∑
s∈N∑∞

τ=1 τxτ
s (t)) that satisfies the inequality (67), E [ν(t + 1) − ν(t)|ω(t)] ≤ κ − εω(t). !

Proposition 4.1: When policy π$ is used and d̄ ∈ D0, the network is stable.

Proof: Inequality (67) holds from Lemma 4.3. Taking expectations and summing over t =
1, . . . , T gives the following inequality:

E [ν(T + 1) − ν(1)| ω(t)] ≤ κT − ε

T∑

t=1

ω(t) (89)

and so,

ε
1
T

T∑

t=1

E [ω(t)] ≤ κ − 1
T

E [ν(T + 1)] +
1
T

E [ν(1)] ≤ κ + 1
T

E [ν(1)] (90)

Wemove ε to the right-hand side and take the limit as T goes to infinity. Then the 1
T E [ν(1)]

term approaches zero, which yields

lim
T→∞

1
T

T∑

t=1

E [ω(t)] ≤ κ

ε
(91)

Note that Equation (91) can be rewritten as follows:

lim
T→∞

1
T

E
[ T∑

t=1

ω(t)

]

≤ κ

ε
(92)

lim
T→∞

1
T

E



ω(1) + ω(2) + · · · + ω(T)︸ ︷︷ ︸
T



 ≤ κ

ε
(93)

lim
T→∞

1
T

E [T × E [ω(T)]] ≤ κ

ε
(94)

Moving T to the right hand side of Equation (94), we have

lim
T→∞

1
T

E [ω(T)] ≤ κ

εT
(95)
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When T approaches infinity, the right-hand side of Equation (95) approaches zero, which is
equivalent to Equation (52). Therefore, Definition 4.1 is satisfied. !

5. Simulationmodel and numerical results

We use the Sioux Falls network, which includes 24 nodes and 72 links, to provide numeri-
cal analysis for the proposed maximum-stability dispatch policy for SAVs. It has been used
quite often in the literature as a benchmark. The total demand is around 360600 trips per
day (around 15025 trips per hour). The main purpose of the simulation is to numerically
demonstrate the stability properties discussed in previous sections. The simulation experi-
ments are built in Java, and the optimisation programmes are solved in IBM CPLEX. We set
the simulation to 1500 time steps (45000 seconds in reality) to ensure it is enough long for
stability. Each time step equals 30 seconds in this simulation.

The simulation and numerical analysis are divided into three parts. The first is the
maximum-stability applied when there are no exiting passengers, which we called basic
simulation and stability analysis. The second part is a small example, which explains the
impacts of fleet size onmaximum stable demand. It can help readers better understand the
results of the experiment. The third part is about extending the simulation stability analysis
to consider the exiting passengers.

5.1. Basic simulation and stability analysis

In this part, we first show the numerical difference in the average queue length of wait-
ing for passengers inside and outside the stable region when the fleet size is 450 vehicles.
The average queue length of waiting for passengers is defined as the number of waiting
for passengers that are waiting to be picked up by SAVs. This number is summed over all
zones and averaged by the simulation time. The results are shown in Figure 2, which shows
that for stable demand, the average queue length of waiting passengers will approach to a
constant, while for unstable demand, the average queue length of waiting passengers will
increase to an arbitrarily large number.

Similarly, we also show the numerical difference in average passenger waiting timewith
a fleet of 450 vehicles in Figure 3. The average passenger waiting time is calculated by
summing up all served waiting passengers, and average over the simulation time and the
number of served waiting passengers. The average queue length of waiting passengers is
calculated by summing all served passenger waiting time, averaged over simulation time.
Therefore, according to Little’s Law, average passenger waiting time will have the same
pattern shown in Figure 2. The results are shown in Figure 3, which shows that for a sta-
bilisable demand, the average passenger waiting time will fluctuate around a constant
number, while for unstabilisable demand, the average passenger waiting timewill increase
to infinity. Readersmay notice from Figures 2 and 3, the time that required to converge to a
constant is differentwhendifferent indicators are considered. However, there is no theoret-
ical reason why the average waiting time and the average waiting passengers should have
the same pattern in the simulation. With a sufficiently long time horizon, they will both
converge to average values for a stable network, but there is no theoretical relationship
between when they converge.
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Figure 1. Sioux falls network.

We also find when the demand is within the stable region, the average empty vehicle
travel time will fluctuate around a constant when the fleet size is 450 vehicles. However,
when the demand is outside the stable region, the average empty vehicle travel time will
continually increase to anumber thendrop to a constant. Finally, the average empty vehicle
travel timewill fluctuate around a constant too. This is because, when the queue of passen-
gers is increasing in length, there is likely to be at least one passenger waiting to be picked
up at each node each time step. As time goes on, an increased number of unserved passen-
gers accumulates at each node, a vehicle will most likely be able to pick up a passenger at
the same nodewhere it drops a passenger off at. This results in zero empty travel time steps
for some vehicle’s trips. As a result, the average empty travel timewill approach a constant.
Note that the proportion of vehicles that has zero empty vehicle travel time in the fleet size
should depend on howmuch passenger demand exceeds the stable demand region. If the
demand is too large, the average empty vehicle travel timewill converge to zero sincemore
vehicles will pick up and drop off passengers at the same nodes.
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Figure 2. Difference in the average queue length of waiting passengers for demand inside and outside
the stable region.

Figure 3. Difference in the average passenger waiting time for demand inside and outside the stable
region.

Figure 5plots the averagepassengerwaiting timewith regard to fleet sizewhen the total
demand is 15025 trips per day. The results show that when the fleet size increase from 250
to 650 vehicles, the average passenger waiting time shows a decreasing trend when the
demand is within the stable region in this network.
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Figure 4. Difference in the average empty vehicle travel time for demand inside and outside the stable
region.

Figure 5. Average passenger waiting time with respect to different fleet sizes under stable demand.

5.2. Impact of !eet size onmaximum stable demand

Themaximum trips per hour of SAVs calculated by simulation under the stable region with
different fleet sizes are shown in Figure 6. When the fleet size increases from 250 vehicles
to 650 vehicles, maximum trips per hour of SAVs increases linearly with respect to fleet size.
The dashed line in Figure 6 shows the maximum trips per hour calculated by Equations
(8), (9) and (12). When fleet size increases from 250 vehicles to 650 vehicles, the maxi-
mum trips per hour of SAVs solved by the equations characterising the stable region also
increases linearly with respect to fleet size. However, the simulation-based maximum trips
per hour is smaller compared with maximum trips per hour predicted by Equations (8), (9)
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Figure 6. Trips per hour with regard to different fleet sizes under stable demand.

Figure 7. Small network.

and (12). Specifically, these resultsmayprovidepractical applications for SAVs. For example,
SAV companies could use the maximum stability dispatch policy to choose the number of
vehicles to operate within one city to both satisfy traveller demand and ensure lowwaiting
times. SAV companies can also make an informed decision to balance SAV trips per hour
with vehicle fleet size to optimise operating costs.

We notice that maximum stable demand per hour within the stable region with respect
to different fleet sizes is smaller than the maximum stable demand per hour predicted by
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Figure 8. Experimental results of the small network.

Figure 9. Maximum stable demand results with respect to simulation horizons.

solving Equations (8), (9) and (12). Based on Equations (8), (9) and (12), we can analytically
predict themaximumstabledemandperhourbasedon thegiven fleet size and thedemand
file of the Sioux Falls Network. But when running the simulation, we find there is some
difference between simulation-based results and analytically solved results, as shown in
Figure 6.

We use a small network, which only includes node 1, node 2, link 1, and link 3 in the Sioux
Falls Network, to explain the difference, as shown in Figure 6. The shortest path travel time
between node 1 and node 2 is 6 minutes, and the shortest path travel time between node
2 and node 1 is also 6 minutes. We set the demand between these two nodes as 2 trips
per hour the fleet size is one. In addition, we need to emphasise a small network with one
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SAV can help us understand how the vehicle moves between the only two nodes. The rea-
son we use a small demand is that we need to simulate a long time horizon and a smaller
demand will reduce the computation time. We set two small demand patterns. Pattern 1 is
symmetric, whichmeans the hourly trips betweennode 1 to node 2 is 1, and the hourly trips
between node 2 to node 1 is 1 too. Pattern 2 is asymmetric: the hourly trips between node 1
to node 2 are 2, but the hourly trip between node 2 to node 1 is zero. For the small network,
the SAV fleet size (one SAV) canmake 5 round trips per hour. For pattern 1, each round trip
serves 2 passengers. Therefore, the SAV fleet (one SAV) can serve amaximum of 10 passen-
gers per hour. For pattern 2, each round trip serves 1 passenger. Therefore, this SAV fleet
(one SAV) can serve amaximumof 5 passengers per hour. This is reasonable, becausewhen
the demand pattern is asymmetric, SAVs need rebalancing trips, which makes the short-
est path travel time larger. We also set the two small demand patterns into the simulation
andwe find themaximum stable demands are different under these two demand patterns.
Under the small demandpattern 1 (symmetric), themaximum stable demand calculated by
simulation is around 8 trips per hour. Under the small demand pattern 1 (symmetric), the
maximum stable demand calculated by simulation is around 4 trips per hour. This is rea-
sonable because SAVs also need rebalancing trips in simulations. The results are shown in
Figure 6, which demonstrates that the demanddistribution influences themaximum stable
demand. However, Equations (8), (9) and (12) consider asymmetric trips.

Movingon,we set the simulation timehorizon from1000 to100,000 to check the impacts
on the maximum stable demand. Figure 6 shows that the gap between simulation results
and the results calculated from Equations (8), (9) and (12) decreases as the simulation time
horizons increase, which demonstrates our simulation is exactly matched with the results
calculated from Equations (8), (9) and (12) if we choose sufficiently large simulation time
horizons. The reason for the above-mentioned relationship between gap and simulation
step horizons is that when we set up a larger demand, the ε in Equation (16) becomes
smaller based on a given fleet size, which makes the upper bound of Equation (5) larger.
Therefore, it requires a larger simulation time horizon to converge to this larger upper
bound.

5.3. Simulation and stability analysis including exiting passengers

Using the same demand as in Section 5.1, we extend our simulation to consider the
existence of exiting passengers. First, we show the numerical difference in the average
cumulative unserved passengers inside and outside of the stable regionwhen the fleet size
is 450 vehicles and the waiting tolerance time is 5, 10, and 15 minutes. The waiting toler-
ance time means the largest waiting time that passengers are willing to wait. The average
cumulative unserved passengers are defined in Definition 4.1. To ensure we can observe
more evolutionary detail of stability from the simulation, we set the simulation times suf-
ficiently large. Figure 10 shows that for stable demand, the average cumulative unserved
passengers fluctuates around a constant close to zero under the three different tolerance
times. However, for unstable demand, the average cumulative unserved passengers fluctu-
ates around a number significantly larger than 0. Figure 10 also indicates that, based on the
same unstable demand, the smaller tolerance time leads to a larger average cumulative
number of unserved passengers. This is true because when the tolerance time is smaller,
passengers will choose to leave the queue earlier. Based on the same stable demand, the
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Figure 10. Difference in the average number of unserved passengers for demand inside and outside
the stable region.

average cumulative number of unserved passengers is larger when the tolerance time is
small at the beginning, but this numberwill converge to a very small number (close to zero)
as the simulations continue.

We also show the numerical difference in the average queue length of waiting pas-
sengers inside and outside the stable region when considering exiting passengers with
different tolerance times. The fleet size is also 450 SAVs. The results are shown in Figure 11.
Because of the tolerance time, people will leave the system if their waiting times are longer
than they can tolerate, which means the average queue length for the unstable network
will also be bound. Note that a stable and unstable network is defined by the average
cumulative number of unserved passengers when considering exiting passengers, not the
average queue length. As for stable demand and unstable demand, when the tolerance
time increases, the average queue length of waiting passengers increases too.

Figure 12 shows the numerical difference in the waiting time of waiting passengers
inside and outside the stable region when considering the exiting passengers with differ-
ent tolerance time. Based on Little’s Law, the average passenger waiting times have same
the pattern as shown in Figure 12.

Average empty vehicle travel times are also worth exploring when considering the exit-
ing passengers. The results are shown in Figure 13. When the demand is within the stable
region, the average empty vehicle travel time will fluctuate around a constant under dif-
ferent tolerance times. When the demand is out of the stable region, the average empty
vehicle travel time will also fluctuate around a constant when the demand is out of the
stable region. This is because when considering tolerance times of exiting passengers, all
non-exiting passengerswill be served by SAVs, whichmakes the number ofwaiting passen-
gers in thequeuewill be bound. Finally, the average empty vehicle travel timewill converge
to a constant.
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Figure 11. Difference in the average queue length ofwaiting passengers for demand inside and outside
the stable region.

Figure 12. Difference in the average waiting time of waiting passengers for demand inside and outside
the stable region.

The maximum trips per hour of SAVs calculated by simulations under the stable region
with different fleet sizes with exiting passengers (tolerance time: 10 minutes) are shown
in Figure 14. When considering exiting passengers, the maximum trips per hour of SAVs
increase linearly with respect to different fleet sizes. Furthermore, the results show that the
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Figure 13. Difference in empty vehicle travel time for demand inside and outside the stable region.

Figure 14. Trips per hour with regard to different fleet size under stable demand when considering
exiting passengers.

exiting passengers do not affect the stable region. When the demand is within the stable
region, the averagenumberof exitingpassengerswill reachnearly zero. Therefore, themax-
imum stable region is the same with or without exiting passengers. This is consistent with
the results of Figure 10. Both Figures 10 and 14 give us the insight that a particular fleet size
is needed to serve a given passenger regardless of whether passengers exit due to long
waiting times. In other words, if the SAV operator wants to provide a stable service, the
fleet size can be the same under with or without exiting passengers.
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6. Conclusions

This study develops a fast maximum stability dispatch policy, named FMS-Dispatch, for
SAVs based on the dynamic queueing model. We characterise the stable region, which
is the set of demands that could be served by any dispatch policy. Based on the simula-
tion results, we find the results numerically show that the proposed fast maximum-stability
dispatch policy can ensure that the network remains stable when stochastic demand is
within the stable region. Furthermore, the numerical results show that the maximum sta-
ble demand per hour of SAVs increases linearly with respect to the fleet size. We also find
that an asymmetrical demand pattern will add rebalancing time for SAVs, which can lead
to the maximum stable demand per hour within the stable region smaller based on the
asymmetric demandpattern than themaximumstable demandper hourwith regard to dif-
ferent fleet sizes based on the symmetric demand pattern. Unlike previous work, this study
extends the stability results to a more realistic, considering exiting passengers for the first
time. In reality, passengers will leave the queue system and choose other modes of trans-
portation if they wait too long for the SAVs. The simulation results show that the proposed
SAVs’ dispatch policy can still stabilise the network when considering exiting passengers
with different tolerance times, without requiring a time horizon like previous study (Kang
and Levin 2021). The maximum stable trips per hour are the same as the scenarios without
exiting passengers.

These results could provide practical applications for SAVs. For example, SAV com-
panies could use the fast maximum stability dispatch policy to choose the number of
vehicles to operate within one city to both satisfy traveller demand and ensure lower
waiting times. SAV companies can also make an informed decision to balance SAV trips
per hour with vehicle fleet size to optimise operating costs based on the relationship
shown in Figure 6. Furthermore, when the tolerance time increases, the average queue
length of waiting passengers increases too, which forces SAV companies to provide some
strategies to reduce passengers’ waiting queue lengths, such as ride-sharing and off-peak
travel incentive. As for the government, this research could provide information rele-
vant to regulations on SAV fleet sizes. If current fleet size can stabilise the passenger
waiting queue lengths, the government may reject company requests to increase fleet
sizes.

In future work, there are many extensions, such as electric vehicle charging behaviours,
ride-sharing, dynamic pricing, and dynamic rebalancing, which may affect the max-
imum SAVs trips per hour for a given fleet size and the queue lengths of waiting
passengers.
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