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The microbiome is known to provide benefits to hosts, including extension of immune function. Amphibians are a
powerful immunological model for examining mucosal defenses because of an accessible epithelial mucosome
throughout their developmental trajectory, their responsiveness to experimental treatments, and direct in-
teractions with emerging infectious pathogens. We review amphibian skin mucus components and describe the
adaptive microbiome as a novel process of disease resilience where competitive microbial interactions couple
with host immune responses to select for functions beneficial to the host. We demonstrate microbiome diversity,
specificity of function, and mechanisms for memory characteristic of an adaptive immune response. At a time
when industrialization has been linked to losses in microbiota important for host health, applications of mi-

crobial therapies such as probiotics may contribute to immunotherapeutics and to conservation efforts for species
currently threatened by emerging diseases.

1. Defining the adaptive microbiome hypothesis

Adaptive immunity is characterized as specific to an antigen, protec-
tive of the host, and remembered such that future exposures result in more
rapid responses (Ferro et al., 2019). Specificity requires a diverse
repertoire for antigen recognition. Protection of the host requires
neutralizing or eliminating a pathogen and preventing host damage.
Memory requires a mechanism to repeat a response at an accelerated
rate. Immune systems of bacteria, plants, and invertebrates incorporate
these characteristics without T and B lymphocyte receptors or anti-
bodies. This includes the CRISPR-CAS antiviral immunity of bacteria
(Nussenzweig and Marraffini, 2020), the diverse Pattern Recognition
Receptors (PRRs) in plants (Han 2019), diverse mechanisms for immune
memory in invertebrates including endoreplication, genomic incorpo-
ration of viral elements for RNA interference response amplification,
epigenetics (Lanz-Mendoza and Contreras-Garduno, 2022) and the
Variable Lymphocyte Repeat (VLR)-based immunity in the jawless
hagfish and lampreys (Boehm et al., 2012). Indeed, innate immunity
across the tree of life can respond specifically, be protective, and show
innate immune memory (priming or training) via epigenetic changes,
chromatin remodeling, transcriptional shifts, cell-cell and systemic
communication, as well as transgenerational or vertical transmission of

* Corresponding author.
E-mail address: dwoodhams@gmail.com (D.C. Woodhams).

https://doi.org/10.1016/j.dci.2023.104690

immune defenses (Gourbal et al., 2018). Thus, the typical adaptive im-
mune mechanisms of somatic generation of antigen receptors, clonal
expansion of lymphocytes, and production of memory cells that are
unique to animals (Flajnik, 2023) represent a subset of the adaptive
strategies utilized across the tree of life for immune defense.

The microbiome is a diverse set of cells producing mucosal and hu-
moral factors that interact with host immunity and behavior (Table 1,
Suppl. Table S1). In the amphibian skin, the microbiome includes hun-
dreds of bacteria (Table 2), a conservative estimate ranging from 69 to
645 operational taxonomic units (OTUs) on average in wild amphibian
populations (Kueneman et al., 2022), but depending on the sequencing
and bioinformatics strategy the estimate may be in the thousands of
OTUs per individual (Hu et al., 2022; Hughey et al., 2022), consistent
with complex microbiomes found across vertebrates (Woodhams et al.,
2020a). Kearns et al. (2017) also described a diverse composition of skin
fungi on amphibians, and other micro-eukaryotes are often present
(Kueneman et al., 2016). These microbes, with dynamic population
abundances and transcriptional output lead to a complex metabolome
that can differ even among similar bacterial communities (Medina et al.,
2017) and provide pathogen-specific host defenses. Indeed, the function
of bacterial secondary metabolites in anti-pathogen defense is
well-studied in pursuit of probiotic applications for disease management
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Table 1

Examples of mucosome components of microbial or host origin ranging in
size. See Supplemental Table S1 for components of the skin mucosome specific
to amphibian species commonly used in research.

Mucosome compounds Molecular Weight (g/mol, or Da)

galactose 180
tetrodotoxin (TTX) 319
violacein 343
corticosterone 346
temporin A 1397
bacteriocin (class 1) 1500
ranatuerin 2P 3003
BA-lysozyme 15,000
bacteriocin (class 3) 26,600
frog integumentary mucins (FIM) 116,000
frog integumentary mucins (FIM) 650,000

Table 2

Common bacteria detected by culture or culture-independent targeted
amplicon sequencing across amphibians from Kueneman et al. (2019) and
Woodhams et al. (2015).

Phylum® Genus Percent of Percent
isolates (N = reads (Total
7273) 42.5%)
Actinomycetota Cellulomonas 0.1 1.1
Microbacterium 11.2 0.8
Arthrobacter 1.5 0.8
Rhodococcus 1.7 0.6
Sanguibacter 0.0 0.9
Bacteroidota Bacteroides 0.0 0.5
Chryseobacterium 4.2 3
Elizabethkingia 0.3 0.6
Wautersiella 0.1 0.5
Flavobacterium 1.4 1
Pedobacter 0.9 0.7
Sphingobacterium 0.7 1.1
Pseudomonadota Methylobacterium 0.9 0.5
(Alphaproteobacteria) Agrobacterium 0.7 0.5
Rhodobacter 0.2 0.6
Sphingomonas 2.3 0.9
Pseudomonadota Pigmentiphaga 0.0 1.3
(Betaproteobacteria) Methylibium 0.1 0.9
Rhodoferax 0.1 0.7
Janthinobacterium 0.7 0.5
Methylotenera 0.0 0.5
Pseudomonadota Klebsiella 0.1 3.7
(Gammaproteobacteria) Pantoea 0.1 0.7
Acinetobacter 3.8 8.1
Pseudomonas 12.9 10.2
Stenotrophomonas 3.3 1.3
Verrucomicrobiota Luteolibacter 0.0 0.5

# Taxonomy after Oren and Garrity (2021).

(Harris et al., 2009; Bletz et al., 2013; Mueller and Sachs, 2015;
Woodhams et al., 2015, 2016; Eria A. Rebollar et al., 2016; McKenzie
et al., 2018). Thus, pathogen-specificity and protective function may be
supplied by the microbiome.

The third characteristic of an adaptive immune response is memory.
According to the adaptive microbiome hypothesis, infection primes the
microbial community by enrichment with anti-pathogen members, thus
reducing the impact of secondary exposure. Like immune memory cells,
or a seed bank, dormant or rare beneficial microbes may be able to
quickly proliferate in response to pathogen exposure. Additionally,
changes at the host population or host community assemblage scales
provide a mechanism by which increases in prevalence allow the
transmission of beneficial microbes that can in effect rescue the host
upon repeat exposure (Pillai et al., 2017; Mueller et al., 2020). Memory
can also be incorporated at a cellular scale due to selection within mi-
crobial populations for function and horizontal gene transfer. Thus,
adaptation of the microbiome may occur with or without shifts in
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community composition.

Symbiosis can generate evolutionary novelty and innovation (Erwin,
2021), and may require regulation to maintain mutual benefit (Japp,
2010). Thus, in addition to evolving interactions within the microbiome,
hosts have the behavioral, physiological, and immunological potential
to change the selective environment that would facilitate directional
changes in response to external stressors such as disease, or pathogen
exposure (Foster et al., 2017). Following exposure to a stressor (e.g., a
pathogen or changes in environmental conditions), the adaptive
microbiome is reduced in terms of dispersion or variation among indi-
vidual hosts, and it shifts to a state that is better suited to the conditions.
While the stressor itself may be a change in environmental conditions or
direct impacts by the pathogen, local conditions are also shifted by host
responses (such as behavioral changes in habitat use, or production of
mucosal antibodies, peptides, signaling molecules, and mucus compo-
sition - reviewed below) which result in a new selective environment.
Similarly, ecological stressors that change the biotic community can
alter microbial recruitment linkages (Greenspan et al., 2019, 2020).
Holobiont theory suggests that under conditions of strong vertical
transmission and rapid host generation, the holobiont can evolve (Theis
et al., 2016; van Vliet and Doebeli, 2019). Mathematical modeling
suggests that holobiont evolution is also possible with environmental
reservoirs and horizontal transmission (Roughgardern, 2020). Indeed,
there are several alternative pathways for “remembered” microbes,
including reliable transmission of functions (reviewed in Rosenberg
et al., 1982; Box 1).

While many studies identify alterations in a microbiome when
compared before and after a disturbance (Table 3; Palleja et al., 2018;
Mickan et al., 2019; Saenz et al., 2019), determining if the observed
changes indicate a protective directional response or dysbiosis is diffi-
cult without time series samples and knowledge of disease or recovery
outcomes. To help interpret microbial shifts in response to infection,
Zaneveld et al. (2017) applied the Anna Karenina Principle (AKP) to
host-associated microbiomes. Drawing on the opening line of Tolstoy’s
(1878) novel Anna Karenina, the idea that “happy families are all alike;
every unhappy family is unhappy in its own way” is applied to micro-
biomes in dysbiosis - the community of healthy hosts will be similar, but
the influence of disturbance will cause stochastic shifts in the stressed or
diseased host (Madison, 2021). An AKP effect is primarily assessed
through an increase in microbial community dispersion reflecting sto-
chastic changes from an assumed similar ‘healthy’ microbiome. Indices
including the normalized stochasticity ratio (NST; Ning et al., 2019) can
also measure the relative roles of deterministic versus stochastic as-
sembly processes. In a study of 27 human microbiome-associated dis-
eases, AKP effects were detected in half and attributed to a dominant
pathobiont. In cases demonstrating anti-AKP effects (decreased disper-
sion) or no effects, the community of microbes including rare species
played a role (Ma and Sam, 2020).

Cases that do not match the predictions of the AKP fall into two
categories - termed ‘anti-AKP effects’ and ‘non-AKP’ effects - which
demonstrate either less or the same level of dispersion as was seen in the
‘healthy’ microbiome (Zaneveld et al., 2017; Ma and Sam, 2020). From
the perspective of the microbiome as a source of potential therapeutics
or as an extension of host immune defense, the non-AKP and anti-AKP
effects offer an opportunity because they indicate a directional
response in the microbiome. This may indicate an adaptation when the
microbial community shifts to an alternative state better suited to the
environment or as a response to stress that helps restore homeostasis
(key concepts defined in Table 4). The framework of ecological resil-
ience provides further application of the adaptive microbiome
hypothesis.

1.1. Disease resilience and the adaptive microbiome hypothesis

Resilience to disease (Table 3) can occur at the scales of ecosystem,
host population, individual host, microbial population or cell. At the
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ecosystem scale, resilience is a measure of maintenance or recovery of
ecosystem function. At the host population scale, resilience is deter-
mined by epidemic fade-out. At the individual host scale, resilience is a
state of health that includes pathogen resistance, tolerance, or recovery
from infection. Hosts can develop resilience through development of an
immunological response, and microbial populations are resilient when
they evolve improved functions of defense or competitive advantages.
Thus, conceptual models that transcend scale and the associated disci-
plinary boundaries are needed to synthesize and advance research on
the biology of resilience. The adaptive microbiome hypothesis described
here focuses on microbial dynamics on an individual scale following
environmental stressors, including but not limited to disease, leading to
evolutionary and ecological rescue of host populations or ecosystem
functions associated with environmental microbiota (Table 3).

The emergence of the fungal disease chytridiomycosis is notorious
for its historically unprecedented and broad ecological and taxonomic
impact on amphibians (reviewed in: Lips, 2016; Woodhams et al., 2018;
Zumbado-Ulate et al., 2022). While substantial research focuses on the
hundreds of species impacted by this disease, a review found that 12% of
species that had declined in population show signs of recovery (Scheele
et al., 2019), and 32 species of Harlequin frogs thought to have gone
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extinct were rediscovered (Jaynes et al., 2022). While the pathogen
Batrachochytrium dendrobatidis (Bd) showed signs of increasing virulence
through time as it spread through Central America (Phillips and
Puschendorf, 2013), Voyles et al. (2018) found that virulence of the
fungal pathogen was not changing in Panama, and mucosal skin de-
fenses were higher post-disease emergence. These hopeful examples of
disease resilience are a central focus of research because they may
provide strategies for conservation, and a model for resilience to envi-
ronmental disturbance.

Rather than dysbiosis or an imbalance of microbial communities in
response to infection, adaptive responses of host microbiomes may be
characterized by shifts in microbial community structure and diversity
leading to a healthy defensive state (Jin Song et al., 2019). According to
this hypothesis, upon recovery from infection, enriched microbial
communities are primed for a second exposure, and like immune
memory cells, are able to quickly proliferate or activate production of
defensive compounds in response to pathogen exposure. Protective mi-
crobes may also be transmitted. This occurs in amphibian habitats
(Keiser et al., 2019; McGrath-Blaser et al., 2021), or vertically (Walke
et al., 2011), or along with pathogens. Most disease studies artificially
expose hosts to pathogen isolates and neglect co-infections common in

Box 1
The Adaptive Microbiome and Nested Adaptive Cycles

text and Fig. 1.

2016).

is needed.

The Adaptive Microbiome Hypothesis is described as an individual host response to pathogen exposure characterized by a shift in microbial
composition including reduced microbial diversity and increased anti-pathogen function. In addition, interhost differences or microbiome
dispersion is reduced at the population level, compared to unexposed populations. Potential mechanisms for these effects are described in the

According to René Dubos (1959), “The states of health or disease are the expressions of the success or failure experienced by the organism in its
efforts to respond adaptively to environmental challenges.” One of these adaptive responses to pathogen exposure involves the microbiome. In a
map of disease space, this can be represented by hysteric or looping patterns of the host microbiome in relation to infection load (Torres et al.,

When the adaptive microbiome is modeled with nested adaptive cycles or panarchy after Gunderson and Holling (2002) based on ecosystem
studies, the interactions across spatial and temporal scales become apparent (Fig. B1). Quantitative measures of ecological resilience may be
possible by measuring the ability of an adaptive cycle to persist (e.g., a host surviving infection) by absorbing the disturbance (e.g., homeostatic
mechanisms in response to pathogen exposure; Fig. 3). Alternatively, the system will shift to an alternative state with new structure, functions,
and relationships (Sundstrom and Allen, 2019). The quadrats of each lemniscate representing an adaptive cycle include processes of reorga-
nization (a), growth (r), conservation (K), and release (£2). Connections between scales include processes termed remember and revolt.
Cross-scale memory for host microbiota includes transmission (merger of microbe and host) by recruitment or infection from host populations or
from biotic communities, and immunological pressure (host immunity or microbiome) from hosts on populations of each microbe. At the in-
dividual host scale, the most resilient period is upon transmission (@) where reorganization of host immunity and microbiota is possible leading
to growth (r, or immune activation coupled with competitive microbial interactions) toward a steady conservation state (K) that is more
constrained and less resilient to additional perturbations (Philippot et al., 2021). Disease is indicted in the release stage (£2) at which point the
system may collapse (a type of homeostatic overload or failure) affecting other scales particularly at the conservation stage (K), or the host may
recover and move back to the reorganization stage («). Mounting immunological pressure in the host growth stage (r) can result in reorgani-
zation () at lower scales such as microbial evolution and functional changes. Microbial evolution in response to disturbance is one mechanism
underlying adaptive microbiomes, referred to in the text. Of note, in this panarchical model multiple microbes are nested within each host, and
multiple hosts are nested within each community, while only one adaptive cycle is depicted at each scale for clarity in Fig. B1.

The importance of cross-scale interactions is indicated by the examples of Bsal exposure in Eastern newts in studies by Malagon et al. (2020) and
Carter et al. (2021), performed on adults at 14 °C (Fig. B1). A host that is exposed to an aseptic pathogen dose produced in culture media may not
respond in way that represents a naturally transmitted infection by contact between hosts even with an equivalent exposure dose because of the
co-transmitted microbiota. If adapted in the host population for anti-pathogen function, the co-transmitted microbiota is likely to attenuate the
infection, as shown in Fig. B1. In this example, Eastern newts, Notophthalmus viridescens, in contact with an infected conspecific developed
infection and showed survival curves similar to newts artificially dosed with high concentrations of Bsal zoospores. However, more newts
survived the infection from contact in the study by Malagon et al. (2020) compared to the 100% lethal exposure to cultured zoospores in Carter
etal. (2021). We note, however, that variation between studies is to be expected, and careful examination of adaptive microbiome transmission

There is a place in infectious disease research for controlled exposure experiments to examine emergent properties of host-microbe interactions.
However, among the many factors that are excluded in a controlled laboratory setting is the metacommunity dynamic that potentially trans-
forms the impact on disease outcome. Applying metacommunity theory to adaptive microbiomes reveals that co-transmission of pathogen and
defensive microbiota may attenuate disease. Coinfections are common and widespread in wildlife including amphibians (Herczeg et al., 2021),
and transmission of microbes among hosts and between host and abiotic environments is continuous. Thus, for both directly and indirectly
transmitted pathogens, co-transmission of microbiota along with the pathogen is an understudied feature of many disease systems.
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Fig. B1. The adaptive microbiome hypothesis as represented by panarchy, or nested adaptive cycles after Gunderson and Holling (2002). In
the top panel, adaptive cycles are represented at the scales of microbial population, individual amphibian host, and amphibian population or
community. Connections across scale are indicated by processes of remember and revolt. Lower panels are representative figures of experi-
ments in which newts were exposed to infectious Batrachochytrium salamandrivorans (Bsal) zoospores obtained from sterile culture (lower right

infection, newts with undetermined co-transmission may have gained a head-start at adapting to infection by assembling a protec-

Carter et al. 2021, PLoS Pathogens

from direct contact of naive to infected newts (lower left panel). Upon

amphibians (but see Stutz et al., 2017; Becker et al., 2019; reviewed in
Herczeg et al., 2021). Historical contingency including immunological
hysteresis and microbial assembly processes are known to induce, direct,
or deplete immune defenses (Eberl, 2010; Johnson and Hoverman,
2012). Controlled studies may also neglect other natural contexts of
infection, including the “memory” provided by the larger scales of host
populations and communities that can be sources of microbial migration
or transmission and considered in nested adaptive cycles (Box 1). The

adaptive microbiome defense blurs the distinction between innate and
adaptive immunity (Cooper, 2016) and helps explain the curiously high
diversity of symbionts hosted by vertebrates with complex adaptive
immunity (Dethlefsen et al., 2007; McFall-Ngai, 2007; Woodhams et al.,
2020b). This hypothesis underscores our reliance on microbial diversity
for health and disease resilience.

At the population level, microbial rescue effects occur upon trans-
mission through a population with beneficial changes in microbiome
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Table 3

Example systems with microbial dynamics subsequent to environmental
stressors leading to evolutionary and ecological rescue of host populations or
environmental microbiota with associated ecosystem functions.

Environmental disturbance Microbial dynamics

Pathogen exposure Increased competition and enrichment of
anti-pathogen microbiome with or
without host facilitation (Loudon et al.,
2016)

Increased antibiotic resistance in
microbiome; proliferation of fungi,
reduction of targeted pathogen; transfer
of plasmids with resistance genes,
duplication of resistance genes;
enrichment of denitrifying bacteria;
microbiome resilience and recovery after
shift (Zipperer et al., 2016; Weeks et al.,
2020; Gust et al., 2021; Rolli et al., 2021;
Su et al., 2022)

Enrichment of dormancy pathways and
microbes with wide thermal tolerance,
persistence and recovery of dominant
taxa in repeated freeze-thaw conditions (
Sawicka et al., 2010; Lau and Lennon,
2012; Kueneman et al., 2019; Le Sage

et al., 2021)

Photoperiod modulates daily rhythms in
skin immune expression and microbiome
(Martinez-Bakker and Helm, 2015;
Ellison et al., 2021a)

Phylogenetic diversity enriched at low
tides, increased halotolerance at high
tide, and shifts in trophic interactions;
soil inundation frequency impacts
methane cycling microorganisms (
Chauhan et al., 2009; Maietta et al.,
2020; Martinez-Arias et al., 2022)
Transmission changes with habitat, host
physiology, immunity, density, or
assemblage; functional resilience of
microbiome after migration; relative
increase Corynebacterium in migrating
birds; evolution of microbial replication
and migration rates depending on host or
free-living status (Risely et al., 2018;
Turjeman et al., 2020; Zhang et al., 2021;
Obrochta et al., 2022; Becker et al.,
2023)

Anthropogenic Disturbance (antibiotics,
heavy-metal contamination,
pesticides, fertilizer)

Seasonality

Circadian rhythm

Tides and Flooding

Migrations

abundance, composition, or activity (Mueller et al., 2020). This is in
opposition to dysbiosis, a condition also defined at the population level
(Zaneveld et al., 2017) in which host microbiomes shift stochastically in
response to disease leading to morbidity (Fig. 1). At the level of an in-
dividual host, the adaptive microbiome hypothesis provides measurable
indicators of disease resilience that may be predictive of population
rescue or decline.

1.2. Measuring the adaptive microbiome with metrics of disease resilience

Typically, measures of disease resilience are retrospective in the
sense that the intensity of infection (an amount of disturbance) that can
be absorbed or withstood while maintaining host function or homeo-
stasis (Holling 1973) can be measured upon pathogen exposure. This
may be equivalent to resistance (Justus 2007) to infection, or tolerance
of infection (Medzhitov et al., 2012). This absorption of stress is termed
“ecological resilience” (Table 4) and is similarly described as the
threshold of disturbance needed to shift the host to an alternative stable
state (Scheffer et al., 2001). Alternative definitions of resilience (for
example that used in the field of engineering, or “engineering resil-
ience”; Table 4) are also retrospective including the rate at which a
microbiome can return to its initial state after a disturbance (Pimm
1984), or degree of return. Others have defined resilience measurements
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Table 4
Key concepts related to adaptive microbiomes, stress physiology, and disease
resilience.

Term Description

Homeostasis A complex process of maintaining physiological
variables at or near a desired ‘set point’ (or reactive
scope) through ‘controller’ systems monitoring stock
levels of the regulated variables, and adjusting levels
through flows maintained by ‘plant’ systems (Romero
et al., 2009; Kotas and Medzhitov, 2015)

When physiological processes that mediate stress
operate above the naturally fluctuating predictive
homeostatic range, this can be considered Homeostatic
Overload, and when operating below the predictive
homeostatic range this is considered Homeostatic
Failure. Neither conditions is conducive to organismal
health (Romero et al., 2009)

A change in the composition of the host microbiota
relative to the community found in healthy hosts,
concurrent with a stressor or disease. Specifically, this
can be seen as a reduction of beneficial or keystone
species, a change in functional ability, an increase in
pathogenic species, or a change in diversity (Petersen
and Round, 2014; Vangay et al., 2015; Kriss et al., 2018;
discussed in Hooks and O’Malley, 2017)

“the entire habitat, including the microorganisms
(bacteria, archaea, lower and higher eurkaryotes, and
viruses), their genomes (i.e., genes), and the
surrounding environmental conditions” (Marchesi and
Ravel, 2015)

the rate at which a community recovers to a pre-
disturbance state (Pimm 1984)

the ability of the system “to absorb changes of state
variables, driving variables, and parameters, and still
persist” (Holling, 1973; Van Meerbeek et al., 2021)

the host and its microbiota, including viruses, function
as a single organism with a combined genome (Theis
et al., 2016; van Vliet and Doebeli, 2019; Zhou et al.,
2022)

An individual’s ability to overcome disease through
homeostasitic processes including inflammation (
Medzhitov 2021)

The ability of a microbial community to resist or recover
from disturbance with regards to either taxonomic
composition or functional capacity and be stable
through time (Philippot et al., 2021)

“a healthy immune system is always active and in a state
of dynamic equilibrium between antagonistic types of
response. This equilibrium is regulated both by the
internal milieu and by the microbial environment” (
Eberl, 2016)

The evolutionary balance of protective and pathological
immune responses toward a “Goldilocks” intermediate
optimum cytokine response that balances the costs and
benefits of parasitemia and immunopathology (Graham
et al., 2022)

“The recovery and persistence of a population through
natural selection acting on heritable variation™ (Bell,
2017)

Changes in inter- and intra-specific interactions and/or
community composition that reduce the negative impact
of stressors and result in recovery of a population or
community (Pillai et al., 2017; DiRenzo et al., 2018)

Homeostatic overload or
failure

Dysbiosis

Microbiome

Engineering resilience

Ecological resilience

Holobiont and
hologenome

Immunological resilience

Microbial community
resilience

Qualitative immune
equilibrium

Quantitative immune
equilibrium

Evolutionary rescue

Ecological rescue

in different ways in terms of function or adaptive cycles (Sundstrom and
Allen, 2019; Philippot et al., 2021; Van MeerBeek et al., 2021). These
definitions require time-series measures before and after disturbance as
illustrated in Fig. 1.

The microbiome has been used as a prospective measure of disease
resilience in amphibians, and the concept of herd immunity was invoked
to indicate a population protected by a threshold proportion of in-
dividuals that hosted microbes with anti-pathogen function (Woodhams
etal., 2007b; Bletz et al., 2017a). Given that anti-pathogen function may
also be present in biotic communities and transmitted to hosts, this
concept could be extended to community immunity by expanding the
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Fig. 1. Characteristics of host microbiomes subsequent to pathogen exposure are conceptualized by the Adaptive Microbiome Hypothesis. The hypothesis
posits that the microbiome of hosts shifts in response to pathogen exposure with the following characteristics: beta-diversity shifts and microbiome dispersion
decreases as the diversity of microbes on individual hosts decreases but taxa functioning in anti-pathogen competition increase (A). The microbiome of eight in-
dividual hosts is shown changing through time (circles on day 0 and squares on day 5 changing upon pathogen exposure), with alternative states depicted at day 20
post-exposure (panel C). Stability of the microbial rescue effect may depend on continued selection pressure from pathogen exposure. Clearance of infection may lead
to microbiome resilience and host recovery (B), or tolerance of infection leading to microbial rescue of the host population (C). Disease is thought to lead to Anna
Karenina Principle (AKP) effects (C) in which increased dispersion and dysbiosis results from homeostatic overload, or the threshold beyond which the holobiont can
no longer adapt. An alternative to the indicated trajectories is a depauperate initial microbial diversity that leads to homeostatic failure, such that the microbiome is
unable to mediate the stress of infection (see Bletz et al., 2018; Greenspan et al., 2022).

boundaries of an immunological individual to encompass the ecological
population or biotic community.

At the scale of microbial population, the Pollution Induced Tolerance
Concept (PITC) offers a perspective for disease ecology at the level of
microbial genetics and/or community composition (Tlili et al., 2016).
After a selection phase in which structural changes in a microbial
community develop upon exposure to a pollutant, microbial commu-
nities are more tolerant to the pollutant due to adaptation or shifts in
community composition, rather than acclimatization of populations by
phenotypic plasticity. This is the result of loss of sensitive microbes and
dominance of tolerant microbes and can be quantified as effective
concentration (ECy), the dose of a pollutant needed to obtain a certain
response or microbiome structural change. For example, when applied
to a pathogen the ECsq could be defined as the pathogen dose needed to

inhibit growth of a microbial community in culture by 50%, and
comparing a pathogen-exposed and pathogen-naive microbiome pro-
vides a measure of tolerance. Gust et al. (2021) found that phylogenetic
groups of bacteria that tolerated chemical exposure increased in the
microbiomes of larval Northern leopard frogs, Rana pipiens, along with
immune transcriptional changes in a chemical dose-dependent manner.
Changes in microbiome function with minimal structural changes are
possible (Medina et al., 2017), and may indicate intraspecific selection
leading to changes in the metabolome.

Indeed, hosts in polluted environments may have microbiomes that
include genes involved with detoxification of heavy metals, and preva-
lence of these genes may increase along pollution gradients. Hernan-
dez-Gomez et al. (2020) found that rather than specific responses to
trematode infection (a natural stressor) and sulfadimethoxine exposure
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(an anthropogenic stressor), larval skin microbiomes responded with
similar changes, perhaps indicating a generalized stress response. It is
unknown whether this response leads to anti-pathogen phenotypes or
adaptations, or to what extent this represents dysbiosis. Northern
leopard frogs are a widespread model species for examining agricultural
pollutants as well as impacts of parasites and pathogens on the micro-
biome. Hayes et al. (2006) suggest that pesticides can have sublethal
effects including endocrine disruption and immune suppression. The
examples above indicate leopard frogs are a suitable model system for
measuring adaptive microbiomes, thus testing for pathogen-induced
tolerance of cultures may be informative.

The adaptive microbiome hypothesis posits that diversity of symbi-
otic microbiota provides the baseline for assembly of an anti-pathogen
microbiome that develops upon pathogen exposure or infection.
Indeed, Chen et al. (2022) showed that future Bd infection probability in
five amphibian species was predicted by the richness of bacteria with
antifungal properties, but not overall bacterial richness. Thus, measures
of anti-pathogen genes in the microbiome, or predictive measures of
anti-pathogen function of the microbiome based on targeted amplicon
sequencing (Kueneman et al., 2016), can be used to quantify resilience
potential or “latent resilience”. Similarly, invasion ecology predicts
higher resistance to invasion of new species into species-rich assem-
blages that are more likely to contain competitors and predators, in
functionally diverse assemblages, or in assemblages with species that
facilitate invasion resistance (Hodgson et al., 2002; Renault et al., 2022).
Escape from natural enemies, or enemy-release, may be more common
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when a pathogen invades a novel or low diversity assemblage (Colautti
et al., 2004). Indeed, amphibians in experimental habitats providing a
high diversity of skin microbiota were more resistant to ranavirus
infection (Harrison et al., 2019). However, invasion need not destabilize
an assemblage, and merger of microbe with host does not always lead to
disease in an individual. The continuum of effects on hosts displayed by
symbionts ranges from harm to benefit (Chen et al., 2018), and the
balance, or adaptive benefit to the host, may be provided by particular
microbial community constituents or host immune responses that are
most likely to develop under conditions of high diversity and compart-
mentalization (Chomicki et al., 2020), and thus may be most vulnerable
to disturbance under conditions of low diversity or high connectivity
(Justus 2007; Pearson et al., 2021; Martins et al., 2022).

Co-occurrence networks may demonstrate increased structure in
adaptive microbiomes indicative of competitive interactions (Eria A
Rebollar et al., 2016), or increases in highly connected hub taxa with
pathogen inhibitory properties (Jiménez et al., 2022). Critically, we
would also expect a functional shift in the community in which we see
selection for genes providing host benefit (Fig. 2). Compartmentaliza-
tion of the microbiome with adaptive components enriched on body
sites with higher infection load are possible (Bataille et al., 2016), as are
whole-organism microbiome responses to stress-induced immunoregu-
lation. As a result of this selection, impacts of the stressor should be
reduced (e.g., reduced pathogen load).

The adaptive microbiome is an alternate state that is maintained, at
least in the short term while the selection pressure persists. Upon an
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Fig. 2. Bacteria isolated from amphibians in Panama indicate shifts in microbiome function against the fungal pathogen (Batrachochytrium dendrobatidis,
Bd) depending on host community disease state. Upon recovery from the chytridiomycosis epizootic, amphibian assemblages in a Bd endemic state have higher
proportions of individuals with at least one anti-Bd bacterium isolated from their skin (A; Campana X% = 18.958, p < 0.0001; El Cope X% = 7.289, p = 0.0069).
Individuals with anti-Bd skin bacteria may be considered “protected” from Bd infection to some extent and show reduced infection prevalence (B; X 7 = 20.027, p <
0.0001). Populations of some species persisting after the epizootic show increased prevalence of the anti-Bd bacterium Pseudomonas fluorescens (C; Fisher’s exact test,
p = 0.0232), a bacterium more common on the skin of tropical than on temperate amphibians (Kueneman et al., 2019). At the same time, these amphibians showed a
significant reduction in prevalence of Serratia marcescens and Pseudomonas mosselii post-epidemic. Amphibians in rainforests of Panama exhibited culturable isolate
diversity ranging from 3 to 21 unique isolates as indicated in this “living histogram” (D) showing morphologically distinct isolates stacked by individual amphibian.
(Methods and data collection described in Woodhams et al., 2015; Voyles et al., 2018).
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additional exposure to the stressor, the microbial community will be
stable as selection has already occurred for a community suited for that
environment. Timing in the measurement of the microbiome to detect
these features will be critical, as sampling in the transition between
alternative stable states, or upon development of disease, may appear
similar to the Anna Karenina Principle effects described as dysbiosis
(Zaneveld et al., 2017).

1.3. Examples of adaptive microbiomes in amphibian disease systems

Several recent studies offer empirical evidence for adaptive micro-
biomes in amphibians. In a host that is hyper-susceptible to chy-
tridiomycosis, the mountain yellow-legged frog, Rana muscosa
(Vredenburg et al., 2010), microbiota did not demonstrate engineering
resilience, and a directional shift occurred with Bd infection such that
some microbial taxa increased (Undibacterium and Weeksellaceae) while
other taxa decreased in relative abundance (Jani et al., 2021). It would
be informative to monitor microbiomes through time in individuals of
this species that recover from infection with natural immunological
mechanisms rather than fungicidal clearance of infection that is likely to
disturb adaptive microbiome processes. Indeed, in a reanalysis of 99
microbiome samples from Jani and Briggs (2014) and Jani et al. (2017),
Sierra Nevada yellow-legged frog, Rana sierrae, populations experi-
encing epizootics with high prevalence and intensity of Bd infection had
significantly lower skin bacterial richness and dispersion compared to
populations in the enzootic disease phase, indicating a selective reduc-
tion of the microbiome, that in some species may lead to a skew toward
protective microbes (Suppl. Table S2, Suppl. Fig. S1). In two studies
testing cultured isolates from R. sierrae skin, the proportion of in-
dividuals with at least one anti-Bd isolate was greater than 80% in
enzootic phase populations and significantly less in epizootic phase
(Woodhams et al., 2007b; Lam et al., 2010) indicating that populations
that persist to the enzootic stage either experienced selection for anti-Bd
microbiota or fortuitously started with this beneficial composition.
Similarly, Ellison et al. (2019a) found that juvenile R. sierra with high Bd
infection loads had significantly reduced skin bacterial richness and
dispersion, and increased members of Burkholderiales (an order of
Gram-negative bacteria that includes Undibacterium and Janthinobacte-
rium) that when isolated and tested showed anti-Bd activity. Frogs with
skin dominated by Burkhorderiales had low bacterial diversity that was
stable through time (Ellison et al., 2021b). Indeed, Janthinobacterium
lividum is a bacterium of special interest because after isolation from
endangered mountain yellow-legged frogs in the field (Woodhams et al.,
2007b) and application as a probiotic prior to Bd exposure, frogs could
reduce infection loads and recover (Harris et al., 2009). Thus, field
studies of naturally recovering populations, or lab studies of individuals
that recover from infection may be an enriched source for microbiota
adapted for mutualism with the host.

Besides Sierra Nevada yellow-legged frogs (Knapp et al., 2016) and
amphibian species in Panama recovering from chytridiomycosis emer-
gence (Fig. 2), other disease resilient species demonstrate trends
consistent with an adaptive microbiome (Suppl. Table S2). For example,
Bates et al. (2018) showed the same patterns of reduced skin bacterial
richness and dispersion in epizootic phase larval and metamorphic
midwife toads, Alytes obstetricans, along with an increase in predicted
antifungal function (Suppl Fig. S3). Whether these changes represent an
adaptive microbiome within the lifetime of individual hosts is not clear
and requires time series experiments following the same individuals
through infection progression and recovery, and examination of
different pathogens or routes of exposure. In the American bullfrog,
Rana catesbeiana, a species with high infection tolerance (Peterson and
McKenzie, 2014), skin microbiomes became more similar post-Bd
infection (Chen et al., 2022). In contrast, in the highly susceptible boreal
toad, Anaxyrus boreas (Carey et al., 2006), Bd exposure led to high
infection loads and greater microbiome dispersion compared to healthy
controls. Overall, hosts that were more susceptible to Bd increased in
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dispersion of microbiome through time (Chen et al., 2022). Like Hughey
et al. (2022) and Martinez-Ugalde et al. (2022), we suggest that hosts
with a history of disease emergence have microbiomes adapted to
pathogen defense and may be less prone to disturbance by pathogen
exposure. Whether or not a host became infected was predicted by the
richness of bacteria that can function to inhibit Bd, while future infection
intensity was predicted by the proportion of anti-Bd bacteria (Chen
et al., 2022).

An initial examination suggests that populations with higher mi-
crobial diversity may be better protected (Suppl. Table S2). Becker et al.
(2015) found that in the highly susceptible Panama golden frogs, Ate-
lopus zeteki (Gass and Voyles, 2022), pre-established protective members
were crucial for chytridiomycosis resistance. Similarly, in a study of
American bullfrogs, R. catesbeiana, initial microbiome was correlated
with growth rate as well as Bd infection intensity (J.B. Walke et al.,
2015). Jani et al. (2017) surmise, “... much of the difference in micro-
biome composition between enzootic and epizootic populations may be
in part a result, rather than a cause, of differences in Bd infection
severity.” For example, in Panama where populations declined from
west to east with disease emergence, Medina et al. (2017) found a
decreasing trend in microbial diversity in Silverstoneia flotator pop-
ulations. Population history of infection can impact the established
microbiome (Campbell et al., 2018, 2019; Harrison et al., 2019). Thus,
the pathogen, type of exposure, population disease history, progression
of infection, and timing of sampling may all be factors impacting
adaptive microbiome dynamics. Environmental disturbances that
impact the microbiome (Belden and Harris, 2007), including captive
rearing (Kueneman et al., 2022), will also impact the adaptive potential
of the microbiome, or latent resilience, to respond to disease emergence.

1.4. Adaptive microbiomes, homeostasis, and stress physiology

Disease dynamics are linked to stress physiology. For example, a
stress response can help a host to recover from pathogen exposure, but
chronic stress can also increase susceptibility to infection or reduce
infection tolerance (Hall et al., 2020). Reactivity to stress can differ
among individuals and may be developmentally regulated (Johnson
et al., 2011; Gans and Coffman, 2021). Stress physiology can be
described in the reactive scope model (Romero et al., 2009) in which
physiological mediators are required to maintain or return the body to
its homeostatic range following disturbance. The stress response can be
considered an emergency life history stage and entails several acute
phase responses (Fig. 3). The homeostatic range is physiologically
mediated through behavior, the central nervous system, immune func-
tion, the hypothalamic-pituitary-adrenal/interrenal axis, or cardiovas-
cular function, and the adaptive microbiome.

Dysbiosis and loss of microbiome regulation, or “Anna Karenina ef-
fects” (Zaneveld et al., 2017), are anticipated beyond a stress threshold
termed homeostatic overload (Table 4; Romero et al., 2009) at which
point microbial communities can no longer adapt (moribundity in
Fig. 1C; feedforward loop of Fig. 3B). The adaptive microbiome in
response to host infection is a special case involving interactions with
immunological responses. While microbial responses to pathogen
exposure or other stressors may sometimes facilitate opportunistic
infection or evolution of virulence (Radek et al., 2010; Stevens et al.,
2021), immunological responses often support an adaptive microbiome
(Ichinohe et al., 2011; Deines et al., 2017; Mergaert, 2018; Meisel et al.,
2018; Varga et al., 2019). Indeed, co-option of stress mechanisms spe-
cific to infection stressors is a potential mode of evolutionary novelty
(Love and Wagner, 2022).

1.5. Microbiomes and other mediators of stress
While there are many mediators of homeostasis, in amphibians,

stress is often measured by the glucocorticoid hormone corticosterone.
Corticosterone plays a role in the acute phase response to infection
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Fig. 3. The acute phase response or Reactive Homeostasis (Romero et al., 2009) to infection in amphibians involves several interrelated components that
mediate homeostasis. (A) Activation of the hypothalamic-pituitary-interrenal axis stimulates an immediate corticosterone response, here accumulating in water
rinses within the first hour of exposure to the fungal pathogen Batrachochytrium salamandrivorans (Bsal) as quantified from spotted salamanders, Ambystoma mac-
ulatum (data from Barnhart et al., 2020). Not shown is the activation of acute phase proteins including complement proteins from hepatocytes (reviewed in Jain et al.,
2011; Rodriguez and Voyles, 2020). Catecholamines may also be stimulated by infection (Rollins-Smith, 2017). (B) Homeostatic circuit modified from Medzhitov
(2021) inflammatory circuit model. The adaptive microbiome is hypothesized to be a novel homeostatic variable as well as an effector in the negative feedback loop
regulating homeostasis. Tolerance, or adaptation of the microbiome to a new stable state that does not influence homeostatic variables is an alternative outcome. (C)
Skin bacterial communities of Eastern red-spotted newts, Notophthalmus viridescens, depicted in a principal coordinates analysis showing samples colored by Bd
infection load (white = 0 to red = 3.1 x 10° zoospores max), and points scaled by predicted anti-Bd function of the microbiome of each individual (data from Carter
et al., 2021). Shifts in amphibian skin microbiome communities are a typical response to infection (Jani and Briggs, 2014), although the mechanism and timing of
response remains under investigation. Baseline corticosterone, immune defenses, and microbiome can change seasonally and with circadian rythms in amphibians
and in other vertebrates (Martinez-Bakker and Helm 2015; Le Sage et al., 2021). (D) Sickness behaviors in N. viridescens in response to B. salamandrivorans infection
include inappetence, unusual shedding patterns (reviewed in Grogan et al., 2018) and body posturing perhaps functioning to dry the skin or inducing movement
away from the water potentially inhabited by conspecifics (photo credit: Julia McCartney). (E) Sickness behaviors in N. viridescens may also include thermal

regulation (behavioral fever, reviewed in Lopes et al., 2021).

(Fig. 3A) and may redirect host resources toward sickness behaviors and
immune system activation while providing negative feedback on the
hypothalamic-pituitary-adrenal/interrenal axis and inflammation
(Sapolsky et al., 2000; Sears et al., 2011; Lopes et al., 2021; Medzhitov
2021). Increasingly, stress physiology has focused on comparison of
baseline levels (e.g., among populations) and the response of cortico-
sterone recovery through time (Narayan et al., 2019) indicating capacity
to contribute to the acute phase response. Amphibian corticosterone is
typically elevated in response to acute exposure to pathogens including
chytrid fungi Batrachochytrium dendrobatidis and B. salamandrivorans
(Peterson et al., 2013; Gabor et al., 2015; Barnhart et al., 2020), rana-
virus (Warne et al., 2011), and also in response to some probiotic bac-
terial applications (Kearns et al., 2017). The stress response may be
suppressed by some helminth parasites, and Koprivnikar et al. (2019)
found no response or decreased corticosteroid levels in larval amphib-
ians experimentally exposed to trematodes. In field studies, the rela-
tionship between Bd infection status and baseline corticosterone is
inconsistent and compared to uninfected frogs, infected frogs may show
higher (Kindermann et al., 2012; Gabor et al., 2013), lower or no dif-
ference (Hammond et al., 2020) in baseline levels.

The interactions between corticosterone and other acute phase re-
sponses and the microbiome remain to be elucidated, and an adaptive
microbiome is one mechanism among many integrated systems for
maintaining homeostasis (Fig. 3). For example, differential blood cell

counts can indicate stress (Davis and Maerz, 2023), and antimicrobial
peptides from granular glands in the skin of northern leopard frogs, Rana
pipiens, may also provide an index of stress because the quantity of
secretion depends on the type of stimuli and intensity of the stressor (e.
g., norepinephrine dose, feeding, predation; Suppl. Fig. S2; Pask et al.,
2012). We hypothesize that the preparatory immunity functioning to
increase skin defense peptides ahead of low temperature conditions
conducive to fungal infection, and early spring breeding in Rana sphe-
nocephala (Le Sage et al., 2021), may have an underlying glucocorticoid
component that synchronizes biological rythms and predictable risk
(Sapolsky et al., 2000). Skin secretions impact the microbiome including
pathogens (Woodhams et al., 2007a), and can function to inhibit or
facilitate different microbes (Fig. 4). Similarly, Bd secretes compounds
that impact the growth of some bacteria (growth facilitation or inhibi-
tion; Woodhams et al., 2014), and at the same time impacts the host
immune function (Woodhams et al., 2012; Fites et al., 2013) such that
both direct and indirect pathways may operate to impact the micro-
biome, thus reinforcing the selective strength on the microbiome during
infection. There are a growing number of studies describing the crosstalk
between the microbiome and host immune system, with each influ-
encing the other. While most studied in the human digestive system
(reviewed in: Reid et al., 2011; Belkaid and Hand, 2014; Belkaid and
Harrison, 2017; Levy et al., 2017), the amphibian skin is a model system
poised to uncover novel mechanisms of microbial and immune
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regulation (reviewed in Varga et al., 2019).

2. Interactions between amphibian skin microbiome and
mucosal immunity

The skin functions as a barrier to the outside world socially, physi-
cally, chemically, and immunologically (reviewed in Chen et al., 2018;
Swaney and Kalan, 2021; Woodley and Staub, 2021). Amphibian skin
also functions in osmoregulation, oxygen exchange, water balance,
camouflage and behavioral signaling, and the production and secretion
of mucus and a variety of small molecule toxins and immune factors
(Table 1, Suppl. Table S1). Thus, the amphibian skin surface is a

A.
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dynamic environment interacting with microbes and a model for
microbial-vertebrate symbioses (Fig. 5). The regulation of symbiotic
microbes may be a mechanism for resilience to disturbance. Here we
provide a brief overview of amphibian skin anatomy before describing
microbiome-immune interactions as regulatory mechanisms in the skin
mucosome, the combined host and microbial components (see Schempp
et al., 2009, Haslam et al., 2014a; and Varga et al., 2019 for more
detailed reviews on amphibian skin).

2.1. Amphibian skin composition

Amphibian skin, similar to mammalian skin, consists of the dermis
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Fig. 4. Compounds including antimicrobial peptides and bufadienolides secreted from skin granular glands into the mucosome may differentially
regulate microbial growth on amphibian skin. (A) Natural mixtures of antimicrobial peptides purified from skin secretions of midwife toads, Alytes obstetricans,
from Switzerland have differential activity on growth of bacteria cultured from toad skin (Davis, 2013; parentheses indicate the phyla). Ideal probiotics, as
conceptually modeled in the figure, for amphibian skin are not inhibited by antimicrobial skin defense peptides or other immune defenses, but rather are facilitated in
growth or anti-pathogen function, and function over a range of host temperatures in ectotherms, and are not inhibited by the endogenous microbial community or by
the target pathogen (Woodhams et al., 2014). In addition to the promicrobial function of some peptides (Woodhams et al., 2020b), (B) bufadienolides have
microbe-specific activities that may help regulate the host microbiome. Shown are the bioactivities of gamabufatalin described from boreal toads, Anaxyrus boreas.

Data from Barnhart et al. (2017), photo credit Timothy Korpita.
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and the epidermis. Generally, there are between 5 and 7 layers of cells in
four strata of the epidermis, though the exact number differs among
species (reviewed in Voyles et al., 2011; Haslam et al., 2014b). The most
basal layer of epidermis is the stratum germinativum (or stratum basale),
which is largely made up of columnar epithelial cells that will flatten
and become part of the stratum spinosum, the stratum granulosum, and
eventually age into the outermost stratum corneum - the keratinized layer
of dead cells in which the pathogen Bd colonizes (Haslam et al., 2014b;
Varga et al., 2019). The process of desquamation of the stratum corneum
usually occurs in synchrony with shedding of a semi-continuous layer
(Schempp et al., 2009). Periodic skin sloughing is balanced by kerati-
nocyte proliferation in stratum germinativum. It should be noted that
urodeles that are permanently aquatic will not develop a keratinized
layer (Alibardi, 2009).

Molting, or skin sloughing, is a behavior that can have a benefit to
the host by shedding infected tissue (Ohmer et al., 2015) perhaps similar
to the role of intestinal mucus sloughing controlled by the enteric ner-
vous system (Herath et al., 2020). The regular removal of the outermost
skin layer may play a role in preventing pathogen establishment and
reducing infection burden (Becker and Harris 2010; Meyer et al., 2012),
and has been documented to influence the presence of cutaneous mi-
crobes on the skin of Australian green tree frogs, Litoria caerulea, and
Marine toads, Rhinella marina (Meyer et al., 2012; Cramp et al., 2014).

The dermis consists of collagen and elastin fibers that are loosely
packed (stratum spongiosum, below the stratum germinativum) or tightly
packed in orthogonal patterns (stratum compactum) (Haslam et al.,
2014b). Some amphibians will have an additional layer consisting of

Immune Response
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calcium salts and polysaccharides bonding covalently with proteins
interspersed with collagen fibers, that exists between epidermis and
dermis, called the substantia amorpha (Toledo and Jared, 1993;
Schwinger et al., 2001). This phenomenon appears to be restricted to
terrestrial anurans, though it is not universally seen in species in this
niche, and is thought to be related to preventing water loss or storage of
calcium (Toledo and Jared, 1993). The skin is interspersed with immune
cells, such as T and B cells and dendritic cells, and melanophores
(Burgers and Van Oordt, 1962, Castell-Rodriguez et al., 1999; Pelli et al.,
2007; Ramanayake et al., 2007; Schempp et al., 2009). The dermis also
contains granular and/or mucus glands that differ in type and quantity
across skin surfaces and among species or populations (Schempp et al.,
2009; Haslam et al., 2014b; Wanninger et al., 2018). Some species, for
example the rough-skinned newt, Taricha granulosa, demonstrate sea-
sonal, sexual, and life-history differences in the skin structure including
the number and size of glands differing between aquatic and terrestrial
stages (Gibson, 1969), or differences between body sites as in the Hi-
malayan newt, Tylototriton verrucosus (Wanninger et al., 2018). Tuber-
cles, when present, are the result of thickened epidermis over a dermal
papilla (Gibson 1969). Parotoid glands and dorsolateral folds are also
present in the skin of some species and contain concentrations of gran-
ular glands (McCallion, 1956). These variations in skin structure, and
particularly glands, are likely to mediate the assemblage of microbiota.

Glands in amphibian skin are lined with secretory cells that produce
a range of compounds (Suppl. Table S1), and largely consist of granular
and mucus glands. Smooth muscle surrounds these glands and can
contract to release these compounds onto the skin of the individual.
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Fig. 5. The microbiome interacts with multiple aspects of the amphibian skin landscape. Microbes present on amphibian skin can interact with the host
directly and indirectly. The immune system influences microbes present on the skin through avenues such as mucosal antibodies and pattern recognition receptors
inducing innate immune responses (upper left panel). Other microbes present on the skin may influence the overall community composition through competitive and
cooperative behaviors (upper right panel). Mucus is known to interact with microbes, acting as a food source and an anchor point for both microbes and bacte-
riophage (Barr et al., 2013), and mucus turnover rates (caused by shedding, ciliated cells in larvae, etc.) may help remove microbes attached to the matrix (lower left
panel). Small molecules released by the host, such as antimicrobial peptides (shown: Subasinghage et al., 2008; PBD ID: 2K10), can directly influence the survival and
growth of microbes present on the skin, changing the community following granular gland release (lower right panel). Created with BioRender.com.
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Granular glands are the larger of the two and can contain a wide variety
of biomolecules such as antimicrobial peptides (Mangoni and Casciaro,
2020) or sequestered toxic alkaloids (Daly et al., 1987; Toledo and
Jared, 1995). These compounds perform a wide range of functions such
as preventing infection or otherwise modulating the skin microbial
community, predator deterrence, and defense (Prates et al., 2012; Buc-
ciarelli et al., 2017). Mucus glands are smaller than granular glands in
many species and primarily function to maintain a moist surface envi-
ronment. In addition to releasing mucus onto the skin, amphibians will
also secrete mucus into the intercellular space in the epidermis which
helps to retain moisture by acting as a hydrophilic matrix, and aids in
gas exchange (Parakkal and Matoltsy, 1964). Nerve endings are asso-
ciated with both types of glands, but are only in direct contact with the
secretory cells of granular glands (Sjoberg and Flock, 1976), which may
imply different patterns of gland stimulation or sensitivity to certain
stimulation.

Neuroendocrine immune interactions (Verburg-van Kemenade et al.,
2017) are a critical component in mucosal defense, and amphibians may
be model species for comparative neuroimmunology research (Kraus
et al., 2021). For example, while acetylcholine induces glandular se-
cretions in urodeles (Carter et al., 2021), norepinephrine induces se-
cretions from granular glands in anurans (Conlon, 2007; Gammill et al.,
2012; Suppl. Fig. S2). Indeed, stress can mediate immune function and
stimulate skin peptide secretion through the autonomic nervous system,
or mediate peptide expression via hypothalamic-pituitary—interrenal
cortical axis acting through glucocorticoid release (Simmaco et al., 1997
but see Tatiersky et al., 2015). The role of stress hormones in permitting,
suppressing, stimulating, or preparing the antimicrobial skin peptide
defenses requires further experimental analysis (Sapolsky et al., 2000),
although one recent study suggests a preparatory role of AMPs in
regulating microbiota including the pathogen Bd (Le Sage et al., 2021).
Studies demonstrate differential regulation of skin defense peptides and
signaling molecules including Toll-like receptors upon infection with
different pathogens (Xiao et al., 2014) and reciprocally, we found that
skin peptide secretions differentially affect growth of bacteria (Fig. 4A;
Woodhams et al., 2020b, Flechas et al., 2019). Thus, skin defense pep-
tides, including combinations that work synergistically (Zerweck et al.,
2017), provide a narrow spectrum or targeted specificity that acts as a
selective force on the microbiome. Not all amphibians produce antimi-
crobial skin peptides, and other chemical defense compounds as well as
protein linked mucosal glycans or mucins (N- and O-linked oligosac-
charides; Barbosa et al., 2022), can also provide selection on the
microbiome (Barnhart et al., 2017; Fig. 4B), leading to the hypothesis
that the microbiota provide the major system of defense in amphibian
skin (Conlon, 2011).

As mentioned previously, various immune cells reside in the skin to
respond early to potential threats to the host. In the epidermis, there are
antigen-presenting Langerhans cells (Carrillo-Farga et al., 1990; Cas-
tell-Rodriguez et al., 1999), as well as B and T cells (Horton et al., 1992;
Ramanayake et al., 2007). B and T cells can also be found in the dermis,
along with mast cells (Pelli et al., 2007). The presence of these cells
indicates that amphibians have the potential to respond with both the
innate and adaptive immune system, but the location of these cells -
below the stratum corneum - may mean that they are mainly responsive
when the skin is broken. However, evidence of immunoglobulins in the
skin mucus of African clawed frogs, Xenopus laevis, in response to
infection with Bd indicates that the immune components in the skin are
able to interact with microbes (Ramsey et al., 2010). Additionally,
pattern recognition receptors have been found in amphibian genomes
and direct interaction between epithelial cells and microbes is possible.
However, much of the current literature is based in genomics and little is
known about how common and how influential such interactions may
be (reviewed in: Robert and Ohta, 2009; Grogan et al., 2018, 2020;
Varga et al., 2019).

The skin of larval amphibians operates and protects the host differ-
ently than that of adults. Generally, the skin at the larval stage has fewer
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layers compared to an adult, but still consists of a dermis and epidermis
(Takahama et al., 1992; Ishizuya-Oka, 1996; Schreiber and Brown,
2003). While keratinocytes are present in the outermost layers of larval
skin, widespread keratinization of the epidermis is absent (Fox and
Whitear, 1986; Breckenridge et al., 1987; Alibardi, 2001; Perrotta et al.,
2012), and some of the keratins that are produced during the larval stage
are unique to this life stage and are replaced with adult keratin following
metamorphosis (Ellison et al., 1985; Suzuki et al., 2009). Vandebergh
and Bossuyt (2012) report 23 type I keratin and 15 type II keratin genes
in Western clawed frogs, Xenopus (Silurana) tropicalis, and show that the
increase in keratins through metamorphosis is of a similar pattern to that
observed in their phylogenetic analysis showing diversification during
the evolutionary transition from water to land. While the characteristic
widespread keratinization that is seen in adults does not happen to the
larval epidermis, some keratin rich locations, such as the mouth, have
been identified in tadpoles (Marantelli et al., 2004). We are not aware of
studies comparing the microbial or pathogen utilization of different
keratins, but this is one component that may account for shifts in
microbiome through development (Piccinni et al., 2021).

Another characteristic component of larval skin is the presence of
Leydig cells (LCs), which are found in urodeles and lost by the adult
stage except in paedomorphic salamanders (Kelly, 1966a; Ohmura and
Wakahara, 1998; Perrotta et al., 2012), and mitochondria rich cells
(MRCs), which are more abundant earlier in life and distinct from those
found in adult skin, and present in anurans and urodeles (Restani and
Pederzoli, 1997; Perrotta et al., 2012). The former is found in urodeles,
and their function is not well understood. The literature notes that these
cells are dense with granules and may be secreting mucus into the
intercellular space below the outer epidermis (Kelly, 1966a; Fox, 1986),
though conflicting results suggest this may differ by species (Warburg
and Lewinson, 1977; Rosenberg et al., 1982; Fox, 1986; Breckenridge
et al., 1987; Jarial and Wilkins, 2003; Brunelli et al., 2022). Addition-
ally, LCs in the gills of the Italian newt, Lissotriton italicus, express
aquaporin-3 where the general epidermis LCs do not, implying a role in
water transport (Brunelli et al., 2022). MRCs are understood to primarily
play a role in ion transport, as well as that of organic molecules, though
the ability to move certain ions varies by species (Katz and Gabbay,
2010).

Some amphibians have observable glands in the dermis during the
larval stage, but may not express skin defense peptides until just before
metamorphosis (Delfino et al., 1998; Delfino et al., 2001; Angel et al.,
2003; Terreni et al., 2003; Chammas et al., 2015; Stynoski and O’Con-
nell, 2017). Antimicrobial peptides begin to develop during or after
anuran metamorphosis and are actively secreted in some species with
long-lived tadpole stages (Holden et al., 2015; Woodhams et al., 2016a).
In larval Ambystoma tigrinum, for example, AMPs produced in granular
glands can be collected (Sheafor et al., 2008), indicating functioning
glands. Other species are not noted to have glands in the larval stage at
all, though they are found in the adult life stage (Perrotta et al., 2012).

Some anuran larvae have ciliated cells that are lost as individuals
approach metamorphosis (Nokhbatolfoghahai et al., 2006). These cells
are thought to move mucus or the water around the host, as a mecha-
nism to prevent infection or for chemosensing (Nokhbatolfoghahai et al.,
2006). In place of mucus glands, mucus-containing goblet cells within
the epidermis are often noted in early life stages (Kelly, 1966b; Hayes
et al., 2007; see also above discussion of LCs). While location and
presence during the tadpole state can vary by species, a survey of 21
anuran tadpoles found that they were most concentrated around the
eyes, nostrils, and on the tail (Nokhbatolfoghahai et al., 2006). In em-
bryos, cilia may function to oxygenate the embryo or to facilitate
microbiota including algae or microeukaryotes (Anslan et al., 2021;
Yang et al., 2022), and anurans including Xenopus are model systems for
studies of ciliated cells (Walentek and Quigley, 2017) and the devel-
opment of ciliated epithelia (Collins et al., 2021).

The environment that the host maintains on the skin surface is a
complex space for microbes to exist in and interact with. A multitude of
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components, both produced at a baseline level and in response to stress
or disease (e.g., mucus, AMPs, antibodies), directly interact with and
influence the physical microhabitat structure and activity of the mi-
crobial community. Thus, there is the clear potential to create new se-
lective pressures and shape the symbiotic community as part of the host
response to a stressor. In a review of the components of the skin
mucosome of seven amphibians used as model research systems (Suppl.
Table S1), we found that proteins (mucins, lysozymes, complement, and
immunoglobulins; the larger and more complex components of the
mucosome, Table 1) are underrepresented research topics, as are the
virome and eukaryotic components of the microbiome including algae
and the mycobiome. Below we give a brief overview of the microbiome
and review studies relating to interactions with mucins and immuno-
globulins. This does not negate the strong interactions between the
microbiome and other mucosome components, particularly skin defense
peptides which have been extensively reviewed elsewhere (e.g., Mer-
gaert, 2018; Mangoni and Casciaro, 2020; Zeeuwen and Grice, 2021).

2.2. Amphibian skin microbiome

The epidemiological, ecological, and evolutionary forces that impact
the assembly of the amphibian skin microbiome have been reviewed in
Becker et al. (2023) and Kueneman et al. (2019). Depending on the
biological scale of study, bioclimate and habitat may be the force driving
the microbiome, or host community composition may influence micro-
bial migration. Host population history of disease, host development
stage, behavior, diet, or infection status can all impact the microbiome
(reviewed in Becker et al., 2023). Of note, studies at larger spatial or
temporal scales test for and report different drivers of the microbiome
than smaller scale studies of individual hosts. We suggest that the
microbiome be considered across scales to incorporate multiple mech-
anisms for achieving diversity, specificity, and memory in the adaptive
microbiome (Box 1).

The amphibian skin microbiome includes not just bacteria (Kuene-
man et al., 2019), but also bacteriophages, viruses, and microeukaryotes
including fungi (Kueneman et al., 2016; Kearns et al., 2017; Medina
et al., 2019; Alexiev et al., 2021; Carter et al., 2021; Bates et al., 2022)
and algae (Mentino et al., 2014; Anslan et al., 2021). We note a recent
increase in studies examining the mycobiome, but a paucity of studies on
the virome, or microeukaryotes such as algae. In terms of bacterial
communities on amphibian skin, several meta-analyses provide infor-
mation on culture-independent bacteria (Kueneman et al., 2019;
Woodhams et al., 2020b) and culturable bacteria (Woodhams et al.,
2015). Dominant members are summarized in Table 2, and tested for
correlation in terms of relative abundance of cultured or
culture-independent genera (Fig. 6). We found that some members of the
bacteriome are prevalent in populations but not abundant in targeted
amplicon sequencing studies and no cultures exist for testing isolate
function. These members include 5 out of the 27 genera with at least
0.5% relative abundance across the dataset: Sanguibacter (phylum
Actinomycetota), Bacteroides (Bacteriodota), Pigmentiphaga and Methyl-
otenera (Pseuomonadota), and Luteiobacter (Verrucomirobiota). These
bacteria should be targeted for future culture. The wart-like Verruco-
microbiota is of particular interest as no member of this phylum has
been cultured from amphibians, yet it is a core member with 100%
prevalence in red-backed salamander hosts, Plethodon cinereus (Loudon
et al., 2013), and 100% prevalence in Eastern red-spotted newts,
Notophthalmmus viridescens (JB Walke et al., 2015). Importantly, Ver-
rucomicrobiota, as well as Sanguibacter and Methylotenera are members
that show patterns of correlation with Bd infection in Sierra Nevada
yellow-legged frogs (Jani and Briggs, 2014).

Bacterial competition occurs in the mucosome via toxic molecules,
secretion systems, bacteriocins, and understudied putative AMP de-
fenses (Oulas et al., 2021). Cooperation and beneficial functions for the
host may evolve in the microbiome when controlled by host immune
effectors (Sharp and Foster, 2022). Such effectors have been studied in
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Fig. 6. Bacteria commonly isolated from amphibian skin (x-axis) also tend
to dominate in culture-independent targeted amplicon sequencing (y-
axis) and metagenomic studies, with some exceptions. For example, Pseu-
domonas is a commonly isolated bacterial genus that is dominant in both culture
and culture-independent assessments of amphibian skin bacteria. In contrast,
Microbacterium is under-represented in culture-independent assessments
perhaps due to difficulty in lysing Gram-positive cells during DNA extraction.
The addition of a lysozyme incubation step during DNA extraction may help to
reduce this bias (Teng et al., 2018). (Data from cultured isolates from Wood-
hams et al. (2015); data from amplicon sequencing studies from Kueneman
et al. (2019).

the human skin microbiome (Byrd et al., 2018), and a trait-based
analysis of the functional diversity in amphibian skin is a next step for
comparison among amphibian species and with human skin microbial
traits (Bewick et al., 2019). Traits including motility, growth form and
rate, spore formation, pH and temperature optima and range, and toxin
production are relevant to amphibian skin microbiome assembly and
function (Prest et al., 2018; Woodhams et al., 2018; Kueneman et al.,
2019; Bates et al., 2022). Indeed, the ability to resist AMPs or host toxins
(Fig. 4) and degrade mucus may be functions particularly relevant for
establishment of microbiota on amphibian skin.

2.3. Mucus and its components

The mucosal layer that envelops amphibian skin serves myriad
functions including minimization of water loss, regulation of cutaneous
gas exchange, suspension of chemical defenses against predators,
lubrication to resist predation and injury through environmental abra-
sion, and increasing stiction to promote climbing abilities (Toledo and
Jared, 1995; Clarke, 2007; Haslam et al., 2014a; Langowski et al., 2019).
Here, we focus on the primary components of amphibian skin mucus and
their roles in shaping the adaptive microbiome.

While mucus is composed of up to 95% water (Creeth, 1978), it owes
its viscoelastic properties to a complex network of highly-glycosylated
proteins called mucins (Dubaissi et al., 2018). Mucins are defined as
either membrane-bound or secreted, which can be further categorized
into gel-forming and non-gel-forming types. Amphibian skin mucus is
characterized by dominance of secreted gel-forming mucins produced in
goblet cells of the epithelium, with some species such as X. tropicalis
possessing at least 26 types of mucins (Hayes et al., 2007; Lang et al.,
2016). These gel-forming mucins contain regions rich in proline, thre-
onine and serine (PTS domains), which serve as sites for sugars to attach
via O-glycosylation (Lang et al., 2016). In amphibians, these sugars
include N-acetyl glucosamine (GlcNAc), N-acetyl galactosamine (Gal-
NAc), N-acetylneuraminic acid (Sialic acid), N-acetyl hexosamine
(HexNAc), N-glycolylneuraminic acid (Neu5Gc), fucose, galactose, and
mannose (Meyer et al., 2007; Lang et al., 2016; Dubaissi et al., 2018;
Barbosa et al., 2022). Bound glycans enlarge the size of mucins, resulting
in a brush-like shape that enhances solubility and capture of large
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quantities of water (Dubaissi et al., 2018; reviewed in Hansson, 2020).

At N- and C-terminal regions, where proline threonine serine-rich
(PTS) domains give way to cystine knot (CK) and von Willebrand D
(VWD) domains rich in cysteine, disulfide bonds polymerize mucin
strands into a complex network (Perez-Vilar and Hill, 1999; Ambort
et al., 2012; Lang et al., 2016). It is the combination of extensive
glycosylation and the polymerization into mucin networks that create
viscous gel-like mucus (McGuckin et al., 2011; Lang et al., 2016).
Interspersed in this mucin network are electrolytes, lipids, peptides,
immunoglobulins, microbes and their secondary metabolites that
together make up the mucosome (Suppl. Table 1; reviewed in: Van Rooij
et al., 2015; Varga et al., 2019).

2.3.1. Function of mucus in disease resistance

Most work in mucin-bacterial interactions is prompted by questions
related to human health, but difficulty in studying these systems in
mammals has led researchers to seek alternative test organisms
(Dubaissi et al., 2014, 2018). For amphibian disease researchers, one
fortuitous consequence from the use of Xenopus as stand-ins for
mammalian subjects is greater insight into amphibian mucus and its role
in disease dynamics. Host species must maintain mucosal integrity to
prevent invasion by pathogens (McGuckin et al., 2011; Dubaissi et al.,
2018). With respect to disease resistance, mucus functions first as a
physical barrier, trapping potential pathogens so they may be removed
from the skin by ciliated epithelial cells (reviewed in: Cone, 2009, Varga
et al., 2019). One mucin (MucXS, formerly Otogl) has been identified as
the primary structural mucin component in larval X. tropicalis mucus.
Knockdowns of the MucXS gene in tadpoles resulted in a decrease in
mucosal layer thickness from ~6 pm to 0.9 pm. Subsequent exposures to
the opportunistic pathogen Aeromonas hydrophila showed increased host
susceptibility to infection compared to tadpoles with intact MucXS
(Dubaissi et al., 2018).

The assortment of glycans both free and bound to mucins directly
influence microbial interactions in mucus (reviewed in Varga et al.,
2019). These sugars are thought to allow for selection and control of
beneficial microbiota that are able to exploit glycans as sources of en-
ergy, as well as inhibit infection by pathogens (Barbosa et al., 2022;
Meyer et al., 2007). For example, a-p-mannose, GlcNAc, p-p-galactose,
a-1-fucose can inhibit bacterial attachment to epithelial cells. Sialic acids
regulate mucus pH and viscosity and are known to inhibit attachment to
epithelial cells by Pseudomonas aeruginosa (Wolska et al., 2005; Pastoriza
Gallego and Hulen, 2006). Free and bound glycans can work to prevent
infection by binding to lectins present on bacterial cell membranes,
either trapping them to mucins or simply preventing their attachment to
host epithelia (Hanisch et al., 2014; Padra et al., 2019). Other proteins
and molecules are known to interact with mucin glycans, such as anti-
gens and lectins, some of which are associated with antibiotic activity
and immune responses when bound to mucin (Hanisch et al., 2014;
Godula and Bertozzi, 2012; Kiwamoto et al., 2015). Further, mucins can
also bind to phages that can act as another line of defense against bac-
terial infection, according to the Bacteriophage Adherence to Mucus
(BAM) model (Barr et al., 2013; Almeida et al., 2019).

Maintenance of mucosal integrity to defend against would-be in-
vaders must be balanced with the need to support communities of
symbiotic or commensal microbes colonizing the skin. Binding speci-
ficity to bacteria seems to vary by bacterial species and body site and
may be determined by the glycosylation structures present on mucins
(Padra et al., 2019). Some bacteria in the gut can metabolize outer
branches of the glycan structure, opening avenues for selection of
beneficial microbes able to capitalize on this energy source via host
modulation of glycan composition. Simultaneously, this ability may
allow opportunistic pathogens to disturb mucosal integrity and invade
epithelial tissue (Tailford et al., 2015). Additionally, some pathogens
have developed strategies for degrading or bypassing the mucus barrier
through secretion of glycosyl hydrolases and other compounds that can
alter mucus pH and destabilize mucin networks (Engevik et al., 2021;
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Celli et al., 2009).

Despite the recent increase in studies on mucosal-bacterial in-
teractions, very few are focused on studying amphibian disease for its
own sake, instead focusing on how these relationships can be translated
into a human health context. Degradation or metabolism of glycans in
amphibian skin mucus is poorly studied, but future efforts in this area
could provide valuable insights into disease resilience and the adaptive
microbiome.

2.3.2. Interaction of mucus with chytrid fungi

Mucins induce behavioral and ontogenetic effects on Bd zoospores
(Van Rooij et al., 2015; Robinson et al., 2022). Zoospores exhibit
chemotaxis, migrating toward both X. laevis mucus and an assortment of
free sugars found therein (Van Rooij et al., 2015). Recent work has
shown that exposure to mucins triggers a developmental response in Bd
zoospores, resulting in rapid encystation where the flagellum is absor-
bed and a chitinous cell wall is formed (Robinson et al., 2022). Notably,
Robinson et al. (2022) did not observe the same increase in encystation
rate when zoospores were exposed to several of the free sugars that van
Rooij et al. (2015) had previously shown to elicit zoospore chemotaxis
(mannose, galactose, GIcNAc, NeuNAc). This suggests that while Bd may
migrate toward glycans found in mucus, it is dependent on exposure to
mucins to trigger encystation and transition to its reproductive life stage.
Indeed, the concentration of galactose in the mucosome of amphibians is
an indicator predictive of Bsal susceptibility (Wang et al., 2021).

Given the effects of mucin on Bd development and its relationship to
Bsal virulence, and its complex interactions with bacteria, further
research is needed on the functional role of mucins in shaping
amphibian disease outcomes and the selection of an adaptive micro-
biome. One area of inquiry that could benefit from these recent de-
velopments is in assessing chytrid susceptibility to bacterial antifungal
metabolites in the presence of mucins. The potential for mucinolytic
activity and the phenotypic changes observed in bacteria exposed to
mucins (Almeida et al., 2019) warrant investigations into possible ef-
fects on antifungal activity of skin-associated bacteria. Following these
lines of inquiry on the role of mucin in amphibian disease may prove
useful in unraveling complex host-microbiome interactions. While some
microbes may be enriched in the mucosal environment, others may be at
a selective disadvantage or actively targeted by mucosal antibodies.

2.4. Amphibian mucosal antibodies

Mucosal antibodies are evolutionarily conserved interactors with
host associated microbes, assisting both with removing pathogens, and
helping to select and stabilize beneficial symbionts (Flajnik and Kasa-
hara, 2010; Xu et al., 2020). The amphibian mucosal antibody IgX was
first identified in X. laevis in 1985 and was found in the serum, spleen
and intestinal mucosa, and appeared to exist as a polymer (Hsu et al.,
1985). Thymectomies did not seem to impact IgX levels, and the anti-
body was found to mainly be expressed by plasma B cells, implying
T-cell independent function, similar to what has been observed for IgA
(Hsu et al., 1985; Mulmann et al., 1996). Testing in other Xenopus spp.
revealed IgX was present in X. amieti, X. L sudanensis, and X. L. victorianus
(Hsu et al., 1985), but since this initial study, most work on IgX has
continued in X. laevis.

Of the three antibodies Xenopus were known to possess, it was found
that mainly IgM and IgX expressing B cells were associated with the
epithelium of the intestine, while there were very few IgY + B cells
(MuBmann et al., 1996). Following intraperitoneal injection with anti-
gens, neither adults nor tadpoles had IgX antibodies produced against
the challenge agent in the serum (Mulmann et al., 1996), but oral im-
munization in adults has been shown to increase IgX in the serum (Du
et al.,, 2012), reinforcing the idea of a mucosa-associated role. This
initial work also contributed to a better structural understanding of IgX.

The work of Mulmann et al. (1996) demonstrated that IgX was able
to polymerize without a J chain and could form structures as large as
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hexamers. Given the general functional similarity, structure, and spe-
cific localization to the mucosa of the gut, these data were in support of
the theory that IgX was likely an analog of IgA.

An immunoglobulin closely related to IgX was found to be expressed
in the mucosa of the Mexican axolotl, Ambystoma mexicanum. Phyloge-
netic analysis grouped axolotl IgX with Xenopus 1gX (47% similarity),
and showed distinction from IgM, IgA, and IgY when comparing both the
first two and last two CH domains, indicating that these are likely the
same or subclasses of the same isotype (Schaerlinger et al., 2008). As
demonstrated in X. laevis IgX and in teleost fish IgT, A. mexicanum IgX is
expressed in the mucosal surfaces of the gut and gills, as well as the
kidney, liver, and spleen. While expression levels were low in the spleen
and kidney (aprox. 30% or less in both), IgX made up over 40% of all Ig
expression in the intestine (Schaerlinger et al., 2008). This work not only
confirms that IgX is a mucosa-associated immunoglobulin, but that it is
an antibody with ancestral roots and is found in urodeles as well as
anurans.

While control of the X. laevis gut microbiome is independent of T cells
(Mashoof et al., 2013), no work has been done to directly demonstrate
that IgX interacts with skin bacteria; however, it has been shown to
interact with fungi. Following an exposure to B. dendrobatidis zoospores,
pathogen specific IgX antibodies were found in the skin mucus of
X. laevis (Ramsey et al., 2010). As mucosal antibody interactions with
microbiota appear to be an evolutionarily conserved function, it is likely
that mucosal anitbodies can also regulate the microbiome of the
amphibian skin and gills.

2.5. Immunotherapeutics

Research on IgA and IgT indicate therapeutic potential for regulating
the microbiome through mucosal antibodies. Possible treatments
include oral vaccines, which have successfully led to IgX production in
X. laevis (Du et al.,, 2012), or mucosal vaccines as used in fish
(Munoz-Atienza et al., 2021; Salinas et al., 2021). Understanding how
IgX (a model for IgA) selectively influences the microbiota may also
allow for better success rates of microbiome transplants or probiotics in
promoting lasting change or stabilization of the microbiome in a wide
variety of systems. However, the specific activities of amphibian
mucosal antibodies and their interactions with the microbiome are not
yet known. A future research direction is to investigate the potential for
IgX, as well as expression of mucins and AMPs, to regulate microbial
mutualisms before, during, and after infections with Bd or Bsal, to better
understand how the host responds to pathogens and adaptively regulates
the microbiome to further this end.

3. Conclusion

Rather than dysbiosis as a response to disturbance of the host by
pathogen exposure, changes in the microbiome may represent an
adaptive response, or a healthy defensive state indicative of reactive
homeostasis. In this paper, we reviewed host mechanisms through
which amphibians have the potential to influence their skin micro-
biome, and we highlighted recent studies showing shifts in the micro-
biome as they relate to disease resilience. Ultimately, the amphibian skin
provides an easily accessible mucosal surface that we argue is an
understudied but powerful model system for exploring microbial in-
teractions and host-microbiome symbiosis. By broadening our under-
standing of the phenomena and mechanisms of adaptive microbiomes
across biological scales and disciplines, we anticipate translational
research for conservation and medicine.
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Data will be made available on request.
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