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Fig. 1. Muscle inertia (a) changes the inverse dynamics result of running motion by up to 40%, and (b) stabilizes the simulation. Our framework (c) handles
Hill-type muscles, complex joints, and higher-order integration, and (d) works flawlessly with the adjoint method for computing the simulation derivatives.

We propose a simple and practical approach for incorporating the e�ects
of muscle inertia, which has been ignored by previous musculoskeletal
simulators in both graphics and biomechanics. We approximate the inertia of
the muscle by assuming that muscle mass is distributed along the centerline
of the muscle. We express the motion of the musculotendons in terms of
the motion of the skeletal joints using a chain of Jacobians, so that at the
top level, only the reduced degrees of freedom of the skeleton are used
to completely drive both bones and musculotendons. Our approach can
handle all commonly used musculotendon path types, including those with
multiple path points and wrapping surfaces. For muscle paths involving
wrapping surfaces, we use neural networks to model the Jacobians, trained
using existing wrapping surface libraries, which allows us to e�ectively
handle the Jacobian discontinuities that occur when musculotendon paths
collide with wrapping surfaces. We demonstrate support for higher-order
time integrators, complex joints, inverse dynamics, Hill-type muscle models,
and di�erentiability. In the limit, as the muscle mass is reduced to zero,
our approach gracefully degrades to traditional simulators without support
for muscle inertia. Finally, it is possible to mix and match inertial and non-
inertial musculotendons, depending on the application.
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1 INTRODUCTION
Computer animation researchers have been using and extending
muscle-driven skeletal simulations for many applications—for exam-
ple, for improved inverse kinematics [Komura et al. 2001], head/neck
animation, [Lee and Terzopoulos 2006], hand animation [Sueda et al.
2008], real-time visualization of muscle activations [Murai et al.
2010], energy-minimizing gait animations [Wang et al. 2012], cre-
ation of imaginary bipedal characters, [Geijtenbeek et al. 2013],
upper body animations [Lee et al. 2009; Si et al. 2015], and control
of characters under various anatomical conditions [Lee et al. 2014;
Lee et al. 2019]. However, almost all musculoskeletal simulators
used in graphics and biomechanics ignore the e�ect of the inertia
of the muscles as they slide with respect to the bones. Instead, the
mass of the muscles is “lumped” to the bones at rest pose, and so
the e�ect of the muscle inertia cannot be re�ected in the dynamics
of the system, even though around 40% of total body mass comes
from skeletal muscles [Marieb and Hoehn 2010].

Missing inertia can change some important aspects of the simula-
tion. The e�ect of the missing inertia is most pronounced when the
muscle mass is large and far from the joints it acts on. For example,
some of the muscles of the lower limb exhibit signi�cant inertial
e�ects. In the seminal paper, Pai [2010] notes that the triceps surae
muscle of the human ankle can account for an additional 7.6% of
the e�ective inertia of the joint. In §4.5 (Fig. 1a), we also show that
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the combined e�ect of the muscle mass alters the inverse dynamics
result of running motion by as much as 40%. As another example,
consider the extrinsic muscles of the hand, which are located in the
forearm (Fig. 1b & §4.4). The joints of the �nger have very small
inertia by themselves, but when the muscle masses are taken into
account, the joint inertia increases signi�cantly. With a traditional
musculoskeletal simulator, these muscle masses are absorbed into
the nearest segment (i.e., forearm) and do not a�ect the inertia of the
�nger joints, whereas with our approach, these masses are coupled
to all of the joints spanned by the musculotendons. This increase
in inertia is important not only for simulation accuracy but also
stability. If we apply an impulse to the �ngertip (e.g., �icking with
the other hand), the distal joint quickly becomes unstable due to its
small inertia, but if the e�ect of muscle inertia is taken into account,
it remains stable under an impulse several times larger. Joint damp-
ing can be added to overcome some of these issues, but this would
require manual tweaking of parameters, and the added damping
would help stabilize both the simulation with and without muscle
inertia. Furthermore, the muscle inertia provides coupling of the
joints, naturally preventing the joints from moving independently.
In the past few years, biomechanics researchers have proposed

techniques to deal with muscle inertia [Han et al. 2015; Guo et al.
2020], but these approaches can only be used for relatively simple
muscle paths. We therefore propose a framework for incorporating
the e�ects of muscle inertia for more complex muscle path types,
including those with wrapping surfaces. To maximize interoper-
ability with existing musculoskeletal simulators (e.g., [Damsgaard
et al. 2006; Seth et al. 2018]), we use the reduced coordinates of the
articulated rigid body system representing the skeletal joints as the
degrees of freedom. However, unlike existing musculoskeletal simu-
lators, we take into account the inertia of the muscles as they slide
with respect to the bones, by inserting mass points along the paths
of the musculotendons. As the skeleton moves, these mass points
move; since each musculotendon is assumed to be frictionless, the
path moves such that its length is minimized.

Our main technical contribution is the derivation of this mapping
(i.e., Jacobian, plus its time derivative) from the skeletal motion to
the muscle mass motion. To aid us in the derivation, we categorize
musculotendon paths into three types (Fig. 2):

I: Straight-line paths, whose Jacobians are derived in a straight-
forward manner (§3.1).

II: Polyline paths through a sequence of points, whose Jaco-
bians are derived by extending the Eulerian-on-Lagrangian
framework [Sueda et al. 2011; Sachdeva et al. 2015] (§3.2).

III: All others, but most importantly, curved paths wrapping over
smooth surfaces, whose Jacobians are based on neural net-
works trained with our custom sampling strategy to handle
parasitic discontinuities (§3.3).

To summarize, our contributions are:
• An Eulerian-on-Lagrangian approach for the inertia of poly-
line musculotendons composed of a sequence of path points.

• A neural network approach for the inertia of curved muscu-
lotendons wrapping over smooth surfaces.

• A framework compatible with various existing techniques,
including higher-order integrators, inverse dynamics, Hill-
type muscle models, and di�erentiability.
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Fig. 2. Concrete running example for Types I, II, and III muscles. In all cases,
there are three bones and one muscle. The origin is on body �, and the
insertion is on body⇠ . Type II muscle has a path point on body ⌫, and Type
III muscle has a wrapping surface ( defined with respect to body ⌫.

• A framework capable of handling musculotendons with iner-
tia but can, in the limit, reproduce the results from existing
simulators without inertia.

• A frameworkwith support formixing andmatching of inertial
and non-inertial muscles, so that the user can choose to add
inertia only to muscles with substantial inertial e�ects.

2 RELATED WORK
Because of the importance of human character animation to graph-
ics, many di�erent types of approaches have been studied, starting
with the seminal work on facial animation [Waters 1987; Terzopou-
los and Waters 1990; Waters and Terzopoulos 1990]. Often in graph-
ics, the causal relationship between the muscles and the bones is
switched—the skeleton is �rst moved, and then the muscles/�esh
are correspondingly simulated to add bulging e�ects to the char-
acter’s skin [Scheepers et al. 1997; Wilhelms and Gelder 1997; Kim
and Pollard 2011]. As important as these works are to graphics
(e.g., commercial products [Autodesk 2011; Ziva Dynamics 2018]),
this paper focuses exclusively on muscle-driven systems.
Line-based musculoskeletal methods were developed by adding

line-of-action muscles to rigid body dynamics from robotics [Dams-
gaard et al. 2006; Seth et al. 2018]. Almost always, these muscles
are assumed to be massless, taking the shortest path between the
origin and insertion, possibly being routed around path points and
wrapping surfaces. Perhaps the �rst work in computer graphics
to use proper biomechanics-based muscle models is the work by
Komura et al. [1997; 2000; 2001], in which they show new types
of animations, such as biomechanically based fatigue, which were
not possible with previous joint torque-based approaches. Lee and
Terzopoulos [2006] use line-based musculotendons to model the
muscles of the neck, and in their follow-up works, they use these
muscles to drive the volumetric mesh for upper-body motion [Lee
et al. 2009] and swimming [Si et al. 2015]. Wang et al. [2012] simu-
late a variety of gaits, showing that optimizing for metabolic energy
expenditure increases the realism of resulting animations. Geijten-
beek et al. [2013] use Hill-type muscle models for a range of bipedal
characters, including humans, animals, and imaginary creatures.
Unlike previous work, they also optimize for the placement and
routing of these muscle lines so that the total error based on speed,
orientation, and e�ort is minimized. Lee et al. [2014] propose a
scalable biped controller that is able to solve for the activations of
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more than one hundred muscles. Their controller is formulated as
a quadratic program that can handle frictional contact based on
Coulomb’s model. Their results include motions that include muscle
pain, muscle tightness, or joint dislocation. In their follow-up work,
Lee et al. [2019] use deep reinforcement learning to control more
than three hundred Hill-type muscles for full-body motions. They
show that they can reproduce a wide range of motions, including
muscle weakness, use of prostheses, and pathological gaits.
Although not directly related, we brie�y cover volume-based

muscle models because of their importance to graphics. Among
those that do use biomechanically based muscle mechanics models,
two subtypes of volume-based methods have been studied. The
�rst subtype—those with embedded force generators— was initially
used in animation. Chen and Zeltzer [1992] introduced the �rst
biomechanics-based muscle mechanics model to computer anima-
tion. They used the �nite element method (FEM) with twenty-node
isoparametric brick elements, with the longitudinal edges of these
elements acting as muscle force generators. Later, Zhu et al. [1998]
used eight-node brick elements with force generators between a
set of linear FEM nodes. Lemos et al. [2001] developed a general
FEM framework that could support any nonlinear material as the
background isotropic material. Ng-Thow-Hing [2001] used a similar
approach to embed force generators inside a B-spline solid. Around
the turn of the century, the second subtype—those with anisotropic
muscle material models—became more popular in graphics. The
seminal work by Teran et al. [2003] used a material model with a
strain energy that includes an anisotropic muscle potential term.
Similar muscle mechanics model is used in their follow-up work
on larger scale simulation of skeletal muscles [Teran et al. 2005] as
well as facial muscles [Sifakis et al. 2005]. Fan et al. [2014] used a
blackbox deformation energy as an approximation for contractile
mechanics in their volumetric muscles undergoing contact. Recently,
Lee et al. [2018] simulated volumetric muscles with Projective Dy-
namics, driven by per-element energy functions derived from a
Hill-type muscle model. Min et al. [2019] used quadratic strain
energy to model contractile volumetric muscles of soft-bodied an-
imals. Although in principle it is possible to use these volumetric
simulators to compute the inertial e�ects of the muscle, they are
impractical or impossible for the types of applications we are in-
terested in, considering the high number of parameters and the
computational complexity required by volumetric models.

3 METHODS
We use the reduced coordinates, qA , of the articulated rigid body
system representing the skeletal joints as the degrees of freedom
(DOFs) of the system. To take into account the inertia of the muscles
as they slide with respect to the bones, we insert mass points along
the path of the musculotendon. These mass points are �xed at a
certain percentage length U along the path (i.e., �xed at certain
texture coordinates; see Fig. 3b); however, as the skeleton moves,
these mass points move in world space, since each musculotendon is
assumed to be frictionless—the path moves such that its length is
minimized.

In this section, we derive the Jacobian JUA that maps the change
in the reduced coordinates of the articulated rigid body system to

the change in the 3D world coordinates of these muscle mass points:

§xU = JUA §qA , (1)

where §qA is the stacked vector of reduced (joint) velocities, and §xU
is the stacked vector of muscle mass point velocities in world space.
The size of §qA depends on the joint types. For example, if all of the
joints are revolute, then §qA 2 R= , and if all of the joints are spherical,
then §qA 2 R3= , where = is the number of joints. The multiplication
by the Jacobian JUA , which depends nonlinearly on qA , produces the
3D world velocities of muscle mass points §xU 2 R3< , where< is
the number of mass points.

We assume that we already have access to the Jacobian J<A (and its
time derivative §J<A ) that maps between the reduced (joint) velocities
and the maximal (body) velocities of the articulated rigid body
system [Kim and Pollard 2011; Wang et al. 2019]:

§q< = J<A §qA , (2)

where §q< is the stacked vector of maximal velocities. Unlike reduced
velocities, the size of the maximal velocity vector does not depend
on the joint type: §q< 2 R6= . In our work, we stack the rotational
velocity, l , and the translational velocity, a , together to form the
maximal velocity, so that for each body, we have:

§q< = q =
✓
l
a

◆
, (3)

with both l and a expressed in body-local coordinates [Murray
et al. 2017].1 In the rest of this section, we sometimes use q as an
alternative symbol for the maximal velocity (twist) of a single body.

The main technical contribution of our work is the derivation of
Jacobian JU< (and its time derivative §JU<) that maps the maximal
velocities to the muscle mass point velocities (details in §3.1, §3.2,
and §3.3). Once this Jacobian is derived, to compute the world ve-
locities of the muscle mass points from the reduced velocities of the
joints, we chain it together with J<A to form the �nal Jacobian we
are after:

JUA = JU<J<A . (4)
Armed with this Jacobian, we can compute the 3D world accelera-
tions of the muscle mass points as:

•xU = §JUA §qA + JUA •qA
§JUA = §JU<J<A + JU< §J<A .

(5)

Plugging this into the equations of motion of the mass points
MU •xU = fU and applying the principle of virtual work, we obtain:

J>UAMU JUA •qA = J>UA
�
fU �MU §JUA §qA

�
. (6)

Here,MU 2 R3<⇥3< is the constant diagonal inertia matrix of the
< muscle mass points, and fU 2 R3< is the force of gravity acting
on these mass points. The muscle activation forces do not directly
apply forces to these mass points. Instead, in order to keep our
framework compatible with existing biomechanical simulators, we
assume that the activation forces are applied to the skeleton, which
in turn kinematically moves the mass points through the Jacobian
JUA . The last term in Eq. 6, which uses §JU< , is the quadratic velocity
vector (QVV) that results from the partial derivatives of the kinetic
energy [Shabana 2013].
1Other conventions can be used; the derivations will need to be accordingly modi�ed.
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The reduced coordinates of the system also drive the bones, and
so combining muscles and bones, we obtain the �nal equations of
motion of the whole musculoskeletal system in reduced coordinates:

M̃A •qA = f̃A (7a)

M̃A = J>UAMU JUA + J><AM<J<A (7b)

f̃A = J>UA
�
fU �MU §JUA §qA

�
+ J><A

�
f< �M< §J<A §qA

�
+ fA , (7c)

whereM< 2 R6=⇥6= is the constant diagonal inertia of the= bones,2
f< 2 R6= is the sum of maximal forces acting on these bones, such
as gravity, Coriolis, and muscle activation forces, and fA is the sum of
reduced forces, such as joint torques. We can use any time integrator
to step the system forward in time. In our implementation, we use
forward Euler, BDF1, and SDIRK2 [Hairer et al. 2006].

Throughout this section, we will use the concrete running exam-
ple shown in Fig. 2. We will assume that each joint is a revolute
joint, and so the reduced velocity is §qA = ( §\� §\⌫ §\⇠ )> 2 R3. The
maximal velocity is §q< = (q� q⌫ q⇠ )> 2 R18, and J<A 2 R18⇥3.
The origin of the musculotendon is assumed to be on body �, and
the insertion on body ⇠ . We will also assume that there is a single
muscle with two mass points, so that §xU 2 R6, and JU< 2 R6⇥18.
The �nal Jacobian is JUA 2 R6⇥3. For the Type II muscle, the path
point is attached to body ⌫. For the Type III muscle, the wrapping
surface ( is de�ned with respect to body ⌫.

3.1 Type I: Straight Line Muscles
We start with the simple case of a straight line muscle between two
bodies. This subsection is not a contribution, but the derivations and
notations introduced here will help us with the rest of the paper.
To be explicit, for vectors, we will use a leading superscript to

indicate which coordinate space the vector is de�ned in, and for
matrices, we will use a leading sub/superscript to indicate from
which to which space the matrix transforms a vector. Let �xori be
the 3D position of the origin in the local space of �, and ⇠xins be
the 3D position of the insertion in the local space of ⇠ . Then the
world velocities of the origin and insertion can be computed as:

, §xori = ,
�R �(�xori) q�, , §xins = ,

⇠R �(⇠xins) q⇠ , (8)

where ,
-R 2 ($ (3) is the rotation matrix of body - (e.g., � or

⇠), and �(x) =
�
[x]> I

�
2 R3⇥6 is the material Jacobian matrix

for computing the point velocity [Murray et al. 2017], with [·] the
cross-product matrix. This gives us the following expression for the
Jacobian between maximal velocities and world velocities of the
origin/insertion for our concrete running example in Fig. 2:

JG< =
✓,
�R �(�xori) 0 0

0 0 ,
⇠R �(⇠xins)

◆
2 R6⇥18 . (9)

For a muscle mass point U , the world velocity is simply the
weighted average of the world velocities of the origin and the inser-
tion:, §xU = (1 � U), §xori + U, §xins. Thus, the Jacobian JUG is:

JUG =
✓
(1 � U1) I U1 I
(1 � U2) I U2 I

◆
2 R6⇥6, (10)

2The maximal inertia is constant because of our choice of body-local coordinates.

where U1 and U2 are the percentage lengths of the two mass points.
The product of these two Jacobians gives the �nal Jacobian for Type
I muscles: JU< = JUG JG< 2 R6⇥18.

The U value is �xed over time, as well as the origin and insertion
positions with respect to their respective bodies. The time derivative
of the Jacobian is then §JU< = JUG §JG< , where

§JG< =
✓,
�R [l�]�(�xori) 0 0

0 0 ,
⇠R [l⇠ ]�(⇠xins)

◆
, (11)

since §R = R[l] for maximal velocities in body coordinates [Murray
et al. 2017].

3.2 Type II: Path Point Muscles
Some musculotendons are constructed as a polyline going through
a sequence of path points. To deal with these types of muscles,
we extend the Eulerian-on-Lagrangian (EOL) strands framework
[Sueda et al. 2011; Sachdeva et al. 2015]. Let 8 = 0, 1, 2, · · · ,= + 1
be the indices of the path points (so that 8 = 0 corresponds to the
origin, 8 = =+1 corresponds to the insertion, and there are = internal
path points). With the EOL framework, we keep track of not only
the world space position and velocity (Lagrangian quantities x8 and
§x8 2 R3) of the path points, but also the reference space position
and velocity (Eulerian quantities B8 and §B8 2 R) at these path points.
This allows us to model the sliding motion of the underlying strand
even when the world positions of the path points are �xed (e.g., if
§x8 = 0 but §B8 < 0, the musculotendon material still moves in world
space). Following the work by Sachdeva et al. [2015], we assume
that all of the line segments of the polyline share the same strain
value, which allows us to derive a Jacobian that maps from §x8 to §B8
(see Eq. 3 [Sachdeva et al. 2015]):

JBG = �L�1�S�X̄, (12)

where �S is a matrix constructed from the Eulerian coordinates B8 ,
�X̄ is a matrix constructed from the Lagrangian coordinates x8 , and
L is constructed from the segment lengths between the path points.
Since Sachdeva et al. [2015] used inextensible EOL strands, they

did not need to derive the time derivative of this Jacobian. However,
in this work, the EOL strands are used for extensiblemusculotendons;
therefore, we must also derive §JBG . Using the inverse derivative
identity for L, we obtain:

§JBG = �L�1
⇣
§L JBG + �§S�X̄ + �S� §̄X

⌘
. (13)

Further details are in the supplementary document.

zi zi+1

x�

(a)

�

�
�

(b)

Fig. 3. (a) An EOL segment: the motion of the mass point xU depends on the
motion of both Eulerian and Lagrangian motions of the path points z8 and
z8+1. (b) A musculotendon with one path point between origin and insertion:
U represents the percentage length along thewholemusculotendon, whereas
V represents the percentage length along each line segment.
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So far, the Jacobians JBG and §JBG that we derived cannot be plugged
into our system because they only map between §x8 and §B8 , rather
than from §q< to §xU . In other words, these Jacobians only provide
the mapping between the Lagrangian and Eulerian velocities of the
path points of a musculotendon, rather than the mapping between
the maximal velocities of the skeleton and the muscle mass point
velocities. To tie the Jacobians JBG and §JBG to the rest of the sys-
tem, we introduce a new notation z that represents the combined
Lagrangian/Eulerian coordinates:

z8 =
✓
x8
B8

◆
2 R4 . (14)

In the concrete example in Fig. 2, which contains a single internal
path point, z = (xori Bori x1 B1 xins Bins)> 2 R12. The musculoten-
don material cannot �ow past the origin or insertion, so §Bori and
§Bins are always zero. Using this notation, the Jacobian that we are
after can be written as:

JU< = JUIJI< 2 R6⇥18

§JU< = §JUIJI< + JUI §JI< .
(15)

The left Jacobian JUI 2 R6⇥12 represents the mapping from the
Lagrangian/Eulerian velocities of the path points to the muscle mass
point (Fig. 3a). This was already derived by Sueda et al. [2011] (Eq. 4),
but we reproduce the expression here, for our concrete example
with one path point and two mass points. The �rst mass point is
between the origin and the path point, and the second mass point
is between the path point and the insertion. Therefore, we get:
JUI =✓
(1 � V1)I �(1 � V1)F1 V1I �V1F1 0 0

0 0 (1 � V2)I �(1 � V2)F2 V2I �V2F2

◆
.

(16)

Here, we used V to represent the percentage location of xU within a
particular line segment, as shown in Fig. 3b. F 2 R3 is the deforma-
tion gradient of the line segment: F1 = (x1 � xori)/(B1 � Bori) and
F2 = (xins � x1)/(Bins � B1). The time derivatives of these quantities,
which were not derived before by Sueda et al. [2011], are neverthe-
less needed for our extensible musculotendons. We list the detailed
derivations of these derivatives in the supplementary document.

The right Jacobian JI< 2 R12⇥18 in Eq. 15 represents the mapping
from themaximal velocities of the bodies to the Lagrangian/Eulerian

velocities of the path points. This can be accomplished by construct-
ing a Jacobian that passes through the Lagrangian components while
hitting the Eulerian components by JBG :

JI< =
✓
I
JBG

◆
JG<, §JI< =

✓
0
§JBG

◆
JG< +

✓
I
JBG

◆
§JG< . (17)

JG< in our concrete example with an internal path point x8 attached
to body ⌫ is:

JG< = ©≠
´
,
�R �(�xori) ,

⌫R �(⌫x8 ) 0

0 ,
⌫R �(⌫x8 ) ,

⇠R �(⇠xins)
™Æ
¨
2 R6⇥18 . (18)

Its time derivative, §JG< , can be derived similarly as in Eq. 11.

3.3 Type III: Wrapping Surface Muscles
Somemusculotendons are constructed as 3D paths that wrap around
smooth surfaces. To derive the Jacobians for these types of paths, we
use neural networks. The reason for using neural networks may not
be immediately obvious, since existing muscle routing algorithms
are highly e�cient [Garner and Pandy 2000; Scholz et al. 2016; Seth
et al. 2018; Lloyd et al. 2020]. With some fairly minor modi�cations,
we could use the output of these libraries to compute the Jacobians
with �nite di�erencing, which would not be prohibitively expensive
due to the e�ciency of these libraries. However, they cannot be
used directly in our framework for inertial muscles because they all
su�er from a massive problem: Jacobian discontinuity.

As an illustration of this problem, suppose that we have a double
pendulum with a musculotendon shown in Fig. 4a. As the pendulum
swings due to the force of gravity acting on both the bones and
the musculotendon, the path of the musculotendon attaches and
detaches from the wrapping surface. If we use a Jacobian computed
using existing wrapping surface libraries and �nite di�erencing,
we observe discontinuities in the energy plot, as shown in Fig. 4b.
These energy jumps occur because the velocities of the muscle mass
points undergo sudden changes, even when the velocities of the
joints vary smoothly. Fig. 4d shows the x-component of �ve of the
mass points (each with its own color), as a function of the distal joint
angle, zoomed in near a discontinuity. The values computed with
an existing wrapping surface library are shown with solid lines, and
ours with dotted lines. Fig. 4e shows the corresponding derivatives.
The jump in the value of the Jacobian creates sudden changes in the
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Fig. 4. (a) A double pendulum with a musculotendon, hi�ing a wrapping surface. (b) Energy plot (kinetic in blue, potential in red, total in yellow) of the
simulation using an existing wrapping surface library. (c) Energy plot using our approach. (d) Plot of the x-component of five selected muscle mass points as a
function of the distal joint angle, zoomed around a discontinuity. The solid lines are generated using an existing wrapping surface library. The do�ed lines are
generated using our approach. (e) The corresponding plots of the Jacobian. Unlike previous work (solid), our approach (do�ed) generates smooth Jacobians.
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velocities of the mass points, which in turn creates energy jumps
in the simulation. On the other hand, our neural network approach
generates the smooth Jacobian plots in Fig. 4e, while keeping the
position plots in Fig. 4d virtually indistinguishable from the output
of the library code. This results in a smooth energy trajectory shown
in Fig. 4c.

One way to deal with the discontinuity is to detect these sudden
state changes and apply a manual �x, e.g., by computing the pre- and
post-collision Jacobians and running a nonlinear optimization to
compute the velocities that minimize the change in energy. However,
such approaches are tricky to incorporate into implicit integrators,
such as SDIRK2 [Hairer et al. 2006], as well as into di�erentiable
simulation techniques, such as the adjoint method [McNamara et al.
2004; Geilinger et al. 2020; Xu et al. 2021], which our method sup-
ports naturally without any changes to the framework.

We instead choose to smooth the discontinuity. Smoothing would
be easy with a uni-articular muscle spanning a hinge joint. As an
o�ine process, we could pre-sample many points within the range
of motion of the joint, and then apply a smoothing �lter over the
samples. During runtime, we could then use the �ltered values
to construct the Jacobian. However, high-dimensional smoothing
would be required with a bi- or multi-articular muscle, as well as
with a uni-articular muscle with a spherical joint. Therefore, we use
neural networks for this high-dimensional smoothing problem. This
approach is simple to implement and can be used with any existing
muscle routing libraries.

3.3.1 Training the Network. We train the network with origin and
insertion positions as the input, rather than the joint angle. This is
an important choice, since it allows the same trained network to
be used regardless of the type of the joints, how many joints the
musculotendon spans, as well as with respect to which bodies the
surface is de�ned. Using the cylinder wrapping surface as a concrete
example, the input and output of our network are:

©≠≠≠
´

(xori
(xins
U
A

™ÆÆÆ
¨
!

⇣
(xU

⌘
, (19)

where A is the radius of the cylinder, and U is the percentage length
along the musculotendon. The origin (xori, insertion (xins, and the
output position (xU are all de�ned with respect to the coordinate
space of the wrapping surface ( . During training, we use the ✓2-
norm of the di�erence between the output of the network and the
output of the wrapping library. We include samples with muscles
in both attached and detached states, so that at runtime, we do
not need to detect whether the muscle is in contact or not. Once
trained, the network and the original wrapping library can be used
interchangeably, except for one important di�erence: discontinuity.

To ensure that the network does not contain any discontinuities,
we use the hyperbolic tangent activation function. Furthermore,
we throw away the samples near the discontinuity before training.
To detect whether a sample is close to a discontinuity, we use the
following simple heuristics for all wrapping surfaces.
• Compute ; , the length of the “wrapped” portion of the path.
• If ; = 0, keep the sample.

• Compute !, the length of the whole path.
• If ;/! < thresh, discard the sample.
• Otherwise, keep the sample.

Both ; and ! are readily available from the wrapping surface library.
In our current implementation, we use a threshold of 1%.

The trajectory of xU computed with the library is only⇠0, but the
trajectory computed by the network is ⇠1. Despite this di�erence,
the two trajectories are virtually indistinguishable. For example, if
we closely inspect what happens to xU as it approaches and touches
the wrapping surface, we �nd that it slightly penetrates the surface
and then �oats back to the surface. We also note that the wrapping
surface path is already an approximation of the actual path taken
by a real muscle, and so this slight discrepancy is within reason.

3.3.2 Incorporating the Network. We now describe how we use
the trained network in our simulation framework. As described
earlier, to maximize generality, we train the network with origin
and insertion in the coordinate space of the wrapping surface as the
input: (xori and (xins. To compute the world velocity of the muscle
mass point,, §xU , we �rst need to transform the network input into
( space, use the network, and then transform the output back to
world space.

Like with Type I and Type II muscles, our goal is to derive JU<
and §JU< . To derive JU< , we must express the world velocity of xU
using maximal velocities of the bodies. The world velocity of one
mass point can be written as the sum of three terms:

, §xU = ,vbase + ,vori + ,vins . (20)

The �rst term represents the base motion of the mass point as if it
were �xed with respect to ( . Since ( itself could be moving, even
if the mass point is stationary in ( , its world velocity could be
nonzero. The second term represents the contribution from the
relative motion of the origin within the ( space. Similarly, the third
term represents the contribution from the relative motion of the
insertion within the ( space. Our goal is to rewrite each of the three
terms so that, §xU = Jbase §q< + Jori §q< + Jins §q< . Then the Jacobian
we are after is JU< = Jbase + Jori + Jins.

For concreteness, we continue to assume that the origin is �xed
to�, insertion is �xed to⇠ , and the surface ( is �xed to ⌫ (see Fig. 2).
The �rst term in Eq. 20 is the motion of the mass point assuming
that it is �xed in ( . If we convert this to body ⌫’s space, we get:

,vbase =,
(R �((xU ) q(

=,
⌫R �(⌫(E

(xU ) q⌫,
(21)

where ⌫
(E is the transformation matrix of ( with respect to ⌫, which

is �xed over time. The Jacobian for this term, assuming there are
two mass points (Fig. 2), is then

Jbase =
©≠
´
0 ,

⌫R �(⌫(E
(xU1 ) 0

0 ,
⌫R �(⌫(E

(xU2 ) 0
™Æ
¨
2 R6⇥18, (22)

where (xU1 and (xU2 are the values returned from the network.
To compute Jori, we �rst need the relative velocity of the origin

from the point of view of the surface. To do so, we must take into
account the relative motions of the coordinate spaces, shown in
Fig. 5. Since the origin is attached to �, we can compute its world
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A

B

A

B

C

Fig. 5. Coordinate spaces for a wrapping surface muscle. � contains the
origin,⇠ contains the insertion, and ⌫ contains the wrapping surface ( . The
( coordinate space (not drawn in this figure) moves rigidly with ⌫.

velocity, §xori using Eq. 8. What we are after is the relative velocity
of the origin if we temporarily imagine frame ⌫ to be stationary and
transfer its motion to frame �. In other words, we subtract from
, §xori the hypothetical velocity of the origin attached to body ⌫:

,vrelori =
,
�R �(�xori) q� �,

⌫R �(⌫�E
�xori) q⌫, (23)

where ⌫
�E =,

⌫E
�1,

�E, formed from the current con�gurations of
bodies � and ⌫. We then rotate this into surface space, hit it with
the network Jacobian, and then rotate back to world:

,vori =,
(R

( JNNUo
(
,R,vrelori . (24)

The network Jacobian, ( JNNUo , is computed with backward di�erentia-
tion of the network. Given that the input and output of the network
are in ( space, the network Jacobians are also in ( space.

( JNNUo =
3 (xU
3 (xori

, ( JNNU i =
3 (xU
3 (xins

. (25)

Since (xU , (xori, and (xins are all in R3, these network Jacobians are
3 ⇥ 3 matrices.
Combining Eq. 23 and Eq. 24 and extracting out the maximal

velocities q� and q⌫ , the Jacobian Jori for the concrete running
example becomes:

Jori =
©≠
´
,
(R

( JNNU1o
(
,R ,

�R �(�xori) 0 0
,
(R

( JNNU2o
(
,R ,

�R �(�xori) 0 0
™Æ
¨

� ©≠
´
0 ,

(R
( JNNU1o

(
,R ,

⌫R �(⌫�E
�xori) 0

0 ,
(R

( JNNU2o
(
,R ,

⌫R �(⌫�E
�xori) 0

™Æ
¨
2 R6⇥18 .

(26)

The Jacobian Jins is derived similarly, except that the insertion is
�xed to body ⇠ instead of �.

Jins =
©≠
´
0 0 ,

(R
( JNNU1i

(
,R ,

⇠R �(⇠xins)
0 0 ,

(R
( JNNU2i

(
,R ,

⇠R �(⇠xins)
™Æ
¨

� ©≠
´
0 ,

(R
( JNNU1i

(
,R ,

⌫R �(⌫⇠E
⇠xins) 0

0 ,
(R

( JNNU2i
(
,R ,

⌫R �(⌫⇠E
⇠xins) 0

™Æ
¨
2 R6⇥18 .

(27)

The time derivatives of the individual quantities in §Jbase, §Jori, and
§Jins are listed in the supplementary material. We analytically derive
all of the derivatives, except for the network Jacobians. For these,
we perturb (xori and (xins in time to evaluate the network again to
perform �nite di�erencing:

(x+ori =
(xori + n (vrelori,

( §JNNUo =
⇣
( JNN+Uo � ( JNNUo

⌘
/n,

(x+ins =
(xins + n (vrelins,

( §JNNU i =
⇣
( JNN+U i � ( JNNU i

⌘
/n,

(28)

where (vrelori is computed as (vrelori =
(
,R,vrelori, and likewise for (vrelins.

4 RESULTS
We implemented a prototype in MATLAB. The networks were
trained on a computer with a Ryzen 7 5800X CPU with 32 GB of
RAM and an RTX 3080 Ti GPU with 12 GB of RAM. We trained the
networks using Adam [Kingma and Ba 2015] with the default param-
eters and a learning rate of 10�4. For each network, we used 6 layers
with 256 neurons per layer. We used tanh as the activation function
for all layers. The trained networks were loaded and evaluated in
MATLAB. We used around 30k samples, and the training took about
12 hours. More details are in the supplementary document.

4.1 Comparison to Analytical Results
We start with comparisons to the simulation and analytical results
by Pai [2010] to verify that our general framework is in agreement
with published results. First we simulate the scene in Fig. 6a, which
uses the same setup as their Fig. 2. As shown by the solid lines in
our Fig. 6b, the two angles reach zero at 0.3 seconds, just like in the
published result.

Pai also analytically computed the contributions to the self-inertia
of the rat knee joint from the biceps femoris posterior muscle and the
bones of the shank, and reported that the relative contribution from
the muscle with respect to the bones is 45%. We also computed the
inertia from the muscle and the bones using Eq. 7b, and obtained the
value of 45.8%. The slight discrepancy goes down if we include more
mass points, but we found that 10-20 are su�cient for most purposes.
Furthermore, the discrete approach allows us to more easily model
the non-uniform mass distribution along the musculotendon path.

�1

�2

(a)

0 0.1 0.2 0.3
Time (s)

0
50

100

An
gl

es
 (d

eg
)

(b)

Fig. 6. Comparison to published results [Pai 2010]. (a) Two bones and one
muscle, all with the samemass. (b) The solid lines show that a�er simulating
the system with the muscle for 0.3 seconds, the two angles straighten out as
in the previous work. The do�ed lines show the same simulation but with
the mass of the muscle lumped onto the bones.
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Fig. 7. Double pendulums with cylinder wrapping. The same trained net-
work is used for a range of input parameters. For comparison, the right-most
double pendulum is simulated without a muscle.
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Fig. 8. (a-b) Energy plots from a Type II muscle with and without QVV. (c-d)
Energy plots from a Type III muscle with and without QVV. Kinetic energy
is shown in blue, potential energy in red, and total energy in yellow.

4.2 Network Jacobian
We simulate a group of double pendulums with varying origin, in-
sertion, radius, and the initial rotation of the wrapping surface, as
shown in Fig. 7. In these experiments, the masses of the proximal
bone, the distal bone, and the muscle are set to be equal. For com-
parison, in the right-most pendulum, we remove the muscle, adding
half of its mass to the proximal bone and the other half to the dis-
tal bone. Using the same trained network, the simulator is able to
account for all the variations properly.

4.3 Energy Behavior
To show the importance of the §JU< term that we derived, we take
one of the simulations from Fig. 7, and remove §JU< , and conse-
quently, the quadratic velocity vector (QVV) of the muscle mass
points [Shabana 2013]. (We keep the QVV of the bones in the simu-
lation.) As shown in Fig. 8c, even with the SDIRK2 time integrator,
the energy oscillates wildly. On the other hand, as shown in Fig. 8d,
the energy stays stable once we put the QVV of the muscle back
in. Similarly, in Fig. 8a-8b, we show the same experiment with a
Type II muscle. Again, without the QVV of the muscle, the energy
�uctuates, but with the QVV of the muscle included, the energy
remains stable.

4.4 Simulation Stability
The e�ect of muscle inertia is stronger when a relatively light bone
is actuated by a relatively large muscle mass located away from
the joint. In Fig. 1b, we show an example of such a case with the
�exor digitorum profundus and super�cialias muscles (FDP & FDS),
which originate near the elbow and insert into the distal and middle
phalanges, respectively. For our simulation, we modeled the bones
and joints using open source data [Lee et al. 2015], and we manually
modeled the FDP and FDS as Type II muscles, with the tendons
routed through pulleys implemented as path points. We �xed all
joints except for the three joints of the index �nger, which we
modeled as revolute joints. The masses of the bones are set from the
meshes, with a relatively large density of 5 g cm�3 to account for
the rest of the �nger mass, and the mass of the muscles is set to 200 g
each. With a �xed time step of 1 ms, we apply di�erent amounts of
force for the �rst two time steps of the simulation, to model �icking
the �ngertip with the other hand. With the traditional approach,
the simulation becomes unstable when the force is increased to
5 N, whereas with our approach, the simulation becomes unstable
when the force is increased to 20 N. This is due to the fact that
with the traditional approach, the muscle inertia gets absorbed into
the forearm segment, and thus the generalized inertia of the �nger
joints is not a�ected by the muscles, unlike with our approach. (The
peak force during typing is around 2 N [Kim et al. 2014].) We also
note that the inertia due to the muscles in this particular example is
substantially underestimated, since we assume that strain is equal
throughout the length of the musculotendon. If we also take into
account the fact that the tendon is highly sti�, joint motion would
cause more of the muscle mass to move, which would increase the
inertia further.

4.5 Comparison to OpenSim
For our next experiment, we use marker-based motion-capture data
to drive the skeleton and compute the resulting torques at the joints
with inverse dynamics. We show a 0.5 second clip in Fig. 9. The
�gure shows the swing phase: from take-o� to touch-down. We use
OpenSim to scale the bone lengths/masses, joint locations, muscle
origin/insertion, path points, and wrapping surfaces to the speci�c
subject. The skeleton has 11 DOFs: 6 for pelvis, 3 for the right hip, 1
for the right knee, and 1 for the right ankle. We model four muscles
that span the ankle: gastrocnemius lateral (Type III), gastrocnemius
medial (Type III), soleus (Type I), and tibialis anterior (Type II). The
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Fig. 9. The swing phase of a 19.1 km/h treadmill run, showing only the right leg. The four muscles (and their types) are: gastrocnemius lateral (Type III),
gastrocnemius medial (Type III), soleus (Type I), and tibialis anterior (Type II).
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Fig. 10. (Le�) Ankle torque computed by inverse dynamics, showing the
mean and the standard deviation. Blue plot is generated by OpenSim, which
does not support inertial muscles. Red plot is generated by our simulator
with the muscles accounting for 0% of the total mass. Yellow plot is gen-
erated by our simulator with 80% of the tibia segment mass transferred
to the muscles. (Right) The closeup of the final dip, showing the individ-
ual trajectories. Our simulator generates results that gracefully degrade to
OpenSim’s results as the inertia of the muscles is decreased to zero.

subject runs on a treadmill at 19.1 km/h, and we use OpenSim to
reconstruct the motion of the skeleton from the marker data. We
collect the ankle torque computed with inverse dynamics from the
swing phases from two 10-second trials using OpenSim and our
simulator. We overlay the swing phases on top of each other and
plot the results in Fig. 10. We show the torque results generated by:
• OpenSim (blue), which does not support inertial muscles.
• Our simulator (red) with the muscles accounting for 0% of the
total mass of the tibia segment.

• Our simulator (yellow) with 80% of the tibia mass transferred
to the muscles.

The relative masses of the four muscles are taken from the literature
[Ward et al. 2009]. For each muscle, the mass is distributed into 20
equally spaced points in the middle portion of the musculotendon
that correspond to the muscle (as opposed to the tendons). Fig. 10b
shows the closeup of the �nal dip. Comparing the blue and red
plots, we con�rm that our simulator generates results that gracefully
degrades to OpenSim’s results, as the inertia of the muscles are
decreased to zero. On the other hand, comparing the red and yellow
plots, we note that the ankle moment can di�er by as much as 40%
due to the e�ect of muscle inertia. In the supplementary material,
we show how our result gracefully degrade to OpenSim’s result.

4.6 Spline Joint Knee with Hill-Type Muscles
To demonstrate the generality and �exibility of our approach, we
take the same scene setup as above, but replace the revolute joint

Fig. 11. Our approach supports complex joint types. Top row: Knee with a
revolute joint—the tibia separates from the femur. Bo�om row: Knee with a
spline joint—the tibia stays close to the femur.

of the knee with a spline joint [Lee and Terzopoulos 2008] and add
the semimembranosus (Type I) and the rectus femoris (Type III).
As shown in Fig. 11, we manually model a spline joint to better
model the motion of the tibia with respect to the femur. (OpenSim
uses a similar technique called a “mobilizer” [Seth et al. 2010].) We
also use Hill-type muscles [Zajac 1989] to drive the knee and ankle
joints, as opposed to using mocap as in §4.5. We use the damped
equilibrium model with active force-length, active force-velocity,
passive force-length, and tendon force-length curves taken from
the biomechanics literature [Millard et al. 2013]. We manually set
the excitation levels of the gastrocnemius lateral/medial muscles
to a low level. We use a proportional controller based on the ankle
joint angle to set the excitation levels of the tibialis anterior and
the soleus muscles. Then we manually excite the rectus femoris
and semimembranosus muscles, which results in the extension and
�exion of the knee, as shown in Fig. 12.

4.7 Di�erentiable Reaching with Adjoint Method
For the �nal result, we use the adjoint method [McNamara et al.
2004; Geilinger et al. 2020; Xu et al. 2021] to compute the simulation
derivatives to optimize for a reaching task using an arm model
[Chadwick et al. 2014] with manually placed muscles, shown in
Fig. 1d. For the three heads of the deltoid muscle, we use sphere-
capped cylinders, and for the three heads of the triceps brachii
muscle, we use cylinders. The task objective is to move the hand to
the speci�ed target, and the task parameters are the constant torques
to be applied to the shoulder (3 DOF) and elbow (1 DOF) joints. We
use fminunc as the optimizer with our analytical derivatives. As a
comparison, when we run fminunc in gradient-free mode, it takes
an order-of-magnitude more time to optimize, requiring many more
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Fig. 12. For §4.6, we add a spline joint knee and Hill-type muscles to the model used in §4.5. We manually excite the rectus femoris and the semimembranosus
muscles. The excitation levels of the soleus and the tibialis anterior muscles are computed automatically with a proportional controller.

simulation runs. Our inertial muscles, however, work seamlessly
with the adjoint method. Furthermore, more objectives can be added,
such as having the hand come to a rest, or more generally, following
a preset trajectory.

5 CONCLUSION & FUTURE WORK
We presented an approach to account for the inertia of the muscles
in a musculoskeletal simulation.We are able to handle a wide variety
of musculotendon paths, including (I) straight, (II) polyline, and (III)
curved paths over wrapping surfaces. For Type II muscles, we use
the Eulerian-on-Lagrangian framework, and for Type III muscles,
we use neural networks. Our approach is compatible with existing
simulation techniques, such as inverse dynamics and di�erentiable
dynamics, and the motion can be driven by muscle activations or
joint torques. In the limit, as the mass of the muscles is transferred
to the bones, our simulation results gracefully degrade to results
obtained using traditional musculoskeletal simulators without in-
ertial muscles. Finally, it is possible to mix and match inertial and
non-inertial musculotendons, depending on the application.
We use the centerline to account for the muscle mass, which is

still an approximation, but this is a prudent choice, since using a
full, volumetric mesh is impractical for these experiments, at least
currently. For example, it would be a challenge to produce results
with FEM that can gracefully degrade to OpenSim results the way
our method can. It may be possible to tweak the FEM simulation
parameters to produce the desired output, but we believe that using
FEM for these target applications is extremely challenging if not
impossible, considering the high number of parameters and the
computational complexity required by the volume model. Future
workmay address these di�culties with volumetric FEM.We believe
that such work, along with ours, would pave the way toward a fully
comprehensive simulation framework.
Some models use path points that move based on the skeletal

DOFs (e.g., LBS waypoints [Ryu et al. 2021], moving muscle points
[Seth et al. 2018]). Although we have not implemented these, they
can be categorized as Type II path points with their corresponding
Jacobians between the skeletal DOFs and these points.

For muscles with long tendons, our approach still underestimates
the muscle inertia because we assume that the strain is equal along
the entire length of the musculotendon. For future work, we would
like to derive the kinematics of the muscle points while incorporat-
ing inextensible tendons to reduce this underestimation.
We plan to train on more wrapping surface types, including el-

lipsoid, torus, sphere, and double cylinder [Seth et al. 2018; Garner
and Pandy 2000]. In theory, our neural network approach can be

used for any path. However, some wrapping surfaces require many
parameters, which could make training more di�cult and slower.
For example, to train a double cylinder, it would require �ve more
parameters than a single cylinder. (The �rst cylinder can be de�ned
along the Z-axis. Assuming that the second cylinder is not orthog-
onal to the �rst, we need two parameters for a point and two for
the direction, plus the radius.) Similarly, using a network for an
arbitrary shape [Lloyd et al. 2020] could be a challenge, depending
on the number of parameters of the surface.
Network evaluation is a bottleneck in our current implementa-

tion, which is written in MATLAB. We expect that evaluating the
network on the GPU and batching the input as much as possible
would increase the performance signi�cantly. Furthermore, since
our framework allows mixing and matching of inertial and non-
inertial musculotendons (e.g., §4.5), it is possible to �nd a subset of
musculotendons to add inertia to, in order to �nd the sweet spot
in terms of e�ciency and e�cacy. Automatically determining the
set of musculotendons that a�ects the total inertia the most is an
interesting avenue of future research.
Finally, given that our approach is compatible with the adjoint

method, it would be interesting to optimize for tasks involving
ground contact [Geilinger et al. 2020; Xu et al. 2021]. In our cur-
rent implementation, as with most other musculoskeletal simulators
[Millard et al. 2013], musculoskeletal dynamics and muscle/tendon
dynamics are integrated separately, and so the adjoint method can-
not use muscle excitations as parameters. Going further, we could
add another layer on top of the adjoint method to compute for the
muscle excitations rather than joint torques.
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