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High-dimensional multimodal data arise in many scientific fields. The integration of multimodal data becomes
challenging when there is no known correspondence between the samples and the features of different
datasets. To tackle this challenge, we introduce AVIDA, a framework for simultaneously performing data
alignment and dimension reduction. In the numerical experiments, Gromov-Wasserstein optimal transport
and t-distributed stochastic neighbor embedding are used as the alignment and dimension reduction modules
respectively. We show that by alternating dimension reduction and alignment, AVIDA aligns the representations
of high-dimensional datasets without common features with four synthesized datasets and two real multimodal
single-cell datasets. Compared to several existing methods, we demonstrate that AVIDA better preserves
structures of individual datasets, especially distinct local structures in the joint low-dimensional representation,
while achieving comparable alignment performance. Such a property is important in multimodal single-cell
data analysis as some biological processes are uniquely captured by one of the datasets. In general applications,
other methods can be used for the alignment and dimension reduction modules.

1. Introduction

Databases are expanding not only in size but also with increasing
complexity. In many applications, multiple measurements of a sys-
tem are taken across different samples or in different feature spaces
which produce multimodal data such as texts attached to images [1].
Multimodality allows a more comprehensive investigation of a system.
Establishing connections among the modalities is the foundation of
coherent analysis. Recently, the emerging multimodal single-cell omics
has become a powerful tool to analyze different aspects of a biological
system at the same time [2]. Fusing multimodal single-cell data is
especially challenging when there is no direct correspondence between
the measurements and the samples.

Single-cell RNA sequencing (scRNA-seq) is a recent technology that
measures RNA abundance at transcriptomics level with single-cell res-
olution [3]. The maturation of the technology allows analysis with
scRNA-seq assays across many samples that, for example, represent
different ages or healthy and diseased individuals [4,5]. On the other
hand, the emerging single-cell assays provide a more comprehensive
examination of a system, such as single-cell ATAC-seq (scATAC-seq) [6]
that measures chromatin accessibility and single-cell Hi-C [7] that
explores chromosome architecture.

Integrating the various single-cell assays across different samples
provides a comprehensive characterization of a biological system. Many
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computational methods have been developed to integrate the same
single-cell assays of multiple samples [8-10] or different single-cell
assays [11,12]. In the integration of multiple single-cell omics assays,
most current methods rely on the known correspondence between
features, for example by mapping chromatin loci to genes and assum-
ing the similarity between the samples. The multi-omics integration
becomes a harder problem when no prior correspondence is assumed,
for example, a gene actually corresponds to multiple loci and acces-
sible loci do not directly indicate gene expression. This leads to a
general problem of integrating datasets without known correspondence
between features.

When no feature correspondence is given, the structures of the
individual datasets can be exploited and matched to integrate the
datasets. For example, canonical correlation analysis examines covari-
ances between the datasets but is limited to deriving linear corre-
spondence between the features. When the datasets are represented as
graphs with edges annotating pairs of similar data points within each
dataset, the integration problem can be addressed using various graph
alignment methods [13,14]. Among the graph alignment methods,
Gromov—Wasserstein optimal transport (GW-OT) can align graphs based
only on the graph structures [15]. It finds a coupling of the distributions
representing the graphs that best preserves the intra-dataset distances
between the nodes.
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Optimal transport (OT) compares and finds connections between
measures. It seeks the coupling between distributions with the min-
imum total coupling cost based on predefined costs between loca-
tions [16-18]. OT has been a versatile tool widely used in practi-
cal problems, such as generative deep learning models [19], domain
adaptation [20], and image sciences [21]. It has been used to find
correspondence between data points in single-cell gene expression data
with common features [22-24]. The aforementioned GW-OT has been
used in this field to exploit the structural information within individual
datasets. SpaOTsc [23] uses fused Wasserstein-Gromov-Wasserstein
optimal transport to improve the integration of spatial data and scRNA-
seq data with few shared genes by matching the spatial structure and
the structure in scRNA-seq data based on gene expression similar-
ity. SCOT [25] uses Gromov-Wasserstein optimal transport to align
scRNA-seq and scATAC-seq data by matching the structures repre-
sented by intra-dataset similarity among cells. Pamona [26] uses partial
Gromov-Wasserstein optimal transport to partially align scRNA-seq and
scATAC-seq data to address the partially overlapping cell populations
among different samples.

In addition to studying shared structures revealed by the overlap-
ping part of integrated data, it is equivalently important to examine the
structures of non-overlapping parts which may depict a biological pro-
cess uniquely captured by a certain assay [27]. Since most integration
methods depend on similarities between samples, the dissimilar parts
are often overlooked. Efforts have been made to keep the variation
among samples examined with the same single-cell assay [27].

In the analysis of high-dimensional multimodal datasets, another
crucial step is dimensionality reduction. Dimensionality reduction is the
process of taking high-dimensional data and finding a representation
in lower dimensions that is still meaningful. It has many important
applications because dimensionality reduction helps address the curse
of dimensionality and other challenges that come with working with
high-dimensional data [28]. Principal Component Analysis (PCA) [29]
is the most traditional linear technique used in dimensionality reduc-
tion but there are many popular non-linear techniques, such as Local
Linear Embedding [30], Isomap [31], UMAP [32], and t-SNE [33].

t-SNE is a popular dimensionality reduction and visualization tech-
nique that was introduced in 2008 by van der Matten and Hinton [33].
It has been applied to a variety of high dimensional data, including
deep learning [34], physics [35], and medicine [36]. Given a high
dimensional dataset, t-SNE outputs a low dimensional representation.
t-SNE works by making pairwise affinities between points in high
dimensions and pairwise affinities between points in low dimensions.
It then uses gradient descent to find the set of points (in low dimen-
sions) that minimize the KL divergence between the two sets of joint
probabilities.

In the analysis of multimodal single-cell data, the dimensionality
reduction and the integration steps are often performed separately
or sequentially, including the existing methods that integrate datasets
without known feature correspondences [25,26]. However, these two
steps are closely related in that they both preserve the structures
from high dimension to low dimension or from the original spaces
to the joint space. The benefit of combining these two steps has
been shown in many recent works. For example, MultiMAP performs
dimensionality reduction and integration utilizing both shared and
non-shared features between datasets [37]. As another example, j-SNE
learns a joint representation in low dimensions without shared features
across multiple data sets with one-to-one correspondences [38]. In this
work, we present a workflow called AVIDA (Alternating Method for
Visualizing and Integrating Data), that integrates 2D representations of
high dimensional data sets by alternating between dimension reduction
and alignment. AVIDA operates without knowledge or the necessity
of shared features or one-to-one correspondences across data sets. To
demonstrate this workflow, we use t-SNE for the dimension reduction
module and Gromov-Wasserstein optimal transport for the integration
module. Different choices for the dimension reduction module and

Journal of Computational Science 68 (2023) 101998

alignment module can be utilized in this framework, depending on the
application. We also include a small set of additional experiments in Ap-
pendix, which utilize UMAP in the dimension reduction step instead of
t-SNE to further demonstrate AVIDA’s flexibility as a framework. In four
synthetic datasets and two real biological datasets with ground truth,
we show that AVIDA better preserves the structures of the individual
datasets while achieving comparable integration quality compared to
other methods.

2. Results
2.1. Overview of AVIDA

The proposed method is called the alternating method for visualizing
and integrating data, or AVIDA. AVIDA alternates between improving
the low dimensional representation through a dimensionality reduction
technique and the alignment of data points in low dimensions across
different datasets. The purpose of alternating between dimensional-
ity reduction and alignment is to find a balance between a good
representation while still accurately aligning the datasets. We denote
AVIDA as a function, taking as input the datasets X, ..., X, and is
parameterized by choice of dimensionality reduction and alignment
techniques: AVIDA(X, X, ..., X;; DR, ALIGN). A simplified schematic
of the method is shown in Fig. 1. As shown in Fig. 1, AVIDA can take as
input two datasets and organizes the data as a pairwise distance matrix.
Next, dimensionality reduction using the given pairwise distance matrix
is performed on both datasets independently. An alignment method
is used to “align” the datasets in the lower dimensional space and
using the aligned data points, a new pairwise distance matrix is formed
for each dataset, and the process iterates. This framework is flexible
in its choice of dimensionality reduction technique (in fact, different
dimension reduction algorithms can be used on different datasets if one
so chooses) and alignment method.

Suppose one is given two datasets X! and X and the goal is to
create a joint representation of the datasets in a common lower dimen-
sional space. Using some technique DR for dimensionality reduction
(e.g., PCA, t-SNE, Random Forests, etc.) and GW-OT for alignment, we
can formulate the objective function for AVIDA as AVIDA(X|, X,; DR,
GW). The GW-OT objective is defined with respect to the low dimen-
sional representation of points:

GWY DY) = 3 LT, — e(H(T)), )

ijilj’

where H(T) = %, ;T;;log(T;;) is the Entropic regularization term
and L; ;= ||d(y§1),y5.”) — d(yf,z), yi_%))ll2 with a chosen distance metric
d(-,-). This objective is minimized by using the projected gradient de-
scent method with KL metric-based projections [39], T « Projg, , (T ©
¢ TUL®T+elogM)y where U(a,b) = {T € R} : T1=2a,TT1=b} and =
is the step size. The implementation in Python Optimal Transport [40]
package is used. The representation for Y will subsequently be
mapped to Y® using the mapping found by minimizing (1) with respect
to T, i.e., by setting Y() = TY®. Our combined loss function can be
represented as

AVIDA(X(D, x®: DR, GW)

= Y(r]r)liyn(z) DR(XD, YDy 4+ DR(X®, Y?P) + GW(r D, Y?P), (2)
where DR(X®,Y®) represents the objective loss associated with the
dimensionality reduction technique DR. For example, if t-SNE is used
for the DR step, the objective can be represented as the KL loss between
probability distributions on the points in high and low dimensions.
See 4 for more details.
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Fig. 1. A visual schematic of AVIDA.

Table 1

Metrics for AVIDA(X,, X,; TSNE,GW) (labeled as AVIDA above), Pamona and SCOT experiments.

Dataset Method FOSCTTM Integration Accuracy Alignment Representation loss
AVIDA 0.1202 1.0820 4.3863 0.5157 0.3275
Bifurcated tree Pamona 0.1108 0.2933 7.6098 0.9897 1.0969
SCOT 0.2103 1.0016 12.2095 0.75 2.1466
AVIDA 0.1187 0.9699 2.9377 0.4267 0.3955
Circular frustrum Pamona 0.0186 0.2532 1.2577 0.9363 0.8377
SCOT 0.0515 1.0032 4.3857 0.9727 1.7083
AVIDA 0.5228 0.5568 25.1281 0.6385 0.1220
Dumbbell Pamona 0.5055 0.3679 32.1714 0.7785 0.6176
SCOT 0.4754 2.565 11.2244 0.2070 3.6008
AVIDA 0.3138 0.6847 5.3429 0.639 0.1916
Distant rings Pamona 0.2580 1.2407 1.0 0.993 1.1784
SCOT 0.0056 0.0791 0.2759 0.9125 0.9261
AVIDA 0.2070 0.4700 2.4996 0.8994 0.4879
sc-GEM Pamona 0.2108 0.3567 10.894 0.7237 1.4298
SCOT 0.1818 2.3164 6.9267 0.5616 0.8790
AVIDA 0.2745 0.3631 4.5787 0.6619 1.0489
scNMT-seq Pamona 0.3889 0.2446 0.7032 0.9746 4.2435
SCOT 0.2675 2.4333 28.6287 0.7522 1.1979

2.2. AVIDA accurately reproduces the intra-dataset structures in integration
of synthetic data

We compared AVIDA(X, X,; TSNE, GW) to both Pamona and SCOT
across four simulated datasets and two real-world single-cell multi-
omics datasets. We chose Pamona and SCOT as a comparison because
they are both advanced integration methods that do not require com-
mon features or one-to-one correspondence across data sets. To have
a fair comparison with SCOT and Pamona, for these experiments we
had SCOT and Pamona perform their alignment and then used t-SNE
to visualize their low dimensional representations rather than UMAP
or PCA. This way we are not comparing different kinds of visualization
techniques to each other. To see how these methods would perform
using UMAP instead of t-SNE, see Appendix. Table 1 contains the
performance metrics for AVIDA(X, X,; TSNE, GW), SCOT and Pamona
on both the simulated and real-life datasets. We used five different
metrics to assess the performance of these methods: the fraction of
samples closer than the true match (FOSCTTM), alignment, integration,
accuracy, and representation loss. The accuracy metric is only included
on the datasets where the ground truth is known and an empty cell in
the table implies the dataset did not meet that requirement. Details on
the metrics are included in Section 4.2.

Our four simulated datasets include a bifurcated tree, a circular
frustum (from [41]), a dumbbell, and distant rings. The dumbbell and

distant rings datasets are introduced in order to highlight the difference
between AVIDA and SCOT and Pamona. The dumbbell dataset consists
of two rings that are connected by a line. We consider the following
split of the dumbbell data set: X, contains data points from the two
rings and a subset of the points along the line connecting the two rings.
Then dataset X, contains all the points along the line connecting the
two rings. Thus, the dumbbell dataset allows us to investigate the per-
formance of AVIDA when there is only a partial direct correspondence
between data sets.

We also introduce the distant rings dataset. The rings dataset con-
sists of two rings that are far apart from each other in high dimensions.
We set the sizes of their radii to be much smaller than the distance
between the centers of the rings. Then, the datasets X; and X, are
generated such that they both contain the entirety of the two rings
dataset, i.e. X, = X,. This is done so that there is a direct correspon-
dence between points in X, and X,. Thus, the rings dataset allows us
to investigate the performance of AVIDA when there is a full direct
correspondence between data sets. In addition, the difference in scale
of the distances in the rings dataset allows us to highlight the advantage
of using AVIDA rather than other forms of alignment.

The specific parameters used to generate these datasets are given in
Section 4. The evaluations of these methods on the various metrics are
given by Table 1.
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Fig. 2. (a) Pamona, AVIDA, SCOT, and t-SNE representation of the dumbbell dataset. (b) The H, persistence diagrams of Vietoris-Rips filtration with Euclidean distance of the
original data, and AVIDA and SCOT embeddings. The birth and death values are the scales at which topological features appear and disappear. A point farther away from the
diagonal (blue line) represents a significant 1-dimensional loop. “Domain 1” and “Domain 2” correspond to the points colored red and black respectively in (a).

Looking at Figs. 2 and 3, it is clear why we want to introduce these
datasets. In Fig. 2, AVIDA clearly preserved the local structure of both
datasets while Pamona and SCOT highlight the linear structure found in
both datasets. This is demonstrated by both visual inspection of the loop
structures preserved by AVIDA, as shown in Figs. 2(a) and 3(a) and the
persistence diagrams, as shown in Figs. 2(b) and 3(b). The persistence
diagram is the result of persistent homology [42,43] which grows a
simplicial complex on a point cloud and tracks the scale at which
the topological features appear (birth value) and disappear (death
value). A topological feature with large persistence value (difference
between birth and death values) is considered significant and we are
interested in the one dimensional H, features that correspond to circles
in data. Details of persistent homology are discussed in Section 4.2.2.
AVIDA is the only method that is able to successfully integrate the two
representations generated by t-SNE’s representation. Fig. 3 shows that
Pamona’s method collapses both rings to a single point, destroying the
local structure of the data. SCOT is able to integrate the datasets while
still preserving some linear structure but compared to t-SNE’s actual
2D representation, AVIDA produces a 2D representation with the most
accurate local structure. Since AVIDA allows t-SNE to construct the
local structure of the line before mapping, that structure is preserved
in the final representation.

However, if we were to look at the FOSCTTM and accuracy scores
in Table 1 for Figs. 2 and 3, Pamona scores best because all the
points are correctly mapped close together. The datasets illustrate our
need for a representation metric since the traditional metrics do not
penalize for poor representations in 2D. We use t-SNE’s loss function
as our representation loss since it is a popular dimensionality reduction
technique, however, it could easily be replaced by a loss function from
other methods (e.g. UMAP).

2.3. AVIDA achieves a balance between structure representation and mul-
timodal dataset alignment

We also compare the outputs from two real-world single-cell multi-
omics datasets. The first is sc-GEM, a dataset from [44] which contains
both gene expression and DNA methylation at multiple loci on human
somatic cell samples under coversion to induced pluripotent stem cells.
The second is scNMT-seq, a dataset of chromatin accessibility, DNA
methylation, and gene expression on mouse gastrulation samples col-
lected at four different time states from [45]. The evaluations of AVIDA,
SCOT, and Pamona on these datasets are also given in Table 1. In
Fig. 4, we can see the different 2D representations for sc-GEM. The left
column of the figure shows the integration between the two datasets
and the right column has the data points colored by cell. From these
representations, we can see that AVIDA is able to fully integrate the
two different datasets where there is some noticeable separation in
the SCOT representation. Since this dataset contains the conversion
from somatic cells to stem cells, we hope to see a gradient of colors
from one end of the representation to the other which all methods are
able to achieve. This is a good example of how AVIDA’s performance
on integration of real-life datasets is comparable to both SCOT and
Pamona.

We can also confirm this observation in Table 1. AVIDA is able to
achieve FOSCTTM and alignment scores that are comparable to SCOT
and Pamona while simultaneously having the best representation loss.
The same holds true for scNMT-seq as well. These examples illustrate
that AVIDA is comparable to both Pamona and SCOT on real-life
datasets while also performing well on the adversarial datasets: the
dumbbell and distant rings datasets.

While we did not plot every dataset’s low dimensional representa-
tion here, Fig. 5 compares the FOSCTTM and representation losses for
each 2D representation generated by SCOT, AVIDA, and Pamona. The
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3. Discussion

Motivated by the similar fundamental assumptions in dimension
reduction and data integration that they both try to preserve the struc-
tures of datasets, we developed an alternating method, AVIDA, which

'~ ~

-2852 -28.52

~

-93

Fig. 4. AVIDA, SCOT and Pamona representation of sc-GEM. The visualizations for
each of the methods were made by t-SNE.

shapes designate the dataset’s low dimensional representation and the
different colors represent the method that was used. We can see that
across the different datasets, all three methods have comparable FOS-
CTTM scores, indicating that the integration of the datasets are similar.
However, we can also see that AVIDA by far has the best representation
loss, indicating a more accurate low dimensional representation.

combines these two processes for joint 2D representation of datasets
without shared features. Comparing with the methods that perform
integration first and then dimension reduction, AVIDA better preserves
the detailed structures of the datasets being integrated especially the
structures present in only one of the datasets. This property allows the
identification of mechanisms that can only be revealed with one of the

technologies.

In this work, we demonstrate the method using t-SNE for dimension
reduction and Gromov-Wasserstein optimal transport for data integra-
tion. In general, other dimension reduction methods and integration
methods could be used. The representation loss used in the comparison
can also be used as a control metric about how well the structures
of individual datasets are preserved in the joint representation. This
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metric can be used to find a balance between integration and represen-
tation when other methods are used for the dimension reduction and
integration modules. The comparison indicates that a method could do
a perfect job in integration while missing structures presented in the
individual datasets. It is thus important to also evaluate the quality
of the structure representation of individual datasets when developing
joint dimension reduction methods for high-dimensional multimodal
datasets.

Despite the improvements on performing the two processes sepa-
rately, the quality of the joint 2D representation still heavily depends
on the performance of the specific dimension reduction method and
integration method. While the quality of dimension reduction can be
checked by comparing it to the structures present in the original high
dimensional datasets, it is hard to evaluate the integration quality
without ground truth. It is thus also important to further validate the
result with prior knowledge or assess the robustness of the integration
with, for example, subsampling.

Upon the joint representation of multimodal datasets, one ma-
jor downstream task is to find the correspondence between the non-
overlapping features across the datasets. A potential method for this
is to track the contributions of original features to the common low
dimensional representations and subsequently find the correspondence
between them.

4. Methods

AVIDA is a framework that takes input data sets {X W}i]i , where
the data sets X¥) € R"*% need not be in the same feature space. The
output of AVIDA is a low dimensional representation of all data sets
simultaneously in a single feature space. This is accomplished by alter-
nating between dimensionality reduction and alignment. The AVIDA
framework is presented in Algorithm 1. The choice of dimensionality
reduction technique and alignment method is up to the user and can
be chosen based on the use case. In Section 4.1, we present a detailed
implementation of AVIDA using t-SNE for dimensionality reduction and
GW-OT for alignment.

Algorithm 1 AVIDA

Input: N datasets X© = {x?m};’i , C R, target dimension
d, Dimensionality Reduction Method DR(-), Alignment Method
ALIGN(-).
Output: Low-dimensional representations Y*) = {yl(.f)};z , CRY
Initialize Yo(f) for # € [N] and set t = 0.
do
Dimensionality reduction step:
f’,(m = DR(X®), Yt(f)) for # € [N]. © Input dataset X*) and
initialization Y,”’
Alignment step:
vy V1= aLigNg D, 8.
Increment iteration count: t =t + 1.
while stopping criteria not satisfied
Return Y©) = Yt(f) for # € [N].

4.1. AVIDA with t-SNE and GW-OT

In this section, we present our implementation of the AVIDA frame-
work using t-SNE for dimensionality reduction and GW-OT for align-
ment, i.e., AVIDA(X, X,; TSNE, GW). For simplicity, we assume there
are two input data sets X1 = {x,(.l)}:;‘1 cR% and X® = {xl(.z)};zl c R%
and that the low dimensional output feature space has dimension d = 2,
ie, YW= (") cR?and Y@ = (47} c R
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In the dimensionality reduction step, t-SNE generates pairwise affin-
ity values { pﬁf)} for each of the dataset X, as given by

3 3 3
exp(=llx{” = x\7112/26{7)

i

= 3)
jli 7z ¢ Z
T Sexp(=lIx = X112 /26)
() ()]
0 = P TPy @
ij 27![0 ’
where the (r;f)’s satisfy
(GINNG)
p= 2~ Zj;é,‘ Pji lng(p”, )’ (5)

for a perplexity value p chosen by the user. To obtain yl@, t-SNE min-
imizes the Kullback-Leibler divergence between { pf.f) } ;2 and {qgjf) Yigi

using gradient descent. The target probabilities qff) are defined as:

¢ ¢ —
o A=y

« . (6)
ij 13 4 _
Z[’,/"(l + ”yf/ - yi/)”Z) 1

To obtain yf.f), t-SNE minimizes the Kullback-Leibler divergence be-

tween { pﬁf)} i and {q,(jf)} j» using gradient descent:
ng 2O
. ‘
KL(P11Q,) = Y, pi} log| =7 |. )
ij=1 ij

The t-SNE method utilizes a “early exaggeration” phase to artificially
highlights the attractions between points in similar neighborhoods,
promoting clusters. This period is a very important tool that allows
t-SNE to develop local structures in its representation. The early ex-
aggeration phase occurs in the first 200 iterations of gradient descent
in which pg) values are scaled by a factor of 4. It has been shown that
the early exaggeration phase in t-SNE promotes clustering of similar
points [46]. After the first 200 iterations, the pf.f) values are returned
to their original value and t-SNE continues to perform gradient descent.

In the alignment step of AVIDA, GW-OT is used to align data points
across data sets. Given the current low dimensional representations
outputs from t-SNE, Y() and Y®, the following optimization problem
is solved to compute the transport matrix T:

GW(IY D y®)

— i 1 (1) 2) (22
= min Z, IO, 57 = d G YVIPT, T, = eCH(T)), ®)

ij.i'j
where H(T) = }; ; Tijlog(T;;) is an Entropic regularization term and
d(-,-) is a chosen distance metric. The representation for Y1) is mapped
to Y® using the mapping found by minimizing (8), or by computing
YD = 7Y®, AVIDA(XD, X®; TSNE,GW) continues alternating be-
tween minimizing the KL loss in t-SNE and using optimal transport
to align points until a stopping criteria is reached. In this imple-
mentation, we choose to limit the number of iterations to 1000 and
perform alignment every 100 iterations after the early exaggeration
phase (i.e., after the first 200 iterations) of t-SNE. The pseudo-code for
AVIDA(X (D, X®); TSNE, GW) is provided in Algorithm 2.

4.2. Metrics, parameters, hardware

The metrics used in Section 2 are described in detail in this section.
For reproducibility, we also include the hardware settings under which
these experiments were run and the user-selected parameters employed
to obtain our numerical results.

4.2.1. Metrics

To compare AVIDA(X,, X,; TSNE, GW), Pamona, and SCOT five dif-
ferent metrics are employed: fraction of samples closer than the true
match (FOSCTTM), alignment, integration, accuracy, and represen-
tation loss. The FOSCTTM and alignment are metrics proposed in
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Algorithm 2 AVIDA(X,, X,; TSNE, GW)

Input: datasets X1 = {x(ll), ,xf,ll)}, X® = {x(|2>, ,xf,zz)}, perplexity
p, and regularization parameter ¢
Output: low-dimensional representations: Yo(l) = { y(l),

Y = (0. )
Compute pairwise affinities pf.j'.), pl(.jz.) with perplexity p (using Egs. (3)
and (4))

Initialize solutions YOU) s Y(;z) with points drawn i.i.d. from .#'(0,10741)
while ¢ < 1000 do

if mod (z, 100) # 0 then
for 7 =1,2 do
Compute pairwise affinities quf) (using Eq. (6))

5 TSNE(X,Y”)) (using

@)
o,

1
,yf”)},

Compute gradients Aﬁm =

Eq. (7))
Set v, =y + 4"
end for
else
Compute the GW-OT mapping, T, between Yt(]) and Y,(2) (using
Eq. (1))
Set Y(ﬁ?]) =T Yt(f)
end if
t—t+1
end while

previous works. FOSCTTM was originally proposed by Liu et al. [41]
and was used to validate the performance of SCOT. The alignment
score was used in [26] to compare Pamona and SCOT. In addition to
the metrics used in previous works, we also introduce a few others
to capture various aspects of the output representation. The additional
metrics we measure are integration, accuracy, and representation loss.
In this section, we define each and the conditions under which these
metrics are meaningful. For notational simplicity, D € R"1>*"2 such that
D;; = d(ygl), yﬁz)) denote the pairwise distance matrix between points in
YD and points in Y@,

The FOSCTTM captures roughly the accuracy of the representation.
FOSCTTM operates under the assumption that every point has a “true
match” and that the “true matches” should be close together in the
lower dimensional representation. This is formalized as follows. As-
sume, for simplicity, and n; = n, = n and without loss of generality that
the true match of x[(.l) is xﬁz) for all i € [n]. The FOSCTTM is defined as:

o [{J @ D;j < Dy}l o i Dy < Dy}l
FOSCTTM = )" nf_l +) nf_l A 9

i=1 Jj=1

In other words, for each point Y, determine the fraction of the points
y’(_z) that are closer to yﬁl) than yf.z). Then, repeat the process for points
in Y®, Smaller values of FOSCTTM indicate better performance.

Under these same assumptions (that every point has a true match),
we can also define an accuracy score. The idea is that points that are
true matches should appear close together in the lower dimensional
representation. This is measured by taking a simple trace of the matrix
D:

n
Accuracy = z D;; =tr(D)
i=1
The Alignment score used in this work was also used in [26]. The
alignment score measures how well aligned the two datasets being inte-
grated are in low dimensions. For the alignment score, we assume that
each data set has class labels and that those class labels can be shared
across data sets. The points in each data set are split into “shared" and
“dataset specific”. “Shared” data points have representation in both
Y® and Y® whereas “dataset specific” data points only appear in
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one of the datasets. The alignment score is computed as follows. Let
SOy PO =yD and S® U VP = Y? where sets S denote the set
of all points corresponding to “shared” data points and V) denote the
set indices of all dataset specific points in Y*). The alignment score is
defined as:
|%, = k/(€+ D)

k—k/(£+1) "~
where %, is the average number of nearest neighbors that are shared
points from the same dataset.

The aforementioned metrics have been utilized in previous works.
We also propose to use the following for evaluating the representation
of the low dimensional data. First, we employ a symmetrized Kullback-
Leibler loss with a student t-distribution kernel to evaluate how well the
output represents the high dimensional data in an integrated fashion.
We refer to this as the Representation Loss:

Alignment = 1 —

Representation Loss = = (KL(XV[lY®) + KLy V|| x ™))

1
2
+ % (KL(X@||Y@) + KLY @[ X)) .

The choice of this representation loss as a way to measure the quality
of the representation in 2D is based on the fact that popular data
dimensionality reduction techniques such as UMAP and t-SNE, both
use a version of the KL loss. We recognize that there are other dimen-
sionality reduction techniques, such as PCA or Laplacian Eigenmaps.
However such techniques are spectral methods whose loss functions are
evaluated by manifold-based metrics similar to FOSCTTM (9) and Inte-
gration (10). This representation loss is a way to measure the quality
of the representation in cases of structures that are not best described
by the alignment of nearest neighbors, such as clusters or rings. Since
t-SNE and UMAP are most adept at preserving these structures in low
dimensions, it seems natural to modify their loss function as a way to
measure the quality of the 2D representations.

Lastly, we want to evaluate how well integrated the two data sets
are in low dimensions. We say that integration is the average, minimum
distance between a data point in Y; and any data point in Y,. The
integration is defined as:

ny ny
Integration = L Z min D;; + L Z min D;;. (10)
i mia!

4.2.2. Persistent homology

Persistent homology [42,43] is used to evaluate the conservation of
local geometries of the synthetic datasets. On a point cloud, a filtration
of a simplicial complex K such that § = K c K' ¢ - c K" = K is
constructed based on certain rules such as the Vietoris-Rips filtration,
which we employ here. For each simplicial complex K’, the rank of the
kth homology group H,(K') represents the kth Betti number of K. For
the examples here, we focus on the 1st homology group which repre-
sents the 1-dimensional holes in the data such as loops and rings. Along
the filtration, the appearance and disappearance of these homology
groups are tracked by computing the p-persistent kth homology group
of K/, H](K') which records the homology classes of K’ that persist
at least until K**?, Each homology class is then represented by a pair
of filtration values at which the class appears and disappears, usually
called the birth and death values. These outputs of persistent homology
can be visualized as persistence diagrams by taking the birth and death
values as 2D coordinates. A more persistent homology class (with a
large difference between death and birth values or equivalently farther
away from the diagonal in the persistence diagram plots) is considered
a significant feature. For the examples here, we are interested in the
significant 1-dimensional loops which are captured as significant off-
diagonal points in the H, persistence diagram. We refer interested
readers to [47] for complete details of persistent homology. Here, the
package Dionysus 2 [48] was used for persistent homology computation
with Vietoris-Rips filtration on Euclidean distance.
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Fig. A.6. AVIDA, SCOT, and Pamona representation of the scGEM dataset. In this experiment, UMAP was applied to SCOT and Pamona’s output and UMAP’s gradient was

incorporated into AVIDA for the dimension reduction module.

Table 2
Perplexity choices for each dataset.
Dataset Bifurcated tree Circular frustrum Dumbbell Distant rings sc-GEM sctNMT-seq
Perplexity value 30 60 30 30 50 100
4.2.3. Parameters 4.3. Datasets

The default perplexity value in most standard implementations of
t-SNE is 30. However, depending on the dataset, the perplexity value
may need to be adjusted. Table 2 shows the perplexity value choices
for each experiment presented in Section 2. In addition to perplexity,
another important parameter is € in Eq. (1). For all of our experiments,
€ was set to be 5x 1073 but depending on the dataset could be adjusted.

4.2.4. Hardware
We ran the experiments on an Intel i7-10750H CPU (base frequency
2.60 GHz) with 8 GB memory.

For our analysis, we introduced two synthetic datasets: the dumb-
bell dataset and distant rings dataset. The dumbbell dataset consists of
two sub-datasets, X@D, X2 < R? with 200 datapoints each. For all
0 <i <200,

XD~ 500(0,1)

X4V ~ N, 1)

where U(0,1) is the uniform distribution and N(0, 1) is the normal
distribution. This essentially constructs XD as a line in 2D with a
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Fig. A.7. UMAP, AVIDA, SCOT and Pamona representation of the distant rings dataset. In this experiment, UMAP was applied to SCOT and Pamona’s output and UMAP’s gradient

was incorporated into AVIDA for the dimension reduction module.

little bit of noise. To construct the two rings in X@?, we consider
6 ~ U(0,2r) and r ~ N(3,0.5), then use it in our construction.

ij’” ~rcos(@), 1<i<50

X4 ~rsin(0),  1<i<50

X ~reos(@) + 14, 50<i <100
X4 ~rsin(@), 50 <i<100

The first 50 points in X are a slightly noisy circle centered at 0,
where the next 50 points in the dataset are the same slightly noisy circle

centered instead at 14. These two rings are then connected by a line.
X9?P ~U(3,10), 100 <i <200
X4~ N(0,02), 100 <i <200

This line is the last 100 points and also has small noise across one
dimension.

The distant rings dataset also contains two subdatasets, XD, x(2
C R. Again, we let § ~ U(0,2x) and now we define r; ~ N(5,1) and
ry ~ N(5,0.1) and define two different rings.

Xfcil) ~ ry cos(9)
XD ~rysin(0)
XP ~ 1, cos(9) + 100
X7 ~ ry sin(0) + 100

Essentially for each dataset, we construct two rings where the distance
between them dwarfs the radius of each ring. To make these two rings
distinct, we constructed one ring to have much less noise than the other.

Code availability

The AVIDA implementation with t-SNE as the dimension reduction
module and Gromov-Wasserstein optimal transport as the alignment
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module is available at https://github.com/kat-dover/AVIDA which will
be made publicly available on Github upon publication.
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Appendix. Using alternate dimensionality reduction techniques

We introduce AVIDA as a framework that allows for different meth-
ods for dimension reduction (or visualization) and alignment can be
used depending on the dataset and applications. UMAP is another
common dimensionality reduction technique utilized in computational
biology. Here, we demonstrate AVIDA using UMAP for the dimension
reduction module and GW-OT for the alignment module. The purpose
of these brief experiments is to demonstrate AVIDA’s viability as a
framework. The experiments here essentially replicate a small subset
of the experiments presented in the main section of our paper with the
main difference being the utilization of UMAP for dimension reduction
instead of t-SNE. To create 2D representations for SCOT and Pamona,
we also used UMAP.

In Fig. A.6, we apply AVIDA(X,, X,;UMAP,GW) to the sc-GEM
dataset, a dataset from [44] which contains both gene expression and
DNA methylation at multiple loci on human somatic cell samples under
coversion to induced pluripotent stem cells. We can see comparing
Fig. A.6 (which uses UMAP for dimension reduction) with Fig. 4 (which
uses t-SNE for dimension reduction), using UMAP produces nearly the
same clusters, but here we see a more distinct separation between
the two point clouds, both for AVIDA and for Pamona. This shows
that there may be datasets where another dimensionality reduction
technique might be superior over other choices. However, the reverse
can also be true.

In Fig. A.7 we apply AVIDA(X, X,; UMAP, GW) to the rings data set
described in Section 4.3 and see that using UMAP does not preserve
the local structure as well as using t-SNE, as shown in Fig. 3, for all
three of the data integration methods. It is not surprising different
dimensionality reduction techniques for the same datasets will produce
different representations and we encourage any users of AVIDA to
incorporate the dimensionality reduction technique that works best on
the dataset they are working with.
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