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Hill-type muscle models are highly preferred as phenomenological models
for musculoskeletal simulation studies despite their introduction almost a
century ago. The use of simple Hill-type models in simulations, instead of
more recent cross-bridge models, is well justified since computationally
‘light-weight'—although less accurate—Hill-type models have great value
for large-scale simulations. However, this article aims to invite discussion
on numerical instability issues of Hill-type muscle models in simulation
studies, which can lead to computational failures and, therefore, cannot
be simply dismissed as an inevitable but acceptable consequence of
simplification. We will first revisit the basic premises and assumptions on
the force-length and force—velocity relationships that Hill-type models are
based upon, and their often overlooked but major theoretical limitations.
We will then use several simple conceptual simulation studies to discuss
how these numerical instability issues can manifest as practical compu-
tational problems. Lastly, we will review how such numerical instability
issues are dealt with, mostly in an ad hoc fashion, in two main areas of
application: musculoskeletal biomechanics and computer animation.

1. Introduction

Simulating body movement using muscle contractions is a critical step towards
understanding human movement. In recent decades, simulation techniques for
musculoskeletal systems have made remarkable progress, and have been suc-
cessfully used in many areas of application including sport and exercise
sciences, ergonomics, musculoskeletal rehabilitation engineering, and computer
animation. However, although there have been extensive studies and improve-
ments in the geometrical representation of the musculoskeletal systems and
their efficient numerical simulation, the actual model of the individual
muscle mechanics has been used without seriously questioning its veracity
and appropriateness. The purpose of this article is to revisit the fundamental
issues related to the numerical instability of the predominant phenomenological
model used in musculoskeletal simulation, the Hill-type muscle model (HMM).

Like all living organs, skeletal muscle is itself a biological system of immense
complexity. As can be seen from existing cross-bridge models of muscle force
generation [1], building a realistic molecular-level model of muscle force
generation mechanism often accompanies a large number of model parameters
and equations. However, those who build musculoskeletal simulation models
face a dilemma that, although they want an accurate muscle mechanics model,
they often have to put unnecessarily stringent limitations on the complexity of
the individual muscle model for the sake of preventing their simulation from
being computationally intractable or being severely overfitted. At the same
time, it would not be desirable to build purely data-driven models based only
on statistical curve-fitting without any supporting foundational theory of
muscle contraction, which significantly limits the scope of application of the

© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.


http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2022.0430&domain=pdf&date_stamp=2023-02-01
mailto:s.yeo@bham.ac.uk
http://orcid.org/
http://orcid.org/0000-0002-7140-7954
http://orcid.org/0000-0002-2939-8046
http://creativecommons.org/licenses/by/4.0/

Downloaded from https://royalsocietypublishing.org/ on 05 June 2023

model to the one defined by the data used for fitting. This is
where phenomenological models such as the HMM come
into play; rather than focusing on describing the detailed
molecular-level mechanism, phenomenological modelling
prioritizes building a succinct model that can sufficiently
explain the observed phenomena, ie. a muscle’s gross
mechanical behaviour. However, unlike data-driven models,
phenomenological modelling also emphasizes the connection
to grounding theories and aims to build empirically valid
and theoretically acceptable models, which therefore provides
a better justification for extrapolating the model and a wider
range of scenarios.

Due to the pragmatic view of phenomenological model-
ling described above, building a simple model comes at a
price of lower accuracy and limited scope of empirical expla-
nation. Therefore, users of phenomenological models have to
accept the fact that such simple models can only provide
overall predictions of the most typical behaviours of the
system. For the same reason, it would be rather unreasonable
to try to depreciate HMMs by simply pointing out their pre-
diction errors in various mechanical scenarios since such
complete predictive power can only be achieved by giving
up computational efficiency. However, despite the general
awareness of these limitations, this article attempts to draw
attention to some issues of HMMs that are not just the inevi-
table cost of model simplification but are originating from a
major theoretical contradiction of our current understanding
of skeletal muscle contraction. More importantly, it will be
highlighted that these issues lead to critical computational
flaws in musculoskeletal simulation, which can seriously
affect the stability and tractability—not to mention the
accuracy—of the simulation.

In the following sections, we will first briefly revisit the his-
tory of the HMM and its major assumptions (§2). Then, we will
question the feasibility of the HMM as a standard phenomen-
ological model for muscle mechanics by revisiting the major
theoretical loopholes of the model on its numerical stability,
and related mechanical behaviours including eccentric contrac-
tion and history dependency (§3). In particular, we will provide
simple and intuitive simulation case studies demonstrating
what real problems and failures of simulation can be caused
by the inherent numerical instability of the HMM. After that,
we will discuss how these issues are currently addressed by
ad hoc assumptions or adjustments in musculoskeletal biome-
chanics (§4) and computer animation (§5), where HMMs are
widely used for simulations.

This article is primarily, but not exclusively, targeted at
researchers in the musculoskeletal simulation community
who are using HMM-based musculoskeletal simulators,
either due to simplicity and convenience, or for the safety
of using the so-called ‘textbook model’, but may not be
very familiar with these fundamental issues. We also hope
that researchers in muscle mechanics who have expert knowl-
edge will find this article informative in understanding how
these issues are recognized and dealt with at higher layers
of research. To this end, this article, especially the earlier sec-
tions (§§2 and 3), is intended to provide a narrative review
providing essential background and intuitive examples
demonstrating the issues, rather than focusing on an exhaus-
tive review covering all findings and models in muscle
mechanics modelling. For more exhaustive reviews, we
direct readers to excellent books [2-6] and reviews [7-9]
published on this topic.

2. Foundations of Hill-type muscle model

Here we will first provide a short overview of some founda-
tional assumptions and basic components of the HMM. Due
to the nature of this paper, the scope of this article will not go
any further than required for users of musculoskeletal simu-
lation to understand the issues of the HMM. Note that the
version of HMM focused on in this article is the one that
is most widely used as it is implemented in predominant
open-source or commercial musculoskeletal simulators (e.g.
OpenSim, Anybody or MuJoCo), while there are other—
normally much more sophisticated—versions of the HMM
such as Virtual Muscle [10-12] or other variations that aimed
to include more detailed contractile mechanisms [12-16].
Also, it is worthwhile to point out more recent efforts made
toward muscle simulation models that are not purely phenom-
enological, by integrating detailed models of cross-bridge
mechanics or motor unit recruitment, such as population-
based models [12,17-19] or implementation of phosphate
kinetics [15]. An overview can be found in reviews [7-9].

2.1. The main assumptions: state space of muscle
mechanics

Like any other system dynamics, a prerequisite for building a
model of muscle mechanics is to define the state space, in
which a point is mapped to a certain configuration (i.e. state)
of the system. For a fully activated muscle, one main assump-
tion of HMMs is that length and velocity, i.e. the rate of
length change, define the state space of a muscle. In other
words, the premise is that, for a fully activated muscle, know-
ing the current length and velocity is sufficient to determine the
contractile force a fully activated muscle is generating. Based
on this, the mechanics of a muscle can be visualized as a surface
in the force-length—velocity space (figure 1), to which the
dynamics of the muscle are constrained. If such a surface
does exist, building a model of muscle mechanics would
simply be the work of identifying that surface. The muscle con-
tractile dynamics, i.e. how the length, velocity and force of
muscle evolve over time, can be depicted as the trajectory of
a point sliding on the surface.

Classic works of muscle mechanics have mainly focused on
identifying two cardinal cross-section curves on this surface:
force-length and force-velocity curves (red and green curves
in figure 1; will be abbreviated to FL and FV hereafter). These
curves dissect the surface along a fixed-length plane and the
zero-velocity plane respectively. Identifying those two curves
is an essential step towards understanding the shape of the
entire surface, and most of the muscle parameters used for
musculoskeletal simulation models are based on these two
relationships. However, there are some important but often
neglected caveats. First, these curves are assumed to be ‘non-
dynamic’. In other words, it is not possible for a muscle’s state
to change along these curves, simply because the length
cannot be changed while velocity is kept zero, and the length
cannot stay constant when the velocity is nonzero. Second,
even if the two major cross-sections of the surface are identified,
how the surface is constructed from these two curves remains
undetermined. Lastly but most importantly, it is not clear
whether such a surface really exists. In fact, we do not yet have
any valid answers to the question of whether this is the proper
choice of state space (see §3.2 for further discussion). Keeping
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Figure 1. Force—length—velocity relationship assumed in HMMs and corresponding FL (red) and FV (green) curves. Given the length and velocity of a fully activated
muscle, the surface predicts how much force it can produce. Based on FL and FV, four different contractile scenarios can be defined. The grey-shaded area is the only

area on the surface predicted by Hill's equation.
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Figure 2. A typical FV and FL curve of HMMs, based on Millard et al. [21]. (a) FV combines concentric (negative velocity) and eccentric (positive velocity) regions,
where the concentric part is based on Hill's equation. (b) Total FL (red) is a combination of active (orange) and passive (blue) FL curves. Names of different regions
of the curve are based on the shape: ascending (with shoulder) and descending limbs are divided by the plateau formed around L°, the optimal length. The passive
force that begins to develop after L° cancels out the negative slope of the active FL, but often leaves a dip region where the negative slope still persists.

these precautions in mind, the sections below will be focused on
the definitions and related issues of the FL and FV curves.

2.2. Hill's equation: the force—velocity curve

Modern models of muscle mechanics are grounded upon
Hill’s celebrated equation [20]. This equation suggests that
the relationship between the contractile force of a muscle
and its shortening velocity can be well modelled with the
following hyperbolic equation:

F+a)=V+b) = ¢ (2.1)

where F is contractile force, V is the velocity (i.e. the rate of
length change; note that, by this definition, we consider

concentric velocity to be negative, whereas many textbooks
define concentric velocity as positive), and 4, b and c are con-
stants. This corresponds to the concentric region of the FV
curve shown in figure 24. An intuitive interpretation of this
relationship is that the force produced by a muscle and its
shortening velocity (—V') has a reciprocal relationship. That
is, a muscle can operate either in high-force-low-velocity
mode or in low-force-high-velocity mode, just like gears in a
vehicle. The intercepts of this hyperbola with the force and
the velocity axes determine the maximum isometric contractile
force FY_ , the force produced by muscle in an isometric setup
(i.e. V=0), and the maximum shortening velocity —V .y, the
highest shortening velocity that muscle can achieve when F =
0. (For this reason, it is also called unloaded shortening
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velocity.) By replacing ¢ with F)__or V.., the equation can be
rewritten as

(F+a) =V +b) = (F_ +a)b=a(—Vmax + D). (2.2)

If the force and the velocity are normalized with respect
to FY

max

k= alF

and V. then by introducing a new constant
= b/Vmax, the equation becomes

(F+ B0+ = k(-1 +k), (2.3)

ax

and this leads to the normalized FV relationship shown in
figure 2a:

Ckw-1)
) = — (2.4)

Hill’s equation accurately describes the FV relationship of
the muscle, including skeletal [20], cardiac [22] and smooth
[23] muscles. Notwithstanding its huge success, Hill's equation
has important limitations that are well known, but are not ade-
quately considered in the generalization of its use—the
equation only describes the concentric (ie. shortening)
dynamics of the muscle at its optimal length (also interchange-
ably called the plateau length or rest length), the length at
which the muscle’s active isometric force is maximized. In
Hill’s original experiment, this relationship was obtained by
first activating muscle isometrically (i.e. at a fixed length),
releasing it while providing resistance through varying exter-
nal loads, and measuring the initial shortening velocities [20].
For these experimental conditions, F?nax will be obtained
when the external load is just equal to the muscle contractile
force. When an external load F is between zero and F?nax, the
muscle will undergo concentric shortening, of which the initial
velocity is predicted by Hill’s equation. In addition, due to this
specific experimental design, the captured dynamics are lim-
ited to the exact length where the muscle is initially activated,
and that length is normally chosen to be the optimal length
of the muscle, denoted as L°. Note that the ‘0’ in F2,_ stands
for the force obtained at L°.

Looking again at the length—velocity—force surface shown
in figure 1, the region of the contractile dynamics explained
by Hill’s equation is limited to the vicinity of the shortening
part of the FV curve (grey shaded area in figure 1). Other
regions on the surface, such as the lengthening, ie. the
eccentric dynamics or dynamics at lengths different from L°
are not the regions that Hill’s equation is focused on. Despite
the long history of the FV relationship, the question of
whether and how Hill's equation can be generalized to
other areas of contraction dynamics is still an open question.
For instance, as will be discussed in the later sections, the
eccentric dynamics of the muscle are known to be vastly
different from what is predicted by Hill’s equation, and the
muscle force at lengths beyond L° cannot be represented as
a single surface in the length—-velocity space.

2.3. Sliding filament models: the force—length curve

In modern muscle physiology, the sliding filament model
(or more specifically the cross-bridge model) is considered to be
the standard model of muscle mechanics. The sliding filament
model proposes that the muscle force originates from a group of
cross-bridges formed in the region where two myofilaments,
actin (thin) and myosin (thick), overlap in the sarcomere. In
their seminal paper, Gordon et al. [24] explain elegantly how the

length-dependency of the contractile force, represented by
ascending, plateau, and descending limb (orange curve in
figure 2b), can be explained by a geometric relationship between
two sliding filaments based on the assumption that the muscle’s
contractile force is proportional to the number of cross-bridges
that can be formed between the actin and myosin filaments.
Especially on the descending limb, the overlap between actin
and myosin becomes smaller as muscle length increases, and
muscle force decreases linearly with the length, resulting in the
negative slope in the FL relationship. This active force is combined
with passive muscle force, which typically develops at lengths
beyond L° (but with exceptions, e.g. cardiac muscles) and mono-
tonically increases (blue curve in figure 2b). If passive and active
forces are combined, the total FL relationship is obtained (red
curve in figure 2b). Due to the negative slope of the descending
limb of the active FL curve and the positive slope of the passive
FL curve, the total FL curve often has a ‘dip’ region after the
plateau where its slope becomes negative (figure 2b).

Due to its name, it would be tempting to assume that
muscle elasticity—more precisely the Cauchy elasticity—is
represented by the FL relationship. This means that, when a
fully activated muscle changes its length, the force stays on
the FL curve and the stiffness is defined by the first derivative
of this curve. Indeed, this is how elasticity is defined in
HMMs. However, an important issue here is that the exper-
imental method used to obtain the FL relationship does not
guarantee this assumption. When the elasticity of a string-
like object—say a rubber band—is measured, the simplest
way would be to change its length and see how the force
changes accordingly. If the length changes quasi-statically
(i.e. at a speed low enough not to generate any viscous or
inertial force) the FL curve can be directly obtained. However,
such methods are not feasible for active muscles since a
muscle cannot remain fully activated while its length is
slowly changing; long-lasting tetanic contractions induce fati-
gue and damage to the muscle. Instead, the FL relationship is
obtained by interpolating a series of isometric forces obtained
from individual muscle contractions. That is, (1) one activates
a muscle at a fixed length, (2) measures how much force is
produced, (3) deactivates and passively moves on to the
next length and (4) repeats the same procedure. Although
there are good reasons to do so, these interpolation-based
methods do not guarantee that the interpolated curve rep-
resents the length-dependent dynamics of the muscle [2]. In
fact, it will be discussed later that the length-dependent
dynamics of an activated muscle are very different from the
FL relationship (see §§3.2 and 3.3).

2.4. Hill-type muscle model (also known as Hill-Zajac
model)

In muscle mechanics, Hill's muscle model was superseded
by the cross-bridge model. However, as discussed earlier, sim-
pler phenomenological models that capture the mechanical
behaviour of the muscle with relatively few parameters are
still preferred in large-scale musculoskeletal simulations, for
reasons of computational efficiency and tractability. By com-
bining Hill's equation of the velocity-dependency, and
Huxley’s model of the length-dependency, and adding passive
elasticities and other architectural parameters (e.g. pennation
angle), Zajac [25] proposed a full constitutive model of
muscle mechanics, commonly referred to as the HMM. In
this model, muscle is modelled as a system combining
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activation (o), maximum isometric force (FO . ), normalized

active FL ("), FV (f°) and passive FL (f”) relationships:

Flalo) = a F_{f,0) + fPF(D)

=a P

max LD f@) + PO, (2.5)

where [ and v are normalized length and velocity with respect
to Lo and Vyay, respectively. Activation level o is defined as a
normalized property, i.e. o =1 when fully activated. The multi-
plicative combination of f; and f, models the muscle’s force-
length-velocity dynamics, i.e. f " =ff °, which represents the
surface plotted in figure 1. By taking this form, the HMM
assumes that the velocity-dependency works as a dimension-
less ‘gain’ of the length-dependent force, which means that
the isometric muscle force is determined by the current
length; i.e. fl(l) is either attenuated by shortening or amplified
by lengthening. Among many possible ways to combine the FL
and the FV relationships, this specific multiplicative form is
supported by the important prediction of the cross-bridge
model that the unloaded shortening velocity (—Vmay) is inde-
pendent of muscle length, demonstrated experimentally by a
classic study by Edman [26]. However, the actual experimental
validation of whether the dynamic muscle force can really be
predicted by this model when the length and the velocity
change together is still lacking. Further discussions on the val-
idity of this assumption and a comparison of other possible
forms can be found in Yeo et al. [27].

Additionally, it is worth discussing another main assump-
tion of the HMM related to the activation level . By modelling
o as a normalized gain, as shown in equation (2.5), that linearly
scales the force of a fully activated muscle at the same length
and velocity, HMM assumes that the possible interaction
between the activation level and the force-length—velocity
dynamics is minimal. However, studies on validating HMM
in physiologically relevant ranges of muscle activation levels,
which are normally much lower than full activation, consist-
ently reported substantial force prediction errors of HMM
either in FL [28-30], FV [31] or force-length-velocity [32-35]
conditions. This suggests that a muscle’s force-length—velocity
dynamics could be highly variable depending on activation
level, and so cannot be linearly scaled. Notwithstanding clear
experimental evidence, linear scaling is typically used as the
standard formulation of HMMs.

Lastly, it is important to point out that another oversimpli-
fication of HMM-based muscle simulations is that they treat
muscles as pure force generators that run in an ‘open-loop’
mode, while real muscles work in a ‘closed-loop” environment,
coupled with afferent regulatory neural mechanisms involving
muscle spindles and Golgi tendon organs. These neural regu-
lations allow muscles to run in versatile modes, such as
impedance regulator, energy absorber, or instant stabilizer—
see Nishikawa et al. [36] for a review. In order to simulate
these higher-level control behaviours, recent computational
models that implemented physiologically realistic closed-
loop models of neuro-muscular mechanics can be considered
[18,19,37-40].

3. Computational issues of Hill-type muscle
model

As will be discussed in the later sections, HMMs have been
widely used in simulation studies in biomechanics (see §4)

and computer animation (§5) as a dominant phenomenologi- [ 5 |

cal model of muscle mechanics. However, HMMs inherit the
major assumptions of FV and FL relationships discussed
above, and this causes some fundamental computational
issues in simulations, which either can seriously undermine
the reliability of the simulation results, or can even cause
the numerical simulations to diverge.

3.1. Instability

Simulations based on HMMs can cause muscles to become
uncontrollable in some scenarios due to their numerical
instability. (Note that by calling it ‘numerical instability’, we
are using a control-theoretical definition of system stability,
which is clearly different from a descriptive term ‘stability’
that is often used in studies in biomechanics to describe
smoother or more physiologically relevant model responses.
Our definition of numerical stability is rather a dichotomous
concept, and therefore there can be no ‘more stable’ or ‘less
stable’ model.) This issue of instability is not limited to
HMMs but is a major theoretical contradiction of the cross-
bridge paradigm, and there have been long-lasting debates in
muscle mechanics research [8,41]. Rather than reiterating
those arguments, this paper will focus on how the numerical
instability will affect actual computational simulations in prac-
tice. As already discussed in §2.3, if a muscle’s contractile force
at a certain length (with zero or negligible viscous force) is
assumed to be governed by the FL relationship, this predicts
that the muscle exhibits negative stiffness when the muscle
length is on the ‘dip’ region on its descending limb
(figure 2b). In other words, the active muscle force decreases
as the muscle is lengthening. Note that some muscles, e.g. gas-
trocnemius, do not have dip regions in their FL curves since
their passive forces develop more stiffly from shorter lengths
[2,5], but our simulation studies will focus exclusively on
muscles that have dip regions.

How does this negative stiffness affect the numerical stab-
ility of muscle? Let us assume that a muscle is modelled as a
serial chain of force-generating elements (sarcomeres or any
basis elements depending on the scope of modelling) where
the mechanics of each individual element is modelled as an
HMM. If all elements constituting a serial chain have the
same length, the forces generated by them will be all equal
and therefore the chain will be in its static equilibrium.
However, if the length of one element in the chain becomes
slightly different from others, the force produced by that
element will change due to the length dependency, and the
system will deviate from its static equilibrium. The problem
of negative stiffness comes into play here. Let us assume that
serially connected HMM elements are all on the dip region of
the descending limb and thus have negative stiffness. If one
element in the chain becomes slightly longer (i.e. stretched)
than the others, the stretched element will become weaker
than the others due to the negative FL relationship of the des-
cending limb. This weakened element will be stretched further
(and therefore will become even weaker) by neighbouring
elements that become stronger by shortening, and this will con-
tinue until the element is eventually torn apart or the passive
force becomes sufficient to offset the loss in the active force.
Since a small perturbation in the state (i.e. length) results in
an unrestorable deviation of the system from its equilibrium,
this chain of HMM elements can be considered an unstable
system in the dip region.
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Figure 3. Simulations of one hundred serially connected HMM elements. In the first simulation (first row), the initial lengths of HMM elements were all set on the
ascending limb (0.85L°) with less than 0.1% random non-uniformity across them. The first three columns are snapshots of the states of each element on the FL
curve, taken at 0.0, 2.5 and 5.0 s, respectively, where filled red circles indicate lengths of HMM elements in these time points—note that this circle represents one
hundred circles superimposed on each other. The second simulation (second row) had the same initial conditions as the first one, with the exception that the initial
lengths were set on the descending limb (1.15L°). The snapshots and the length profiles clearly indicate a bifurcation of the HMM element lengths due to numerical
instability. The rightmost column plots the simulated time—length profiles of all HMM elements for both conditions. Note that the top and hottom plots are at very
different length scales. The visualizations at the bottom row are the corresponding snapshots of the volumetric deformation of the muscle based on the length
profile simulated in the second simulation scenario. Each HMM element was modelled as an isovolumetric cylinder becoming thicker when shortened and thinner

when lengthened.

Rigorous mathematical analyses of the numerical instabil-
ity on the descending limb, e.g. eigenvalue analysis, can be
found in theoretical studies [42,43], but here we provide a
simpler and more intuitive example highlighting what
would happen when simulating the dynamics of serially con-
nected HMM elements. The model presented in figure 3
implements one hundred serially connected, fully activated
(i.e. ao=1) muscle elements, each of which is modelled as
the standard HMM adopted from Millard et al. [21] with a
reasonable choice of model parameters: the rest length %)
and the unloaded shortening velocity (—Vimax) of the whole
chain were set as 30 cm (i.e. 0.3 cm for individual HMM
element) and —10L° s}, and the mass and the maximum iso-
metric force (F2 . ) of the chain were set as 1 kg and 525N,
respectively. In this setup, the simulation was focused on
the dynamics of the lengths of each element, when the total
length of the chain was fixed. Two different fixed lengths
were used: (1) when the muscle was at 85% of L° (i.e. on
the ascending limb) and (2) at 115% of L° (i.e. on the dip
region of the descending limb). At the beginning of the simu-
lation, lengths of individual elements were all set to be equal,
but a very small amount of random non-uniformity (within
+0.1% of the initial length) was added to each element.

Figure 3 summarizes the result of the simulation. On the
ascending limb (figure 3, upper row), the initial non-unifor-
mities vanish quickly and the whole muscle remains stable.
However, these non-uniformities expand substantially on
the descending limb (figure 3, second row), indicating that
the model predicts numerical instability on the descending
limb. Looking at the detailed behaviour of the HMM
elements on the descending limb, it can be seen that they

bifurcate and reach two different steady states: one group
of elements settles at a length shorter than the initial
length, while elements in the other group are stretched to a
length beyond initial, where the reduced active force is com-
pensated for by the increased passive force. If the simulation
implements the three-dimensional shape deformation of the
muscle based on isovolumetric contraction (i.e. the shape of
each element is modelled as a cylinder and the volume of
each cylinder is assumed to be constant throughout the simu-
lation, making it thicker when shortened and thinner when
lengthened), this unstable behaviour produces wrinkles as
shown in figure 3 (bottom row). It has been speculated that
this bifurcation could be a real phenomenon, called ‘sarco-
mere popping’, which has been reported to occur in real
muscles [44]. However, this thinking has not been supported
by recent experimental studies on single myofibrils [45—48],
showing that the sarcomeres behave in a stable manner on
the descending limb with no clearly observable bifurcation
of sarcomere lengths. Further details of the previous and
ongoing debates about the sarcomere popping hypothesis
can be found in Minozzo & Lira [49].

The instability scenario presented above occurs when a
muscle is modelled as serially connected HMM elements.
This is a relatively rare choice in musculoskeletal simulation
models unless the simulation incorporates volumetric muscles
(see §5). However, the second scenario of numerical instability
can occur in single-HMM-element musculoskeletal simulation
models—when a pair of agonist and antagonist muscles are
controlling a joint. Since two opposing muscles cannot be shor-
tened or lengthened together in general, it would be reasonable
to assume that, in some situations, one muscle is on its
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Figure 4. Prevalence of numerical instability in an agonist—antagonist
system. The effective stiffness of the system was tested for different activation
levels (X and ¥ axes) and total combined lengths (from 1.8L° t0 2.89). In
this three-dimensional space, a group of points with negative effective stiff-
ness is visualized as a grey volume, and its projection to the X—V plane is
drawn as a grey polygon. All the other points outside of the grey volume
had a positive equilibrium.

ascending limb and the other is on its descending limb. Then
the total stiffness of the system is the combination of positive
stiffness for the muscle on the ascending limb and negative
stiffness for the muscle on the descending limb, and it is poss-
ible that the net effective stiffness of the system becomes
negative. This will make the system work in an unstable
manner similar to what has been observed in the simulation
study above.

To examine how frequently the unstable situation occurs,
we provide an example of a simple simulation study. As a
one-dimensional simplification of the agonist-antagonist
muscle system, we consider two muscles, M; and My, that
are connected to each other with a point mass (figure 4
inset). Let us assume that these two muscles have the same
FL relationship with the same L but independent activation.
The total length of the two muscles is fixed during a single
simulation trial, but a set of simulation trials was run to
cover different total combined lengths ranging from 1.8L°
to 2.7L°. Similarly, the activation levels of muscles were
fixed during a single simulation trial but varied from 0% to
100% across different trials to cover the entire range of con-
tractile scenarios. This resulted in a group of simulation
trials in a three-dimensional parametric space of muscle acti-
vation levels (X-axis and Y-axis of figure 4) and total muscle
length (Z-axis of figure 4) in which each point represents a
single simulation trial. Within each trial, we first searched
for static equilibria between two muscles, i.e. a pair of
muscle lengths (whose sum equals the given total length) in
which the two muscles generate equal forces. When an equi-
librium point was found, we checked whether the net
stiffness of the system was negative, i.e. if the equilibrium
was unstable.

Figure 4 shows a group of points where the equilibrium
was unstable. As shown, numerical instability was wide-
spread: among all 1030301 points searched in space, 5.0%

(51654 points) of all solutions were unstable. This means

that any random static simulation of an agonist-antagonist
pair has a approximately 5% chance of being unstable. If
the test region is reduced to a more physiologically meaning-
ful range (i.e. +10% of the rest length, or 1.8L° t0 2.21.%), 27.4%
of all solutions are unstable. Numerical instability is more
prevalent when muscles are co-activated equally (along the
dashed diagonal line in the XY plane of figure 4), and
when activation levels are high. This is rather intuitive since
muscle forces should be similar to form an equilibrium,
and the negative stiffness of the dip region on the descending
limb becomes more prominent at high compared to low acti-
vation levels. Identifying regions of numerical instability
becomes exponentially more complex for realistic simulation
scenarios with more than two muscles, muscles with different
resting lengths, and uni- and multi-articular muscles.

Then, how will this agonist-antagonist system behave
when the system is unstable? Figure 5 shows an exemplary
simulation of unstable behaviour. Similar to the simulation
with the chain of HMM elements, the standardized FL and
FV relationships from Millard et al. [21] were used for each
muscle with the same model parameters as used in the first
simulation (i.e. {L°, Vi, F2,,} = {30 cm, 10L%s71, 525 N})
with a 1 kg mass between the muscles. When the total length
of the two muscles was set to 2.1L°, it was found that muscles
generate an equal amount of force and therefore reach a static
equilibrium when one muscle is activated 91% at 0.95L° and
the other is activated at 98% at 1.15L°. For these initial con-
ditions, the effective stiffness of the system was —0.572F°  /
L indicating that the system was unstable. When applying a
small perturbation of 0.1% of L°, the two muscles diverged
from the initial configuration, changed their length, and
reached a stable equilibrium at 0.794F _(figure 5).

The two simulation examples presented above, serially
connected (figure 3) and agonist-antagonist pair (figures 4
and 5) of HMM elements, suggest that there are at least
two different forms of numerical instability in HMM-based
musculoskeletal simulations. These instabilities, and the
resulting failure of the simulations, should not be considered
simple prediction errors but should be recognized as a critical
problem that jeopardizes the foundation of the HMM-based
simulations. Realizing that musculoskeletal simulations
with HMMs possess inherent numerical instability, the ques-
tion arises as to why such numerical instability issues have
not been reported in musculoskeletal simulation studies.
We believe that there are several potential reasons.

Firstly, as previously mentioned, most of the muscle
simulation models used in biomechanics do not include seri-
ally connected HMM elements but treat a muscle as a single
element. This is an understandable choice since incorporating
intra-muscular dynamics comes with a cost of a substantial
increase in model complexity. (However, such simplification
is generally not possible in computer animation, where simu-
lating realistically deforming three-dimensional muscles is
important. See §5 for an overview.) Although using a single
muscle element is an easy solution for the sarcomere instabil-
ity problem, it should be emphasized that this single-element
simplification circumvents the problem of numerical instabil-
ity only at a superficial level and leaves substantial errors in
predicting the muscle dynamics on the descending limb of
the FL relationship.

Secondly, the unstable behaviour seems to be mostly
‘inconspicuous’. The distribution of unstable equilibrium
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Figure 5. An example simulation of a two-muscle system with negative effective stiffness. Two muscles were activated at 91 and 98% respectively, and their FL
relationships (normalized FL curve scaled by activation level) are plotted as blue and red curves in the left-hand panel. Initially, lengths of M; and M, muscles were

set to 1.15L° and 0.95°, respectively, to form a force equilibrium at 0.894F°

points shown in the second example suggests that numerical
instability commonly occurs even in systems consisting of
single-HMM muscles when both agonist and antagonist are
highly co-activated. Given the fact that the level of coactiva-
tion of agonist-antagonist muscle stays low, e.g. no more
than 20% of maximum force for leg muscles during loco-
motion [50], the real probability that musculoskeletal
simulations undergo numerical instability could be lower
than the 5% estimated in the above example. Moreover,
even when the system becomes unstable, our example simu-
lation in figure 5 indicates that the unstable behaviour tends
to develop slowly due to the inertial and viscous forces,
taking about five seconds until the system shows a noticeable
change in muscle lengths, while many contractile scenarios
may not include such long-lasting static co-contractions.
Nevertheless, this only means that clearly visible failures
are less likely to occur during the simulation, not that the
reliability and accuracy of the simulation are unaffected.

Lastly, it is possible that the agonist-antagonist instability
is inherently avoided by the way the musculoskeletal
systems are designed. A classic study by Lieber & Fridén [51]
on wrist extensors and flexors suggested that the stability
of the multiple-muscle system of the wrist is maintained
over almost the entire range of motion thanks to their very
different FL properties. A study with a more detailed
musculoskeletal system (e.g. [13]) on the conditions under
which the stability of multiple-muscle systems is guaranteed,
and whether these conditions are already reflected in the
actual design principle of the biological musculoskeletal
system, would be an interesting research direction. However,
it will be shown in the next section that the stiffness of real
muscles is vastly different from that predicted by the FL
curve, and thus the instabilities introduced in musculoskeletal
models may not exist in reality, independent of the detailed
shapes of the FL relationships of individual muscles in a
musculoskeletal system.

In the next sections, we will briefly review what kind of
and how much error, compared to the mechanics of real
muscles, is produced when simulating a single-element
HMM, especially focusing on the mechanics of eccentric
contraction on the descending limb.

max

(red and blue circles). When a small perturbation of 0.1% 1° was applied, the system
deviated away from the initial condition and reached a stable equilibrium at 0.79

4F0  (red and blue squares).

3.2. History dependency: residual force enhancement
If real muscles are not unstable on the descending limb as has
been perpetuated for more than half a century [52], what hap-
pens when muscles operate on their descending limb of the
FL relationship? When a muscle is activated at some initial
length L, on the descending limb and then stretched to a
longer length L, the steady-state force achieved after the
stretch substantially exceeds the isometric force that the
muscle would achieve when it is activated at L, as illustrated
in figure 6. In other words, the muscle force does not stay on
the FL curve and works as if it has a positive stiffness on the
descending limb. This steady-state enhancement of muscle
force on the descending limb induced by active stretch is
called the ‘residual force enhancement’ (RFE). Research on
RFE has a long history, starting with the early work of
Abbott & Aubert [53], and has been acknowledged as an
important property of muscles that cannot be explained by
the sliding filament and cross-bridge model [54,55].
Importantly, the RFE provides strong evidence against the
basic assumptions of HMM that are discussed above. First,
the FL curve does not represent the length-dependency of
the muscle’s contractile force. As shown above, the dynamic
length-dependent behaviour of active muscle force on the
descending limb is very different from that predicted by the
FL curve. RFE is also observed on the ascending limb [56]
and the plateau [57] regions of the FL relationship, although
RFE is typically not as pronounced as that measured on
the descending limb. In addition, it is known that the oppo-
site suppressive effect exists upon active shortening of a
muscle, called residual force depression [53,58,59]. These
findings do not only account for substantial errors in simulat-
ing eccentric contractions when history-dependent effects are
neglected (see §3.3 below for details) but also lead to a major
contradiction with the fundamental state-space assumption
of HMM that the contractile force of a fully activated
muscle is determined by its current length and velocity. In
other words, the fact that muscles remain stable on the des-
cending limb and that the dynamic muscle force does not
follow the FL curve suggest that the muscle’s contractile
force exhibits history dependency; i.e. the muscle force also
depends on the previous length (e.g. a length where it was
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Figure 6. Schematic illustration of the residual force enhancement on the descending limb (the dip region) of the FL curve. The colour scheme of the FL curve is
identical to the one previously used in figure 2b. A muscle is activated at L,, a length slightly beyond the plateau and therefore belongs to the dip region where
negative stiffness is predicted by the HMM and stretched to a longer length L,. Whereas the HMM predicts a reduction of active muscle force (purple arrow) along
the descending limb, the actual observed active force increases (brown arrow), indicating that the FL relationship does not stay on the FL curve anymore. The
enhancement of active muscle force after the stretch (green arrow on the left) compared to the amount predicted by the FL curve is called residual force enhance-
ment. In the actual experiments, the same amount of enhancement (green arrow on the right) will be observed in total force, under the assumption that passive

force always follows the passive FL relationship (blue curve).

first activated) and the rate of change in length. Imple-
menting the history dependency not only improves the
simulation accuracy of the mechanics on the descending
limb but can also provide a complete solution for the instabil-
ity issue of HMM. However, this can only be achieved by
radically modifying the basic state-space assumptions of
HMM by adding the contractile history as an extra state to
the model. Alternative muscle models that incorporated the
history dependency will be reviewed briefly in §4.

3.3. History dependency: dynamics of eccentric

contractions
The issues of instability and the RFE suggest that the explana-
tory scope of HMM and the sliding filament model cannot
cover well the muscle mechanics on the descending limb. In
relation to that, another well-known but often neglected issue
in phenomenological muscle modelling is the dynamics of
active lengthening (i.e. eccentric contraction). While active
shortening (i.e. concentric contraction) occurs when a muscle
is shortening against an external force or inertia, eccentric con-
traction occurs when a muscle is resisting ongoing lengthening,.
Just as a car has both accelerators and brakes, the musculoske-
letal system is controlled by a combination of concentric and
eccentric contractions of individual muscles [60]. It is well
known that the eccentric mechanics of muscle is very different
from that of concentric contraction. Specifically, a common
observation is that muscles tend to work as efficient ‘brakes’
when resisting lengthening against an external force. For a
given metabolic energy, eccentrically contracting muscles can
perform four times more mechanical work by spending
less than half the amount of neural input in comparison

to concentrically contracting muscles [61]. Despite some
noticeable efforts made in modelling [11,12,62], this excep-
tional efficiency of resisting external tension has long been
considered one of the mysteries of muscle contraction [41],
but such neuro-mechanical advantages have been widely
used in exercise science, including rehabilitation strategies,
muscle strengthening, and injury prevention [63-66].
Notwithstanding the abundance of empirical observations
on the mechanical uniqueness of eccentric contraction, a rather
surprising fact is that there is no model validated for the mech-
anics of eccentric contraction. As discussed earlier, Hill's
equation only explains the dynamics of concentric contraction.
The widely used HMMs assume the eccentric part of the FV
relationship to be a smooth differentiable extrapolation of the
concentric part of the FV curve (figure 24), while in real muscles
the contractile force rises much more rapidly during eccentric
contractions [67,68] making the FV curve non-smooth around
zero velocity. Using the extrapolated eccentric FV relationship,
predictions using HMMs produce poor results when attempt-
ing to simulate the mechanics of eccentric contraction. Figure 7
shows eccentric force profiles of isokinetically stretched cat
soleus muscle, data from Lee and colleagues [69], and the cor-
responding prediction by HMM. The active and passive FL
curves used in the simulation are based on the data obtained
from the same animal, and the FV curve was taken from one
used in OpenSim [21]. As shown in the figure, HMM does a
good job of predicting muscle rise patterns when the length
of the muscle is less than L°. However, when the muscle
length is greater than L°, i.e. on the descending limb, HMM
substantially underestimates the force rise patterns during
eccentric contractions. These observed force enhancements
can be thought of as having originated from the passive
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Figure 7. Comparison between measured and predicted dynamic force enhancement patterns. Muscle was activated and stretched with a constant velocity at seven
different initial and final lengths, which covers the ascending limb, plateau, and descending limb (left) of the FL relationship. Experimentally recorded force profiles
are plotted as red curves (middle) and predicted force profiles by a standardized HMM are plotted as blue curves (right).

viscosity, which is not modelled in HMM. However, the follow-
ing steady-state enhancement of the force, i.e. RFE, indicates
that the nature of the enhancement is not entirely due to the vis-
cosity, but also due to a change in the elasticity, i.e. the history
dependency.

3.4. Section summary

In summary, the HMM is the predominant phenomenological
model of muscle mechanics but suffers issues with its
numerical instability, especially when it comes to eccentric
contractions or contractions at lengths beyond L°. It is true,
of course, that all models are wrong, and the importance of
a model should not be devalued just by pointing out its
errors in different scenarios. Describing the mechanical be-
haviour of a highly complicated biological system with just
a few parameters already premises, or even justifies, that
there will be many aspects that cannot be predicted properly
by the HMM. However, we put forward that the discussions
and examples provided in this section suggest that the pro-
blems of numerical instability of the HMM cannot be
excused by these general modelling practices, since such pro-
blems originate from faulty foundational assumptions
underlying the HMM.

Firstly, we discussed that the FL curve in the HMM is
regarded as the length-dependency that determines the
muscle stiffness, which results in an interpretation that
muscles can have negative stiffness on the descending limb
of the FL relationship (dip region). This then leads to a
major theoretical contradiction that a single muscle or a mul-
tiple muscle system can become mechanically unstable if they
are modelled as a group of serially connected or opposing
HMM elements, even though real muscles do not show this
instability. The two simple simulation examples presented
in this section have shown that the mechanical instability
of HMMs can cause -catastrophic failures for some
contractile scenarios. We also speculated on reasons that
could render these simulation failures inconspicuous in
musculoskeletal simulations.

Secondly, the FV curve of the HMM is an extrapolation of
Hill's equation that was originally derived to explain the
relationship between initial velocity and force at the beginning
of concentric contractions. Experimental evidence on the mech-
anics of eccentric contraction suggests that the HMM is limited
in predicting RFE, and thus the state-space assumption of the
HMM does not hold for real muscles. We also showed that
the dynamic force enhancement during eccentric contractions
preceding RFE deviates significantly from those of concentric
contractions based on the cross-bridge model. We pointed
out that the extension of the HMM to eccentric contractions
was made without thorough efforts for validation or an
estimation of possible error margins.

In the following sections, we will provide a brief overview
of the existing solutions for issues related to stability, history
dependency, and the mechanics of eccentric contractions of
skeletal muscles, in two representative areas where musculos-
keletal simulations are widely used: biomechanics (§4) and
computer animation (§5).

4. The use of Hill-type muscle model for
musculoskeletal simulations in biomechanics

Computational simulation models of the musculoskeletal
system have been widely used in biomechanics to estimate
and understand the mechanics of human movement that
are difficult to measure in vivo. Musculoskeletal modelling
and simulation platforms, such as OpenSim [70,71], Anybody
[72,73], MSMS [74], MuJoCo [75] or demoa [76], combine
models of muscle and tendon mechanics, neural inputs, skel-
etal and joint geometry and multibody dynamics, and use
numerical methods to integrate the dynamics of the entire
system. As with the intrinsic complexity of the motor
system, musculoskeletal simulation models often exhibit a
great amount of computational complexity, where movement
is generated through hierarchical and parallel interactions of
a large number of muscle-tendon units combined with multi-
body dynamics of the body segments. Although performing
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computations with these complex models is no longer a limit-
ing factor of simulation studies thanks to the rapid growth of
computational power, many users of musculoskeletal simu-
lators, especially those without expertise in state-of-the-art
muscle mechanics and biophysics, still prefer simpler conven-
tional models due to their notational and computational
convenience. For this reason, phenomenological models
such as HMMs still remain as a preferred choice for muscu-
loskeletal simulation studies compared to purely empirical
or realistic but complex biophysical models.

Due to the multifaceted and hierarchical nature of
musculoskeletal models, the overall simulation accuracy is
determined by various factors involved at different levels of
modelling. These include geometric and architectural represen-
tation of the muscle-tendon units, kinematics of bones and
joints, and force sharing between multiple muscles. Since
errors produced in lower-level components accumulate to
higher levels, it can be reasonably assumed that errors arising
from the most fundamental component of the model, i.e. the
muscle mechanics model, have the highest impact on the accu-
racy of the whole simulation. Nevertheless, while most studies
have focused on improving the performance of upper-level com-
ponents, such as representations of muscle architecture or
musculotendon geometry [21,70,77-81], or developing efficient
algorithms for more accurate numerical simulation [82-85], the
validity of the underlying muscle model in accurately predicting
the behaviour of muscles for different mechanical scenarios has
received substantially less attention. As discussed in the previous
sections, the HMM suffers several limitations in explaining the
history-dependency and the efficiency of eccentric contraction,
which can lead to substantial errors in predicting the muscle’s
mechanical behaviour. Furthermore, these issues are fundamen-
tally related to existing theoretical contradictions of the standard
cross-bridge models on sarcomere instability. However, in
studies on musculoskeletal simulations, these limitations are
not addressed as much as other high-level problems, and the
HMM is commonly accepted as the standard phenomenological
model used for musculoskeletal simulations.

There are two possible reasons why the issues of
HMM have not been highlighted as a major problem
in musculoskeletal simulations. Firstly, as discussed in §3.1,
computational problems associated with HMM-based simu-
lations either are muted by simplification or are not readily
apparent. Most musculoskeletal models used in biomechanical
studies incorporate simple geometric representations of
muscles where a serial connection of HMM elements is not
implemented. In addition, instabilities in multiple muscle
systems do not always become apparent during simulations
of dynamic movement due to their slow progression. Secondly
and arguably more importantly, the prediction errors produced
by the muscle mechanics model can be diluted relatively easily
during subject-specific adjustments of other musculoskeletal
modelling parameters. It is well known that the performance
of HMMs and the corresponding musculoskeletal simulation
are highly sensitive to the selection of its muscle-tendon par-
ameters, especially maximal isometric muscle force, optimal
muscle fibre length and tendon slack length [86-89], which
are also known to vary widely from individual to individual
(e.g. [89]), and depend on sex, age, disease or physical activity
level. Nevertheless, although substantial progress has been
made to determine physiologically valid muscle parameters
through advanced parametric sensitivity or topological ana-
lyses [17,90-92], the determination of these parameters in

musculoskeletal modelling largely relies on rough estimations
from the literature. For this reason, subject-specific tuning of
those parameters is considered the common procedure for
improving simulation accuracy. Adjustments are done by
linearly scaling parameters by a scaling factor determined
by individual anthropometrics, such as the bone or
muscle length [71,93,94]. Alternatively, input parameters are
adjusted to match those measured experimentally using dyna-
mometry-based joint angle-moment relationships [87,95],
ultrasound-based muscle-tendon interactions [96,97] and/or
EMG-based muscle excitation [98,99]. These adjustments have
been proven effective in improving the accuracy of simulations
for individual subjects. However, it is not guaranteed that such
adjustment procedures only compensate for the errors that arise
from the choice of the parameter values, and not also from
fundamental shortcomings of the model, or any other aspect
of the simulation.

Meaningful efforts have been made to point out the
severity of the HMM's prediction errors in a wide range
of contractile scenarios, and to present an alternative phenom-
enological muscle model that can predict properties that are
not explained by the HMM. For example, phenomenological
muscle models have been developed to incorporate the his-
tory-dependent effects of muscle shortening or lengthening
into the estimated muscle force [100-103]. Such models have
been shown to reproduce history-dependent effects well for
isolated muscles, they influence joint stability [100], lower-
limb power output [104], muscle force magnitude and
muscle coordination [105]. McGowan and colleagues demon-
strated that force depression can reduce average crank power
by as much as 40% during cycling [104] and that lengthen-
ing-induced force enhancement can increase the maximal
force produced by the vastus lateralis by 22% during counter-
movement jumping [105]. However, it should be noted that
such differences in model predictions can easily be compen-
sated for by the tuning of other subject-specific parameters.
For example, it is likely that the absence of history-dependent
effects in the HMM can be compensated for by changes in
muscle excitation for most submaximal activities [105]. This
makes model performance comparisons between standard
and history-dependent Hill models difficult.

Although the above-discussed studies highlight the
importance of taking history-dependent effects into account
for whole-body movement simulations, efforts on validating
and utilizing such alternative models in the mainstream
musculoskeletal simulation frameworks using, for example,
standardized benchmark data [21,106-108] are still lacking.
We speculate that the limited use of these alternative models
is related to their practicability. These modified muscle
models usually require extra tuning of model parameters and
they may suffer from unrealistic discontinuities that are numeri-
cally difficult to handle [105]. These added complexities favour
the use of computationally simple phenomenological models
for large-scale simulations. Furthermore, the extra parameters
and equations required to explain eccentric and history-
dependent muscle properties are purely empirical since they
are tailored to fit the experimental data, with no underlying
fundamental model of muscle contraction. The absence of a
strong connection to the underlying theories makes it question-
able whether they could be called phenomenological models,
not data-driven models.

In summary, despite awareness and efforts to improve
the HMM'’s stability and performance in predicting eccentric
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and history-dependent mechanics, most musculoskeletal
simulation studies in biomechanics use the standard
HMM that is based on the problematic assumptions dis-
cussed in §2, and as a result, are not immune to the failures
and prediction errors discussed in §3. We identified possible
explanations as to why such fundamental issues have not
emerged as major problems in biomechanical simulation
studies. Aside from the modelling and numerical factors
that effectively mask the aberrant behaviours of HMM-
based systems, subject-specific tuning of musculoskeletal par-
ameters can conceal errors arising from HMM'’s fundamental
limitations.

5. The use of Hill-type muscle model for
musculoskeletal simulations in computer
animation

Musculoskeletal models have been used in computer anima-
tions because of the need to improve the rendering of human
motion. Indeed, one of the holy grails of computer animation
is to produce human animations that are indistinguishable
from real human motion. To this end, both line-based
muscle models, as well as geometrically complex, volume-
based models that incorporate inter-sarcomere dynamics,
have been used in computer animation.

5.1. Hill-type muscle model in line-based muscles
Line-based methods were developed by adding lines-of-
action of muscles, just like those used in biomechanics
(e.g. OpenSim). These muscles are assumed mass-less,
taking the shortest path around obstacles between the
origin and insertion [78].

Biomechanically motivated muscle models were first used
in computer graphics for facial animation [109,110]. The
origin and insertion of these muscles were based on anatomy,
but the actual muscle model was a simple elastic spring. One
of the first works in computer graphics to use the HMM was
the work by Komura ef al. [111-113]. They used inverse
dynamics to first compute the required torques and then
computed the muscle activations for the muscles to achieve
these torques. Their use of proper muscle models allowed
them to generate new types of animations that incorporated
properties such as fatigue, which had not been possible
with previous joint-torque-based approaches.

To generate plausible animations at a lower computational
cost, many works in computer animation use simplified versions
of the HMM. In these models, the FL relationship is often mod-
elled as a rectified (i.e. negative value zeroed out) linear or
exponential curve, and the FV relationship is either ignored or
linearized in a similar way to the FL relationship. Lee & Terzo-
poulos [114] represented muscles as a combination of active
and passive components, where the active component was mod-
elled using rectified linear FL and FV curves, and the passive
component was modelled as an exponential FL curve with
linear damping. This simplified HMM was used to drive
upper-body motion [115] and swimming [116]. Similarly,
Sueda et al. [117] and Sachdeva et al. [118] used rectified linear
functions for both active and passive FL relationships, with
linear damping to approximate FV properties. These simplifica-
tion procedures rule out the possibility of muscle models
having negative stiffness and thus essentially prevent any

computational issues arising from mechanical instability. How-
ever, they deviate greatly from the standard HMM and also
from the realistic mechanical properties of muscles.

Recently, there has been a renewed interest in the use of
full-fledged HMMs in computer animations. Wang et al.
[119] showed that minimizing metabolic energy expenditure
increases the visual realism of the resulting animations.
Geijtenbeek et al. [120] used HMMs for a range of bipedal
characters, including humans, animals and imaginary crea-
tures. Similar to the subject-specific adjustments made in
biomechanical simulations (see §4), they also optimized
their animations for the placement and routing of muscle
lines of action so that the total error based on speed, orien-
tation and effort was minimized. Lee ef al. [121] proposed a
scalable biped controller that is able to solve for the acti-
vations of more than one hundred muscles, each of which
is modelled as a parametrized HMM originally proposed in
biomechanics [84]. Their animations include motions that
simulate muscle pain, muscle tightness or joint dislocation.
In their follow-up work, Lee ef al. [121] used deep reinforce-
ment learning to control more than three hundred HMM
muscles for full-body motions. They were able to reproduce
a wide range of motions, including muscle weakness, the
use of a prosthesis and different pathological gaits. Despite
the use of full-fledged HMMs, those authors did not mention
the instabilities caused by HMMs. We speculate that this
is because the movements in their simulations tended to
have high velocities with little co-contractions. However,
as discussed in §3, inherent instabilities still exist and
may emerge during simulations involving static postures or
slow movements.

5.2. Hill-type muscle model in volume-based muscles
Aside from the studies in biomechanics investigating volu-
metric mechanics of muscles—see [122] for a review—and
the effect of distributed inertia [123], volume-based methods
also have been widely used in computer animations in order
to simulate visually realistic three-dimensional deformations
of muscles. There are influential works that use non-biome-
chanics-based linear muscles—essentially changing the rest
length of a linear spring model [109,124-126]—but these
works will not be discussed in this paper. Among those
that use biomechanically based muscle mechanics models,
two subtypes have emerged. The first subtype uses a volu-
metric mesh, some edges of which are embedded with
point-to-point muscle force generators, while the second sub-
type directly encodes the muscle as an anisotropic material
model within the volumetric solid. We will discuss these
two subtypes below.

The first subtype—those with embedded muscle force gen-
erators—was initially used in animation. Earlier works by
Chen & Zeltzer [127] and Zhu et al. [128] introduced biomecha-
nically based muscle mechanics models for computer
animation. They used the finite-element method (FEM) with
isoparametric brick elements, with the longitudinal edges of
these elements acting as muscle force generators. Ng-Thow-
Hing [129] used a similar approach to embed force generators
based on the HMM inside a B-spline solid. Lemos et al. [130]
developed a general FEM framework that could support any
nonlinear material as the background isotropic material. Nota-
bly, they implemented the history-dependency (see §3.2) to
deal with the negative slope of the FL curve by adding an

0£702Z0T 0T 2pua3uf 20S Y °f  yisi/jeunol/bio-buiysijgndAiaposiesol E



Downloaded from https://royalsocietypublishing.org/ on 05 June 2023

additional linear term that keeps track of the length at which
muscles were activated.

Around a decade after the introduction of the first subtype,
the second subtype—those with anisotropic muscle material
models—became popular. In the seminal work, Teran et al.
[131] used a material model with strain energy that includes
an anisotropic muscle potential term. This term was designed
so that its derivative (i.e. force) matches the FL relationship
from the HMM, approximated as piecewise quadratic and
exponential functions. The FV relationship was not used in
their model. The same muscle mechanics model was used in
their follow-up work on large-scale simulations of skeletal
muscles [132] as well as their research on facial muscles [133].
Recently, Lee et al. [134] simulated quasistatic volumetric
muscles driven by per-element energy functions derived
from an HMM. Most of these works use a piecewise quadratic
active FL curve and an exponential passive FL curve that
reduces the dip region of the descending limb compared to
the FL curves used in typical biomechanical applications.
However, it is not clear whether negative muscle stiffness
and corresponding instability exist in their models since none
of the papers includes any discussion of these issues. An inter-
esting exception is a work by Fan et al. [135], which concedes
that the muscle model is complex and not well understood,
and instead allows the user to specify a time-dependent
function to arbitrarily modify the desired shape of the muscle.

Regardless of which subtype of volume-based models is
used, or whether there is a treatment to prevent instability
within the muscle force generator, the forces produced by
these volume-based models interfere with substantial back-
ground deformation forces; inertial, viscoelastic and/or
volume-preserving forces built into the background isotropic
material. This means that the total force produced by the
entire muscle volume is a combination of muscle force and
background deformation force, which may produce FL and
FV relationships that are significantly different from those
used in the embedded muscle force generator. In this setup,
it is difficult to identify if the simulation of muscle volume
suffers from the instability issue similar to the one with a
serial chain of HMM elements (see §3.1), or if the background
deformation force fortuitously works as a stabilizing force
mitigating the instability of the inherent muscle model.

To summarize, graphic researchers have used HMMs to
produce realistic-looking animations for both line-based and
volume-based muscles. In most cases, simplifications were
made to make the simulations scalable and robust, without rig-
orous verification. The fundamental instabilities discussed in
this paper are not mentioned in these works (with some excep-
tions [118,135]), due to the fact that (1) the types of motion
simulated tended to be fast with quick muscle velocities and
little co-contractions or (2) the background deformation force
unintentionally stabilized the simulations.

6. Conclusion

The HMM has been the most popular phenomenological
model of muscle mechanics used in musculoskeletal simu-
lation studies. In this paper, we revisited the HMM'’s basic
structure with its underlying assumptions and discussed
some fundamental problems of the HMM emanating
from these assumptions. We provided conceptual case
studies and experimental evidence suggesting that most

musculoskeletal model simulations using standardized
HMMs are at risk of failure and significant error due to inherent
flaws. In the latter part of the paper, we discussed how such
problems have been dealt with in HMM-based simulation
studies in the areas of biomechanics and computer animation.
Findings from this review of the literature suggest that most
simulation models use the HMM with instability issues as
they are, but these issues have not been recognized in general,
possibly due to factors in modelling and parameter settings
that can fortuitously mask errors or failures arising from
HMMs. We discussed existing solutions to these issues, but
most of the muscle models used for simulations are highly
empirical, resulting in a significant increase in parametric com-
plexity introduced to fit empirical data, or are made up for
computational convenience in a highly simplistic and ad hoc
manner rather than for producing accurate prediction of the
mechanical properties of skeletal muscles.

With this paper, we do not attempt to offer an immediate
solution to these problems. In fact, to the best of our knowledge,
no alternative phenomenological model currently exists that
has been adequately validated in terms of accuracy and usabil-
ity. Instead, we hope that this paper will serve as a starting point
for seeking better muscle models tailored for musculoskeletal
simulation studies. As is often said, the first step in solving a
problem is to recognize that there is one. Even if a suitable
alternative model cannot be found—this is quite possible
because there is no guarantee that we can accommodate the
additional properties, such as the history dependency and
eccentric mechanics, within a simplicity comparable to the
HMM—we believe that it is important for anyone who is
using the HMM in musculoskeletal simulation studies to under-
stand the major issues and corresponding limitations.

What should be considered when attempting to find a
better model that can be used for musculoskeletal simulations?
Firstly, as repeatedly emphasized, efforts should be made to
prioritize the balance between accuracy and computational
convenience. Just as simple but inaccurate models are not desir-
able, models with physiological rigour but without fair
consideration of their computational convenience will not be
welcomed by the developers and users of musculoskeletal
simulators. Secondly, because the existing issues of HMMs
originate from the generalization of the FL relationship or
Hill’s equation with a limited effort of validation, developing
a framework for more thorough validations is essential for
the development of alternative models. In muscle mechanics,
there have been continued efforts to develop alternative
models of muscle mechanics, either based on an idea of includ-
ing a new component, e.g. titin, to explain the mechanics of
eccentric contraction [136-138], by considering intra-muscle
dynamics [139,140], or by incorporating more elaborated
mechano-physiological aspects [8,12-16]. Although translating
them to validated and usable models would pose substantial
research challenges, we believe that the effort to find a new
model is well worth the work and is essential for more accurate
simulation-based predictions of musculoskeletal mechanics in
the future.
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