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Abstract. We perform an analytical study of the stability of the background solution [1] of
the model in which an inflaton, through an axionic coupling to a U(1) gauge field, causes an
amplification of the gauge field modes that strongly backreact on its dynamics. To this goal,
we study the evolution of the gauge field modes coupled to the inflaton zero mode, treating
perturbatively the deviation of the inflaton velocity from its mean-field value. As long as
the system is in the strong backreaction regime we find that the inflaton velocity performs
oscillations of increasing amplitude about the value it would have in the approximation of
constant velocity, confirming an instability that has been observed in numerical studies.
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1 Introduction

Primordial inflation is the leading candidate for the description of the earliest moments of
the Universe which are currently accessible to observation. The fundamental ingredient of
this framework is a period of accelerated expansion, typically fueled by a scalar field, the
inflaton, that is slowly rolling down its potential V' (®). While the simplest way of modeling
inflation consists simply of choosing the shape of V(®), a more realistic description should
also account for the interactions of the inflaton with other degrees of freedom. These degrees
of freedom can be excited by the time-dependence of the rolling inflaton. As a consequence of
energy conservation, such a process of particle production will generally slow down the rolling
of the inflaton.

While the excited modes can have perturbatively small effects, in some models and/or
for some choices of parameters their backreaction can significantly affect the evolution of the
inflaton. The slowing down of the inflaton can be so effective as to allow inflation even if
the inflaton potential does not satisfy the slow-roll conditions |V'| < V/Mp, V" < V/M3.
This can be very helpful for inflationary model building, as for instance finding corners of the
String Theory Landscape where the slow-roll conditions are satisfied has proven very difficult.

These mechanisms can be seen at work in models of warm inflation [2] where the particles
produced during inflation are assumed to follow a thermal distribution. The model of trapped
inflation [3] provides a scenario where, on the other hand, the produced particles do not
thermalize, but the microphysical mechanism underlying particle production is spelled out
in detail.

In this paper we focus on the model of natural steep inflation of Anber and Sorbo (AS) [1],
which has the advantages of having a well defined microphysical description and of being
described by relatively simple formulae. In this model, which we review in section 2 below, a
pseudoscalar inflaton is coupled to a U(1) gauge field via a dimension-5 operator %(I)FWFW,
where o/ f is a constant. As a consequence of this coupling, the modes of one of the helicities
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of the gauge field get amplified by a factor oc exp{3 f—H}, where H is the Hubble parameter

during inflation and ® denotes the velocity of the zero mode of the inflaton.



Due to the exponential dependence of its amplitude on ®, the gauge field can strongly
backreact on the zero mode of the rolling inflaton. This effect is due to a term %FM,,FW on
the right-hand side of the Klein-Gordon equation that controls the evolution of the zero mode
of the inflaton. In [1] the effect of this term was evaluated in the approximation of constant

®, which leads to a slow-roll solution ® = f7H times a factor, of order 10 + 100, that has a
logarithmic dependence on the parameters in the theory. This result leads to conclude that
slow roll inflation can be obtained in this model even if the potential is steep and does not
satisfy the slow-roll conditions. .

The amplitude of the gauge field modes has an exponential dependence on ®/H, which is
a quantity that generally increases during inflation. As a consequence, even if the backreaction
of the gauge modes is negligible at early stages of inflation (e.g., when observable CMB scales
leave the horizon), it will generally become important towards the end of inflation, at a time
when observable gravitational waves [5-7] or a population of primordial black holes [8-11]
might be generated. For these reasons it is important to have a reliable description of the
behavior of the system in the strong backreaction regime.

Several works [12-17] have studied the behavior of this inflaton/gauge field system in the

strong backreaction regime, using numerical techniques beyond the constant ® approximation
but still, with the exception of [17], neglecting the spatial dependence of the inflaton.! These
studies do consistently show, in the strong backreaction regime, large and apparently irregular
oscillations in the velocity of the inflaton, in contrast to the smooth, monotonic behavior
found in the analytical studies where ® is treated as a constant. While most of these studies
reported the existence of these oscillations without explaining their origin, in reference [15]
this behavior has been linked to the fact that the backreaction term gives a delayed response
to the changes of the velocity of the inflaton.

In this work we explore the behavior of the model of [1] in the strong backreaction regime,
going beyond the approximation used in [1], but without resorting to numerical techniques.
This can allow to better understand the parameter dependence of the model. Moreover,
many of the existing numerical solutions start from a (stable) regime of small backreaction,
which then evolves into the strong backreaction AS regime, so one could still imagine that
the steady-state AS background solution is indeed stable, but with a very narrow basin of
attraction which is not probed by the existing numerical solutions. For these reasons, we
perform an analytic study of the linearized stability of the AS background solution, starting
from field configurations that deviate from it only by a perturbatively small amount. As in
most of the numerical investigations, we also neglect the spatial dependence of the inflaton.
On the one hand, the qualitative agreement between [12-16] and [17] leads to believe that
this ingredient is not crucial for the claimed instability of the AS solution. On the other hand,
this assumption greatly simplifies our computation, making it more transparent.

Our analysis shows that in the regime of strong backreaction the evolution of the
zero-mode of the inflaton is indeed unstable, and that oscillations of increasing amplitude
develop. Moreover, it shows, consistently with the analysis of [15], that the backreaction term
does indeed respond with a delay to the changes in ®, which can be seen as the cause of
the oscillations.

The paper is structured as follows. In section 2 we review the AS background solution.
In section 3 we compute analytically (with some approximations) the evolution of linear

! Additional lattice studies of the behavior of this inflaton-gauge field system at the end of inflation can be
found in [18-25].



perturbations about this solution. The computation is divided in three parts. We first
introduce the perturbations and the linearized system of equation that describe their evolution.
Then, in subsection 3.1 we obtain the Green function to express the gauge fluctuations as a
functional of the inflaton fluctuation. Then in subsection 3.2 we provide the approximate
solution for the latter. In section 4 we present our conclusions. This section is followed by two
appendices. In appendix A we derive the AS gauge modes with a WKB approximation. In
appendix B we evaluate the source term describing the backreaction of the gauge fluctuations
to the inflaton fluctuation.

2 Background solution

The mechanism of [1] is characterized by the action
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where ® is the axion inflaton, with potential energy V', while F' is the field strength of a U(1)
field and F is its dual. The quantity f is the (mass dimension one) axion gauge constant,
while « is the dimensionless parameter controlling the coupling of ® to the specific gauge
field that we are considering. We use conformal time and we neglect slow roll corrections to
the background geometry

1
g = a* (1) diag (=1,1,1, 1) , a= g (2.2)
where H is the inflationary Hubble rate. In the background solution of [1] the inflaton is
taken to be homogeneous, while the gauge field has both time and spatial dependence. In the

Ag=V-A=0 gauge we decompose
3 7o
Amz) =Y / L’“g & (k) Ax (7, k) (K) €™ 4 hee] (2.3)
1) (2m)

where k is the comoving momentum, a4+ (k:) annihilation operators, and €4 are circular

helicity operators, obeying k- € =0 and k x € = Fikéx.
Denoting by a prime the derivative with respect to conformal time, the homogeneous
inflaton and the vector field obey the equations [1]

" + 2aH® + a2V = —O‘Z/dk 2 (144 = 1A-P]
4m2a3 f or ’

Aa @
Al 4 k%A, - 22

KAy =0, (2.4)

where prime on the inflaton potential denotes differentiation with respect to ®.

The goal of this work is to solve this system of equations for the background solution
of [1] and for small departures about it. We first solve the equation for the gauge field, that
thus becomes a functional of ®. We then insert the formal solution into the first equation,
that in this way becomes an integro-differential equation for the homogeneous inflaton. In
this section we review the solution of [1] for which we denote
ad’

Ay=A,, &=, with fEQfaH

= const . (2.5)



Depending on the sign of @', one of the two helicity modes experiences an unstable
growth next to horizon crossing [1]. For definiteness (and without loss of generality), we
assume that ® > 0 so that the unstable mode is the A\ = + one. This implies that V' < 0.
We disregard the stable A_ mode and, to shorten notation, from now on we relabel A, = A.
The equation for the mode functions then admits the two linearly independent solutions that,
in the long wavelength limit, can be written as

- 1 2\ 1/4 i/ \1/4
A k ~ B TE—24/28x o () 24/26x—€m = _k
e ™ R [(2&) ) Ta\z) ¢ e
Ao (7, k) = A (7, ) . (2.6)
These approximate solutions are normalized according to A; A — Ay A} =i (we note that

this relation is satisfied exactly by (2.6)). This is due to the fact that the corresponding exact
solutions satisfy this relation in the deep UV regime, and the quantity A; fl’z — Ay Al is an
integral of motion (namely, it is preserved by the second of (2.4)). An arbitrary phase in
both of egs. (2.6) has been fixed so that the amplified part of the solutions (the one that is
exponentially large in the £ > 1 limit) is real. The large real part was given in [1] where it
was shown how this approximation is obtained from the exact solution. The small imaginary
part was given in [4]. In appendix A we show how the approximate solution (2.6) emerges
from a WKB approximation of the second of eqs. (2.4).

For the purpose of computing the background solution of [1] only the exponentially large

part of eq. (2.6) is needed, which coincides for both terms. Inserting Re (/_11) = Re (14_12) into
the first of (2.4) and performing the integral® results in [1]

a’a 315 H* %7€

T/ x/ 2 /N_iii
D" +20H P +a° V' ~ 7 oolTgr g

(2.7)

In standard slow roll inflation the right hand side of this relation is not present, and &
(where dot denotes derivative with respect to physical time) is negligible, so that the derivative
of the inflaton potential is “compensated” by the Hubble friction term, 3H® ~ —V’. In the
AS solution the dominant friction is provided by the gauge field amplification, so that

315 «oH* ™
N2 [ gl ~ -V (2.8)

In addition to this, we require that the energy density in the produced fields is much
smaller than the inflaton potential energy, so to have an inflationary background. Using the
mode functions (2.6), disregarding the small imaginary part, this amounts to [1]

m_ L [ 2 f€ (~V)
- = A ~ 27
v = Ty |

N < 1. (2.9)

2The integral is performed also in the x > 2¢ range where the expression (2.6) is invalid. However, the
integrand is strongly dominated by the peak of (2.6), taking place in the z < 2¢ region where the solution is
valid. Therefore, using the real part of (2.6) in the full domain results in an exponentially small mistake. More
precisely, the integrand needs to be UV-regulated at large x, where the gauge mode is still in the vacuum mode,
and using the real part (2.6) also in this range effectively performs the regularization. A renormalization scheme
for this model was provided in [26] (see also [27] for an alternative prescription), with results in agreement
with those obtained in this way. This happens because the physical peak from gauge field amplification is well
separated from the vacuum, UV region.
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3 Linearized system of perturbations

We now study analytically small departures from the AS solutions of the system (2.4). To
this goal, we decompose the inflaton and the gauge modes into the AS ones (those obtained
in the previous section) plus small perturbations,

P=D+5P, A=A+5A, (3.1)

and we solve the system (2.4) to first order in 6® and dA. This procedure is not a complete
perturbative study on the stability of the AS solution, since we disregard metric perturbations
and spatial inhomogeneities of the inflaton. Nonetheless it captures the cases studied in the
works [12-16], where the stability was studied numerically also assuming a homogeneous
inflaton and no metric perturbations. It is hard to imagine that the inclusion of these two
ingredients can make the AS solution stable, if an instability will emerge from the present
analysis. In fact, the instability observed in [12-16] persists also in the lattice analysis of [17]
which does include spatial fluctuations in the inflaton.
At first order in the perturbations (3.1), the system (2.4) reads

Bk ko - _
o + 2aH5P 2”@:—i/———AA* A*5A
50" + 2aHS® + a2V"5 = (277)3287[5 +A*64]
. !
5A”+<k2—o‘l}q’>514:c“];45<1>', (3.2)

where we note that we are also disregarding perturbations of H. As done in the previous
section, we first formally solve the second equation for the gauge field modes as a functional
of the inflaton derivative. This can be done via the Green function method, resulting in

SA (1, k) = O}k /T dr' Gy (1, ') A (7', k) 69’ (') , (3.3)

where the Green function Gy (7, 7) is introduced and computed in subsection 3.1. We
then insert this formal solution into the first of eqs. (3.2), that in this way becomes an
integro-differential equation for the inflaton and its time derivatives

2 T
50" + 2aHP + a>V"5® = — % / d7'5® (')
8 d3k k2 * AN} 1 * /
XQT/W2 {Gk (r, 7)A(r) A (T)—I—C.C.} : (3.4)

In subsection 3.2 we then work out the source term, and we obtain approximate analytical
solutions for this equation.

3.1 Green function

Eq. (3.3) follows from eq. (3.2), with the Green function satisfying

-2 G ) =i ) 5)



where ¢ denotes the Dirac §—function. If Aj 5 are two solutions of the associated homogeneous
equation, it is immediate to see that the combination

Ay (7) As () — {1(’){1
Al(T,)AQ( N—A (") A

G (r, ) = (T,) o(r—1), (3.6)

where 6 is the Heaviside §—function, satisfies eq. (3.5). This combination is the retarded
Green function and it guarantees causality, since the Heaviside 6-function ensures that only
sources at times 7/ < 7 can affect the solution at the time 7.

In the explicit construction of the Green function we use the two solutions of the
homogeneous equation that reduce to (2.6) in the z < 2¢ limit. As we already commented
after those expressions, A; Ay — Ay A} = i for these solutions (this is valid at all ). We
thus find

Gutr ) =~ b [o /3 (Vi - V) 00— o) w2, (D
E\T, T )= \/>k sin r—z), x,T , .

where we recall that = —k7 and 2’ = —k7’. We note that, to obtain this expression, also
the subleading terms in (2.6) need to be retained (which is why we evaluated them, since
only the dominant term is required for the AS background solution).

We recall that the amplification of the gauge modes takes place deep inside the horizon.
Therefore, as this region was regulated away from the integral in (2.4) in the AS background
solution, the same needs to be done in the present computation. We therefore multiply the
expression (3.7) by two functions that vanish in the z > 2¢ and 2’ > 2¢ limits. We choose

)1/4

G () = = (aiﬁk sinh [2/2€ (V= Va') [ 0 (' =) 0 (26" = ') 0 (26" :U)(’ )
3.8

where ~ is an order one constant that we keep unspecified, as a measure of the uncertainty
associated with our regularization. We will see that our quantitative results are only weakly
sensitive to v, while our qualitative conclusions are insensitive to it. We note that the last
f#—function in this expression is superfluous, and therefore we write

z ')
Gi (1, 7))~ — (\/2%]: sinh [2\F (\f — \/>)} (' —z)0 (2{72 — ;v') . (3.9)

3.2 Linearized solutions

We insert the expression (3.9) and the dominant term of eq. (2.6) into the integro-differential
equation (3.4). Changing integration variables k — y = —2&k7’, we obtain

00" + 2aHOP' + a*V"5®

2 2mE T dr! o 462 -4 =
s / ( . 700 () o= TdyyP Vo le_‘l\/y —e Iy = ] , (3.10)
0

T f2a2 87265 1) or

where we have defined &, = §y. We look for “power law” solutions of the type

50 =C (1) =, (3.11)



where C' and ( are constant. We expect that a solution of this type is possible since all
terms in (3.10), in our working assumption of disregarding slow roll variations, evolve in time
as 6®/72.

As the system is linear, the constant C # 0 drops from the following analysis and it is
irrelevant; we choose to denote the exponent with the combination —i rather than with a
single symbol, as it simplifies some of the following algebra. We note that the result of this

analysis will indicate that
AS solution is stable < Re( < —1. (3.12)

Moreover, we need to impose Re( > —8, or the integral in eq. (3.10) would diverge at
7/ = —o0. Finally, we note that ¢ might have an imaginary part. In fact, since eq. (3.10)
has real coeflicients, a complex solution is always accompanied by its conjugate. Linear
combinations of these solutions are therefore of the form (indicating explicitly the dependence

on the Hubble rate to have a manifest dimensional consistency)

0P x (—HT)_HI'}&C cos (Im2C In(—HT7)+ d)) , (3.13)

where ¢ is an arbitrary phase. Therefore a complex ( corresponds to a solution that oscillates
about the AS one, while converging to (for Re( < —1) or departing from (for Re{ > —1) it.

As we show in appendix B, inserting eq. (3.11) into eq. (3.10), performing the two
integrals, and eliminating the common time dependence, results in

A+Q@+Q V' a V) A+ T+

i oS R (84 Q) (3.14)

1 9+ 11
(8&)° T'(9) '

The first term in this relation originates from §®” + 2a H0®'. For standard slow roll
inflation, |V”| < H? and the right hand side vanishes. This results in ¢ ~ —1, —7, namely
§® o 70, 72, indicating the stability of the inflationary background. On the other hand, in
the AS regime, |V”| > H?, so that the inflaton field is too massive to sustain inflation in
absence of gauge field amplification. As we shall see, |(| = O (1) also in this case. Therefore,
for our study of stability, the first term in (3.14) can be neglected, precisely as for the AS
background (2.7), leading to

1 T+
(8&)° T(9)

gVt 0+9(@+9)
a(=V) B+

- 11 =Fl¢, 6. (3.15)

The left hand side is a real quantity, whose sign depends on the sign of V”. Its magnitude
is expected to be

<1, (3.16)

é.f Vl/ y
V2 aV

_’ VV' (V)

thanks to the fact that the first factor is generically of order one, while the second factor is
much smaller than one due to the condition (2.9).

Therefore we are looking for values of ¢ for which the function F[(, &] is real, with
a small absolute value. Let us start by studying the case of a real (. We find the behavior
shown in figure 1, where F is plotted as a function of ¢ for some representative values of &,.
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Figure 2. Values of the real and imaginary parts of ¢ resulting into a real F [(g + (1, &,], for &, =5
(left panel), & = 15 (left panel), and &, = 50 (right panel). These values form distinct trajectories in
the complex (—plane. The number of these trajectories increases as &, increases. Beside the values
shown in this figure, the function F is also real for Im (¢) = 0 and for values of ¢ that are the complex
conjugate of those shown here.

We see that all real values of  lead to a negative F, and therefore they can be solutions
only for V" < 0. The physically relevant region |F| < 1 is obtained only for ¢ slightly greater
than —1, but very close to it. Expanding eq. (3.15) in this regime results in

- T 1 vy "
Ci_l_G’y—l/fa(—V)i 17, for V" <O0. (3.17)
From (3.11) we see that this mode is unstable, but the instability is extremely mild.

Next, we study the case of a complex (. We now show that, for any real and small value
of F, we can find an unstable mode with complex {. For this purpose we focus our attention
to the Re ({) > —1 case. We start by fixing &, to a specific value, and by finding numerically
the points in the {Re (¢), Im (¢)} plane resulting into a real F [, &]. For Re ({) = —1, we
find a finite set of values of Im () for which this happens. We then find that the number
of these values progressively decreases as Re () is increased, until a real F can no longer
be found. The values of  for which F is real therefore form a set of distinct trajectories in
the complex (—plane. In figure 2 we show these trajectories for three specific choices of &,.
We repeated this study for several values of £, between those shown in the figure, always
obtaining the same behavior as the one shown in the figure.

Next, we evaluate F along the real-F trajectories. In figure 3 we show F as a function
of Re (¢) along the trajectories shown in the previous figure; namely, for each value of Re (¢),
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Figure 3. Values of F, shown as a function of Re (¢), along the trajectories shown in the previous figure.
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Figure 4. Values of Re (¢) (left panel) and of Im (¢) (right panel) of the most unstable mode.

we first set Im (¢) according to one of the trajectories of figure 2 (coded with the same color
and line style), and we then evaluate the corresponding value of F.

We see from the figure that now a complex ¢ solution is obtained also at positive V. We
recall that the physically relevant range is |F| < 1. We also observe that, in the physically
relevant range, Re (() is significantly greater than —1, resulting in a stronger instability than
that obtained for real . A generic initial condition for §® will result in a linear combination
of the solutions

1+¢;

00 = Zci (—7) 72, (3.18)
where, in the general case, all the weights ¢; of the linear combination are nonvanishing. The
instability will be then led by the ¢; solution with the greatest real part.?

In the physical range | F| < 1, the obtained values of ¢ vary by a small amount. Therefore,
(f(f_ ‘(//,l) combination.
As a consequence, we can obtain accurate solutions for ¢ simply setting F[(, &,] = 0. In
figure 4 we then vary &, and we show the solution for ¢ (leading to F = 0) with the largest

real part, corresponding to the leading instability.

the solution ¢ depends mostly on the product &, and only mildly on the

We recall that £, = v &, where { = 20}% is the physically relevant parameter controlling
the gauge field amplification, while « is a positive quantity of order one that measures the
uncertainty of our computation (due to the regularization of the vacuum modes in the sub-
horizon regime). We see that, not surprisingly, the instability becomes stronger at increasing
€ (as it leads to a greater value of Re (¢), see eq. (3.11) recalling that 7 — 0~ during inflation).

3We also note that all the solutions we have found satisfy Re¢ > —8, and therefore the integral in eq. (3.10)
is convergent.



We also see that our quantitative results are only mildly affected by the uncertainty encoded
in 7. Most importantly, our conclusion about the instability of the AS background solution
is unaffected by it. We have shown that the instability manifests itself as an oscillatory
behavior about the AS solution with increasing amplitude, as also emerged from some previous
numerical study [12-17].

4 Conclusions

We have presented the analytical study of the stability of the model of [1] when one considers
perturbations of the velocity of the zero mode of the inflaton about the mean field value
determined by eq. (2.8). Our results are consistent with previous findings in the literature,
where the use of numerical techniques showed the existence of oscillations of increasing
amplitude in the inflaton velocity when the system enters the strong backreaction regime.
Eq. (3.13), and the fact that figure 4 gives Im ¢ < 2, show that the oscillations have a period
that is somehow less than 27 efoldings, which is in good agreement with the period of the
oscillations of ® found in the numerical works [14-17].

Our work extends these numerical results, because we could show that the instability is
present irrespective of the choice of parameters in the model, as long as one is in the strong
backreaction regime. While we did not consider spatial fluctuations in the inflaton field, we
do not expect these to change this picture — in fact, large oscillations in the inflaton velocity
have also been observed in [17], that studied the system on a lattice accounting also for the
space dependence of the inflaton.

As first observed in [15], the origin of the instability can be traced to the fact that
the source term on the right-hand side of the first of eqs. (2.4) has a delayed response to a
change in the inflaton velocity. Our eq. (3.10) makes the origin of this delay clear, as the
integral in dy in that equation is peaked at values of 7/ different from 7. We would not be
surprised if this behavior is common to other models where the inflaton is slowed down by
the backreaction of produced matter.
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A WKB approximate solutions for the background gauge field

The second of egs. (2.4) can be written in the form

?A 5 < 5 . 2
where we recall that z = —k7 formally ranges from +oo (the sub-horizon regime) to 0T

(the super-horizon regime). We note that w? is positive for z > o = 2¢ (in the WKB
approximation of the Schrodinger equation, this corresponds to the “classically allowed
region”, where the solution is oscillatory), it vanishes at = z¢, and it is negative for x < z
(the “classically forbidden region”, where the solution is the sum of two exponentials). Apart

~10 -



1 dw
w2
can be solved approximately. The WKB method relates the approx1mate solution in the

“allowed region” to that in the “forbidden region” according to

- o z T I} . z T
A_WCOS(/ Vw2dw/—4)—(u}21/481n(/ vadx/_éL)? xr > xg,

A= (a/)21/4exp< / Fd:z;) ( exp(/ Fd:v),x<<:1:o, (A.2)

where « and 3 are integration constants.

from a neighborhood of xg, the “frequency” varies adiabatically,

We fix the integration constants by demanding the standard adiabatic mode in the deep

sub-horizon regime
. rT 2¢ ;
- ezf%Q/l—?dx’—%
lim A=

1
=+ T3

where an arbitrary phase has be chosen so that, once inserted in the first line of (A.2), the
growing mode in the corresponding second line is real. We note that the adiabatic mode (A.3)
is indeed of the form of the first line of (A.2), with —iav = § = ﬁ We insert these coefficients

: (A.3)

72

into the second line of (A.2), and we perform the integration

/2§\/2£—1d$ = 2¢ arctan (F) V26 — 22, 0< o <2€. (A.4)

Moreover, in this regime, we can approximate

r K2 = arctan( 2;—1) :;—\/Z, \/26x — 22 ~ \/26x . (A.5)

Considering all this, the second line of (A.2) becomes

A:\};(x)lﬂlexp[ 7T§+2\/257$}+\/—<2§>1/4 exp[w&—%/@}, x<<2(i,6)

which coincides with the expression A; given in eq. (2.6) of the main text. We note that
the second term in the expression (A.6), which is the exponentially large term in the £ > 1
regime, is indeed real. Since the coefficient in eq. (A.1) is real, also the complex conjugate
of (A.6) is an approximate solution of this equation. This is the Ay solution given in the main
text. We note that the two solutions are linearly independent.

B Evaluation of the source term

In this appendix we derive eq. (3.14) starting from eq. (3.10), and, in particular, we evaluate
the integrals in the source term. We start by inserting the ansatz (3.11) into eq. (3.10),
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eliminating the common C' factor. The integral in the resulting expression is then evaluated as

T e DS | L v (T 4410 630
/dT (=) E/ dyy” (—7)/7 |e7VV —e ="%m "¢ "aic
2¢7% 2 3 4 5 6 7

+ 57 (3154 2520¢, + 1008062 + 268803 + 53760¢1 + 86016€5 +114688¢5 + 131072¢ |

(7+Q T'(8+¢) 1
23140 gl 231+0¢S [385280T [¢,8¢,] +17640T [2+¢, 8]

+5880T"[3+4¢,88, | +1470T [44+(,88,]+294T [5+(, 88| +49T [6+(, 8¢,]

+ 7T [7+¢,86]+T[8+¢,8¢,]+35280T [14¢,85,] | } , (B.1)

where the functions I' with two arguments appearing in the last three lines are incomplete
I'—functions. This expression is valid for Re { > —8, where the integral converges.
Disregarding the terms that are exponentially small in the limit of large &, (including

the incomplete I'-functions) results in
T 5 ¢ 0 48 NN
J o T [T () e v@V—f]
T

(-7) T [ 4410 630 L (THOTE+9)
¢ 8+ ¢ 23(14+0) ¢ £§ '

Inserting this expression into the right hand side of (3.10) results in

1+ (7T+¢ _54¢ v _54¢
()4()(_7-) 2 +W(_T) 2

0? (—Hr)? &2 (—7)" 7 (14¢)(7+()
2 Bp2s 212 4C(8+()

r9+¢)
9243¢ gg

—2% x 315 + (B.3)

Removing the common time dependence, and using eq. (2.8) results into the expression (3.14)
of the main text.
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