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ABSTRACT

Oblivious routing has a long history in both the theory and practice
of networking. In this work we initiate the formal study of oblivious
routing in the context of reconfigurable networks, a new architec-
ture that has recently come to the fore in datacenter networking.
These networks allow a rapidly changing bounded-degree pattern
of interconnections between nodes, but the network topology and
the selection of routing paths must both be oblivious to the traffic
demand matrix. Our focus is on the trade-off between maximizing
throughput and minimizing latency in these networks. For every
constant throughput rate, we characterize (up to a constant factor)
the minimum latency achievable by an oblivious reconfigurable
network design that satisfies the given throughput guarantee. The
trade-off between these two objectives turns out to be surprisingly
subtle: the curve depicting it has an unexpected scalloped shape
reflecting the fact that load-balancing becomes more difficult when
the average length of routing paths is not an integer because equal-
izing all the path lengths is not possible. The proof of our lower
bound uses LP duality to verify that Valiant load balancing is the
most efficient oblivious routing scheme when used in combination
with an optimally-designed reconfigurable network topology. The
proof of our upper bound uses an algebraic construction in which
the network nodes are identified with vectors over a finite field,
the network topology is described by either the elementary basis
or a sequence of Vandermonde matrices, and routing paths are
constructed by selecting columns of these matrices to yield the
appropriate mixture of path lengths within the shortest possible
time interval.
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1 INTRODUCTION

Oblivious routing has a long history in both the theory and practice
of networking. By design, an oblivious routing scheme forwards
data along a fixed path (or distribution over paths) designed to
provide good performance across a wide range of possible traf-
fic demand matrices. Past theoretical work on oblivious routing
schemes focused on their ability to approximate the congestion of
the optimal multicommodity flow, culminating in Récke’s discov-
ery [22] of oblivious routing schemes for general networks that
are guaranteed to approximate the optimum congestion within a
logarithmic factor in the worst case. However, thus far, oblivious
routing has only been studied in the context of static networks,
where the edges in the network are fixed at the beginning and do
not change over time. Recent works in datacenter network archi-
tecture [8, 9, 17-20, 23, 27] have advanced reconfigurable networks
as a promising direction. A reconfigurable network is defined as
a d-regular network with N nodes (or hosts) where the edges (or
links) between the nodes can be reconfigured (or rearranged) very
rapidly over time. Early designs of reconfigurable networks for
datacenters [8, 17, 27] relied on predictable traffic demand matrices
to choose optimal edge configurations and routes for sending data
between nodes. However, more recent works [18, 19, 23] in this
space have made a case that traffic demand matrices in datacenters
are highly unpredictable and change at very fine time granularities,
making it challenging, if not impossible, to accurately track the
demand matrix at any given time. To overcome this fundamental
challenge, recent works have advocated for edge configuration and
route selection mechanisms that are oblivious to traffic demand ma-
trices. In this paper, we make the first attempt to formally study the
problem of oblivious routing in the novel context of reconfigurable
networks.

There are two key objectives that oblivious reconfigurable net-
works must aim to optimize. First, since it is costly to overprovision
networks (especially for modern high-bandwidth links), datacenter
network operators aim for extremely high throughput, utilizing a
large constant factor of the available network capacity at all times
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if possible. At the same time, it is desirable to minimize latency, the
worst-case delay between when a packet arrives to the network
and when it reaches its destination. Thus, there is a vital need to
understand oblivious network designs for reconfigurable networks
that guarantee high throughput and low maximum latency.

The objectives of maximizing throughput and minimizing la-
tency in reconfigurable networks are in conflict: due to degree
constraints most nodes cannot be connected by a direct link at all
times, so one has to either use indirect paths, which comes at the
expense of throughput, or settle for higher latency while waiting
for reconfigurations to yield a more direct path. Since different
deployments (and applications) may necessitate different tradeoffs
between these two conflicting objectives, the main question that
our work investigates is the following:

For every throughput rate r, what is the mini-
mum latency achievable by an oblivious reconfig-
urable network design that guarantees through-
putr?

We fully resolve this question to within a constant factor! for d-
regular reconfigurable networks, except when d is very large —
bounded below by a constant power of N (the number of nodes in
the network). That is, for every constant rate r, we identify a lower
bound éL* (r,N) such that any N-node d-regular reconfigurable
network guaranteeing throughput r must have maximum latency
bounded below by éL* (r, N). Complementing this lower bound, we
design oblivious networking schemes that guarantee throughput r
and have maximum latency bounded by O(éL* (r,N)), for every
constant r € (0, %], d € N, and infinitely many N. (For r > % +0(1),
we show in the full version of this paper [1] that it is impossible
for oblivious network designs to guarantee throughput r.)

The shape of the optimal tradeoff curve between throughput and
latency is quite surprising. Figure 1 depicts the curve for N = 10°
and d = 1; the x-axis measures the inverse throughput, 1/r, while
the y-axis (in log scale) measures maximum latency. The curve
is scallop-shaped, with particularly favorable tradeoffs occurring
when 1/r is an even integer. Between even-integer values of 1/,
the maximum latency improves slowly at first, then precipitously as
1/r approaches the next even integer. The proof of our main result
explains these key features of the tradeoff curve: its non-convexity,
the special role played by even integer values of 1/r, and the steep
but continuous improvement in L*(r, N, d) as 1/r approaches the
next even integer. In Section 1.2 below we sketch the intuitions that
account for these features. Before doing so, we pause to explain
more fully our model and notation.

1.1 Our Model and Results

Our model of oblivious reconfigurable networking is inspired by
the circuit-switched network designs popularized by works such

! One could, of course, ask the transposed question: for every latency bound L, what is
the maximum guaranteed throughput rate achievable by an oblivious routing scheme
with maximum latency L? Our work also resolves this question, not only to within a
constant factor, but up to an additive error that tends to zero as N — 0. As noted
below in Section 1.2, optimizing throughput to within a factor of two, subject to a
latency bound, is much easier than optimizing latency to within a constant factor
subject to a throughput bound. The importance of the latter optimization problem,
i.e. our main question, is justified by the high cost of overprovisioning networks: due
to the cost of overprovisioning, datacenter network operators tend to be much less
tolerant of suboptimal throughput than of suboptimal latency.
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Figure 1: A plot of the upper and lower bounds for the la-
tency of an ORN containing 10° nodes that can guarantee a
given throughput.

as [18, 19, 23]. These are networks composed of a fixed set of N
nodes, with a switching fabric that allows a time-varying pattern of
links providing connectivity between node pairs. A network design
in our model is specified by two ingredients: a connection schedule
and an oblivious routing scheme. The connection schedule desig-
nates which node pairs are connected in each timeslot. This can be
visualized in the form of a virtual topology: a layered directed graph
(with layers corresponding to timeslots) that encodes the paths that
network traffic can take over time. The oblivious routing scheme
designates, for each source-destination pair (g, b) and timeslot ¢, a
probability distribution over routing paths used to forward traffic
with destination b that originates at a in timeslot ¢. A routing path
is specified by the sequence of edges in the virtual topology that
compose the path. We call the combination of a connection sched-
ule and an oblivious routing scheme an oblivious reconfigurable
network (ORN) design.

We evaluate ORN designs according to two quantities: maxi-
mum latency (L) and guaranteed throughput (r). Latency of a path
measures the difference between the timeslots when it starts and
ends, and an ORN design with maximum latency L uses no rout-
ing paths of latency greater than L. The definition of guaranteed
throughput is more subtle. First, we model demand using a function
that specifies, for each source-destination pair and each timeslot,
the amount of flow with that source and destination originating
at that time. We say an ORN design guarantees throughput r if the
routing scheme is guaranteed not to exceed the capacity of any link,
whenever the demand satisfies the property that the total amount
of demand originating at any source, or bound for any destination,
never exceeds r at any timeslot. Our main result can now be stated
in the following form.

Theorem 1. Consider any constant r € (0, %] Let (h, €) to be the

unique solution in N X (0, 1] to the equation % =h+1-¢ and let
L*(r,N) be the function

L*(r,N) = h (N0 4 (o) 1/1)
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For every N > 1 and every ORN design on N nodes that guarantees
throughput r, the maximum latency is at least Q(L*(r, N)). Fur-
thermore for infinitely many N there exists an ORN design on N
nodes that guarantees throughput r and whose maximum latency is
O(L*(r,N)).

1.2 Techniques

To begin reasoning about the latency-throughput tradeoff in ORNS,
note that for any node in the virtual topology, the number of distinct

routing paths originating at that node whose latency is at most

L
. . p . .

a node to be able to reach a majority of other nodes within L

timeslots using at most h physical links, we must have the inequality

L and which contain p physical edges is (,). Hence, in order for

ZZ:O (;) > N/2. A simple calculation verifies that this inequality

implies L = Q (hN 1/ h). A routing scheme in which the routing

path between a random source and a random destination contains
h physical links, on average, cannot guarantee throughput greater
than 1/h. This suggests a latency-throughput relationship of the

formL=Q %N r ) This lower bound can be made rigorous with

a little bit of work, but it differs from the tight bound asserted in
Theorem 1 in two significant ways.

(1) Whereas %N " is a smooth convex function of r > 0, the func-
tion L*(r, N) is non-smooth and non-convex; when plotted
as a function of 1/r it exhibits a scalloped shape with cusps
at even integer values of 1/r.

(2) The exponent of N in the function L* (r, N) is approximately
2r rather than r. In other words, the naive bound L > %N r
is tight up to a factor of 2 in terms of throughput, but off
by a factor of about N” in terms of latency. (As remarked in
Footnote 1, sacrificing a factor of 2 in throughput is typically
regarded by network operators as much more costly than
sacrificing a constant factor in latency.)

The first of these differences is explained by a refinement of the
counting argument at the start of this section. In order to guarantee
throughput r, the average number of physical hops on the routing
paths used (under any traffic demands with at most r units of flow
based at any source or destination) must be at most 1/r. However,
the number of physical hops in any path must be an integer. Thus,
if 1/r is not an integer, at least a constant fraction of routing paths
must have | 1/r] physical hops or fewer. Subject to any upper bound
on latency, paths with a limited number of physical hops are much
less numerous than those with a larger number of physical hops,
so the requirement to use a large number of distinct paths with
L1/r] or fewer physical hops places a significantly stricter lower
bound on maximum latency, leading to the non-convex shape with
regularly spaced cusps depicted in Figure 1.

To give intuition for the factor-two difference in throughput
between the naive lower bound and the true function L*(r, N), it is
useful to recall Valiant load balancing (VLB), an ingredient in many
of the earliest and most practical oblivious routing schemes. VLB
constructs a random path from source s to destination ¢ by choosing
a random intermediate node, r, and concatenating minimum-cost
paths from s to r and from r to t. This inflates the number of physi-
cal hops used in routing paths by a factor of two, but is beneficial
because it prevents congestion under worst-case demands. The fact
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that the exponent of N in L*(r, N) is approximately 2r rather than
r can be interpreted as confirming that the factor-two inflation due
to VLB is unavoidable, for oblivious routing schemes that guarantee
throughput r. To prove this fact, we formulate optimal oblivious
routing for a given virtual topology as a linear program and inter-
pret the dual variables as endpoint-specific edge costs that can be
summed to ascribe a cost to every path connecting a given pair of
endpoints. We prove that, regardless of the virtual topology, one
can always design a carefully-constructed dual solution that penal-
izes paths containing a large number of physical hops, and doubly
penalizes physical hops that are too close to both endpoints. Paths
that avoid the double penalty must use twice as many physical
hops as minimum-cost paths, exactly as in VLB routing. The most
delicate part of the proof'is the verification that the dual solution is
feasible, which requires carefully bounding the number of nodes
reachable from any source within a given cost budget.

To prove that the lower bound L*(r, N) is tight, we need to
construct an ORN design that matches the bound up to a constant
factor. Our design is easiest to describe when r = ﬁ and N = n”
for positive integer h and prime number n. In that case, we use
a design that we call the Elementary Basis Scheme (EBS) which
identifies the set of N nodes with elements of the group? (Z/ (n)".
Let e be the elementary basis consisting of the columns of the h x h
identity matrix. EBS uses a connection schedule whose timeslots
cycle through the nonzero scalar multiples of elements of Y. In
a timeslot devoted to s - e;, the network is configured to allow
each node x to send to x + s - ;. Over the course of one complete
cycle, any two nodes can be connected by a “direct path” consisting
of h physical hops (or fewer) that modify the coordinates of the
source node one by one until they match the coordinates of the
destination. The EBS routing scheme constructs a random path
connecting a given source and destination using VLB: it chooses a
random intermediate node and concatenates two “semi-paths”: the
direct paths from the source to the intermediate node and from the
intermediate node to the destination.

To generalize this design to all non-integer values of Z_Ir’ we need
to enhance EBS so that a constant fraction of semi-paths use h
physical hops and a constant fraction use h + 1 physical hops. This
necessitates a modified ORN design that we call the Vandermonde
Basis Scheme (VBS). Assumer = h+1—¢forh e N0 < ¢ < 1,
and that N = n"*! for prime n, so that the nodes can be identified
with the vector space F’;H. Instead of one basis corresponding to
the identity matrix, we now use a sequence of distinct bases each
corresponding to a different Vandermonde matrix. In addition to the
single-basis semi-paths (which now constitute h + 1 physical hops),
this enables the creation of “hop-efficient” semi-paths composed
of h physical hops belonging to two or more of the Vandermonde
matrices in the sequence. Hop-efficient semi-paths have higher
latency than direct paths, but we opportunistically use only the ones
with lowest latency to connect a subset of terminal pairs, joining
the remaining pairs with direct semi-paths. A full routing path is
then defined to be the concatenation of two random semi-paths, as
before. Proving that the routing scheme guarantees throughput r

2This should be thought of as the h-dimensional vector space over Z/(n). While we
describe taking the elementary basis for simplicity here, the EBS scheme itself does not
require Z/(n) to be a field, thus we use the word group here. This is further described
in Section 4.1.
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boils down to quantifying, for each physical edge e, the net effect of
shifting load from direct paths that use e to hop-efficient paths that
avoid e and vice-versa. The relevant sets of paths in this calculation
can be parameterized by unions of affine subspaces of Fﬁ“, and
the use of Vandermonde matrices in the connection schedule gives
us control over the dimensions of intersections of these subspaces,
and thus over the size of their union.

1.3 Related work

Oblivious routing in general networks: Ricke’s seminal 2002
paper [21] proved the existence of polylog(n)-competitive obliv-
ious routing schemes in general networks. Subsequent work im-
proved the competitive ratio [12] and devised polynomial-time
algorithms for computing an oblivious routing scheme that meets
this bound [3, 5, 12]. Récke’s 2008 paper [22] yielded an O(logn)-
competitive oblivious routing scheme, computed by a fast, simple
algorithm based on multiplicative weights and FRT’s randomized
approximation of general metric spaces by tree metrics [7]. The
effectiveness of Ricke’s 2008 routing scheme for wide-area traffic
engineering in practice was demonstrated in [2, 16]. Additionally,
Gupta, Hajiaghayi, and Ricke [10] show a polylog(n) competitive
ratio for routing schemes oblivious to both traffic and the cost
functions associated with each edge. While these works achieve
excellent congestion minimization over general networks, they do
not specifically consider throughput or latency, and do not attempt
to co-design the network with their routing scheme.

With respect to bounding the throughput of oblivious routing
schemes, Hajiaghayi, Kleinberg, Leighton, and Réacke [11] prove

lo

log lgog n
networks. However, their definition of throughput differs from
ours; they simply mean the combined flow rate delivered to all
sender-receiver pairs. With respect to latency, the competitive ratio
of average latency of oblivious routing over general networks is
analyzed by [13]. Their model of latency differs from ours; they
assign resistance values to each edge, and they only provide an
oblivious routing scheme achieving the O(log(N))-competitive
ratio when routing to a single target.

Valiant load balancing in hypercubes and other architec-
tures: Leslie Valiant introduced oblivious routing in [25]. The VLB
scheme for randomized routing in the hypercube was introduced,
and shown to be optimal, by Valiant and Brebner [25, 26]. While
these works evaluate latency under queueing, they do not evaluate
throughput. Additionally, they use a direct-connect torus topology.
Our work can be interpreted as proving that VLB is the optimal
oblivious routing scheme to use in conjunction with an optimally-
designed reconfigurable network topology, thus providing further
theoretical justification for the widespread usage of VLB in prac-
tice when oblivious routing is applied on handcrafted network
topologies.

Our first ORN design, EBS, for the case where N = Zh, can be seen
as simulating VLB over a hypercube. In this case, the connection
schedule simulates an h-dimensional hypercube by cycling through
h different connection graphs, each with degree 1. While the la-
tency bound achieved by EBS in this case is O(log(N)), the same
bound found in [25], the differing contexts makes these bounds

a lower bound of Q(

) on the competitive ratio in general
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incomparable. In particular, while Valiant considered queuing delay,
we consider latency intrinsic to the scheduled nature of ORNS.

A lower bound for deterministic oblivious routing in d-regular
networks with N nodes was proven in [14]; the same paper shows
this bound is tight for hypercube networks, in which d = log(N).

Load-Balanced Switches: The load-balanced switch architec-
ture proposed by Chang [6] uses static schedules and sends traffic
obliviously via intermediate nodes. While there are significant sim-
ilarities between this architecture and ORNS, it differs in its use
of specialized intermediate nodes (rather than sending traffic via
multiple end-hosts), as well as its focus on monolithic switches.

Circuit-Switched Datacenter Network Architectures:

c-Through [27] and Traffic Matrix Scheduling [20], as well as
many other designs, propose a hybrid network in which a packet-
switched backbone exists alongside a circuit-switched fabric. How-
ever, with advances in circuit switches that have reduced reconfigu-
ration times to nanosecond-scale, it is worth reconsidering whether
a separate packet-switched backbone is truly necessary.

Oblivious Circuit-Switched Networks: Rotornet and Sirius
[4, 19] are two ORN concepts proposed for datacenter-wide net-
works that use optical circuit switches to build a reconfigurable
network fabric. Shoal [23] is a similar ORN concept that uses elec-
tric circuit switches in a disaggregated rack environment. Together,
these works demonstrate that the ORN paradigm is feasible in prac-
tice. These designs use similar schedules that prioritize achieving
high throughput at the expense of poor latency for large N. Our
first ORN design, EBS, generalizes these existing designs to achieve
many potential tradeoffs, ranging from the existing tradeoff to that
achieved by an ORN version of hypercube routing.

Opera [18] evolves on the ORN concept by greatly lengthen-
ing each timeslot and creating an expander graph topology be-
tween nodes during each timeslot. Opera uses a non-oblivious rout-
ing scheme in which latency-sensitive traffic is sent via multiple
hops within a single expander graph topology, while throughput-
sensitive traffic is held until the schedule advances to a topology in
which it can be sent directly to the destination in one hop. This de-
sign makes strong assumptions about the workload, including that
bandwidth-sensitive traffic is near all-to-all, limiting its flexibility.

2 DEFINITIONS

This section presents definitions that formalize the notion of an
oblivious reconfigurable network (ORN). We assume a network of N
nodes communicating in discrete, synchronous timeslots. The nodes
are joined by a communication medium that allows an arbitrary
pattern of unidirectional communication links to be established
in each timeslot, subject to a degree constraint that each node
participates as the sender in at most d connections, and as the
receiver in at most d connections. Throughout most of this paper
we specialize to the case d = 1; see Section 2.1 below for a discussion
of why the general case reduces to this special case.

In systems that instantiate reconfigurable networking, data is
encapsulated in fixed-size units called frames or packets. In this
work we instead treat data as a continuously-divisible commodity,
and we allow sending fractional quantities of flow along multiple
paths from the source to the destination. This abstraction is stan-
dard in theoretical works on oblivious routing, and can be justified
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Figure 2: A connection schedule among four nodes, as well
as part of its corresponding virtual topology. The full virtual
topology represents a countably infinite number of times-
lots.

by interpreting fractional flow as a probability distribution over
routing paths, with each frame being sent along one path sampled
at random from the distribution. Under this interpretation flow
values represent the expected number of frames traversing a link.

Definition 1. A connection schedule w with size N is a sequence
of permutations 7; for all j € Z, each mapping [N] to [N]. The
interpretation of the relation 7;(i) = j is that node i is allowed to
send one frame to node j during timeslot .

For the rest of this paper we will focus on periodic connection
schedules, those with finite description size. These have some period
length T such that 7; (i) = my (i) for all t = k (mod T). See the full
paper [1] to see how our results extend to aperiodic schedules.

The virtual topology of the connection schedule 7 is a directed
graph G, with vertex set [N] X Z. The edge set of G, consists of
the union of Eyjyt and Eppys. Evirt is the set of virtual edges, which
are of the form (i, ) — (i, ¢ + 1) and represent the frame waiting
at node i during the timeslot . Eppys is the set of physical edges,
which are of the form (i, t) — (m;(i), t + 1) and represent the frame
being transmitted from i to ; (i) at timeslot ¢.

We interpret a path in G,; from (a, t) to (b, t’) as a potential way
to transmit a frame from node a to node b, beginning at timeslot ¢
and ending at some timeslot t’. For a node a € [N] let [a] denote
the set {a} X Z, consisting of all copies of a in G,. Let (a, b, t)
denote the set of paths in G, from the vertex (a, t) to [b]. Finally,
let P = Ugps P(a b, t) denote the set of all paths in G.

Definition 2. A flow is a function f : # — [0, ). For a given
flow f, the amount of flow traversing an edge e is defined as:

F(fe)= > f(P) - 1eep
Pep
We say that f is feasible if for every physical edge e € Eppys.
F(f,e) < 1.

Definition 3. The latency L(P) of a path P in Gy is equal to the
number of edges it contains (both virtual and physical). Note that
traversing any edge in the virtual topology (either virtual or phys-
ical) is equivalent to advancing in time by the duration of one
timeslot, so the number of edges in a path is proportional to the
elapsed time. For a nonzero flow f, the maximum latency is the
maximum over all paths in the flow

Lmax(f) = glea;g{L(P) : f(P) >0}

Our definitions of latency and of the virtual topology G, incor-
porate the idealized assumption of zero propagation delay. In other
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words, we assume that a frame sent in one timeslot is received by
the beginning of the following timeslot, and that the length of a path
in the virtual topology accurately reflects the time interval between
when the frame originates and when it reaches its destination.

Definition 4. An oblivious routing scheme R is a function that
associates to every (a,b,t) € [N] X [N] X Z a flow R, j, ; such that:
(1) Ryp, is supported on paths from (g, t) to [b], meaning VP ¢
P(a,b,t) Rygp:(P)=0.
(2) R, p,; routes one unit of flow, meaning Y,p R, ,(P) = 1.
(3) Rhas period T.In other words, R, j, . is equivalent to R, p,
(except with all paths transposed by T timeslots, as required
to satisfy point 1).

Definition 5. A demand matrixisan NXN matrix which associates
to each ordered pair (g, b) an amount of flow to be sent from a to b.
A demand function D is a function that associates to every t € Z a
demand matrix D(t) representing the amount of flow D(t, a, b) to
originate between each source-destination pair (a, b) at timeslot .
The throughput requested by demand function D is the maximum,
over all ¢, of the maximum row or column sum of D(t).

Definition 6. For a given oblivious routing scheme R and demand
function D, the induced flow f (R, D) is defined by:

f(RD) = D D(t,a,b)Rqy,.

(ab,t) e[NIX[N]xZ

Definition 7. An oblivious routing scheme is said to guarantee
throughput r if the induced flow f(R, D) is feasible whenever the
demand function D requests throughput at most r.

Definition 7 can be interpreted as meaning that the network
is able to simulate a “big switch” with N input and output ports
having line rate r: as long as the amount of data originating at
any node a or destined for any node b does not exceed rate r per
timeslot, the network is able to route all data to its destination
without violating capacity constraints.

In this work, we examine the tradeoffs between guaranteed
throughput and maximum latency. Specifically, among ORNs of
size N that guarantee throughput r, what is the lowest possible
maximum latency?

2.1 Allowing degree d > 1 in a timeslot

Although our formalization of ORNs only describes networks in
which nodes have a degree of 1 in every timeslot, it can be general-
ized to networks that support a d-regular connectivity pattern in
each timeslot. When d > 1, we interpret a demand matrix D which
requests throughput r as one in which the row and column sums
of D are bounded above by dr.

The connectivity of Nx{t, t+1} is d-regular bipartite. By K6nig’s
Theorem, this edge set can be decomposed into d edge-disjoint
perfect matchings, which we use to “unroll” into d consecutive
timeslots of a 1-regular ORN. Therefore, a d-regular ORN design
which guarantees throughput r with maximum latency L unrolls
into a 1-regular ORN design which guarantees throughput r with
maximum latency dL.

Under this framework, a lower bound L*(r, N) for 1-regular
ORN designs trivially implies the lower bound éL*(r, N) for d-
regular designs. However, an upper bound for 1-regular designs
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does not necessarily imply a similar upper bound for d-regular
designs, because the routing scheme could route paths containing
two or more physical edges in timeslots belonging to the same
“unrolled” segment of the 1-regular virtual topology. This would
correspond to traversing two or more edges at once in the d-regular
topology. Our upper bound construction can be modified to avoid
this problem. Specifically, it can be modified to never allow flow to
be routed along two edges within any block of d consecutive time
slots, provided d < N 1/(h+1) This modification adds a factor of at
most 2 to the maximum latency. Then, by inverting the unrolling
process, we obtain a d-regular ORN design with maximum latency
L=0( éL* (r, N)). This confirms that the tight bound on maximum
latency for d-regular ORN designs is O( éL* (r,N)) whenever d <

N/ (h+1) and justifies our focus on the case d = 1 throughout the
remainder this paper. These modifications are further described in
the full version of this paper [1].

3 LOWER BOUND

In this section we prove the lower-bound half of Theorem 1, which
says that when 217 =h+1-¢withh e Nand 0 < ¢ < 1, any
d-regular, N-node ORN design that guarantees throughput r must
have maximum latency Q(% [Nl/(hH) + (eN)l/h]). As noted in
Section 2.1, the general case of this lower bound reduces to the case
d = 1; we assume d = 1 throughout the remainder of this section.

Because the full proof is somewhat long, we begin by sketching
some of the main ideas in the proof, beginning with a much simpler
argument leading to a lower bound of the form Q(%N ") when
1/r is an integer. This simple lower bound applies not only to
oblivious routing schemes, but to any feasible flow f that solves
the uniform multicommodity flow problem given by the demand
function D(t,a,b) = x5 forallt € [T] and b # a. The lower
bound follows by combining a few key observations.

(1) Define the cost of a path to be the number of physical edges
it contains. Since every source sends out r units of flow
at all times, the flow f sends out rNT units of flow per T-
step period, in a network whose physical edges have only
NT units of capacity per T-step period. Consequently the
average cost of flow paths in f must be at most %

(2) For any source node (g, t) in the virtual topology, the number
of distinct destinations [b] that can be reached via a path
with maximum latency L and cost p is bounded above by

L

(p)-
(3) If L < LN, we have (1%) < N/4and Z;,/:rl (i) < N/2,s0
the majority of source-destination pairs cannot be joined by
a path with latency L and cost less than % + 1. In fact, even if
we connect every source and destination with a minimum-
cost path (subject to latency bound L), one can show that
the average cost of paths will exceed %
Since a feasible flow must have average path cost at most
%, we can conclude that a feasible flow does not exist when

L<-LN".

2er

©

When 1/r is an integer, this lower bound of Lyqx > 217N r
for feasible uniform multicommodity flows turns out to be tight
up to a constant factor. However for oblivious routing schemes,

Theorem 1 shows that maximum latency is bounded below by a
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function in which the exponent of N is roughly twice as large.
Stated differently, for a given maximum latency bound, the optimal
throughput guarantee for oblivious routing is only half as large as
the throughput of an optimal uniform multicommodity flow.

The factor-two difference in throughput between oblivious rout-
ing and optimal uniformly multicommodity flow solutions aligns
with the intuition that oblivious routing schemes must use indi-
rect paths (as in Valiant load balancing) if they are to guarantee
throughput r, whereas uniform multicommodity flow solutions
(in a well-designed virtual topology) can afford to satisfy all de-
mands using shortest-path routing. The proof of the lower bound
for oblivious routing needs to substantiate this intuition.

To do so, we formulate oblivious routing as a linear program
and interpret the dual variables as specifying a more refined way to
measure the cost of paths. Rather than defining the cost of a path to
be its number of physical edges, the duality-based proof amounts to
an accounting system in which the cost of using an edge depends
on the endpoints of the path in which the edge is being used. For a
parameter 6 which we will set to h + 1 (unless ¢ is very small, in
which case we’ll set 6 = h + 2), the dual accounting system assesses
the cost of an edge to be 1 if its distance from the source is less than
0, plus 1 if its distance from the destination is less than 6. Thus,
the cost of an edge is doubled when it is close to both the source
and the destination. The doubling has the effect of equalizing the
costs of direct and indirect paths: when the distance between a
source and destination is at least 8, there is no difference in cost
between a shortest path and one that combines two semi-paths
each composed of 8 physical edges.

Viewed in this way, it is intuitive that the proof manages to
show that VLB routing schemes, which construct routing paths by
concatenating random semi-paths with the appropriate number of
physical edges, correspond to optimal solutions of the oblivious
routing LP. The difficulty in the proof lies in showing that the con-
structed dual solution is feasible; for this, we make use of a version
of the same counting argument sketched above, that bounds the
number of distinct destinations reachable from a given source under
constraints on the maximum latency and the maximum number of
physical edges used.

3.1 Lower Bound Theorem Proof

Before presenting the proof of Theorem 2, we formalize the count-
ing argument we reasoned about in our proof sketch.

Lemma 1. (Counting Lemma) If in an ORN topology, some node a
can reach k other nodes in at most L timeslots using at most h physical
hops per path for some integer h, then k < Z(i) assuming h < %L.

Proor. If node a can reach k other nodes in < L timeslots using
exactly h physical hops per path, then k < (i) Additionally, the
function (I};) grows at least exponentially in base 2 — that is, (I};) >
2(hI; 1) —up until b = %L. Therefore, the number of such k is at
most S, () < 2(0) o

Theorem 2. Given an ORN design R which guarantees throughputr,
the maximum latency suffered by any routing path P with R, , ;(P) >
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0 over all a, b, t is bounded by the following equation
Linax 2 Q (h [(gN)l/h +N1/(h+1)])

(1)
whereh = L%J ande € (0,1] is set toequal h+1— zl_r In other words,

(h, €) is the unique solution in N x (0, 1] to the equation z_lr =h+l-c¢.

Proor. Consider the linear program below which maximizes
throughput given a maximum latency constraint, L, where we let
Pr(a, b, t) be the set of paths from (a,¢) — [b] with latency at
most L.

LP
maximize: r
subject to: Z Ropi(P)=r
Pe®Pr(ab,t)
Va,b € [N], t € [T]

T-1

Ra,a(a),t(P) <1
a€[N] t=0 PePr (a,0(a),t):ecP

Vo € SN, € € Eppys
Ra,b,t(P) >0
VYa,b € [N], t € [T], P € Pr(a,b,t)

The second set of constraints, in which the parameter o ranges
over the set Sy of all permutations of [N], can be reformulated as
the following set of nonlinear constraints in which the maximum
is again taken over all permutations o:

max rz
o2

ac[N] t=0 PePyr (a,0(a).t):ecP

T-1
Ra,a(a),t(P) <1 Vee Ephys

Note that given an edge e, this maximization over permutations o
corresponds to maximizing over perfect bipartite matchings with

edge weights defined by Wa,be = Zzgol ZP€PL(a,b,t):eEP Ra,b,t(P)-

This prompts the use of a maximum matching LP and its dual. We
substitute finding a feasible matching dual solution into the original
LP and take the dual again.

LP
maximize: r
subject to: Z Rypi(P) =7
Pe®Pr(ab,t)
VYa,b € [N], t € [T]
T-1

Va,b € [N], phys
Eae+ Z Npe <1 Ve € Ephys
a€[N] be[N]

£ae >0 Yae [N]ee Ephys
Npe 2 0 Vb € [N], e € Eppys
Ra,b,t(P) 20
Vab e [N], t € [T], P € Pr(a b,1)
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Dual

minimize: E Ze
e

subject to: Z Xabt 21
a,b,t

Ze > Z Yape Ya € [N] e € Eppys
b

Ze 2 Z Yabe Vb€ [N] €€ Eppys

a
Z Ya,be 2 Xa,b,t
ecP

Va,b € [N], t € [T], P € Pr(a,b,t)
Yabe Ze 20 VYa,be [N], e € Ephys

The variables y, ; . can be interpreted as either edge costs we
assign dependent on source-destination pairs (a,b), or demand
functions designed to overload a particular edge e. We will use
both interpretations, depending on if we are comparing y, ;  vari-
ables to either x,p, ; or ze variables respectively. According to the
fourth dual constraint, the variables x,j ; can be interpreted as
encoding the minimum cost of a path from (a, t) to [b] subject to la-
tency bound L. According to the second and third dual constraints,
the variables z, can be interpreted as bounding the throughput
requested by the demand function D(¢, a,b) = y, p .. We will next
define the cost inflation scheme we use to set our dual variables.

Cost inflation scheme For a given node a € [N] and cutoff
0 € Z, we will classify edges e according to whether they are
reachable within 0 physical hops of a, counting edge e as one of
the hops. (In other words, one could start at node a and cross edge
e using 0 or fewer physical hops.) We define this value m;(e, a) as
follows.

1 if e can be reached from a using at most 6
mg(e, a) = physical hops (including e)
0 if otherwise

We define a similar value for edges which can reach node b.

1 if b can be reached from e using at most 0
my (e b) = physical hops (including e)
0 if otherwise

To understand how these values are set, consider some path P from
(a,t) — [b]. If we consider the mg my, weights on the edges of P,
then the first 0 physical hop edges of P have weight mj (e, a) = 1
and the last 0 physical hop edges of P have weight m (e, b) = 1. It

may be the case that some edges have both mg(e, a) = m;(e, b) =1,
if P uses fewer than 260 physical hops. And if P uses 0 or fewer
physical hops, then every physical hop edge along P has weight
m'g(e, a) = my (e, b) = 1. All other weights may be 0 or 1 depending
on whether those edges are otherwise reachable from a or can
otherwise reach b.

We start by setting §, 5, = mg(e, a) +my(e,b). Also set £, =
Minpep; (ab,t){eep Ja,b,e - Note that by definition, £ and § vari-
ables satisfy the last dual constraint. We will next find a lower
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bound w < ¥, 5+ X4 5+ and use that to normalize the %, §j variables
to satisfy the first dual constraint.
Note that }Yccp Jgpe = min{20,2|P N Eppys|}. Then we can

bound the sum of X variables by

2 Fabiz ),

ab,t at b#a

min

20,2|PNE
PEPL(a,b,t){ | phys|}

Note that X, ; < 20 only when there exists some path from
(a,t) to [b] which uses less than 6 physical edges. We can then use
the Counting Lemma to produce an upper bound on the number of
b # a which have such paths: this is at most 2(951).

So, assuming that 2(9111) < N and that 0 — 1 < L/3, we have

S ezt v, L)),

at bta
NT |20 (N -2 L +
w= - ,
0-1 0
and then set Yabe = vlvga,b,e and Xabt = %ﬂea,b,t-

Next, we set ze = maxy {2 Yo b.e> 2b Yabe}- By construction,
the values of x, , 4, g b > Ze that we have defined satisfy the dual
constraints. Then to bound throughput from above, we upper bound
the sums 3., y,p e and Xy Y4 p e, thus upper bounding the sum of

Ze'S.
1 L
;ya,b,e_;(;mg(e,aHN—l)s (2(9_1)+N—1)

where the last step is an application of the Counting Lemma. Simi-

larly,
g < i N-1+2 L
: Yabe = w 0-1

Recalling that ze = max, p{>.q Yg.b.e» 2b Yab.e }» We deduce that

<1 N-1+2 L
Z, —_ ol .
T w 0-1

Using this upper bound on z., we find that the optimal value of the
dual objective — hence also the optimal value of the primal, i.e. the
maximum throughput of oblivious routing schemes — is bounded

by
NT L
rSZe:ZeS 7(N—1+2(9_1))

4L9—l
20(N(0 —1)! — 2L6-1)

L
-1
Set

L
-1

1
w

_29+

a!

using the fact that (a=b)
inequality to isolate L.

|

< ab. At this point, we can rearrange the

T >

1 4191
r—— <

20 7 20(N(6 —1)! —2L8-1)

1
0-1
<

(r = 4)26N(6 - 1)!
4+ (r— 55)40
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Now that we have a closed form, we simplify. We use Stirling’s

. . . 1 k i
approximation, in the form (k!)* > ¢ V2rk*.

1
— Ly \71

LZNall(g_l)ge‘l(%
4+ (r - 54)46

1

1 m(0-1) |1

29—1Nﬁ (r—%)e —
e or+1

To set the parameter 6, first note that the above bound is positive
1

5g- Additionally, we would like to set 0 as large as
possible, and § must be an integer value (otherwise the Counting
Lemma doesn’t make sense). Taking this into account, we set 6 =
|_2—1rJ + 1, the nearest integer for which (r — ﬁ) produces a positive
value.

To simplify our lower bound further, let h = lzl_rJ ande=h+1-

when r >

2—1r. These can be interpreted in the following way: h represents the
largest number of physical hops we take per path (approximately),
and ¢ is directly related to how many pairs take paths using h
physical hops instead of paths using fewer than h physical hops.
Note that € € (0, 1]. This gives the restated bound below.

1/h
b o= )b+ DT /

L>- T
(h+Dr+ 3

e
\/ﬂh/Z)l/h

4h
As ¢ — 0, this bound goes toward 0, making it meaningless
for extremely small values of . However, for such values of ¢, we
simply set 6 = h + 2 instead, which gives the following

> ﬁ(gN)l/h (
e

= 0 (h(en) /1)

Linax > Q ((h+ 1)N1/(”+1>)

To combine the two ways in which we set 0, we take the average of
the two bounds. This gives the bound from our theorem statement,

Lnax 2 Q ([ (eN)/7+ NVED|) = 0 (17, N))

4 UPPER BOUND

To prove an upper bound on the latency achievable while guarantee-
ing a given throughput, we define an infinite family of ORN designs
which we refer to as the Elementary Basis Scheme (EBS). The upper
bound given by EBS is within a constant factor of L*(r, N) for most
values of r. To tightly bound the remaining values of r, we describe
a second infinite family of ORN designs which we refer to as the
Vandermonde Bases Scheme (VBS). Combined, EBS and VBS give a
tight upper bound on maximum latency for all constant . In the full
version of this paper [1], we address the upper bound for d-regular
networks with d > 1 by modifying EBS and VBS.
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0 1 2 3
AA | BA | CA || AB | AC
BA | CA | AA || BB | BC
CA | AA | BA || CB | CC
BC | CC | AC || BA | BB
CC | AC | BC || CA| CB

Figure 3: Connection schedule for 9 nodes in h = 2 EBS, as
well as part of the corresponding virtual topology. Physical
edges used on semi-paths from ((AA),0) to other nodes are
highlighted in green. This schedule can be seen as a gener-
alization of the one presented in Figure 2.

4.1 Elementary Basis Scheme

Connection Schedule: Each node will participate in a series of sub-
schedules called round robins. Consider the cyclic group H = Z/(n)
acting freely on a set S of n nodes, where we denote the action of
t € Honi € Sbyi+t. Around robin for S is a schedule of n — 1
timeslots in which each element of S has a chance to send directly
to each other element exactly once; during timeslot ¢t € [n — 1],
node i may send to i +¢. The number of round-robins in which each
EBS node participates is controlled by a tuning parameter h which
we refer to as the order. Similar to in Section 3, h will be half of the
the maximum number of physical hops in an EBS path.

Let n = NY/%, 5o that the node set [N] is in one-to-one corre-
spondence with the elements of the group H”. Each node a € [N]
is assigned a unique set of h coordinates (ao, a1, ..., ap—1) € H" and
participates in h round robins, each containing the n nodes that
match in all but one of the h coordinates. We refer to these round
robins as phases of the EBS schedule. One full iteration of the EBS
schedule, or an epoch, contains h phases. Because each phase is
a round robin among n nodes, each phase takes n — 1 timeslots,
resulting in an overall epoch length of T = h(n — 1) = h(Nl/h -1).

We now describe the EBS schedule formally. We express each
node i as the h-tuple (ig, i1,...,ip_1) € (Z/n)h. Similarly, we iden-
tify each permutation 7. of the connection schedule using a scale
factor s, 1 < s < n, and a phase number p, 0 < p < h, such that
k= (n—1)p+s—1.Let ey denote the standard basis vector whose
p'® coordinate is 1 and all other coordinates are 0. The connection
schedule is then 7, _1)p1s-1(i) = i+sep = j. Since e is the standard
basis, jx = ix for x # p, and j, = ip +s (mod n).

The EBS schedule can be seen as simulating a flattened butterfly
graph between nodes [15]. This schedule generalizes existing ORN
designs which have thus far all been based on the same schedule: a
single round robin among all nodes, simulating an all-to-all graph.
When h = 1, the EBS schedule reduces to this existing schedule.
On the other hand, when A = log,(N), the EBS schedule simulates
a direct-connect hypercube topology. By varying h, in addition to
achieving these two known points, the EBS family includes sched-
ules which achieve intermediate throughput and latency tradeoft
points.

4.1.1  Oblivious Routing Scheme. The EBS oblivious routing scheme
is based around Valiant load balancing (VLB) [26]. VLB operates
in two stages: first, traffic is routed from the source to a random
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intermediate node in the network. Then, traffic is routed from the
intermediate node to its final destination. This two-stage design
ensures that traffic is uniformly distributed throughout the network
regardless of demand. We refer to the path taken during an individ-
ual stage as a semi-path, and we use the same algorithm to generate
semi-paths in either stage.

To create a semi-path between a node (a, t) and [b], the following
greedy algorithm is used starting at (g, t): for the current node in the
virtual topology, if the outgoing physical edge leads to a node with a
decreased Hamming distance to b (i.e. it matches b in the modified
coordinate), traverse the physical edge. Otherwise, traverse the
virtual edge. This algorithm terminates when it reaches a node in
[0]. Note that because there are h coordinates, the largest Hamming
distance possible is h, and the longest semi-paths use h physical
links.

In order to construct a full path from (a, ) to [b], first select
an intermediate node c in the system uniformly at random. Then,
traverse the semi-path from (a, t) to [c]. Let ¢’ be the timeslot at
which we reach [[c]. If ¢’ < t + T, traverse virtual edges until node
(c,t + T) is reached. Finally, traverse the semi-path from (c, t + T)
to [b].

The EBS oblivious routing scheme is formed as follows: for R, 1, ;,
for all intermediate nodes ¢, construct the path from (a, t) to [4]
via ¢ as described above, and assign it the value ﬁ Assign all other
paths the value 0. Because there are N possible intermediate nodes,
each of which is used to define one path from (a, t) to [b], this
routing scheme defines one unit of flow.

4.2 Latency-Throughput Tradeoff of EBS

Proposition 1. Foreachr < % such that h = Zl_r is an integer, and
each N > 1 such that N'/" is an integer, the EBS design of order
h on N nodes guarantees throughput r and has maximum latency
1 (N2 —1).

The proof of Proposition 1 is contained in the following two
subsections, which address the latency and throughput guarantees
respectively.

4.2.1 Latency. Recall that h = zl_r and that n = N/h = N2" 5o the
latency bound in Proposition 1 can be written as 2h(n — 1). Since
the epoch length is T = h(n — 1), the latency bound asserts that
every EBS routing path completes within a time interval no greater
than the length of two epochs. An EBS path is composed of two
semi-paths, so we only need to show that each semi-path completes
within the length of a single epoch.

Let (a, t) denote the first node of the semi-path. If t occurs at the
start of a phase, then after p phases have completed the Hamming
distance to the semi-path’s destination address must be less than or
equal to t — p; consequently the semi-path completes after at most
h phases, as claimed. If t occurs in the middle of a phase using basis
vector ep, let s denote the number of timeslots that have already
elapsed in that phase. Either the semi-path is able to match the pth
destination coordinate before the phase ends, or the coordinate can
be matched during the first s timeslots of the next phase that uses
basis vector e,,. In either case, the pth destination coordinate will
be matched no later than timeslot t + T, and all other destination
coordinates will be matched during the intervening phases.
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4.2.2 Throughput.

Lemma 2. Let R be the EBS routing scheme for a given N and h. For
all demand functions D requesting throughput at most ﬁ the flow
f(R,D) is feasible.

Proor. Consider an arbitrary demand function D requesting
throughput r = ﬁ, and consider an arbitrary physical edge e €
Epnys from (i, te) to (j, te +1), where t, is the timeslot during which
the edge begins. Let t, = (pe, se) such that p is the phase in the
schedule corresponding to t., and s, is the scale factor used during
te. We wish to show that F(f(R,D),e) < 1.

We first use a greedy algorithm (described in the full version
of this paper [1]) to generate D’, a demand function such that
for all ¢, D’ (¢) has row and column sums exactly equal to r, and
D’(t) bounds D(t) above. Due to the latter condition, it follows that
f(R,D’) bounds f(R, D) above; thus F(f(R,D’),e) > F(f(R,D),e).
Henceforward, we focus on proving F(f(R,D’),e) < 1.

Valid paths in EBS include two components: the semi-path from
the source node to an intermediate node, and the semi-path from
the intermediate node to the destination node. We can therefore
decompose the paths in F(f(R,D’),e) into two components as
follows: first, we define R’, a routing protocol defined such that
Rc/z,b,t(P) equals 1 if P is the semi-path from (a,t) to [b], and 0
otherwise. Because EBS uses the same routing strategy for both
source-intermediate semi-paths and intermediate-destination semi-
paths, R’ is used for both components. Then, we introduce two
demand functions: D"l _,p Tepresents demand on semi-paths from
origin nodes to intermediate nodes, while D é_}c represents demand
on semi-paths from intermediate nodes to destination nodes. Note
that for all physical edges e,

F(f(RD"),e) =F(f(R".D

’
a—b

’
b—c

). €).

note that regardless of source and destina-

),e) + F(f(R',D

To characterize D’
a—b

tion, R samples intermediate nodes uniformly. Therefore, for all

(t,a,b) € Zx [N] x [N],

1 r
D,y (tab) =+ Z D'(t.a,¢) = +
ce[N]
Similarly, because semi-paths from an intermediate node to the
destination always commence exactly T timeslots after the starting
vertex, we can characterize Dlla—m(t’ b, c) as follows:

1 r
D, _,.(t,bc) = N Z D'(t-T,ac) = N
a€e[N]
Note that D’ =D/ = DALL where DALL s the uniform
a—b b—c
all-to-all demand function DAL (¢, g, b) = « forall (¢,a,b) € Zx

[N] x [N]. Therefore, F(f(R, D), e) < 2F(f(R’, DALL), e).

Claim 1. Foralle € E,ps, there are exactly Tnh-1 triples (t,a,b)
such that the semi-path from (a,t) to [b] traversese.

Proor oF cLaiM. Denote the endpoints of edge e by (i, t.) and
(i +s - ep,te + 1). The semi-path of a triple (t,a,b) traverses e
if and only if the semi-path first routes from (a,t) to (i, t.), and
(b-a)p=s.

Because semi-paths complete in T timeslots, only semi-paths
beginning in timeslots in the range [t, — T +1...te] could possibly
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reach node (i, t,) and traverse e. For every t € [te—T+1..t.], where
t = (pr,st), we can construct n"~1 such triples as follows: First,
we select d, a vector representing the difference between a and b
in the triple we will construct. To satisfy the second condition on
(t,a,b), we must set dj = s. However, the remaining h — 1 indices
of d can take on any of the n possible values. Thus, there are nh—1
possibilities for d.

For any semi-path (t, a, b) such that b — a = d, the timeslots in
which a physical edge is traversed can be determined from d. For
any given timeslot t’ = (p’,s”) such that t < ¢’ < t + T, a physical
edge is traversed if and only if d)y = 5. These are the edges that
decrease the Hamming distance to b by correctly setting coordinate
p- We thus construct a as follows: For every index p, if (dp, p) is
between k; and k. — 1 inclusive, we set ap = i — djp. Otherwise,
we set ap = ip. Once we have constructed a, b is simply a + d. This
choice of a and b ensures that by timeslot ., the semi-path from
(a,t) to [b] reaches [i].

For each of the T timeslots for which semi-paths originating
in the given timeslot may traverse e, there are nh-1
paths. This gives a total of Tn/~! semi-paths that traverse e over
all timeslots. Note that because each such semi-path has a unique
(t,d), none of the constructed semi-paths are double counted. In
addition, because the (t, d) pair determines the timeslots in which
physical links are followed, and because there is only one physical
link entering and leaving each node during each timeslot, there
cannot be more than one choice of a for a given (¢, d) pair such that

such semi-

the semi-path includes (i, t¢). Because the Tn"1 count includes all
possible choices of d for every timeslot, all semi-paths that traverse
e are accounted for. O

Now we continue with the proof of Lemma 2. Since exactly Tn"~1
triples (¢, a, b) correspond to semi-paths that traverse e, and DALL
assigns 7 flow to each semi-path, F(f(R’, DALLY ¢y = ﬁTnh_1 =
£h(n—1)nh~1. Thus:

F(f(R,D),e) < 2F(f(R’,DALL) ¢) = Z%h(n —Dntt < 2rk

When r < # for all physical edges e, F(f(R,D,e)) < 1. Thus,
f(R, D) is feasible. O

4.2.3 Tightness of EBS Upper Bound.
1

Lemma 3. For0 <r < % leth = |_2rJ ande=h+1- 2_1r The EBS
design of order h attains maximum latency at most CL*(r, N), except

when
/zh( )h
€224 — .
T

Proor. Theorem 2 and Proposition 1 together show the follow-
ing about the maximum latency of EBS compared to the maximum
latency lower bound:

) 1/h

Note that this interpretation of the maximum latency lower bound
is taken from equation (2) in the proof of Theorem 2.

2e
C

Lgps < 2hNY/h

\7h/2

« h 1/h
L*(r,N) > e(eN) ( m
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Suppose we wish to assert Lggs/L*(r, N) < C. Given C and h,
we will derive the possible values of ¢ for which this assertion holds.

cs 2hN'/h ~ 2e
= 1/h — 1/h
\mh/2 \h/2
%(EN)W’(Z—;/) (e e )

2e
C

-

When e falls outside this range, the maximum latency of the EBS
design is far from optimal. In the following sections we present and
analyze an ORN design which gives a tighter upper bound when ¢

h
falls outside this range, in other words when ¢ < 24/ % (Z—Ce) .

O

4.3 Vandermonde Bases Scheme

In order to provide a tight bound when ¢ is very small, we define a
new family of ORN designs which we term the Vandermonde Bases
Scheme (VBS). VBS is defined for values of N which are perfect
powers of prime numbers. We begin by providing some intuition
behind the design of VBS.

For h = Lzl_rJ ande=h+1- Zl_r a small value of ¢ indicates that
1

2(h+1
of physical hops in a(l paih can be at most slightly below the even
integer 2(h + 1). EBS is only able to achieve an average number of
physical hops equal to an even integer as N becomes sufficiently
large. In small ¢ regions, the difference between the highest average
number of physical hops theoretically capable of guaranteeing r
throughput and the average number of physical hops used by EBS
approaches 2. This suggests that EBS achieves a throughput-latency
tradeoff that favors throughput more than is necessary in these
regions, penalizing latency too much to form a tight bound. A more
effective ORN design for these regions would usually use paths
with 2(h + 1) physical hops, and mix in sufficiently many paths
with fewer physical hops to ensure that the average number of
physical hops per path is at most 2(h + 1 — ¢).

VBS achieves this by employing two routing strategies for semi-
paths alongside each other. The first strategy, single-basis (SB)
paths, resembles the semi-path routing used by EBS for b’ = h + 1.
The second strategy, hop-efficient (HE) paths, will rely on the fact
that VBS’s schedule regularly modifies the basis used to determine
which nodes are connected to one another. HE paths will consider
edges beyond the current basis, enabling them to form semi-paths
between nodes using only h hops, even when this is not possible
within a single basis. The more future phases are considered, the
more nodes can be connected by HE paths. This tuning provides a
high granularity in the achieved tradeoff between throughput and
latency, and enables a tight bound in regions where ¢ is small. It is
interesting that the quantitative reasoning underlying this scheme
is reminiscent of the proof of the Counting Lemma (Lemma 1),
which similarly classifies paths into short paths and long paths and
counts the number of destinations reachable by short paths.

We define VBS for N = n/*! such that nis a prime number. The
connection schedule and routing algorithm of VBS depend on a
parameter &, which represents a target for the fraction of semi-paths

r is slightly above . This indicates that the average number
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that traverse HE paths. We later describe how to set Q, the number
of future phases considered for HE paths, such that the number of
destinations reachable by HE paths is approximately §N.

4.3.1 Connection Schedule. We assume the total number of nodes
in the systemis N = nf*1 for some prime number n. As in EBS, each
node a is assigned a unique set of & + 1 coordinates (ao, ai, ..., ap),
each ranging from 0 to n — 1. This maps each node to a unique
element of F/**1, We identify each permutation 7. of the connection
schedule using a scale factor s, 1 < s < n and a phase number?
p,0 < p < n,such that k = (n — 1)p + s — 1. Each phase p is
formed using the Vandermonde vector o(p) = (1, p, p2, ..., p'). This
produces the connection schedule 7(;,_1)p4s-1(i) = i+ sv(p).

4.3.2  Routing Algorithm. As with EBS, VBS’s oblivious routing
scheme is based around VLB. First, traffic is routed along a semi-
path from the source to a random intermediate node in the network,
and then traffic is routed along a second semi-path from the interme-
diate node to its final destination. As in EBS, the same algorithm is
used to generate semi-paths in both stages of VLB. However, unlike
in EBS, semi-paths are only defined starting at phase boundaries.
Thus, the first step of a VBS path is to traverse up to n — 2 virtual
edges until a phase boundary is reached. Paths are then defined for
a given (q, a, b) triple, where g = t/(n — 1) for some timeslot ¢ at
the beginning of a phase (hence t is divisible by n — 1). Following
the initial virtual edges to reach a phase boundary, we concatenate
the semi-path from the source to the intermediate node, followed
by the semi-path from the intermediate node to the destination.

Depending on the current phase and the source-destination pair,
we either route via a single-basis (SB) path or a hop-efficient (HE)
path. The routing scheme always selects a HE semi-path when one
is available, and otherwise it selects a SB path. We describe both
path types below.

Single-basis paths - The SB path, for a given (q, a, b) is formed
as follows: First, we define the distance vector d = b — a, as well
as the basis Y = (v(q),v(q + 1), ...,0(q + h)). Note that the vectors
in the basis Y are those used to form the h + 1 phases beginning
with phase ¢. Then, we find s = Y~1d. Over the next h + 1 phases,
for every timeslot t’ = (p’,s’), if s’ = s, the physical edge is
traversed. Otherwise, the virtual edge is traversed. This strategy
corresponds to traversing d through its decomposition in basis Y,
beginning at node a and ending at node b.

This algorithm for SB paths completes within s + 1 phases. How-
ever, to ensure that both SB and HE paths take h + 1 + Q phases to
complete, following this virtual edges are traversed for a further
Q phases. Note that an SB path may have fewer than h + 1 hops,
although this becomes increasingly rare as N grows without bound.

Hop-efficient paths - A HE path, is formed as follows: First, for
h + 1 phases, only virtual edges are traversed. This ensures that
the physical hops of HE and SB paths beginning during the same
phase g use disjoint sets of vectors (assuming n > h + 1+ Q),
which simplifies later analysis. Following this initial buffer period,
h phases are selected out of the next Q phases, and one physical hop
is taken in each selected phase. During all other timeslots within
the Q phases, virtual hops are taken.
3The mnemonic is that p stands for “phase number”, not “prime number”. We beg the

forgiveness of readers who find it confusing that the size of the prime field is denoted
by n, not p.
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For a given starting phase q and node a, there are (%) (n—1)"

possible HE paths. Recall that we would like SN destinations to
be reachable by HE paths. Ignoring for now the possibility of des-
tinations reachable by multiple HE paths, we set Q to the lowest
integer value such that:

(%)(n - I)h > 06N < (i) > on

Note that for this value of Q, (le) < 6n. For some (g, a, b), more
than one HE path may exist. In this case, one of these paths is
arbitrarily selected; this selection does not affect our analysis.

4.4 Latency-Throughput Tradeoff of VBS

4.4.1 Latency. A VBS path begins with at most n — 2 virtual edges
traversed until a phase boundary is reached. Following this, the first
semi-path immediately begins, followed by the second semi-path.
Because both SB and HE paths are defined to take h+1+Q phases, the
total maximum latency of VBS pathsis (n—2)+2(n—1)(h+1+Q) =
(n=1)(3+2h+2Q)-1.

4.4.2 Throughput.

Lemma 4. LetR be the VBS routing scheme for a given N, h, and 6,

such that § < W For all demand functions D requesting

throughput at most z7——— 2(h+175) fore= %5, the flow f(R, D) is feasible.

Proor. Consider an arbitrary demand function D requesting
throughput at most r, and consider an arbitrary physical edge
e € Wphys from (i, te) to (j, te + 1), where f, is the timeslot during
which the edge begins. Let te = (pe, Se) such that pe is the phase
in the schedule corresponding to ., and s, is the scale factor used
during t.. We wish to show that F(f(R,D),e) < 1.

As in our proof of Lemma 2, we begin by inflating D into D’.
Similarly, we define R’, the routing protocol for semi-paths, and
we decompose f(R,D’) into f(R/, D;_}b) and f(R”Dl’J—w)‘ Note
that because semi-paths begin only on phase boundaries, R’ does
not strictly follow our definition for an oblivious routing scheme.
Instead, we define R' ba using phases g, rather than timeslots ¢, for
the domain. The paths used for R
of phase g. This is reflective of the deﬁmtlon of semi-paths in VBS.

To generate D;_} »> Dote that R first batches (a, b, t) triples over
the n — 1 timeslots preceding an epoch boundary, before sampling
intermediate nodes uniformly. Therefore, for all (¢, a, b)

Z ZD(q(n—l) t,a,c) = (

tE n-1] ce[N

begm during the first timeslot

D, (gab)= —r

Similarly, because semi-paths from an intermediate node to the
destination always begin exactly h+1+Q phases after the beginning
of the first semi-path, we can define D;_}C(t, b, c) as follows:

D, _,.(g.bc) =
> Dg-h-1-Q)(n-1)-tac) =
te[n-1] ce[N]
Note that D’ b= D’ , where
a— b—

all-to-all demand function DALL (g.a,b) = ("_—Nl)r for all (¢,a,b) €
Z x [N] x [N]. Therefore, F(f (R, D),e) < 2F(f(R’, DALL), ).

1

(n—1r
N
_ pALL

DALL i the uniform
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To calculate F(f(R’, DALL ), e), we compute the number of (g, a, b)
triples that traverse edge e. We calculate this number as follows:
First, we calculate #sp, which represents the number of (g, a, b)
triples that have an SB path that traverses edge e. Then, we calculate
#miss, the number of such triples that have an HE path available
(and thus do not traverse e). Finally, we determine #pf, the number
of triples that traverse e using an HE path. The total flow traversing
edge e is then F(f(R’, DALL) ¢) = (n=Dr l)r (#sB — #miss + #HE)-

To find #gp, we use reasoning 51m11ar to that used in Lemma 2.
In order for a given (g, a, b) to have an SB path that traverses edge
e, the SB path for (g, a, b) must reach node (i, t), then traverse edge
e. The only values of g for which this is possible are those in the
range ge — h < q < ge. For each of these g, we can generate nh
distinct (g, a, b) triples that have SB paths that traverse edge e as
follows. First, select an arbitrary s such that Sqe—q = Se- Then, set
a=i- ZZ
s corresponds to a distance vector between a and b, expressed in
terms of the basis used for SB paths starting in phase g. Because of
how a is set, it is clear that the SB path for (g, a, b) must traverse
(i, t). In addition, because Sge—q = Se» the SB path will traverse edge
e instead of another edge during the same phase.

,: sq—qv(q’),and b = a + 2 sq -q0(q’). In this case,

For a given g, there are nh possible values for s, because all but
one of its h + 1 elements can be set to any value in [n]. There are
(h + 1) possible values for g, giving a total of #sg = (h + 1)n"

To find #piss, we compare the distance vectors of (g, a, b) triples
that have SB paths which traverse e with those of (g, a, b) triples
that have valid HE paths. Each vector found in the overlap between
these two sets corresponds to one triple that contributes to #,iss. To
reason about the former set of vectors, we return to the construction
of s used to find #sp. For a given starting phase g, each s such
that sq,—q = se represents a distance vector that can traverse e,
expressed in terms of the basis used for SB paths starting in phase
q. We can construct this basis as Y = (v(g),v(q + 1), ...0(q + h).
For each s, d = Ys is the same distance vector expressed using the
elementary basis. The range of distance vectors d reachable while
traversing e forms D,, an h-dimensional affine subspace of ]Fﬁ)r1
that is parallel to W, the linear subspace spanned by Y \ {v(g¢)}-

Next, we consider which triples have valid HE paths. For a given
starting phase g, there are Q phases which are considered for form-
ing HE paths. Let I be a set of h phase numbers chosen from these Q

phases, and let V(I) be the linear subspace spanned by the vectors

corresponding to the phase numbers in I. There are (%) ways of

choosing such a set I. For each possible choice, V(I) forms an h-
dimensional linear subspace in F,’ll“, corresponding to the distance
vectors reachable via HE paths using the chosen phases. (Note that
V(I) must be h-dimensional because every h distinct Vandermonde
vectors are linearly independent.) Because V (I) and W, are spanned
by distinct sets of h Vandermonde vectors, these linear subspaces
are not equivalent, implying that V(I) and D, are not parallel. Thus,
V(I) N D, is an affine subspace with dimension s — 1 and contains
n=1 distance vectors.

Some distance vectors lie in more than one such intersection.
To avoid overcounting #y,;ss, we must remove at least this many
vectors from our count. Given two sets I and J of h chosen phase
numbers, V(I) and V(J) form two different linear subspaces of
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FZ“. As linear subspaces, both I and J contain the zero vector, as
does the (h — 1)-dimensional I N J. D, does not contain the zero
vector, so D, NI N J can only be (h — 2)-dimensional, containing

Q

2
,) ways of choosing

n"~2 distance vectors. There are fewer than (
two distinct sets I and J.

Thus, for a given starting g, there are fewer than (%)nh_1 -

2
(%) n=2 distance vectors in the overlap between D, and the union
of all possible V(I). Because there are h + 1 possibilities for the
starting g, this gives the following lower bound for #ss:

-5

#miss > (h+1) ((h h
Q 2
> (h+1) (5nh—52nh( ) )

O-h
To find #gE, note that a given (q, a, b) can only traverse edge e if
qe —h—Q < q < ge — h, since g, must be in the set of Q phases
considered for HE paths for (g, a, b). For a given g, we can construct
an HE path by selecting h — 1 additional phases from the Q — 1
remaining phases, and then selecting one of the n — 1 edges within

that phase to traverse. Some of these paths may lead to the same
destination, causing an overcount, but it is fine to overcount #yE.

0-1
#yp <
HE < Q(h -1
Having found #sp, #miss, and #x7, we can now bound F(f(R, D), e):
(n—1r

(n-1h 1< 5hnh%

F(f(R,D),e) <2

(#sB — #miss + #HE)

N
hooQ o[ 0\
<2r(h+1)(1 5(1 h+1Q—h)+5 (Q—h
1
Foerth—h,%S}HTZ.Thisgives:
F(f(RD ar(h+1)|1-6(1 h bt 52h+%2
(FRD)e) <2r(h+1)|1-8[1- e —E |46 | —

1
<—(h+1-¢) =1
" h+1-¢ ( ¢)

Note that because of how we set ¢ and restrict §, ¢ < %5 —(h+
1)8%(1+ ﬁ)z. Because the amount of flow traversing any physical
edge e is less than 1, the flow f(R, D) is feasible.

O

4.5 Tightness of Upper Bound

Theorem 3. Forallr € (0,1/2], there is a VBS design or an EBS
design which guarantees throughput r and uses maximum latency

Limax < O(L*(r,N)). (3

Proor. The VBS design of order h with parameter § gives maxi-

mum latency L < (h+1)(n—-1)+Q(n—1) for h = I_z—lrJ, (%) > On,

Lete=h+1— -, and set § = 4e.

aslong as § < o>

1
4(h+1) (1+5)2°
We chose Q such that (Q}ZI) < 6n and (%) > 6n. Then (%) <

on-2 )1/h.

1
o2 < 0752, due to Q > 2K — h. Hence Q < h (9

h
R+ (1/2)
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We upper bound the max latency of VBS in the following way.
Lmax < max{(h+1)(n—1) + Q(n—1), (h+1)(n—-1)+(2h*~h) (n—1)}

1

1/h
2) (n-1)

h+
<2(h+1)(n-1)+2k*(n-1)+h (4£n

< O(h[ANY (D + (eN)!/h))

For sufficiently large N (determined by ¢ and h, both functions of
r), the second term will dominate. Thus, for large N:

Limax < O (h [(EN)l/h + Nl/(h+1)]) =0 (L*(r, N)) )
Note that by Lemma 4, VBS only gives a tight latency bound when
4e=96< W. However when ¢ is greater than this value,
2h
we can use EBS instead. By Lemma 3, EBS gives a factor C tight
h
bound when ¢ > 2‘[% (%e) . We check to make sure that there

exists a constant C which works for all ¢ > %

(e <&

c>0 \/ﬁl/h((hn)(

" a(h1) (145 )

2h

T

1

2 v
4(h+1) (1 + ﬁ)z

c

2h+1
2h

IBRE

Since there exists such a factor C, the following holds for EBS in
the regions of interest.

Liax <O (h [(eN)l/h + Nl/(h“)]) =0(L*(rN))

5 CONCLUSION AND OPEN QUESTIONS

In this paper we introduced a mathematical model of oblivious
reconfigurable network design and investigated the optimal la-
tency attainable for designs satisfying any given throughput guar-
antee, r. We proved that the best maximum latency achievable
is Q(L*(r,N)), for L*(r,N) = h (Nl/(h“) + (eN)l/h). We also
present two ORN designs, EBS and VBS. For every constant r, we
show there exist infinitely many N for which either EBS or VBS
achieves a maximum latency of O(L*(r, N)).

Our investigation of the throughput-latency tradeoff for ORN
designs affords numerous opportunities for follow-up work. In this
section we sketch some of the most appealing future directions.

Universal connection schedules - EBS and VBS both use
connection schedules tuned based on the targeted throughput rate
r. Is there a single connection schedule that permits achieving the
Pareto-optimal latency for a large range of of r, or perhaps even
for every value of r, merely by varying the routing scheme?

We conjecture that the following connection schedule, inspired
by [24], supports ORN designs that are Pareto-optimal with respect
to the tradeoff between worst-case throughput and average latency,
for every value of r, when N is a prime power. Let F denote the
finite field with N elements, and let x denote a primitive root in F.
Define the sequence of permutations 7, 71, . . . by specifying that
me(i) = i+xK foralli € F, k € N. We have experimented with this
family of connection schedules when F is a prime field and 2 is a
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primitive root, for values of N ranging from 11 up to around 300.

We numerically verified that in all cases we tested, for each value

of r ranging from % down to roughly IL’ there is an oblivious
ogn

routing scheme guaranteeing throughput r, whose average latency
is within a constant factor of matching our lower bound. In fact, the
average latency in most cases that we tested was moderately less
than EBS’s. However, thus far we have not succeeded in proving
that this pattern persists for infinitely many N.

Bridging the gap between theory and practice - Our model
of ORNSs uses idealized assumptions that gloss over important de-
tails that affect the performance of ORNs in practice. A more re-
alistic model would not equate expected congestion with actual
congestion. This would necessitate grappling with the issues of
queueing and congestion control. It also opens the Pandora’s box of
non-oblivious routing, since a frame that was intended to be trans-
mitted on link (u, v) but finds that link blocked due to congestion
must either be transmitted in a different timeslot, or on a different
link in the same timeslot; in either case the frame’s path in the vir-
tual topology differs from the intended one. An appealing middle
ground between fully centralized control (as in classical models of
circuit-switched networks) and a fully oblivious model (as in our
paper) could be a network design with a fully oblivious connection
schedule coupled with a partially-adaptive routing scheme based
on local information such as queue lengths at traversed nodes.

Our model also fails to account for (possibly heterogeneous)
propagation delays. The model could be enhanced to take propaga-
tion delay into account by adjusting the virtual topology. Rather
than connecting physical edges from (i, s) to (j, s + 1), they could
instead connect to (j, s + d;j), where d;; is a whole number repre-
senting the propagation delay from i to j in units of timeslots. As
in our basic model, nodes of the virtual topology in this enhanced
model would be constrained to belong to at most one incoming and
at most one outgoing physical edge, though if d;; varies with i and
Jj then the set of physical edges would no longer be described by a
sequence of permutations.

Supporting multiple traffic classes - In this paper we sought
to optimize the worst-case latency for network designs that guar-
antee a specified rate of throughput. In practice, flows co-existing
on a network can differ markedly in their latency sensitivity. Can
EBS, VBS, or other ORN designs be adapted to simultaneously offer
users a menu of options targeting different points on the latency-
throughput tradeoff curve? What guarantees can such network
designs provide to the different classes of traffic they serve?
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