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Abstract

Stabilizer codes allow for non-local encoding and processing of quantum information. Deformations of stabi-
lizer surface codes introduce new and non-trivial geometry, in particular leading to emergence of long sought
after objects known as projective Ising non-Abelian anyons. Braiding of such anyons is a key ingredient
of topological quantum computation. We suggest a simple and systematic approach to construct effective
unitary protocols for braiding, manipulation and readout of non-Abelian anyons and preparation of their
entangled states. We generalize the surface code to a more generic graph with vertices of degree 2, 3 and
4. Our approach is based on the mapping of the stabilizer code defined on such a graph onto a model of
Majorana fermions charged with respect to two emergent gauge fields. One gauge field is akin to the physical
magnetic field. The other one is responsible for emergence of the non-Abelian anyonic statistics and has a
purely geometric origin. This field arises from assigning certain rules of orientation on the graph known as
the Kasteleyn orientation in the statistical theory of dimer coverings. Each 3-degree vertex on the graph car-
ries the flux of this “Kasteleyn” field and hosts a non-Abelian anyon. In our approach all the experimentally
relevant operators are unambiguously fixed by locality, unitarity and gauge invariance. We illustrate the
power of our method by making specific prescriptions for experiments verifying the non-Abelian statistics.

1. Introduction

Topological quantum computation [1–3] can be realized by a macroscopic quantum system with a few
controllable collective degrees of freedom, called non-Abelian anyons 1. Multiple non-Abelian anyons define
a Hilbert space, whose dimension is set by the number and type of non-Abelian anyons. States in this
Hilbert space encode information non-locally. Hence they can serve as a quantum memory protected from
local perturbations. Quantum gates that process this quantum information are to be implemented through
exchanges of pairs of anyons that braid their space-time trajectories (see Fig. 1(a)). A double braiding of
identical non-Abelian anyons, an exchange of the positions of a pair of anyons twice that returns them to a
locally indistinguishable state, may nonetheless change physical observables of the system. Since the braiding
outcome of non-Abelian anyons are insensitive to details of the anyon trajectories the implementation of
quantum gates by braiding non-Abelian anyons are topologically protected.

A simple construction of non-Abelian anyons is based on Majorana fermions αj , satisfying {αj , αk} =
2δjk. Two Majorana operators define a parity for a complex fermion with number n, iα2α1 = (−1)n. Sepa-
rating them in space is sufficient to realize quantum memory. We now describe how Ising non-Abelian [4–6]

braiding arises for Majorana fermions bound to π flux, following an argument of Ivanov [7] for the case of
p+ ip superconductors. Consider a system of four Majoranas, αi, i = 1, .., 4, in Figs. 1(b) and 1(c). Bringing
Majoranas together allows local measurement of the fermion parity iα2α1. Double braiding of α3 and α2

1In more detail, we take the definition of a non-Abelian anyon as a local object which can be moved using only local
operations (e.x. local changes to a Hamiltonian), such that the representation of the braid group with other such objects is
non-Abelian and is independent of the particular local circuits used to move.
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(see Fig. 1(c)) is equivalent to moving α2 around α3 (see Fig. 1(b)). Since Majorana α3 carries π flux
and the Majorana α2 carries charge, the latter picks up a phase α2 → −α2 similarly to Aharonov-Bohm
effect. Therefore the fermion parity iα2α1 changes sign. Hence this double braiding results in a rotation
in the Hilbert space of anyons. In other words, if iα2α1 is identified with a Pauli Z operator, the braid-
ing realizes an X logical gate. However, despite decades of research [4,7–14] non-Abelian anyons were never
unambiguously observed in experiment.
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Figure 1: (a) A schematic of the counter-clockwise swap R12 of two anyons 1 and 2. (b) Aharonov-Bohm effect of flux-bound
Majorana fermions. (c) Double braid of anyons 2 and 3. The wavy blue/red line show fermion parity operator defined
before/after the double braiding operation. (d) Plaquette surface code graph with qubits drawn as gray diamonds. D3Vs are
marked with red circles and a D2V is marked with a double-circle. (e) The decorated version of the PSC graph in Fig. 1(d)
with Kasteleyn orientation. Red dots correspond to Majorana fermions. Black links connect different qubits, and yellow and
purple links are intra qubit. (f) An example counter-clockwise canonical loop enclosing a single σ. (g) The two emergent
Z2 gauge symmetries in our model. Both local symmetry actions correspond to (contractible) loops in the dual graph shown
in dashed lines. (g.i) the Z(K)

2 symmetry transformation from one Kasteleyn orientation to another flips all arrows touching
a vertex. (g.ii) the Z(s)

2 symmetry transformation generated by Γq flips all L-type links touching the diamond q. (h) A
diagrammatic rule for assigning directed edges to Majorana bilinears on the `-edges.

Recent development of gate based quantum processors [15] provides a new avenue for direct preparation
of a many-body quantum state without involving the Hamiltonian and the difficulty in reaching its ground
state. We introduce the plaquette surface code (PSC) as a stabilizer code [16] defined on a specific type of
qubit graph (see Fig. 1(d)). As in any stabilizer code, the multi-qubit state |ψ〉 can be prepared to satisfy
commuting constraints,

B(P ) |ψ〉 = |ψ〉 , (1)

where B(P ) are operators called stabilizers for each plaquette P of the qubit graph (see Fig. 1(d)). The
states |ψ〉 satisfying Eq. (1) form the code subspace. A state |φ〉 with B(P ′) |φ〉 = − |φ〉 for a plaquette P ′

has a “stabilizer flux” at P ′. In the rest of the paper, we focus on states with few to no stabilizer fluxes. In
the PSC, the qubits form vertices of a surface graph, which only contains degree 4 (D4Vs), degree 3 (D3Vs),
and degree 2 (D2Vs) vertices (see Fig. 1(d)). We will show D3V’s host Ising anyons.

The standard surface codes (on manifolds with and without boundary) [1,17–19] are a special case of the
PSC (this connection is discussed in more detail in Appendix A). Kitaev [6] pointed out the topological
degrees of freedom at dislocations of the square lattice, and Bombin [20] and Kitaev and Kong [21] pointed
out that such dislocations act as non-Abelian Ising anyons when they are introduced to the toric code
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ground state [1]. This observation motivated efforts to exploit the projective non-Abelian nature [22–24] of the
so-called “twist defects” which were found to carry Majoranas [25,26]. However, the microscopic mechanism
of flux attachment was not identified and an explicit protocol for moving these defects unitarily is absent.
Moreover, manipulation of anyons can be realized by code deformation, i.e. reconfiguration of the stabilizers
and the movement of the edges of the graph. In absence of the microscopic gauge theory, the design of
optimal anyon manipulation protocols is challenging. The operational use of the graph in our approach
is to define directed paths. Those directed paths enable us to simply and systematically find all essential
operators: the stabilizers, unitary operators for dynamics, and Hermitian operators for the logical qubit
state measurements.

In this paper, we explicitly identify a gauge field responsible for the flux attachment on a graph, and
demonstrate its purely geometric origin. By formulating a new graph gauge theory, we construct optimal
unitary protocols for projective Ising anyon state preparation and braiding, and predict specific experimental
outcomes. Note that the surface codes were recently implemented on gate based NISQ superconducting pro-
cessors [15,27]. Our unitary protocols are advantageous for such platforms since for them unitary operations
are typically faster than measurement based protocols by an order of magnitude.

As usual the gauge field is associated with a global conserved quantity. On any graph G where all vertices
are of degree 2, 3, and 4, the number Nσ = ND3V +2ND2V = 0 mod 2, where NDjV is the number of degree
j vertices, is conserved (mod 2)2. In fact, the value of Nσ also has an important physical consequence and
associated conservation law: if there are NS stabilizer plaquettes, Euler’s formula for the Euler characteristic
χ(M) yields

NQ −NS =
Nσ

2
− χ(M), (2)

where we take our surface graph on some orientable manifold with boundary M . From this formula and
the discussion in Appendix B, we find that the dimension of the code subspace in the most important case,
M topologically a disk, is max{2Nσ/2−1, 1} (we address more general manifolds in Appendix B). This is
the first hint that each σ corresponds to non-local degrees of freedom, as each is roughly “half” a qubit3.
Importantly, if the number of stabilizers is fixed, Nσ is conserved.

To make Nσ (and its conservation) more manifest, we decorate each qubit vertex with a diamond as
shown in Fig. 1(e). On the decorated graph G̃, Nσ is the number of vertices with two incident edges, which
we call σ or “unpaired”. We will find that there is an external gauge field which assigns flux to these vertices
in a particular way.

We will see that the gauge theory selects a simple, local rule to lift directed paths γ through the “physical”
qubit graph G (Fig. 1(d)) to directed paths γ̃ through G̃ (Fig. 1(e)): every diamond is traversed counter-
clockwise (Fig. 1(f)). Such paths γ̃ are called canonical. The field is the assignment of arrows to each link,
which follows the local rule that an odd number are clockwise about each face (such an orientation is called
Kasteleyn [29]4). We find (see Fig. 1(g.i) and Appendix C)

(−1)Nσ(γ̃) = −
∏

`∈Edges(γ̃)

(−1)n
(K)
` (γ̃), (3)

for any counter-clockwise canonical loop γ̃, where n(K)
` (γ̃) is 1 (0) if the arrow on the edge ` is in the opposite

(same) direction as γ̃, and Nσ(γ̃) is the number of σ enclosed by the loop γ̃. The Kasteleyn orientation is
not unique: for example, flipping all the arrows touching a vertex is a local Z2 transformation (which we
call Z(K)

2 ) from one Kasteleyn orientation to another (see Fig. 1(g.i)), while manifestly preserving Eq. (3)
(see also Appendix C). In this sense, we find there is a Z2 flux attached to each σ.

2as a consequence of the “handshaking lemma” that every graph has an even number of odd degree vertices [28]
3In other words, an anyon with the quantum dimension

√
2.

4Kasteleyn structures were introduced to study dimer models [29], and were later related to 2D spin structures [30,31]
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2. Definition of the model

We now place a Majorana at each vertex of the decorated graph, Fig. 1(e). An orientation is natural in
a theory of Majorana fermions on a graph: after assigning a direction, links ` with an arrow αj → αk define
a Hermitian fermion parity (see Fig. 1(h))

(−1)n` = iαkαj . (4)

The link operator clearly depends on the choice of orientation. We will see that the Kasteleyn condition arises
naturally, and a particular Kasteleyn orientation can be thought of as an external gauge field configuration.
Since the Z(K)

2 transformation at a vertex hosting Majorana αj flips all the link operators involving αj , we
can think of the Majoranas as “charged” under the local Z(K)

2 symmetry. If physical meaning could be given
to canonical paths, the Majoranas at σ vertices would be bound to π flux. We describe a qubit model, the
PSC, where there is both an emergent Kasteleyn structure as well as a second Z2 field associated to a gauge
transformation we call Z(s)

2 (see Fig. 1(g.ii)). Keeping the second field flat ensures Wilson lines in the gauge
theory maintain a canonical form under local unitary evolution. Moreover, since no physical observable
depends on the particular Kasteleyn orientation chosen, in other words Z(K)

2 is gauged, the Majoranas at σ
vertices are bound to π flux of a gauge field.

We start by using a Kasteleyn orientation on the decorated graph to explicitly determine two standard
elements defining a gauge theory: the physical subspace of the Majorana Hilbert space (giving rise to Z(s)

2 ),
and the mapping from physical qubits into the subspace. Recall we placed a Majorana at each vertex of the
decorated graph, so that each qubit q of the PSC corresponds to a diamond with 4 Majoranas. Note that at
each diamond, opposite links la, lb do not touch, so the operators (see Fig. 2(a)) τ1 = (−1)nla , τ ′1 = (−1)nlb

satisfy τ21 = τ ′21 = 1, [τ1, τ
′
1] = 0, and neither can be proportional to 1 since they anti-commute with the

other pair of link operators. In a qubit Hilbert space, these conditions imply that τ1 = ±τ ′1, and the choice
τ1 = τ ′1 in the qubit space gives rise to the physical subspace condition (see Fig. 2(a))

Γq |ψ〉 = |ψ〉 , Γq = (−1)nla (−1)nlb . (5)

The Kasteleyn condition ensures that as an operator Γq is independent of the chosen pair of edges, so if
we construct τ2, τ ′2 in an analogous way for the other pair we also find τ2 = τ ′2 in the physical subspace.
Γq generates a local gauge transformation Z(s)

2 under which each Majorana fermion carries a charge, i.e.
αqj changes sign upon conjugation with Γq. The second ingredient of the gauge structure, a mapping from
qubits to the Majoranas, is fixed5 by choosing a qubit operator to correspond to each pair of opposing edges,
e.g. Pauli operators τ1 = Z and τ2 = X. Note that, by construction, the spin operators defined by the
l-type links, τ1, τ2, are invariant under Z(s)

2 and Z(K)
2 .

Stabilizers and Z(s)
2 – The final ingredient to define our gauge theory is a local flatness condition for the

Z(s)
2 gauge field formed by the inter-diamond L-type link operators6. In contrast to the intra-diamond l-type

link operators, which are Z(s)
2 -invariant, L-type link operators all commute (since these links never touch)

but are odd under both Z(s)
2 and Z(K)

2 (see Fig. 1(g)). Specifically, the Z(s)
2 transformation flips all (−1)nL

touching a diamond. The simplest Z(s)
2 -invariant combination is a loop of L-type edges around a stabilizer

plaquette P ,
B(P ) =

∏
L∈P

(−1)nL . (6)

Moreover, by writing B(P ) in terms of the gauge-invariant l-type link operators (this is a special case of
Eq. (11)), we find that it is Z(K)

2 invariant as well. This gives both the definition of and physical meaning
to the stabilizers defining the PSC code subspace alluded to in Eq. (1).

5More precisely, up to a global phase, which for us is irrelevant.
6Note that we have given the analogous condition, an odd number of clockwise arrows in each plaquette, for the Kasteleyn

orientation.
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Emergence of Z(K)
2 – Since the Kasteleyn orientation is not a conventional Z2 gauge field, let us briefly

describe an alternative construction of the same theory where the gauge structure is emergent. A consistent
mapping from the single qubit Hilbert space into a fixed parity sector of 4 Majoranas is fully specified5by
associating a diamond with Kasteleyn orientation to the qubit, and pairs of opposite edges on the diamond
to two generators of the Pauli algebra, as above. Extending this construction to a multi-qubit system, by
additionally assigning arrows to L-type links the corresponding (gauge-non-invariant and hence unphysical)
operators combine to measure a (physical) Z(s)

2 gauge flux Eq. (6). If the arrows are assigned so that
every plaquette has a Kasteleyn orientation, B(P ) is simply a product of Pauli operators at each diamond
determined by the local embedding at each qubit of the plaquette, regardless of the size or shape of P .7 We
note that a static graph with a preferred mapping between qubits and Majoranas dictated by a Hamiltonian,
as in the model studied by Kitaev [6], may fix part of the Kasteleyn structure. However, as D3Vs and D2Vs
move, the PSC evolves. In this case, the emergent Z(K)

2 plays a critical role in tracking the PSC evolution.

3. Gauge-invariant operators, gauge fluxes, and non-Abelian statistics

Having defined the complete gauge theory, we consider two families of multi-qubit operators that act
on the PSC state, distinguished by the condition that they generate stabilizer flux only at controlled lo-
cations [32]8. Acting with a Majorana on a given vertex flips the edge operators (−1)n` for every edge `
touching the vertex, creating a pair of stabilizer fluxes if the vertex is not unpaired (see Fig. 2(c)). The
local condition not to create stabilizer flux is to flip an even number of L-type edge operators around each
plaquette: either acting with Majoranas on both ends of an L-type edge, i.e., (−1)nL (see Fig. 2(c.ii)), or
to flip 2 or more L-type links about each stabilizer plaquette (see Fig. 2(c.iii)). Combined with local gauge
invariance, the first method builds Wilson lines [33], while the second builds ’t Hooft lines [34].

Wilson lines – Flipping each L-type link twice means we act with L-link operators, which manifestly
commute with B(P ). While (−1)nL is not gauge invariant under Z(s)

2 , if we chain L-link operators (connected
by diamonds), the bulk of the chain commutes with Γq. To make the ends of the chain Z(s)

2 invariant, we
must add an additional Majorana from the diamonds at the ends, arriving at the definition of a valid path
for the augmented Wilson line in Fig. 2(d). Formally, a valid path is one that starts and ends on l-links. To
give a definition of an operator that is both consistent with the Majorana anti-commutation relations and
invariant under Z(K)

2 , we take the path γ (from αI → αF ) to be directed. Explicitly, the gauge-invariant
“augmented Wilson line” associated to the path γ is defined by (see Fig. 2(e))

Wγ = iαFWγαI , Wγ =W (s)
γ W (K)

γ (7)

W (s)
γ =

∏
L∈γ

(−1)nL , W (K)
γ =

∏
`∈γ

(−1)n
(K)
` (γ), (8)

where we refer to Wγ as the Wilson line. If the line is open, its ends are either paired or unpaired vertices.
If the vertex is paired, a pair of stabilizer fluxes sharing an edge are created when acting on a state with no
stabilizer flux: we call such flux configurations an ε-particle [1] (see Fig. 2(d)). No stabilizer flux is created
at an unpaired end.

Wilson loops – When γ is a (directed) loop the Wilson loop Wγ , which can be defined by the same
Eqs. (7) and (8), is gauge invariant on its own. We define the augmented Wilson loop (Eq. (7) is not defined
for coinciding ends) as Wγ = −Wγ (to emphasize the type we sometimes write W(loop)

γ ). As shown in
Appendix C.2, a canonical counter-clockwise augmented Wilson loop measures the parity of stabilizer and
Kasteleyn flux:

W(loop)
γ = (−1)NΦ(γ)(−1)Nσ(γ), (9)

7In general, the same would be true if we fixed the parity of clockwise edges across all stabilizer plaquettes.
8More precisely, we will find violations of different type are created in pairs at the ends of string operators.
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Figure 2: (a) The parity operators on the l-edges and L-links. (b) Pauli operator τ1, τ2 assignment to the diamond edges
{τ1, τ2} = 0. For instance, τ1 = Z and τ2 = X. (c) Two examples of how to locally avoid creating stabilizer flux, ignoring
gauge invariance. (c.i) Acting with the Majorana circled in orange flips the L-link it touches, and creates ε, i.e., a pair of
stabilizer fluxes sharing an edge, shown in lavender. (c.ii) The basis for the Wilson line. Flip the same L-link again by acting
with a second Majorana touching the link. (c.iii) The basis for the ’t Hooft line. Flip an even number of L-links. (d)
Augmented Wilson lines: (d.i) An example of a canonical augmented Wilson line action on a state with no stabilizer flux.
The link at the start of the line is flipped, creating an ε, while there is no bond to flip at the unpaired vertex. If there were an
ε particle at the start of the line, this augmented Wilson line would “sink” it into the unpaired vertex, removing any stabilizer
flux. (d.ii) A non-canonical Wilson line. (e) The diagrammatic rules for constructing a Wilson line operator from a directed
path on the graph. The blue wavy arrow indicates the orientation of the path γ. The black and gray arrows indicate Kasteleyn
orientation on the L-links and on the l-edges respectively. (f) Two canonical augmented Wilson lines between the same pair of
unpaired vertices. We show the common part of the two lines, which in this case lie on the first and last links, in dark yellow.
(g) An open ’t Hooft line is shown in moss green, with stabilizer fluxes at its ends. The shown ’t Hooft line is equivalent to
the gauge-invariant Wilson line segments shown in orange. (h) An open ’t Hooft line wrapping an unpaired vertex, marked
with a red circle, creating an ε from a state with no stabilizer flux.
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where NΦ(γ) is the operator measuring the stabilizer flux enclosed by the loop. It is practically useful that
the operator B(P ) is just the counter-clockwise augmented Wilson loop about only the stabilizer plaquette
P : one perspective is that B(P ) should only count the stabilizer flux B(P ) = (−1)NΦ(P ), so is not equivalent
to a canonical loop in the presence of anyons.

Ratios of canonical Wilson lines – The most important application of the result Eq. (9) is to the ratio of
canonical Wilson lines for two paths γ, γ′ between same anyons 1 and 2, i.e. the gauge-invariant operator
WγW−1

γ′ =WγW
−1
γ′ . The union of the two paths (temporarily ignoring direction) consists of loops connected

by segments where the paths are the same. In the simplest case there is just a single loop, as shown in
Fig. 2(f). To compute the ratio using Eq. (9), we must reverse the orientation of the clockwise segment of
each loop. The details of this procedure are discussed in Appendix C.3. The result is consistent with the
attachment of Z(K)

2 flux to the anyons,

WγW−1
γ′ =WγW

−1
γ′ = (−1)NΦ(γ,γ′)(−1)Nσ(γ,γ

′). (10)

where NΦ(γ, γ
′) is the stabilizer flux enclosed between the paths, and Nσ(γ, γ

′) is the number of enclosed
anyons (see Appendix C.3 for the precise definition, which is only needed when one of the paths γ, γ′ goes
directly through a diamond containing an anyon away from the endpoints of γ, γ′, and therefore does not
play an important role in braiding).

’t Hooft lines and loops – We represent an ’t Hooft line [34] as a directed path of even length through
the dual graph, whose links represent the flipped L-type bonds (see Fig. 2(g)). The definition ensures that
we can always find a local, gauge-invariant operator corresponding to the ’t Hooft line. Specifically, an ’t
Hooft line can be written as a product of augmented Wilson lines by taking the Majoranas to the right of
the path which touch the links crossed, and making this product gauge invariant in the most local way (see
Fig. 2(g)). If the path is open and ends in plaquettes, stabilizer fluxes are created at its ends (see Fig. 2(g)).
If an end extends past a boundary (as in Fig. D.8(a)) of course no flux is created there. Flips corresponding
to odd length paths through the dual lattice are always products of ’t Hooft lines and an augmented Wilson
line with one unpaired end. Finally, we note that ’t Hooft loops create no flux; for simplicity, we always
take such loops counter-clockwise.

’t Hooft and canonical Wilson lines – Two relationships between the two families of operators are of
particular importance. First, note that a Wilson and ’t Hooft line anti-commute at each point of crossing,
because ’t Hooft lines flip L-type links. Since ε live at the end of augmented Wilson lines (see Fig. 2(d)),
roughly speaking ’t Hooft loops detect the parity of enclosed ε. More importantly, certain ’t Hooft lines
going around a single anyon counter-clockwise are equivalent, in a no-flux state, to canonical Wilson lines
(see Fig. 3(a)). Specifically, an ’t Hooft line going around a single anyon counter-clockwise cannot be closed
to a non-intersecting loop. The ends can be brought to adjacent plaquettes, where an ε will be created (see
Fig. 2(h)). This acts in the same way as an augmented Wilson line starting at the anyon and ending at the
ε. As we demonstrate in Fig. 3(a), the augmented Wilson line that has the same action including the global
phase can always be taken to follow a canonical path.

Extension of canonical lines – General principles of gauge theory [33] dictate that the Wilson line Wγ

between α1 and α2, associated to the augmented Wilson lineWγ , should “extend” when α2 moves by a local
unitary U starting from a state |ψ〉. Specifically, locality, unitarity, and gauge invariance determine the key
aspects of the path γ′ one should take after moving α2 so that Wγ′ “acts the same way” as Wγ . Explicitly,
as shown in Fig. 3(b) the path γ′ is just an extension of γ into the region where U acts and ending at the
new location of α2, so that Wγ′U |ψ〉 = UWγ |ψ〉. This way, the Wilson line keeps track of the path and
history of the anyons.

Therefore, the last key ingredient of our theory of non-Abelian anyons is the requirement that Wilson
lines are extended by motion. This is the physical condition which distinguishes canonical Wilson lines:
any local unitary U acting in a region A with a single anyon, without stabilizer flux and preserving the
anyon and stabilizer flux number, extends any canonical Wilson line between anyons to a canonical Wilson
line. In most cases, this can be seen by taking a canonical Wilson line ending at the anyon and extending
beyond A, and (partially) expanding it to an ’t Hooft line that lies strictly outside A; the first steps of this
expansion are shown on the right column of Fig. 3(a). Acting with the unitary cannot change the action of
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Figure 3: (a) Examples of an explicit deformation of ’t Hooft lines (moss green) to augmented Wilson line (orange) (left)
and canonical Wilson lines (right), in a state with no stabilizer flux. (b) Motion of the anyon 2 generated by a local unitary
U , acting only on a region containing anyon 2. (c) A manifestly gauge invariant illustration of Ising anyon braiding in the
long-distance limit, tracking the extending augmented Wilson line and the world line of the anyons. The augmented Wilson
lines associated with γ21 and γ′′21 are measured before and after the double braid respectively. The comparison between the
two measurements should only depend on the topological form of the motion of α2.

the ’t Hooft line on the state. Therefore, we can deform the ’t Hooft line to a necessarily canonical Wilson
line ending at the new position of the anyon. Without this fundamental property, the behaviour of Wilson
lines would depend on non-topological details of the dynamics. Instead, referring to Eq. (10), we find that
unpaired Majoranas carry both a π flux and charge of the Kasteleyn field.

As discussed in the introduction, we can now conclude that the unpaired Majoranas, or D3Vs, in our
model are projective Ising anyons. To illustrate this point directly, we formulate a simple braid to unambigu-
ously demonstrate non-Abelian statistics (see Fig. 1(c)). Initialize the system at time tI with four anyons
arranged on a line, and suppose measurement of Wγ21 yields the value +1 (see Fig. 3(c)). As we move α2

around α3, the path γ21 gets extended to a path γ′21 around α3. The measurement of Wγ′′
21

at time tF
will give −1, since it is different from the measurement of Wγ21

at time tI by Wγ′
21
W−1

γ′′
21

= −1 by Eq. (10)
(NΦ(γ

′
21, γ

′′
21) = 0, Nσ(γ

′
21, γ

′′
21) = 1). In other words an observable changes sign after double braiding with

probability 1, which is sufficient to demonstrate non-Abelian statistics. On the other hand, if α3 was at-
tached to a stabilizer flux the observable will not change sign since now NΦ(γ

′
21, γ

′′
21) = 1, so braiding about

such a composite could serve as a control experiment. We note that the composites are on equal footing
to what we consider the “bare” anyons, and our notion of which anyon is a composite would switch if we
had chosen to prefer the opposite chirality, clockwise instead of counter-clockwise, in the definition of the
Kasteleyn structure and preferred loops. In particular, amongst themselves the composites braid precisely
as projective Ising anyons as well.

4. Spin operator and braiding prescriptions

Below we suggest specific protocols and predict outcomes for several experiments.
Spin operators for augmented Wilson lines and loops – We will use augmented Wilson lines and loops

as the basis for all physical operations, so it will only be necessary to give a qubit-space formula for these
operators. Fortunately, they can be constructed simply and systematically from paths drawn on the dec-
orated PSC graph (without assigning any explicit Kasteleyn orientation). First, assign diamonds to each
qubit, and two Pauli generators, say X and Z, to pairs of opposite edges on each diamond (Fig. 4(a)). In
general, we call the Pauli associated to the l-link τl, and we keep this assignment static. Now, L-type edges
are drawn between diamond vertices to construct a PSC graph. Given a valid directed path γ in this graph,
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Figure 4: (a) A valid path defining an augmented Wilson line. The static assignement of the Pauli operators are indicated by
yellow for Z and purple for X. In this case, Nll(γ) = 3 in Eq. (11). (b) A Wilson loop enclosing a stabilizer plaquette P . The
Wilson loop operator graphically specifies the stabilizer B(P ). (c) Deleting an L-link in the graph creates two unpaired vertices
marked with red circles. It also changes the stabilizers. If we take the new definition, B(P ′) |ψ〉 = |ψ〉 whether or not there was
a fermion on P,Q, without any unitary operation. This is a microscopic manifestation of the fusion rule σ× σ = 1+ ε. (d) A
basic edge move generated by a counter-clockwise augmented Wilson line shown in blue. Since the path is counter-clockwise,
U− should be used to avoid creating Z(s)

2 flux. The vertex 3, initially paired with 2, pairs with 1 after the edge move leaving
2 unpaired. (e) A basic edge move generated by a clockwise augmented Wilson line shown in blue. U+ should be used to
avoid creating Z(s)

2 flux. (f) Clockwise Wilson line with an anyon along the path. Since Nll(γ) = 1, one needs to use U− to
avoid creating Z(s)

2 flux. (g) A protocol for implementing the braid group generator Fig. 1(a) and restoring the lattice. We
show a 10-qubit section for concreteness, but on a larger device the anyons could be further separated. (h) The time slices
corresponding to the protocol in Fig. 4(g). (i) The protocol for preparing a GHZ state of three logical qubits. Four anyons at
the corner and the two pairs created in the bulk together supply three logical qubits. The vertical ’t Hooft line (moss green)
and the two augmented Wilson lines (wavy blue) measures the logical qubit state. Dashed braiding or dotted braiding will
both entangle the logical qubits to yield a GHZ state. (j) The protocol for implementing the logical X operator.
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we simply read off the operator along the path

Wγ = (−i)Nll(γ)
←−∏
l∈γ

τl. (11)

For multi-qubit loops γ, we delete an L-link and apply Eq. (11) to the resulting open path. Here Nll(γ) is
the number of vertices in γ with adjacent l-edges (see Fig. 4(a)). The arrow over the product specifies that
the product is to be taken in order from right to left according to the path: τl for the earliest l appears
at right end. ’t Hooft lines are constructed using the correspondence to products of augmented Wilson
lines in Fig. 2(g). We note that to make the rules of the protocol simple, we will use both canonical and
non-canonical lines and loops.

Stabilizers and initial state – As an immediate application, we recall that the stabilizers B(P ) are
simply the unique counter-clockwise Wilson loops, generally not canonical, in the stabilizer plaquette P (see
Fig. 4(b)). Hence, Eq. (11) offers the necessary input for a protocol to prepare a state in the code space of
the PSC [15].

Creation, measurement, and fusion – The creation of anyon pairs only requires the removal of an L-type
link (see Fig. 4(c) top). When we modify the graph by deleting an edge, we do not need to perform unitary
action for the operators obtained on the new graph to remain meaningful in the new code subspace. The
link touches at least one stabilizer plaquette P . If the link is a boundary link, we simply drop B(P ) from
the list of stabilizers. If the link touches another plaquette, Q, deleting the edge forms a larger plaquette
P ′, and we find B(P ′) = B(P )B(Q). Notice that if we remove a link shared by the stabilizer fluxes of an ε,
we also end up in the no stabilizer flux state of two additional anyons (see Fig. 4(c) bottom). This embodies
the Ising anyon fusion rule [6]

σ × σ = 1 + ε. (12)

Since arbitrary unitary motion preserves canonical Wilson lines9, if we wish to determine the fusion state
of separated anyons we should measure a canonical Wilson line between them (according to the path along
which they would be physically fused). We could also measure the equivalent ’t Hooft loop around the
anyon pair, but this is generally less efficient. We note that the other σ fusion rule σ × ε = σ is simply a
consequence of the fact that Wilson lines can terminate on an anyon without creating flux, while ε× ε = 1
is an immediate consequence of the definition of ε.

Gauge-invariant Majorana swaps – Since L-type links pair Majoranas, edge rearrangements in the graph
correspond to Majorana swaps. Naively, to “move” Majoranas from position 1 to position 2, i.e., α1 → ±α2

with some unitary Ũ±, we mean Ũ†
±α2Ũ± = ±α1. If α1, α2 are on different Majorana diamonds q, q′, such a

Ũ± cannot be gauge invariant. The reason is that {Γq, α1} = 0, but [Γq, α2] = 0, so necessarily [Γq, Ũ±] 6= 0.
In other words, Ũ± takes the state away from the gauge-invariant Hilbert space. The simplest non-gauge
invariant swap is Ũ± = exp

(
±π

4α2α1

)
, which also takes α2 → ∓α1. The closest gauge invariant operator

requires a path γ from α1 → α2, from which we define,

U± = exp
(
∓iπ

4
Wγ

)
. (13)

For this particular unitary, we can see explicitly how Wilson lines are extended as the Majoranas are swapped

U†
±(γ)α2WγU±(γ) = ±α1, U

†
±(γ)α1U±(γ) = ∓α2Wγ . (14)

We note that as long as a PSC is chosen where all the τl are Pauli operators, U± is always in the Clifford
group, and can therefore be decomposed efficiently to CNOT (or CZ) and single-qubit Clifford gates.

Gates for moving anyons – Graphically, moving a single anyon from vertex 1 to vertex 2 corresponds to a
rearrangment of L-type links (see Figs. 4(d) to 4(f)). The corresponding swaps Eq. (13) are built from paths
γ that run between an anyon α1 and a Majorana α2 paired by an L-type edge to α3 (see Figs. 4(d) to 4(f)).

9Equivalently, since ’t Hooft loops measure ε parity and deform to canonical augmented Wilson lines.
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To ensure the graph remains locally planar, it is sufficient to build larger moves from elements where α1

and α2 share the same stabilizer plaquette P . There is a unique allowed path γ between them within P .
Similarly to the line for B(P ), in general this path is not canonical. The sign in Eq. (13) is determined by
the condition that no flux is created in the new graph (with an L-type edge between 1 and 3). Specifically,
if the path γ is counter-clockwise about the plaquette containing α2 and α1, we use the U− (see Fig. 4(d)).
If the path is clockwise about this plaquette, we find Uζ with ζ = (−1)Nll(γ) where Nll(γ) is the number of
vertices with adjacent l-type edges in γ, defined in Eq. (11) (see Figs. 4(e) and 4(f)). By construction, this
is an example of a unitary motion of anyons without creation of Z(s)

2 flux. It follows that the canonicity of
Wilson lines connecting anyons is always preserved, despite the fact we chose to use a non-canonical line
give the rules for the unitaries. Finally, we remark that to move the composite of an anyon and Z(s)

2 flux,
one simply uses the opposite sign in U± to the one for the bare anyon.

Braid generators – Figures 4(g) and 4(h) show one minimal implementation of the fundamental generator
of the braid group, R23. All other generators can be constructed in an analogous manner. One advantage
of this protocol is that it restores the lattice: practically, this means such generators can be iterated an
arbitrary number of times, and theoretically it allows directly comparing states before and after braiding.
Another advantage is that it can be implemented on small systems, and simply extended to make use of larger
ones. The version shown requires only 10 qubits and can therefore be implemented on existing devices [15].
A direct experiment to establish non-Abelian statistics is to perform the lattice version of Fig. 3(c): simply
create two anyons from the vacuum at the locations t = 1, and perform this braid twice to implement R2

23.
After R2

23 each pair of anyons will fuse to an ε.
In the future, periodic measurements of stabilizers would allow quantum error correction, with the

distance between anyons serving as an effective code distance. On a larger device, extending the protocol in
Figs. 4(g) and 4(h) simply by starting the anyons further apart, and continuing the vertical motion of the
initially rightmost anyon at t = 3, would allow maintaining a larger code distance10. The protocol involves
local code deformations, as a result of which the graph and stabilizer sizes change, but the most non-local
stabilizers can be restricted to be the smallest possible 5-local operators11. We leave the analysis of this
overhead to future work.

A GHZ experiment – Another key element of topological quantum computation is preparation of an
entangled state of anyons. We give a protocol such that a single braid takes a logical product state |000〉 to
a GHZ state [35], which is a starting point for the discussion of multi-qubit entanglement. Our protocol also
serves as a concise demonstration of computational primitives introduced above. Observe that the standard
surface code encoding one logical qubit is nothing else than our model with 4 Ising anyons at the corners [36].
We define logical Z operators using the shortest Wilson lines for bulk anyons and an ’t Hooft line for the
anyons at the corners, (see Fig. 4(i)). The ’t Hooft line is chosen to run down the center of the sample, so
that anyon pairs can be on either side. When it splits anyon pairs, such an ’t Hooft line is shorter than any
equivalent Wilson line.

To prepare the logical state |000〉, it is simplest to start from the |0〉 state of the surface code, and create
anyon pairs from the vacuum at the locations shown in Fig. 4(i). An exchange of bulk anyons 1 and 2 then
prepares a state of the form |GHZφ〉 = 1√

2
(|000〉 + eiφ |111〉), where φ depends on the phase choice of the

logical basis. To fix an unambiguous convention for φ and perform full tomography, it is sufficient to define
logical X operators as in Fig. 4(j). Then exchange of anyons 1 and 2 prepares

∣∣GHZπ/2

〉
. An exchange

of anyons 1 and 3, which can be generated by conjugating the above braid with an exchange of 2 and 3,
prepares |GHZ0〉.

10More complicated braids can achieve larger code distances by constant factors in certain cases.
11The precise procedure to accomplish this depends slightly on the available geometry when the devices are small, for example

in many cases it is convenient to modify the step from t = 2 to t = 3 by moving edges to the right instead of the left of the
anyon to move it upwards. Such an extension is shown in Appendix D.
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5. Conclusion

To summarize, we constructed a graph gauge theory with projective Ising anyons. The consistency of
the theory as a qubit model leads to the identification of two gauge fields: one associated with the flux
created by a plaquette (stabilizer) violation and the other, the Kasteleyn orientation, is associated with
the flux carried by a D3V, degree three vertex of the graph. The presence of both fields ensures that
the Aharonov-Bohm-like phase acquired by an unpaired Majorana fermion in a stabilizer flux-free region
measures the number of unpaired Majoranas enclosed by it, giving rise to non-Abelian braiding statistics.
The formulation of physical operators in terms of augmented Wilson lines and the graphical rules to construct
them provide a simple way to design unitary protocols for manipulation and measurement of anyons. Local
unitary evolution without stabilizer flux creation can be thought of as the motion of anyons, and is used to
directly perform elementary braiding operations. We propose specific experiments to realize the dynamics of
anyons and verify their fusion rules and braiding statistics, as well as the preparation of an entangled state
of anyons. The protocols we proposed were implemented experimentally on a superconducting processor
as reported in a forthcoming publication. Our recipe for constructing protocols could be used to realize
quantum computation with non-Abelian anyons that allows for quantum error correction. 12
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A. PSC and surface codes

The geometric structure of the PSC can be motivated as a method for introducing and manipulating fluxes
of a particular symmetry of the conventional surface codes [1,18,19]. The latter are stabilizer codes defined on
surface graphs G, with qubits on the links λ. Each vertex v corresponds to a stabilizer Ã(v) =

∏
λ∈links(v)Xλ,

and each plaquette P̃ to a stabilizer B̃(P̃ ) =
∏

λ∈∂P̃ Zλ. One can view the model as a lattice gauge theory
with gauge group Z2, the Gauss law given by Ã(v) |ψ〉 = |ψ〉, and flux measured by B̃(P̃ ).

Abelian gauge theories have an “electric-magnetic” (EM) duality. It has a simple geometric interpretation
in the bulk of a model on a surface graph. One can think of “electric” excitations as violations of the Ã(v)
condition, and “magnetic” fluxes as violations of the B̃(P̃ ) condition. Taking the dual graph takes edges to
edges, so the Hilbert space is not changed and the same stabilizers can be used, but now Ã is associated to
plaquettes and B̃ to vertices. Roughly speaking, a local flux of this symmetry would mean that in taking a
closed path around the flux, the roles of plaquettes and vertices appear to interchange. It is expected that
such local fluxes are non-Abelian anyons on general grounds [20,37].

To introduce such local objects, it is simplest to first make the symmetry between vertices and plaquettes
of G more geometrically manifest; we do this by constructing a new graph G where the qubits are vertices,
and both vertices and plaquettes of G correspond to plaquettes of G. The procedure for finding the edges of
G is shown in Fig. A.5(b). In general, for each vertex v of G, draw a small circle around v (so that the circle

(b)(a) (c)

Figure A.5: (a) A patch of the surface code on a square lattice, and the corresponding patch of the PSC. In the case of a
square lattice, this is the same as a model introduced by Wen [17] and used for a similar purpose to ours by Bombin [20]. (b)
A patch of a general surface code graph G and the corresponding PSC graph G. The edges of G are shown as thin gray lines,
and the vertices as open circles. The qubits are shown as “diamonds” on the links, and form the vertices of G. The edges of G
are thicker black lines. (c) A patch of a PSC graph similar to the one shown in Fig. A.5(b), but that can no longer be globally
related to a surface code.

only intersects links of v, and does not contain any link completely in its interior), so that if v is degree d
the circle is separated into d segments connecting links touching v (possibly to themselves). These segments
define edges of G. By construction, each vertex of G is a face of G. Also each face of G becomes a face of G
(i.e. this construction is dualization invariant).
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The rigid structure of the resulting graph G gives a clear indication how fluxes can be introduced. Away
from any boundary, such a G has only vertices of degree 4, and moreover its faces are manifestly 2-colorable:
we simply color the faces according to whether they were associated to plaquettes or vertices of G. A graph
G′ may be locally 2-colorable, in which case local patches can be mapped back to a G-like surface graph,
but may fail to be 2-colorable globally. This happens if there is some odd loop through the dual graph of
G′, as in Fig. A.5(c). Roughly speaking, in following such a loop, if we associate patches along the path to
G-like surface graphs, upon returning to the starting point we would find which plaquettes of G′ we assign
to vertices and plaquettes of the G-like surface graph are exchanged.

The failure of 2-colorability can be introduced in a local or global manner. Locally, the presence of
an odd-degree vertex introduces an odd loop through the dual graph. This is the starting point for our
identification of non-Abelian anyons with degree 3 vertices. On manifolds of non-trivial topology, it is also
possible to make 2-colorability fail even on a graph with all vertices of degree 4. This is because one can still
have odd loops through the dual graph on non-contractible cycles. For example, there is a surface graph
on a torus with all vertices of degree 4 but which is not 2-colorable. This can be thought of as “threading”
an EM flux through a handle. As discussed in Appendix B, this is a method to reduce the topological
degeneracy.

To assign stabilizers to any surface graph with vertices of degree 2, 3, or 4 we simply use Eq. (11) with
loops on the decorated graph as described there and shown in Fig. 4(b). The braiding and dynamics of local
symmetry fluxes is described in the main text.

B. Degeneracy of the code subspace

We first derive Eq. (2). We consider the undecorated graph G, for example the patch shown in Fig. 1(d).
Each qubit is a vertex of degree 2, 3 or 4, and only the NL L-type edges are edges of G. Counting the edges
leaving each vertex gives 2NL = 4NQ − Nσ, and using the standard formula χ(M) = NQ − NL + NS , we
find Eq. (2).

We now give the formal relationship between Eq. (2) and the dimension of the code subspace HCS. We
need to take into account that the stabilizers are not always independent, in the sense that there may be
some nonempty set Σ of plaquettes such that ∏

P∈Σ

B(P ) = 1 (B.1)

as an operator equation13. For example, for M a disk with Nσ = 0 there is always precisely one such
nonempty set Σ, and when Nσ > 0 there are none. In general, any such set can be written as an arbitrary
union of some minimal collection of NR (necessarily connected) nonempty sets of plaquettes satisfying
Eq. (B.1). If we simply take the trace of a projector onto HCS given by the conditions Eq. (1), we find its
dimension

dimHCS =
1

2NS
tr

(∏
P

(1 +B(P ))

)
= 2NQ−NS+NR , (B.2)

since unless a set of plaquettes Σ satisfies Eq. (B.1), tr
(∏

P∈ΣB(P )
)
= 0.

Nσ > 0 – The gauge-theoretic definition of B(P ) in Eq. (6) makes it simple to compute NR. First, it is
immediately clear that on a surface without boundary NR ≥ 1, since taking the product over all P includes
each (−1)nL operator twice. If Nσ > 0, we will see this is the only possible relation, so on manifolds with
nonempty boundary Nσ > 0 =⇒ NR = 0, while on manifolds without boundary Nσ > 0 =⇒ NR = 1.

Nσ = 0 – The only other way that a relation is possible is that some product of the B(P ) is equivalent
to a gauge transformation Γq at each site. In more detail, some set of plaquettes must include each black
edge exactly once, and each qubit must have all diamond vertices with L-type edges (i.e. all vertices of G

13Note that if there were some set Σ̃ with
∏

P∈Σ̃B(P ) = −1, the code subspace would be empty.
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are degree 4). Clearly, this only applies when Nσ = 0. Moreover, this requires that the faces of G (i.e.
vertices of the dual of G) are 2-colorable, so that the corresponding set Σ satisfying Eq. (B.1) consists of
only one color. It follows that this type of relation can only count for 1 additional independent relation
compared to that considered above, since if it occurs in 2 ways, the product of all B(P ) (i.e. both colors) is
also 1. Thus NR ≤ 2 for a manifold without boundary, and NR ≤ 1 for a manifold with nonempty boundary
(note that this, in combination with Eq. (B.2) and Eq. (2), proves Nσ = 0 =⇒ NR = 1 for a disk and
Nσ = 0 =⇒ NR = 2 for a sphere).

To determine if this additional relation is present on a manifold without boundary, we only need to
check 2-colorability of the faces of G. This can only fail on non-contractible loops (since all vertices are
of even degree). If the graph is 2-colorable, then NR = 2, otherwise NR = 1. There is a more physical,
equivalent condition: each non-contractible loop corresponds to a simple ’t Hooft loop. There is an interesting
consequence of this: although the PSC with Nσ = 0 looks locally like the toric code [1], there is a PSC on
the torus with Nσ = 0 which encodes only 1 qubit, rather than 2.

If the manifold has a boundary, we view the entire surface as a sphere with handles, and holes for each
boundary component. We simply check if the graph G′ obtained by adding faces for each hole is still 2-
colorable, with all the added faces getting the same color: if it is, NR = 1, otherwise NR = 0. This condition
is equivalent to the 2-colorability of G′, combined with the existence of an ’t Hooft line between any pair of
boundary components that creates no flux (i.e. it ends just outside the boundary).

C. Kasteleyn orientations, path deformations and unpaired vertex Z(K)
2 flux attachment

In this section, we discuss some useful results on Kasteleyn structures, in particular proofs of Eqs. (3),
(9) and (10).

C.1. Gauge-invariant Kasteleyn loop values
A Kasteleyn orientation [29] always exists on a surface graph with an even number of vertices [30,31]. There

is a precise sense in which such an orientation behaves like a typical Z2 gauge field. One Kasteleyn orientation
can be taken to any other by flipping arrows on links crossed by cycles through the dual graph [30,31], with
contractible cycles generated by the Z(K)

2 transformation described in the main text. This is the same way
that a conventional Z2 field configuration can be taken to any other with the same pattern of local flux (the
transformations corresponding to the contractible loops are gauge). The reason is that any cycle flips an
even number of arrows in each plaquette.

We will re-use the definition W (K)
γ from Eq. (8) for directed paths and loops in a general graph (i.e. it is

+1 (−1) if there are an even (odd) number of arrows along the path that point opposite the direction of the
path). Importantly, the above discussion proves that for a directed contractible loop γ, W (K)

γ is independent
of the choice of Kasteleyn orientation. The invariant value can be understood by contracting a simple (no
self-intersections) counter-clockwise loop to a single face F0, where the definition of a Kasteleyn orientation
is that W (K)

∂F0
= −1 (where ∂F0 is traversed counter-clockwise). To do this, we give a useful rule for “pushing”

segments of a path γ through a face F , as shown in Fig. C.6. Part of ∂F is γ1 ⊂ γ. The complement of
γ1 in the boundary ∂F of the face F is γ2. To “deform” the path γ is to replace γ1 with γ2 (in the same
direction), obtaining a path γ′. To compute the accompanying sign change W (K)

γ (W
(K)
γ′ )−1, note that γ2

traverses F clockwise, so the Kasteleyn condition for F refers to the reversed path R̂γ2. We have the general
formula W (K)

R̂γ
= (−1)length(γ)W (K)

γ = −(−1)vertices(γ)W (K)
γ . Combining with the Kasteleyn condition, we

find in the case of deformation through a single face

W (K)
γ1

= (−1)vertices(γ2)−2W (K)
γ2

. (C.1)

But vertices(γ2)−2 simply counts the number of vertices that are in the interior of γ but not γ′. Continuing
this way until we arrive at a single face, calling VB(γ) the number of vertices in the interior of the loop γ
we find

W (K)
γ = −(−1)VB(γ) (C.2)
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Figure C.6: “Pushing” the loop γ (blue) to γ′ (red) by replacing the segments γ1 about ∂F with γ2. The loops are the same,
and the details of the graph unimportant, along the dashed path.

for any counter-clockwise simple loop γ.

C.2. Computation of canonical loops
We now return to the special case of the decorated PSC graph, and always focus on a disk-like region.

Every simple counter-clockwise loop in the undecorated graph, γ̂, could naturally correspond to 2length(γ̂)

directed loops through the decorated graph, because at each added diamond we can choose whether to go
around it clockwise or counter-clockwise.

For open paths we also choose which diamond vertex the path ends at. The physical requirement of Z(s)
2

invariance for the augmented Wilson lines that are built from this path constrains it to end on a different
vertex of the endpoint diamonds than where it entered. This is the definition of a valid path.

In fact, we can see by inspection of Eqs. (7) and (8) that the choice of how diamonds are traversed only
affects the Kasteleyn part of a loop or line, and therefore simply changes the sign of the operator. Moreover,
by the deformation formula Eq. (C.1) we see that if a line touches a diamond an odd number of times, it
does not matter which way we traverse that diamond. Thus we only have to keep careful track of “wedges”
where a diamond is touched precisely twice in a row. When building various operators this can simply be
chosen as convenient (c.f. the movement gates in Figs. 4(d) to 4(f)), but to predict braiding outcomes by
deformation of Wilson lines we need to know which way to take the wedges. Remarkably, unitarity, locality,
and gauge invariance determine that we can always take Wilson lines with wedges pointing to the right (i.e.
traversing the diamond counter-clockwise) to measure fusion outcomes. In the main text, to give a more
concise definition of canonicity we simply insisted on all lines traversing the diamonds counter-clockwise,
which is equivalent to the definition here. The more refined definition here is convenient for various proofs
since fewer cases need to be checked. Note in particular (−1)Nll(γ) (defined below Eq. (11)) only depends
on the number of wedges.

Consider now a simple canonical loop γ, and cut away the exterior edges and vertices, so that γ becomes
the boundary of a graph G̃. The important geometric property of a canonical loop is that, when viewed as
the boundary of G̃, γ has an even number of odd degree vertices. By the “handshaking lemma” [28], this
means that the number of odd-degree vertices on the interior of the loop is even. The only even-degree
vertices in the interior of the loop are the unpaired ones, so VB(γ) = Nσ(γ) mod 2 and for a contractible
canonical loop

W (K)
γ = −(−1)Nσ(γ). (C.3)

This proves the results Eqs. (3) and (9).

C.3. Computation of ratios of canonical paths
We now compute the ratio of Kasteleyn Wilson lines, W (K)

γ (W
(K)
γ′ )−1, for two valid canonical paths γ, γ′

with endpoints at the same two anyons 1,2. The union of the two paths (temporarily ignoring direction)
consists of loops connected by segments where the paths are the same. In the simplest case there is just
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Figure C.7: First step in the computation of the path deformation for the pair of lines shown in Fig. 2(f). We note that γ1 is
equivalent to γ in that figure, and γ′ = γ2.

a single loop, as shown in Fig. 2(f). Each loop consists of two segments, one from γ and one from γ′. We
only need to consider one such loop. One of the segments is counter-clockwise about the loop and the other
clockwise; call the counter-clockwise segment γ1 and the other γ2. In fact, by enumerating the ways in which
canonical paths can split from each other, one finds that γ2 can always be taken valid (this is not necessarily
the case for γ1). An example for the pair γ, γ′ in Fig. 2(f) is shown in Fig. C.7. The reversed path R̂γ2
may not be canonical, and W

(K)

R̂(γ2)
= −(−1)Nll(γ2)W

(K)
γ2 . To make the reversed path canonical, each wedge

should be flipped, which cancels the factor (−1)Nll(γ2); call this path Rγ2. The path γ = γ1 ∪Rγ2 is now a
canonical loop, and we find

W (K)
γ1

(W (K)
γ2

)−1 = −W (K)
γ = (−1)Nσ(γ) ≡ (−1)Nσ(γ1,γ2). (C.4)

This expression gives a precise definition of Nσ(γ, γ
′) in the main text, which is only necessary when the

Wilson lines pass directly through unpaired anyons away from the endpoints (the latter are of course in
common, and it is straightforward to check that they never contribute to this flux difference). In practice, if
there are few anyons on the Wilson line it is often simpler to deform the line by one plaquette using Eq. (C.1)
first, and then apply the counting formula. We also note that because of some exceptions at the endpoints,
in the main text we only stated Eq. (10) for Wilson lines between anyons. The formula also applies with
other conditions, most obviously when the paths γ, γ′ differ only away from their endpoint diamonds.

D. Examples on a 5 × 5 qubit system

In this section, we illustrate some of the above steps explicitly in a 5× 5 qubit system. First, we specify
the initial state by giving appropriate stabilizers, see Fig. D.8(a). The initial PSC is simply a square graph
in the bulk, with 4 anyons at the corners: this is just a surface code encoding 1 qubit [18], and has previously
been prepared on a superconducting quantum processor [15]. We assume the state can be prepared so that
the vertical ’t Hooft line shown, whose explicit form is also given, takes a definite value.

Next, in Fig. D.8(b) we show the Pauli string that generates a motion that appears in the middle of a
possible extension of the braid in Fig. 4(g) to a larger system. According to the rules from the main text,
we use Eq. (13) with U+ to perform this move. As discussed in the main text, if we wished to move the
composite of an anyon with attached Z(s)

2 flux, we would use U−.

18



Z

X
Z

X

P

X

Z

Q

Z

X

Z

X

Z

X
Z

X
Z

1 2 3

Wγ = X3X2X1

(a) (b)

Figure D.8: (a) The surface code as a PSC, with several visualizations of Eq. (11). We show the two stabilizers associated
to the plaquettes P and Q, as well as the Wilson line for B(P ). We also apply the rules from Fig. 2(g) to construct the Pauli
string for the logical Z ’t Hooft line (the Pauli string appears to the right of the line). (b) The Pauli string that generates a
movement circuit, associated to the Wilson line shown. This is another direct application of Eq. (11).
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