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Indistinguishability of particles is a fundamental principle of quantum mechanics1. For all el-
ementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons -
this principle guarantees that the braiding of identical particles leaves the system unchanged2,3.
However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons
causes rotations in a space of topologically degenerate wavefunctions4–8. Hence, it can change the
observables of the system without violating the principle of indistinguishability. Despite the well
developed mathematical description of non-Abelian anyons and numerous theoretical proposals9–22,
the experimental observation of their exchange statistics has remained elusive for decades. Control-
lable many-body quantum states generated on quantum processors offer another path for exploring
these fundamental phenomena. While efforts on conventional solid-state platforms typically involve
Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly
manipulating the many-body wavefunction via unitary gates. Building on predictions that stabi-
lizer codes can host projective non-Abelian Ising anyons9,10, we implement a generalized stabilizer
code and unitary protocol23 to create and braid them. This allows us to experimentally verify the
fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of
employing the anyons for quantum computation and utilize braiding to create an entangled state of
anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding
and - through the future inclusion of error correction to achieve topological protection - could open
a path toward fault-tolerant quantum computing.

Elementary particles in three dimensions (3D) are ei-
ther bosons or fermions. The existence of only two types
is rooted in the fact that the worldlines of two particles
in 3+1 dimensions can always be untied in a trivial man-
ner. Hence, exchanging a pair of indistinguishable par-
ticles twice is topologically equivalent to not exchang-
ing them at all, and the wavefunction must remain the
same. Representing the exchange as a matrix R acting
on the space of wavefunctions with a constant number
of particles, it is thus required that R2 = 1 (a scalar),
leaving two possibilities: R = 1 (bosons) and R = −1
(fermions). Such continuous deformation is not possible
in two dimensions (2D), thus allowing collective excita-
tions (quasiparticles) to exhibit richer braiding behav-
ior. In particular, this permits the existence of Abelian
anyons2,3,6–8,24,25, where the global phase change due to
braiding can take any value. It has been proposed that
there exists another class of quasiparticles known as non-
Abelian anyons, where braiding instead results in a change
of the observables of the wavefunction4,5,24. In other
words, R2 does not simplify to a scalar, but remains a uni-
tary matrix. Therefore, R2 is a fundamental characteris-
tic of anyon braiding. The topological approach to quan-
tum computation26 aims to leverage these non-Abelian
anyons and their topological nature to enable gate oper-
ations that are protected against local perturbations and
decoherence errors5,27–30. In solid-state systems, primary
candidates of non-Abelian quasiparticles are low-energy
excitations in Hamiltonian systems, including the 5/2 frac-
tional quantum Hall states31,32, vortices in topological
superconductors33,34, and Majorana zero modes in semi-
conductors proximitized by superconductors35–38. How-
ever, direct verification of non-Abelian exchange statistics

has remained elusive39–41.

We formulate the necessary requirements for exper-
imentally certifying a physical system as a platform
for topological quantum computation5,26: (1) create an
anyon pair; (2) verify the rules that govern the ”colli-
sion” of two anyons, known as the fusion rules; (3) verify
the non-Abelian braiding statistics reflected in the ma-
trix structure R2; (4) realize controlled entanglement of
anyonic degrees of freedom. Notably, the observation of
steps (2-4) requires measurements of multi-anyon states,
via fusion or non-local measurements.

The advent of quantum processors allows for con-
trolled unitary evolution and direct access to the wave-
function rather than the parameters of the Hamiltonian.
These features enable the use of local operations for effi-
cient preparation of topological states that can host non-
Abelian anyons, and - as we will demonstrate - their sub-
sequent braiding and fusion. Moreover, these platforms
allow for probing arbitrary Pauli strings through destruc-
tive multi-qubit (i.e. non-local) measurements. Since
the braiding of non-Abelian anyons in this platform is
achieved through unitary gate control rather than adia-
batic evolution of a Hamiltonian system, we note that the
anyons are not quasi-particles in the sense of eigenstates
that persist throughout a Hamiltonian evolution. Impor-
tantly, their movement is achieved through local opera-
tions along their paths, and they are kept spatially sep-
arated throughout the braiding. We therefore emphasize
that the 2D braiding processes are physically taking place
on the device, leading to actual non-Abelian exchange
effects of local anyons in the many-body wavefunction,
rather than matrix operations that simply follow the same
algebra.

ar
X

iv
:2

21
0.

10
25

5v
2 

 [q
ua

nt
-p

h]
  3

1 
M

ay
 2

02
3



2

z   x
x   z

z   x
x   z

z   x
x   z

z   x
x   z

z   x
x   z

z   x
x   z

Z  X
X  Z

Z  X
X  Z

U = exp(π/8 [S’,S]) = exp(- i π/4 Xi,j Z i,j+1)

a

Z         X
X          Z

Y
Y

Z       XY
 X  

τ1 τ2

iτ2τ1

Z

: Z-gate : X-gate : D3V

S = S1 S2

b
S1 S2

Z X
X Z
Z X
X Z

τ1 τ2

τ1τ2 −τ1

τ1

j j+1S’

i

S

FIG. 1. Deformations of the surface code. a, Stabi-
lizer codes are conveniently described in a graph framework.
Through deformations of the surface code graph, a square grid
of qubits (crosses) can be used to realize more generalized
graphs. Plaquette violations (red) correspond to stabilizers
with sp = −1 and are created by local Pauli operations. In the
absence of deformations, plaquette violations are constrained
to move on one of the two sub-lattices of the dual graph in the
surface code, hence the two shades of blue. b, A pair of D3Vs
(yellow triangles) appears by removing an edge between two

neighboring stabilizers, Ŝ1 and Ŝ2, and introducing the new
stabilizer, Ŝ = Ŝ1Ŝ2. A D3V is moved by applying a 2-qubit

entangling gate, exp
(

π
8
[Ŝ′, Ŝ]

)
. In the presence of bulk D3Vs,

there is no consistent way of checkerboard coloring, hence the
(arbitrarily chosen) gray regions. Top right: in a general stabi-

lizer graph, Ŝp can be found from a constraint at each vertex,
where {τ1, τ2} = 0.

In order to realize a many-body quantum state that
can host anyons, it is essential to control the topolog-
ical degeneracy. A suitable platform for achieving this
requirement is a stabilizer code42, where the wavefunc-
tions are characterized by a set of commuting operators
{Ŝp} called stabilizers, with Ŝp |ψ⟩ = sp |ψ⟩ and sp = ±1.
The code space is the set of degenerate wavefunctions for
which sp = 1 for all p. Hence, every independent stabilizer
divides the degeneracy of the code space by two.

While the physical layout of qubits is typically used to
determine the structure of the stabilizers, the qubits can
be considered to be degree-j vertices (DjV; j ∈ {2, 3, 4})
on more general planar graphs (see Fig. 1a)23. Using this
picture, each stabilizer can be associated with a plaquette
p, whose vertices are the qubits on which Ŝp acts:

Ŝp =
∏

v ∈ vertices

τ̂p,v . (1)

τ̂p,v is here a single-qubit Pauli operator acting on ver-
tex v, chosen to satisfy a constraint around that vertex
(Fig. 1b). An instance where sp = −1 on a plaquette

is called a plaquette violation. These can be thought of
as quasi-particles, which are created and moved through
single-qubit Pauli operators (Fig. 1a). A pair of plaquette
violations sharing an edge constitute a fermion, ε. We re-
cently demonstrated the Abelian statistics of such quasi-
particles in the surface code43. To realize non-Abelian
statistics, one needs to go beyond such plaquette viola-
tions; it has been proposed that dislocations in the sta-
bilizer graph - analogous to lattice defects in crystalline
solids - can host projective non-Abelian Ising anyons9,10.
For brevity, we refer to these as ”non-Abelian anyons” or
simply ”anyons” from here on.

In the graph framework introduced above, it has been
shown that such dislocations are characterized as vertices
of degree 2 and 3 (ref.23). Consider the stabilizer graph
of the surface code26,44, specifically with boundary con-
ditions such that the degeneracy is two. While all the
vertices in the bulk are D4Vs, one can create two D3Vs
by removing an edge between two neighboring plaquettes
p and q, and introducing the new stabilizer Ŝ = ŜpŜq (Fig.
1b). Evidently, the introduction of two D3Vs reduces the
number of independent stabilizers by one and thus doubles
the degeneracy. This doubling is exactly what is expected
when a pair of Ising anyons is introduced9,10; hence, D3Vs
appear as a candidate of non-Abelian anyons, and we will
denote them as σ.

In order to be braided and fused by unitary operations,
the D3Vs must be moved. While the structure of the
stabilizer graph is usually considered to be static, it was
predicted by Bombin that the dislocations in the surface
code would exhibit projective non-Abelian Ising statis-
tics if braided10. Here, we will employ a specific protocol
recently proposed by Lensky et al.23 for deforming the
stabilizer graph (and thus moving the anyons) using lo-
cal two-qubit Clifford gates. To shift a D3V from vertex
u to v, an edge must be disconnected from v and recon-
nected to u. This can be achieved via the gate unitary

exp
(

π
8 [Ŝ

′
p, Ŝp]

)
, where Ŝp is the original stabilizer con-

taining the edge and u, and Ŝ′
p is the new stabilizer that

emerges after moving the edge23. In cases where the D3V
is shifted between two connected vertices, the unitary sim-
plifies to the form U±(τ̂uτ̂v) ≡ exp

(
±iπ4 τ̂uτ̂v

)
, where τ̂u

and τ̂v are Pauli operators acting on vertices u and v.
We experimentally realize this unitary through a CZ-gate
and single-qubit rotations (median errors of 7.3 × 10−3

and 1.3× 10−3, respectively; see Methods).

Following these insights from Kitaev and Bombin, we
now turn to our experimental study of the proposed
anyons, using the protocol described in Ref.23. In the
first experiment we demonstrate the creation of anyons
and the fundamental fusion rules of σ and ε (Fig. 2a). In
a 5×5 grid of superconducting qubits, we first use a pro-
tocol consisting of four layers of CZ-gates to prepare the
surface code ground state (panel I in Fig. 2b, see also43).
The average stabilizer value after the ground state prepa-
ration is 0.94 ± 0.04 (individual stabilizer values shown
in Extended Data Fig. 3c). We then remove a stabi-
lizer edge to create a pair of D3Vs (σ) and separate them
through the application of two-qubit gates. Panels I-IV in
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FIG. 2. Demonstration of the fundamental fusion rules of D3Vs. a, The braiding worldlines used to fuse ε and σ. b,
Expectation values of stabilizers at each step of the unitary operation after readout correction (see Extended Data Fig. 3 for
details and individual stabilizer values). We first prepare the ground state of the surface code (step I; average stabilizer value:
0.94± 0.04). A D3V (σ) pair is then created (II) and separated (III-IV), before creating a fermion, ε (V). One of the plaquette
violations is brought around the right σ (VI-VIII), allowing it to annihilate with the other plaquette violation (VIII). The fermion
has seemingly disappeared, but re-emerges when the σ are annihilated (XI; stabilizer values: -0.86 and -0.87). The path V→VIII
demonstrates the fusion rule, σ × ε = σ. The different fermion parities at the end of the paths VIII→XI and IV→I show the
other fusion rule, σ × σ = 1 + ε. Yellow triangles represent the positions of the σ. The brown and red lines denote the paths of
the σ and the plaquette violation, respectively. Red squares (diamonds) represent X- (Z-) gates. Upper left: table of two-qubit
unitaries used in the protocol. c, Non-local technique for hidden fermion detection: the presence of a fermion in a σ-pair can
be deduced by measuring the sign of the Pauli string P̂ corresponding to bringing a plaquette violation around the σ-pair (gray

path). P̂ is equivalent to the shorter string P̂ ′ (black path). Measurements of P̂ ′ in steps VIII (top) and IV (bottom) give values
−0.85± 0.01 and +0.84± 0.01, respectively. This indicates that there is a hidden fermion pair in the former case, but not in the
latter, despite the stabilizers being the same.

Fig. 2b show the measured stabilizer values in the resul-
tant graph in each step of this procedure (determined by
simultaneously measuring the involved qubits in their re-
spective bases, n = 10, 000; note that the measurements
are destructive and the protocol is restarted after each
measurement). In panel V, single-qubit Z-gates are ap-
plied to two qubits near the lower left corner of the grid to
create adjacent plaquette violations, which together form
a fermion. Through the sequential application of X- and
Z-gates (VI to VIII), one of the plaquette violations is
then made to encircle the right σ vertex. Crucially, af-
ter moving around σ, the plaquette violation does not
return to where it started, but rather to the location of
the other plaquette violation. This enables them to anni-
hilate (VIII), causing the fermion to seemingly disappear.
However, by bringing the two σ back together and an-
nihilating them (IX through XI), we arrive at a striking
observation: an ε-particle re-emerges on two of the square
plaquettes where the σ-vertices previously resided.
Our results demonstrate the fusion of ε and σ. The dis-

appearance of the fermion from step V to VIII establishes
the fundamental fusion rule of ε and σ:

σ × ε = σ . (2)

We emphasize that none of the single-qubit gates along

the path of the plaquette violation are applied to the
qubits hosting the mobile σ; our observations are there-
fore solely due to the non-local effects of non-Abelian
D3Vs, and exemplify the unconventional behavior of the
latter. Moreover, another fusion rule is seen by consider-
ing the reverse path IV→I, and comparing it to the path
VIII→XI. These two paths demonstrate that a pair of σ
can fuse to form either vacuum (1) or one fermion (step
I and XI, respectively):

σ × σ = 1 + ε . (3)

Importantly, the starting points of these two paths (IV
and VIII) cannot be distinguished by any local measure-
ment. We therefore introduce a non-local measurement
technique that allows for detecting an ε without fusing
the σ (Ref.10,23,26). The key idea underlying this method
is that bringing a plaquette violation around a fermion
should result in a π-phase. We therefore measure the
Pauli string P̂ that corresponds to creating two plaque-
tte violations, bringing one of them around the two σ,
and finally annihilating them with each other (gray paths
in Fig. 2c). The existence of an ε inside the σ-pair should

cause ⟨P̂⟩ = −1. To simplify this technique further, P̂ can

be reduced to a shorter string P̂ ′ (black paths in Fig. 2c)
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FIG. 3. Braiding of non-Abelian anyons. a, Wordline schematic of the braiding process. b, Experimental demonstration of
braiding, displaying the values of the stabilizers throughout the process. Two σ-pairs, A and B, are created from the vacuum 1,
and one of the σ in pair A is brought to the right side of the grid. Next, a σ from pair B is moved to the top, thus crossing the
path of pair A, before bringing σ-pairs A and B back together to complete the braid. In the final step, two fermions appear in
the locations where the σ-pairs resided, constituting a change in the local observables. The diagonal σ move in step IV requires
two SWAP-gates (3 CZ-gates each) and a total of 10 CZ-gates. The three-qubit unitary in step VIII requires 4 SWAP-gates
and a total of 15 CZ-gates. In the full circuit, a total of 40 layers of CZ-gates are applied (see Methods). The yellow triangles
represent the locations of the σ; the brown and green lines represent the paths of σ from pair A and B, respectively. c, As a
control experiment, we perform the same braid as in a, but with distinguishable σ by attaching a plaquette violation to the σ
in pair B (represented as purple triangles). d, Same as b, but using distinguishable σ (only showing steps I, IV and XII). In
contrast to b, no fermions are observed in step XII.

by taking advantage of the stabilizers it encompasses. For
instance, if P̂ contains three of the operators in a 4-qubit
stabilizer, these can be switched out with the remaining
operator. Measuring ⟨P̂ ′⟩ in step IV, where the σ are
separated but the fermion has not yet been introduced,
gives ⟨P̂ ′⟩ = +0.84± 0.01, consistent with the absence of
fermions. However, performing the exact same measure-
ment in step VIII, where the σ are in the same positions,
we find ⟨P̂ ′⟩ = −0.85± 0.01, indicating that an ε is delo-
calized across the spatially separated σ-pair. This obser-
vation highlights the non-local encoding of the fermions,
which cannot be explained with classical physics.

Having demonstrated the above fusion rules involving
σ, we next braid them with each other to directly show
their non-Abelian statistics. We consider two spatially
separated σ-pairs, A and B, by removing two stabilizer
edges (Fig. 3a and panel II in Fig. 3b). Next, we apply
two-qubit gates along a horizontal path to separate the σ
in pair A (panel III), followed by a similar procedure in
the vertical direction on pair B (IV), so that one of its σ
crosses the path of pair A. We then subsequently bring
the σ from pairs A and B back to their original posi-
tions (V-VIII and IX-XI, respectively). Strikingly, when
the two σ-pairs are annihilated in the final step (XII),
we observe that a fermion is revealed in each of the posi-
tions where the σ-pairs resided (average stabilizer value:
−0.45 ± 0.06). This shows a clear change in local ob-

servables from the initial state where no fermions were
present. As a control experiment, we repeat the experi-
ment with distinguishable σ-pairs, achieved by attaching
a plaquette violation to each of the σ in pair B (Fig. 3c,d;
see also Extended Data Fig. 8 for stabilizer measure-
ments through the full protocol). Moving the plaquette
violation along with the σ requires a string of single-qubit
gates, which switches the direction of the rotation in the
multi-qubit unitaries, U± → U∓. In this case, no fermions
are observed at the end of the protocol (average stabilizer
value: +0.46± 0.04), thus providing a successful control.

Importantly, fermions can only be created in pairs in
the bulk. Moreover, the fusion of two σ can only create
zero or one fermion (Eqn. 3). Hence, our experiment
involves the minimal number of bulk σ (four) needed to
encode two fermions and demonstrate non-Abelian braid-
ing. Since the fermion parity is conserved, effects of gate
imperfections and decoherence can be partially mitigated
by post-selecting for an even number of fermions. This
results in fermion detection values of −0.76 ± 0.03 and
+0.79± 0.04 in Fig. 3b and d, respectively.

Together, our observations show the change in local ob-
servables by braiding of indistinguishable σ and constitute
a direct demonstration of their non-Abelian statistics. In
other words, the double-braiding operation R2 is a ma-
trix that cannot be reduced to a scalar. Specifically, it
corresponds to an X-gate acting on the space spanned by
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Re(ρ) has clear peaks in its corners, as expected for a GHZ state on the form (|000⟩ + |111⟩)/

√
2. The overlap with the ideal

GHZ-state is Tr{ρGHZρ} = 0.623± 0.004.

zero- and two-fermion wavefunctions.

The full braiding circuit consists of 40 layers of CZ-
gates and 41 layers of single-qubit gates (36 of each af-
ter ground state preparation). The effects of imperfec-
tions in this hardware implementation can be assessed
through comparison with the control experiment. The
absolute values of the stabilizers where the fermions are
detected in the two experiments (dashed boxes in step
XII of Fig. 3b,d) are very similar (average values of −0.45
and +0.46). This is consistent with the depolarization
channel model, where the measured stabilizer values are
proportional to the ideal values (±1).

We next study the prospects of utilizing D3Vs to encode
logical qubits and prepare an entangled state of anyon
pairs. By doubling the degeneracy, each additional σ-pair
introduces one logical qubit, where the |0⟩L (|1⟩L) state
corresponds to an even (odd) number of hidden fermions.
Importantly, the measurements of the fermion numbers in
several σ-pairs are not fully independent: bringing a pla-
quette violation around one σ-pair is equivalent to bring-
ing it around all the other pairs (due to the conservation of
fermionic parity). Hence, N ≥ 2 anyons encode N/2 − 1
logical qubits. Interestingly, the D3Vs we have created
and manipulated so far are not the only ones present in
the stabilizer graph; with the boundary conditions used
here, each of the four corners are also D3Vs, no different
from those in the bulk23. Indeed, the existence of D3Vs
in the corners is the reason why a single fermion could
be created in the corner in step V of Fig. 2b. This is also

consistent with the fact that the surface code itself en-
codes one logical qubit in the absence of additional D3Vs.
Here we create two pairs of D3Vs, in addition to the four
that are already present in the corners, to encode a total
of three logical qubits.

Through the use of braiding, we aim to prepare an en-
tangled state of these logical qubits, specifically a GHZ-
state on the form, (|000⟩ + |111⟩)/

√
2. The definition of

a GHZ-state and the specifics of how it is prepared is
basis-dependent. In most systems the degrees of freedom
are local and there is a natural choice of basis. For spa-
tially separated anyons, the measurement operators are
necessarily non-local. Here we choose the basis defined as
follows: for the first two logical qubits, we choose the logi-
cal ẐL,i operators to be Pauli strings encircling each of the
bulk σ-pairs, as was used in Fig. 2c (green and turquoise
paths in the left column of Fig. 4a). For the logical sur-

face code qubit, we define ẐL,3 as the Pauli string that
crosses the grid horizontally through the gap between the
bulk D3V pairs, effectively enclosing four σ (red path in
Fig. 4a). In this basis, the initial state is a product state.

While a double braid was used to implement the opera-
tor X in Fig. 3, we now perform a single braid (Fig. 4b) to

realize
√
X and create a GHZ-state. We implement this

protocol by bringing one σ from each bulk pair across the
grid to the other side (Fig. 4c). For every anyon double ex-
change across a Pauli string, the value of the Pauli string
changes sign. Hence, a double exchange would change
|000⟩ to |111⟩, while a single exchange is expected to re-
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alize the superposition, (|111⟩+ |000⟩)/
√
2.

In order to study the effect of this operation, we per-
form quantum state tomography on the final state, which
requires measurements of not only ẐL,i, but also X̂L,i and

ŶL,i on the three logical qubits. For the first two logical

qubits, X̂L,i is the Pauli string that corresponds to bring-
ing a plaquette violation around only one of the σ in the
pair (as demonstrated in Fig. 2b). Both the logical X̂L,i

and ẐL,i operators can be simplified by reducing the orig-
inal Pauli strings (green and turquoise paths in the left
column of Fig. 4c) to equivalent, shorter ones (right col-

umn). ẐL,1 can in fact be reduced to a single Ŷ -operator.

For the logical surface code qubit, we define X̂L,3 as the
Pauli string that crosses the grid vertically between the
bulk D3V pairs (red path in Fig. 4a). Finally, the logical

ŶL,i-operators are simply found from ŶL,i = iX̂L,iẐL,i.
Measuring these operators, we reconstruct the density
matrix of the final state (Fig. 4d,e), which has a purity

of
√
Tr{ρ2} = 0.646±0.003 and an overlap with the ideal

GHZ-state of Tr{ρGHZρ} = 0.623 ± 0.004 (uncertainties
estimated from bootstrapping method; resampled 10,000

times from the original data set). The fact that the state
fidelity is similar to the purity suggests that the infidelity
is well described by a depolarizing error channel.

In conclusion, we have realized highly controllable
braiding of degree-3 vertices, enabling the demonstra-
tion of the fusion and braiding rules of non-Abelian Ising
anyons. We have also shown that braiding can be used to
create an entangled state of three logical qubits encoded
in these anyons. In other, more conventional candidate
platforms for non-Abelian exchange statistics, which in-
volve Hamiltonian dynamics of quasi-particle excitations,
topological protection naturally arises from an emergent
gap that separates the computational states from other
states. In order to leverage the non-Abelian anyons in our
system for topologically protected quantum computing,
the stabilizers must be measured throughout the braiding
protocol. The potential inclusion of this error correction
procedure, which involves overheads including readout of
5-qubit stabilizers, could open a new path toward fault-
tolerant implementation of Clifford gates, a key ingredient
of universal quantum computation.
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METHODS

A. Qubit decoherence and gate characterization

The experiments are performed on a quantum processor with frequency-tunable transmon qubits and a similar design
to that in Ref.45. Extended Data Figure 1a shows the measured relaxation times of the 25 qubits that were used in the
experiment, with a median value of T1 = 21.7 µs. We also measure the dephasing time T2 in a Hahn echo experiment,
shown in Extended Data Fig. 1b, with the same median value of 21.7 µs. We note that the equality of T1 and T2 is
a coincidence and that the discrepancy between the measured decoherence rate 1/T2 and the relaxation-limited rate
1/(2T1) is due to remnant noise not decoupled in the Hahn echo experiment.

Next, we benchmark the gates used in the experiment. Extended Data Fig. 2a and b show the cummulative distri-
bution of the Pauli errors for single- and two-qubit (CZ) gates, respectively. The median Pauli errors are 1.3 × 10−3

for the single-qubit gates and 7.3 × 10−3 for the two-qubit gates.
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FIG. 1. Qubit relaxation (T1) and coherence (T2) times. a,b Cummulative distributions of T1 (a) and T2 (b), where the
latter is measured using a Hahn echo sequence. Dashed lines indicate the median values of 21.7 µs for both measures. Insets:
T1 and T2 plotted against qubit number.
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find median error values of 1.3× 10−3 and 7.3× 10−3 for the single-qubit and CZ-gates, respectively.
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B. Readout details

Since the readout of the qubit state is imperfect, the raw data gives a somewhat incorrect representation of the
actual quantum state of the system. We write the probability of readout error of state 0(1) on qubit i as p0(1),i, and
the readout fidelity is thus given by 1− (p0,i+p1,i)/2. In order to correct for any asymmetry between readout of the |0⟩
and |1⟩ states, we perform symmetrized measurements in which π-pulses are applied to the qubits before the readout
in half of the measurements and the recorded qubit values are inverted. The measured value of a stabilizer with actual
value ⟨S⟩ = ⟨

∏
i αi⟩ (where the product runs over qubits in the stabilizer) is then:

⟨S⟩meas = ⟨
∏
i

(1− p0,i − p1,i)αi⟩ =
∏
i

(1− p0,i − p1,i)⟨S⟩, (1)

where we made use of the fact that each qubit is measured equally often in the |0⟩ and |1⟩ states in the symmetrized
measurements. Note the absence of the factor 1/2 compared to the expression for the readout fidelity, since perfectly
incorrect readout (p0 = p1 = 1) would give a readout fidelity of 0, but a measured value of −αi. In order to correct
for the discrepancy between the measured stabilizer value and the actual stabilizer value, we measure ⟨Z1...Zn⟩ of the
state |00..00⟩ with the same qubits (using again symmetrized measurements) to find:

⟨Z1..Zn⟩meas =
∏
i

1− p0,i − p1,i (2)

The readout-corrected ⟨S⟩ is then found from:

⟨S⟩corr = ⟨S⟩meas/⟨Z1..Zn⟩meas (3)

Extended Data Fig. 3 displays the measured readout errors, as well as a comparison of the stabilizer values in the
surface code ground state (same data as in step I in main text Fig. 2) before and after readout correction.
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vertical line). Inset: Readout error plotted against qubit number. b,c, Stabilizer values of the surface code ground state before
(a) and after (b) readout correction.
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C. Dynamical decoupling

In order to mitigate the effects of qubit decoherence during the circuits, we perform dynamical decoupling on qubits
that are idle for more than three layers of gates. In particular, we utilize the Carr-Purcell-Meiboom-Gill (CPMG)
scheme, consisting of X-pulses interspaced by a wait time of τ = 25 ns. Extended Data Fig. 4 shows an example
comparison of the stabilizers in cases with and without dynamical decoupling, after braiding of anyons (41 layers of
SQ gates and 40 layers of CZ-gates). A clear improvement is observed, increasing the average absolute stabilizer value
from 0.50 to 0.58.

0 100-100

a bWithout dynamical decoupling With dynamical decoupling

Stabilizer  x 100

FIG. 4. Dynamical decoupling. a,b, Stabilizer values without (a) and with (b) dynamical decoupling, after D3V braiding.
Dynamical decoupling improves the average absolute stabilizer value from 0.50 to 0.58.

D. Circuit details

Extended Data Fig. 5 shows the circuits used in the experiments presented in the main text. In our experiment, the
two-qubit unitaries U±(τ̂1τ̂2) are converted to single-qubit rotations and CZ-gates, as shown in Extended Data Fig. 6b.
In the particular case where a D3V is moved diagonally (see step IV in Fig. 3 in the main text), we realize the unitary by
including two SWAP-gates (also converted to CZ-gates) since the qubits are connected in a square grid (see Extended
Data Fig. 6c). Moreover, the three-qubit unitary in step VIII in Fig. 3 is equivalent to a combination of single-qubit
gates, 4 SWAP-gates and 4 CZ-gates (Extended Data Fig. 6d), which can be further converted to single-qubit gates
and 15 CZ-gates. In the experimental implementation of the circuit, adjacent single-qubit gates on the same qubit are
merged together and performed in the layer after the most recent CZ-gate (Extended Data Fig. 6e).
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FIG. 5. Circuit details. Circuits used for the fusion experiment (a), the full-braid experiment (b), and the half-braid experiment
(c), shown in Figs. 2-4, respectively, in the main text. Turqoise and gray boxes denote dynamical decoupling and phased XZ-

gates, respectively. In the full-braid experiment (b), we include five single-qubit rotations to permute X̂, Ŷ and Ẑ of the three
stabilizers touching the moving D3V in steps V-VIII and IX-XI, as well as three Hadamard-gates to return all stabilizers to the
original ẐX̂X̂Ẑ-form in XII. See Extended Data Fig. 6for the circuit used for ground state preparation, as well as details on
how the multi-qubit unitary gates used to move anyons are decomposed into CZ-gates.
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FIG. 6. Ground state preparation and CZ-decompositions. a, Schematic showing the circuit used for preparation of the
ground state of the surface code. The protocol is the same as that shown in Ref.43, except with the inclusion of Hadamard gates
on alternating qubits in the final step, since we use symmetrized stabilizers on the form ẐX̂X̂Ẑ. b, The unitary needed to move
a D3V between two neighboring vertices is realized in the experiment through the use of one CZ-gate and single-qubit rotations.
c, When D3Vs are moved diagonally, we include two SWAP-gates, requiring three CZ-gates each. d, Main: The three-qubit
unitary used in step VIII in Fig. 3 is equivalent to a combination of single-qubit gates, 4 SWAP-gates and 4 CZ-gates. Right
dashed box: decomposition of a SWAP-gate into CZ-gates. e, Adjacent single-qubit gates are merged and shifted left to the
nearest CZ-gate.

E. Numerical simulation of braiding in presence of noise

To better understand the role of errors in the experimental results in Fig. 3 of the main text, we perform a numerical
simulation of the density matrix evolution subject to the braiding circuit in the presence of noise. We use the method of
quantum trajectories to approximate the expectation value of stabilizers with the 25-qubit density matrix. The model
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of noise includes T1 and T2 effects described by the single qubit Kraus operators,

K0 =

(
1 0
0 exp(−t/T2)

)
, (4)

K1 =

(
0

√
1− exp(−t/T1)

0 0

)
, (5)

K2 =

(
0 0

0
√

exp(−t/T1)− exp(−2t/T2)

)
, (6)

where t is the duration of the evolution, as well as additional one- and two- qubit depolarizing channel error for each
gate. The depolarizing channel error rate is chosen such that the combined Pauli error from T1, T2 and depolarizing
error matches the gate Pauli error measured in an independent experiment, see Section. A. We take these values to
be uniform across the chip. The expectation values of the four stabilizers that correspond to the noise-free value
of -1, see light red stabilizers in Fig. 3b (panel XII) and Extended Data Fig. 7, have the following values (×100):
(−58,−46,−34,−46) with statistical error 4. For comparison, the experimental values for the same set of stabilizers
is (−52,−41,−39,−49). Our simulation results are in relatively good agreement with the measured data, suggesting
that the model captures the effects of noise well. The observed discrepancies are expected to be due to inhomogeneity
of the errors, which was not included in our error model. The simulations used an open source simulator qsim46.

0 1.0-1.0

Stabilizer

Simulation Experimenta b

FIG. 7. Simulation of braiding in the presence of noise. a, Simulation results. b, Experimental data (same as in step XII
in Fig. 3b in the main text.) We observe relatively good agreement between the simulation and the experimental results, except
some discrepancies that are attributed to inhomogeneity of the errors.

F. Additional braiding data

In Figure 3 in the main text, we demonstrate that no fermion appears when distinguishable σ are braided with
each other. In Extended Data Fig. 8, we show the data for each step in that protocol, analogous to those shown
for indistinguishable σ in the main text. Moreover, we also present an alternative braiding scheme in Extended Data
Fig. 9, which requires fewer (18) CZ-gates. In this case, however, pair B is not brought back together, and neither of
the σ-pairs are annihilated. Therefore, similar to in Fig. 2c, we measure the Pauli string corresponding to bringing a
plaquette violation around pair A (gray path in Extended Data Fig. 9c), which in this case can be reduced to Ŷ on the

qubit where the two σ overlap. We find ⟨P̂⟩ = ⟨Ŷ ⟩ = −0.71 ± 0.01, indicating that braiding the σ led to the creation
of a fermion (Extended Data Fig. 9c). Note that we here only search for fermions in one of the σ-pairs. As a control
experiment, we repeat the experiment with distinguishable σ-pairs, as in the main text (Extended Data Fig. 9d). In

this case, we find ⟨P̂⟩ = +0.71± 0.01, thus demonstrating that no fermion was produced. Together, these observations
constitute another demonstration of non-Abelian exchange statistics of the D3Vs.



14

b
XIIXIVIII

I II III

VII

IV V VI

XIX

Braiding distinguishable, non-Abelian anyons (control experiment)
1.0-1.0 0.0

Stabilizer

a

1 1

1 1

Ti
m

e

FIG. 8. Braiding distinguishable D3Vs a, Braiding schematic of worldlines. b, Step-by-step depiction of stabilizers as the
two σ are braided, analogous to that in Fig. 3 in the main text, but with distinguishable σ.
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FIG. 9. Alternative protocol for braiding σ. a, Schematic displaying the braiding process of the two σ-pairs. b, Experimental
demonstration of braiding, displaying the values of the stabilizers throughout the process. Two σ-pairs, A and B, are created
from the vacuum 1, and one of the D3Vs in pair A is brought to the right side of the grid. Next, a σ from pair B is moved
to the top, thus crossing the path of the first σ, before bringing the σ from pair A back again to complete the braid. The
diagonal σ move performed in step VI is achieved by including two SWAP-gates, corresponding to 6 additional CZ-gates. The
yellow triangles represent the locations of the σ, while the brown and green lines represent the paths of σ from pair A and B,
respectively. The average absolute stabilizer value is 0.93± 0.06 and 0.77± 0.09 in the first and last step, respectively. c, After
braiding the σ, we search for hidden fermions by measuring the Pauli string P̂ (left panels), which here is equivalent to Ŷ on

the qubit where the two σ overlap. The measurement yields ⟨P̂⟩ = ⟨Ŷ ⟩ = −0.71± 0.01, indicating creation of a fermion. Right:
world-lines of braiding process, including non-local measurement based on plaquette violation loop. d, Same as c, but after
braiding two distinguishable σ, achieved by applying the inverse two-qubit gates when moving the σ in pair B. The measurement
yields ⟨Ŷ ⟩ = +0.71± 0.01, indicating no fermion creation.

G. A summary of the theoretical framework

It was observed by Kitaev that fluxes of the e-m exchange symmetry are expected to host Majorana modes and
therefore have the degeneracy of Ising anyons 9. Bombin gave a particular stabilizer configuration realizing such a flux
as a fixed lattice dislocation in a square grid, showed on general grounds that if such fluxes were well-separated and
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could be braided they would be projective Ising anyons, and noted that it may be possible to braid such fluxes by
code deformation 10. A general formalism for theories realized by braiding of symmetry fluxes was described in Ref. 47.
These constructions focus on the long-distance physics, and in practical terms 23 gives an account of ”microscopics”.
An explicit mapping to a gauge theory shows how the anyons are localized to a single qubit, and is used to derive a
simple, efficient, and systematic procedure for creating, braiding, and measuring the fusion outcomes of Ising anyons
on general stabilizer graphs. The bridge between the microscopics and general arguments established by the gauge
theory mapping allows us to fit several anyons on present-day devices, probe the full 2-dimensional nature of their
braiding by maintaining their separation, and demonstrate braid generators which restore all local observables. For
details discussions of the protocol see Ref. 23.
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