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The Deep Operator Network (DeepONet) is a neural network architecture used to 
approximate operators, including the solution operator of parametric PDEs. DeepONets 
have shown remarkable approximation ability. However, the performance of DeepONets 
deteriorates when the training data is polluted with noise, a scenario that occurs in 
practice. To handle noisy data, we propose a Bayesian DeepONet based on replica exchange 
Langevin diffusion (reLD). Replica exchange uses two particles. The first particle trains a 
DeepONet to exploit the loss landscape and make predictions. The other particle trains a 
different DeepONet to explore the loss landscape and escape local minima via swapping. 
Compared to DeepONets trained with state-of-the-art gradient-based algorithms (e.g., 
Adam), the proposed Bayesian DeepONet greatly improves the training convergence for 
noisy scenarios and accurately estimates the uncertainty. To further reduce the high 
computational cost of the reLD training of DeepONets, we propose (1) an accelerated 
training framework that exploits the DeepONet’s architecture to reduce its computational 
cost up to 25% without compromising performance and (2) a transfer learning strategy 
that accelerates training DeepONets for PDEs with different parameter values. Finally, we 
illustrate the effectiveness of the proposed Bayesian DeepONet using four parametric PDE 
problems.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Many problems in Science and Engineering require solving parametric PDEs [1,19,16,28]. That is, they require the re-
peated evaluation of a PDE model for a given distribution of inputs. For example, in petroleum engineering applications, 
engineers seek to calculate, using the porous media equations, the pressure field of the oil based on its permeability. In 
practice, the value of the oil permeability varies frequently; hence, one needs to calculate the oil pressure field for a distri-
bution of fast-varying permeabilities [28,9,11]. The traditional numerical frameworks require intense computations to solve 
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these parametric PDEs. Furthermore, the computational cost for these traditional frameworks increases when the problem 
is time-dependent and multiscale [10,6,15].

To reduce the computational cost of solving parametric PDEs, many works have proposed using deep neural networks, 
which transfer most of the cost to offline training. However, in practice, the data required to train these networks is often 
polluted with noise or numerical errors. Deep neural networks often have poor generalization performance in these noisy 
scenarios because the gradient-based algorithms used to train the networks tend to chase the noise. As a result, the trained 
model will fail if used in practice.

This work focuses on Deep Operator Networks (DeepONet) [24], a fundamentally different class of neural networks 
that learns to approximate nonlinear operators, i.e., mappings between infinite-dimensional function spaces. DeepONets are 
constructed to realize and exploit the power of the universal approximation theorem of nonlinear operators [3]. To that 
end, a DeepONet uses two sub-networks: the Branch Net, which encodes the input function at a fixed number of locations, 
and the Trunk Net, which encodes the locations where one evaluates the output function. Such an architecture enables 
DeepONets to learn nonlinear operators efficiently from relatively small datasets. The remarkable capabilities of DeepONets 
have been reported in many application areas, including electroconvection [2], chemistry [22], economics [21], and for 
solving parametric PDEs [24]. These previous works, however, have trained DeepONets using data without noise. In real 
applications, data is often polluted with noise. So, a framework that can handle noisy data during DeepONets’ training must 
be developed.

Many works have studied the problem of dealing with noisy datasets and avoiding overfitting. Among these works, 
Bayesian frameworks that use the Langevin diffusion [25,4] have provided promising results. For example, in [25], the au-
thors introduced the Stochastic Gradient Langevin diffusion algorithm to train neural networks. They demonstrated that 
the samples generated by their proposed algorithm converge to the target posterior distribution. Replica exchange MCMC 
(and its stochastic gradient variants) [23,5,12] were proposed to accelerate the Langevin diffusion. In replica exchange 
frameworks, one uses two particles with different temperature parameters to sample from the posterior distribution. The 
high-temperature particle explores the landscape of the loss function, which enables escaping from local minima, while 
the low temperature exploits the same landscape, enforcing local convergence [18,27]. The two particles can be exchanged 
according to a swapping probability. If this swapping probability is designed so that the Markov process is reversible, then 
the low-temperature particle may attain the global optima faster.

As a result, these replica exchange frameworks provide excellent convergence performance. They, however, double the 
computational cost of each training iteration. Hence, one needs to balance having fast convergence (i.e., fewer iteration steps) 
and having high per-iteration computational cost. To tackle such a problem, in our previous work [23], we proposed the 
accelerated multi-variance stochastic gradient Langevin diffusion (m-reSGLD) framework, which assumes that the estimators 
for the two particles have different accuracy.

In this work, our objective is to develop a Bayesian DeepONet framework to approximate the solution operator of 
parametric PDEs using noisy measurements. To this end, we develop a replica exchange stochastic gradient Langevin 
diffusion (reSGLD) algorithm tailored for training the Bayesian DeepONets. The reSGLD algorithm greatly improves the per-
formance of the DeepONet when compared to classical gradient-based training methods, e.g., Adam. Furthermore, we design 
an accelerated training regime based on reSGLD for DeepONets. Such a training regime results in a multi-variance replica 
exchange SGLD (m-reSGLD) algorithm that reduces the cost of reSGLD. Finally, we propose a transfer learning strategy to 
accelerate the use of reSGLD on PDEs with different parameter values. We summarize the contributions of this work next.

• We design a Bayesian DeepONet to approximate the solution operator of parametric PDEs in scenarios where the train-
ing data is polluted with noise. To the best of the authors’ knowledge, this is the first paper that addresses such a 
problem. In the proposed framework, the Bayesian DeepONet represents the prior for the trainable parameters, while 
replica exchange Stochastic Gradient Langevin Diffusion (reSGLD) enables estimating the posterior, which we use to 
estimate the uncertainty of DeepONet predictions.

• We demonstrate that the replica exchange algorithm’s ability to escape local minima (using one particle to explore 
and another particle to exploit the DeepONet’s loss function landscape) enables the proposed framework to provide 
improved training convergence in noisy scenarios when compared to vanilla DeepONets trained with gradient-based 
optimization algorithms (e.g., Adam). Remarkably, the proposed framework also provides a more accurate mean predic-
tive performance than vanilla DeepONets.

• We then propose a novel accelerated training regime for Bayesian DeepONets. This regime can reduce the computational 
cost of the replica exchange algorithm up to 25% without compromising the DeepONet’s predictive performance. More 
precisely, for the particle that explores the loss function landscape, we randomly choose to train one of the DeepONet’s 
sub-networks (the Branch Net or the Trunk Net) while keeping the other fixed. Empirical results verify our estimate.

• A transfer learning strategy, which exploits the structure of the DeepONet, is then proposed to accelerate the training 
further. More specifically, we exploit the DeepONet’s architecture again to design a transfer learning that disseminates 
previous reSGLD training results to (1) other datasets with smaller noise and (2) other PDEs with different parameter 
values. We will show that the proposed transfer learning strategy can reach the same predictive performance as direct 
training with less training cost.

• Finally, we test the effectiveness of the proposed Bayesian DeepONet using four parametric PDE problems. In particular, 
we compare the training convergence speed, mean predictive accuracy, and uncertainty quantification performance 
2
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Fig. 1. DeepONet architecture. The crossed node on the right indicates the DeepONet output, which we obtain by taking the inner product between the 
output features of the Branch (b) and Trunk (t) Nets.

of reSGLD, the proposed accelerated multi-variance reSGLD (denoted as m-reSGLD), and Adam with dropout (a non-
Bayesian framework for uncertainty quantification).

The rest of the paper is organized as follows. In Section 2, we provide a brief review of Deep Operator Networks (DeepONet). 
Section 3 introduces the Bayesian setting of our problem and details the replica exchange Stochastic Gradient Langevin diffu-
sion (reSGLD) algorithm. We present the proposed accelerated replica exchange algorithm and the transfer learning strategy 
in Section 4. In Section 5, we test the performance of the proposed Bayesian framework using a series of experiments on 
four parametric PDE problems. Finally, Section 6 concludes this work.

2. Background information

In this work, we propose a Bayesian data-driven deep learning framework to approximate the solution operator of the 
prototypical parametric PDE

(Las)(x) = f (x), x ∈ D, (1)

where D ⊂ Rd is a bounded open set, a : D → R is a parameter entering the definition of the nonlinear operator La , and 
s : D →R is the solution to the PDE (given appropriate boundary conditions). To approximate the solution operator, we use 
the deep operator neural network (DeepONet) framework introduced in [24], which we review next.

2.1. Review of DeepONet

Let G† denote the nonlinear operator arising as the solution operator of the parametric PDE (1). This operator G† maps 
an input function u (corresponding, for example, to the parameter a, the forcing f , or initial/boundary conditions) to an 
output function G†(u) (corresponding to the solution s of the parametric PDE). Let y ∈ Y denote a point in the output 
function domain Y ⊂ Rd . Then, the goal of the DeepONet Gθ , with trainable parameters θ ∈ Rp , is to approximate the 
operator G†(u)(y) at y ∈ Y . To this end, the DeepONet Gθ uses the architecture depicted in Fig. 1, consisting of two sub-
networks referred to as the Branch Net and Trunk Net.

The Branch Net processes the input function information. Let (x1, . . . , xm) denote points in the domain of u (we refer to 
these points as the sensors), such that (u(x1), . . . , u(xm)) is a discrete representation of the input u. The Branch Net takes 
this discretized u as the input and outputs a vector of features b ∈ Rq . On the other hand, the Trunk Net processes the 
points in the domain Y of the output function. To this end, the Trunk Net takes y ∈ Y as the input and outputs a vector of 
features t ∈Rq . Note that since the Trunk Net’s output t solely depends on the input coordinates y, it is natural to interpret 
the components of t as a collection of basis functions defined on Y , i.e.,

t = (ϕ1(y), . . . ,ϕq(y)).

The output of the DeepONet then combines the output features from the Branch Net b and the Trunk Net t using the inner 
product:

Gθ (u(x1), . . . ,u(xm)) (y) := 〈b, t〉 =
q∑

i=1

bi · ϕi(y). (2)

From the above, one can interpret the output of the Branch Net b as the trainable coefficients for the basis functions t
produced by the Trunk Net. To simplify our notation, in the rest of this work, we omit writing the DeepONet explicit 
dependency on the discretized input and use the simplified notation Gθ (u)(y).

Finally, we train the DeepONet Gθ to approximate the nonlinear solution operator G† by minimizing a mean square loss 
function on the training dataset 

{
ui, yi,G†(ui)(yi)

}N
, i.e.,
i=1

3
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Fig. 2. The Bayesian DeepONet framework. The Bayesian DeepONet represents the prior of the trainable parameters θ . One computes the likelihood using 
noisy measurements D = {G̃†

i }Ni=1. Replica Exchange MCMC enables sampling from the posterior θk ∼ P (θ |D). The sampled parameters are used to build 
the DeepONet M-ensemble {Gθk }Mk=1 (see Fig. 3) for prediction and uncertainty quantification.

L(θ) = 1

N

N∑
i=1

∣∣∣Gθ (ui)(yi) − G†(ui)(yi)
∣∣∣2 . (3)

In this work, we aim to design a Bayesian DeepONet that enables us to (1) better approximate G† in a noisy scenario and 
(2) estimate the solution/prediction uncertainty. We refer to this framework as the Bayesian DeepONet.

3. The Bayesian DeepONet

To derive the proposed Bayesian DeepONet framework depicted in Fig. 2, we consider the scenario when our available 
operator training targets correspond to scattered noisy measurements of G†(u)(y), i.e., {G̃†

i }Ni=1. In particular, we assume 
these measurements are independently Gaussian distributed centered at the latent true operator target value, i.e.,

G̃†
i = G†(ui)(yi) + εi, i = 1,2, . . . ,N.

Here, εi is an independent Gaussian noise with zero mean and known standard deviation σ , i.e., εi ∼ N (0, σ 2). Let D :=
{G̃†

i }Ni=1 denote the noisy dataset of targets; we can then calculate the likelihood as:

P (D|θ) =
N∏

i=1

P (G̃†
i |θ) =

N∏
i=1

1√
2πσ 2

exp

(
− (Gθ (ui)(yi) − G̃†

i )
2

2σ 2

)
. (4)

To compute the posterior distribution, we use Bayes’ theorem, i.e.,

P (θ |D) = P (D|θ)P (θ)

P (D)
∝ P (D|θ)P (θ),

where “∝” denotes equality up to a constant. In practice, computing P (D) is usually analytically intractable. Hence, to 
sample from the posterior P (θ |D), we usually use the unnormalized expression P (D|θ)P (θ).

To predict and estimate the uncertainty of a solution trajectory, denoted as {G†(u)(y) : y ∈ Ym}, for a given input u and 
over the mesh of points y ∈ Ym , we must sample from the posterior P (θ |D) and obtain an M-ensemble of DeepONets with 
parameters {θk}Mk=1 (see Fig. 3). Then, using this ensemble, we can obtain statistics from simulated trajectories {Gθk (u)(y) :
y ∈ Ym}Mk=1. In this work, we compute the mean and standard deviation of {Gθk (u)(y) : y ∈ Ym}Mk=1. We use the mean to 
predict the true solution {G†(u)(y) : y ∈ Ym} and the standard deviation to quantify the predictive uncertainty.

To sample from the posterior and obtain the M-ensemble of DeepONets with parameters {θk}Mk=1, in this work, we use 
replica exchange stochastic Langevin diffusion (re-SGLD) [12], which we review in the next section and detail in Algorithm 1.
4
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Fig. 3. The DeepONet M-ensemble {Gθ1
NK +1−k

}Mk=1. Using this ensemble, we simulate trajectories, i.e., {Gθ1
NK +1−k

(u)(y) : y ∈ Ym}Mk=1, and compute statistics, 
e.g., the mean and standard deviation (st.dev).

Algorithm 1: Replica Exchange Stochastic Gradient Langevin Diffusion.
1 Require: initial DeepONet parameters θ1

0 , θ2
0 , learning rate ηk , temperatures τ1, τ2, stochastic gradient variances σ 2

1 , σ 2
2 , and two constants 

a1, a2 > 0 satisfying a1 + a2 = 1.
2 for k = 0, . . . , NK − 1 do
3 sampling step:
4 sample B1

k ∼ N (0, I) and B2
k ∼ N (0, I)

5 θ1
k+1 = θ1

k − ηk∇Û1(θ
1
k ) + √

2τ1ηk B
1
k

6 θ2
k+1 = θ2

k − ηk∇Û2(θ
2
k ) + √

2τ2ηk B2
k

7 swapping step:
8 Generate a uniform random number ψ ∈ [0, 1]
9 let τδ = 1

τ1
− 1

τ2
and compute

10 r̂ = e
τδ

(
(a1−a2)(Û1(θ

1
k+1)−Û2(θ2

k+1))−(a1σ1+a2σ2)
2τδ

)
11 if ψ < r̂ then
12 swap θ1

k+1 and θ2
k+1

13 end
14 end

15 Calculate {Gθ1
NK +1−k

(u)(y) : y ∈ Ym}Mk=1 as prediction samples of the true posterior trajectory {G†(u)(y) : y ∈ Ym}.

3.1. Review of the re-SGLD

To derive re-SGLD (Algorithm 1), we start from the Langevin diffusion, which reads:

dθt = −∇U (θt) + √
2τdBt, (5)

where θt ∈ Rp is called the particle and corresponds to the target trainable parameters of the DeepONet, Bt is the Brownian 
motion in Rp , τ > 0 is the temperature parameter, and U :Rp → R is an energy function defined as:

U (θ) ∼ − log P (θ) −
N∑

i=1

log P (G̃†
i |θ), (6)

where P (θ) denotes the prior and P (G̃†
i |θ) the likelihood (4).

To obtain the target parameters, we must solve an optimization problem. More precisely, we must find θ∗ ∈ Rp that 
minimizes the energy (6). To this end, one can show that, under proper assumptions for the energy function U , the sequence 
of targets {θt}t≥0 converges to the target distribution πD ∼ exp

(
− U (θ)

τ

)
as t → ∞ [7]. Furthermore, when the temperature 

parameter τ is small enough, πD(θ) distributes around the minimizer θ∗ [18]. Hence, one can obtain the minimizer θ∗ of 
the energy (6) by sampling from the target distribution πD(θ).
5
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In addition, when the temperature τ is low, the particle tends to reach stationary points with fast local convergence 
[27], by exploiting the landscape of the energy function U . On the other hand, when the temperature τ is high, the particle 
tends to traverse globally, exploring the landscape of the energy function U . This exploitation-exploration dilemma has led 
researchers to design algorithms (e.g., re-SGLD) that achieve superior performance by balancing exploration and exploitation.

In this work, we use exploration and exploitation by considering two separate particles θ1
t and θ2

t . The low-temperature 
particle θ1

t trains an exploitation DeepONet that exploits the landscape of U . The high-temperature particle θ2
t trains an 

exploration DeepONet that enables escaping local minima via swapping (see Fig. 4). These particles satisfy the Langevin 
diffusion, i.e.,

dθ1
t = −∇U (θ1

t ) + √
2τ1dB

1
t , (7a)

dθ2
t = −∇U (θ2

t ) + √
2τ2dB

2
t , (7b)

and use swapping, with controlled rate r(θ1
t , θ2

t ), to help the low-temperature particle θ1
t escape local minima and achieve 

improved and accelerated convergence.
The theoretical support for the previous claims was established in the convergence result of [5]. That is, the replica 

exchange Langevin diffusion (reLD) algorithm, which simulates the dynamics (7) and allows the swapping of particles, i.e., 
(θ1

t+dt , θ
2
t+dt) = (θ2

t+dt , θ
1
t+dt), with rate:

r(θ1
t , θ2

t ) = eτδ(U (θ1
t )−U (θ2

t )), (8)

converges to the invariant distribution with density:

π(θ1, θ2) ∝ e
− U (θ1)

τ1
− U (θ2)

τ2 . (9)

3.2. Errors in the energy function

In practice, computing the energy function U may fail due to, for example, errors in the dataset D or an insufficient 
number of samples of D to represent the likelihood and cover the target output space. Moreover, when the size N of the 
dataset is large, it is expensive to compute U and its gradient. Hence, the authors in [12] proposed to approximate the 
energy function U using a mini-batch of data {G̃†

si }ni=1 ⊂ D. In any case, an unbiased estimator of the energy function is 
then

Û (θ) = − log P (θ) − N

n

n∑
i=1

log P (G̃†
si |θ). (10)

Moreover, we assume the estimator (10) follows the normal distribution

Û (θ) ∼ N (U (θ),σ 2
e ),

where σ 2
e is the variance of the estimator. To simulate from the dynamics (5), we discretize them and obtain

θ1
k+1 = θ1

k − ηk∇Û1(θ
1
k ) + √

2τ1ηkB
1
k , (11a)

θ2
k+1 = θ2

k − ηk∇Û2(θ
2
k ) + √

2τ2ηkB
2
k , (11b)

where ηk is a positive learning rate and Û1(θ
1) ∼N (U (θ1), σ 2

1 ), Û2(θ
2) ∼N (U (θ2), σ 2

2 ) are the energy function estimators 
of the two particles. However, using the unbiased estimators for the energy, Û1(θ

1) and Û2(θ
2), in reLD with discretized 

dynamics (11) leads to a large bias for the estimator of the swapping rate r(θ1
t , θ2

2 ) defined in (8).
To remove the bias from the swaps, we allow the particles swapping (θ1

k+1, θ
2
k+1) = (θ2

k+1, θ
1
k+1) with the following 

unbiased rate estimator [12],

r̂ = e
τδ

(
a1

(
Û1(θ

1)−Û1(θ
2)

)+a2
(
Û2(θ

1)−Û2(θ
2)

)−(a1σ1+a2σ2)
2τδ

)
(12)

where a1 + a2 = 1 are two positive constants. The replica exchange algorithm then converges to the target invariant distri-
bution with this new unbiased rate estimator r̂. We refer to this algorithm as the replica exchange stochastic gradient Langevin 
diffusion (reSGLD) if σ1 = σ2 (see Algorithm 1 and Fig. 4); otherwise, we refer to the algorithm as the multi-variance replica 
exchange stochastic gradient Langevin diffusion (m-reSGLD).
6
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Fig. 4. The replica exchange Stochastic Gradient Langevin Diffusion (reSGLD) algorithm enables swapping between an exploitation DeepONet (with a low 
temperature particle) and an exploration DeepONet (with a high temperature particle). The exploitation DeepONet exploits the loss landscape to reach 
stationary points. The exploration DeepONet enables escaping local minima.

Algorithm 2: Accelerated Multi-variance Replica Exchange Stochastic Gradient Langevin Diffusion.
1 Require: initial DeepONet parameters θ1

0 , θ2
0 , learning rate ηk , temperatures τ1, τ2, stochastic gradient variances σ 2

1 , σ 2
2 , constants a1, a2 > 0

satisfying a1 + a2 = 1, and training control parameter c ∈ [0, 1].
2 for k = 0, . . . , NK − 1 do
3 sampling step:
4 sample B1

k ∼ N (0, I) and B2
k ∼ N (0, I)

5 θ1
k+1 = θ1

k − ηk∇Û1(θ
1
k ) + √

2τ1ηk B
1
k

6 Generate a uniform random number γ ∈ [0, 1]
7 if γ < c then
8 θ

2,BN
k+1 = θ

2,BN
k − ηk∇Û2(θ

2,BN
k ) + √

2τ2ηk B2
k

9 θ
2,TN
k+1 = θ

2,TN
k

10 else
11 θ

2,BN
k+1 = θ

2,BN
k

12 θ
2,TN
k+1 = θ

2,TN
k − ηk∇Û2(θ

2,TN
k ) + √

2τ2ηk B2
k

13 end
14 swapping step:
15 Generate one uniform random number ψ ∈ [0, 1]
16 let τδ = 1

τ1
− 1

τ2
and compute

17 r̂ = e
τδ

(
(a1−a2)(Û1(s1k+1)−Û2(s2k+1))−(a1σ1+a2σ2)2τδ

)
18 if ψ < r̂ then
19 swap θ1

k+1 and θ2
k+2

20 end
21 end

22 Calculate {Gθ1
NK +1−k

(u)(y) : y ∈ Ym}Mk=1 as prediction samples of the true posterior trajectory {G†(u)(y) : y ∈ Ym}.

4. Accelerated training of Bayesian DeepONets

This section proposes exploiting the DeepONet’s architecture to develop an accelerated training strategy for Bayesian 
DeepONets. The proposed training regime for the DeepONets can (1) reduce the time reSGLD (Algorithm 1) uses to train 
the DeepONet parameters and (2) achieve a performance comparable to reSGLD (and better than the stochastic gradient-
based algorithm Adam). Such training strategy results in an accelerated multi-variance replica exchange SGLD (m-reSGLD) 
algorithm (Algorithm 2), which we describe next.

Many theoretical results have shown that over-parametrized neural networks, trained with gradient descent-based meth-
ods, converge to zero-training loss exponentially fast, with the network parameters hardly changing [14,13]. Motivated by 
this convergence result, other works have studied whether the same holds for under-parametrized neural networks. Their 
results [8] show that exponential convergence to zero-training loss can happen, with parameters hardly varying, but de-
pends on an implicit scaling. Inspired by these results, in this work, we propose a more efficient Bayesian framework that 
trains a less parametrized DeepONet, i.e., a DeepONet that keeps some of its parameters hardly varying during training.
7
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Fig. 5. The accelerated training of Bayesian DeepONets enables saving up to 25% of the computational cost of replica exchange SGLD. To this end, at each 
iteration, for the exploration DeepONet, we randomly (see the “biased” coin) select to train the Branch Net or the Trunk Net.

Intuitively, our proposed framework follows from the fact that empirically (see [24]), DeepONets converge exponentially 
fast to zero-training loss. Hence, we expect that a DeepONet that keeps, during training, some of its parameters hardly 
varying should also converge to zero-training loss provided an appropriate training regime. In this paper, such a regime 
corresponds to training either the Branch Net or the Trunk Net randomly. We refer to this training regime as the accelerated 
Bayesian training of DeepONets, which we use to reduce the computational cost of reSGLD.

The reSGLD framework has demonstrated excellent convergence capabilities when used for training neural networks. 
However, compared to vanilla SGLD [25], the computational cost of reSGLD doubles. To reduce the computational cost of 
reSGLD, we adopt the idea proposed in [23] and develop a multi-variance m-reSGLD (see Algorithm 2 and Fig. 5); that is, 
an algorithm that uses (1) a full training regime for the low temperature particle θ1, which exploits the landscape of the 
energy function U , and (2) an accelerated training regime for the high temperature particle θ2, which explores the landscape 
of U . To this end, we first fully train both particles for a fixed number of burn-in epochs. After burn-in, we let the high-
temperature particle enter the accelerated training regime. Let us split the high temperature particle into its Branch Net and 
Trunk Net components, i.e., θ2 = {θ2,BN, θ2,TN}. Then, to control which sub-network parameters (θ2,BN or θ2,TN) are trained 
more, we define the training control parameter c ∈ [0, 1] and generate a random number γ in [0, 1]. If γ < c, we train more 
the Branch Net parameters θ2,BN. If, on the other hand, γ > c, we train more the Trunk Net parameters θ2,TN.

In practice, at each epoch after the burn-in, we use the parameter c to select only one group of parameters (the Branch 
Net’s or the Trunk Net’s parameters) for training. Motivated by the DeepONet’s neural network architecture, we will train 
the Branch Net’s parameters more, i.e., we set c ∈ [0.5, 1.0]. As explained in Section 2.1, the DeepONet architecture, depicted 
in Fig. 1 and whose output is given by (2), enables us to interpret the Branch Net output b as trainable coefficients for the 
trainable basis functions t produced by the Trunk Net. Hence, DeepONets, as proved in [20], fall within the class of linear 
approximation methods because they approximate the nonlinear space of the operator G† using the linear space generated 
by the Trunk Net, i.e., span{ϕ1(y), . . . , ϕq(y)}. As a result, in our numerical experiments (see Section 5), we choose to train 
the Branch Net’s parameters more, i.e., we let c ∈ [0.5, 1.0] (e.g., c = 0.75) because the Branch Net’s output represents the 
coefficients for the basis functions generated by the Trunk. We remark, however, that one can always perform an expensive 
hyper-parameter optimization routine to find the best value for c by minimizing an estimate of the computational cost of 
the proposed accelerated regime.

Let us now assess the computational cost of m-reSGLD. Suppose the hidden and output layers of the Branch and Trunk 
net are identical. In that case, the accelerated regime could reduce roughly half the computational cost for training the 
Trunk Net’s parameters θ2. Thus, overall, m-reSGLD reduces at most 25% of the reSGLD computational cost.

Finally, one should note that as soon as the accelerated training regime (m-reSGLD) freezes one of the particles, the cor-
responding gradient of the stochastic energy becomes truncated. And hence the estimate of the stochastic energy changes. 
In particular, the variances of the estimates are no longer the same [23], i.e.,

Û1(θ
1
k ) ∼ N (U (θ1

k ),σ 2
1 ) and Û2(θ

2
k ) ∼ N (U (θ2

k ),σ 2
2 ).

As a result, we use the name multi-variance replica exchange stochastic gradient Langevin diffusion (m-reSGLD) for denoting 
Algorithm 2.
8
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4.1. DeepONet transfer learning

This section describes a transfer learning strategy to reduce the recalibration effort between PDE problems with different 
(1) unknown noise levels of the training dataset and (2) parameter values.

First, during testing (see Section 5), we will assume we know the noise level for all experiments. However, in practice, 
one may not have access to prior information about the noise. So, in this section, we propose a transfer learning strategy that 
tackles real problems with unknown and smaller noise levels. We will show with our experiments that we can efficiently 
train the new problem with unknown and smaller noise levels and predict with great accuracy. In addition, given multiple 
related PDE problems, we can train (from random initialization) individual Bayesian DeepONets to approximate the operator 
of each problem with different parameters. However, training all these DeepONets from scratch may be computationally 
expensive. To alleviate this cost, we propose using transfer learning.

In transfer learning, we consider two objects: the source and the target. The source corresponds to a fully trained Bayesian 
DeepONet that approximates the operator of a given PDE problem. The target corresponds to a Bayesian DeepONet that we 
want to train to approximate the operator of a different but related PDE problem. Here we relate the source and a target as 
follows. (1) The source and the target have the same parametric PDE, but we train the target using unknown and smaller 
noise levels. (2) The PDE of the target has different parameter values than the source PDE, and we train the target Bayesian 
DeepONet using a different distribution of inputs.

To transfer learning from the source to the target, we exploit the structure of the DeepONet and proceed as follows. 
We start by initializing the parameters of the target Bayesian DeepONet using the already trained parameters of the source 
DeepONet. We then train the target Bayesian DeepONet as follows. As described before, the Trunk Net represents a collection 
of trainable basis functions, and the Branch Net represents the trainable coefficients of these basis functions. So, once the 
source DeepONet is well trained, it is reasonable to assume the basis has been well constructed and can be transferred 
to the related target PDE problem. As a result, for the target Bayesian DeepONet, we can fix the parameters of the Trunk 
Net and use reSGLD or m-reSGLD with the new dataset to recalibrate the parameters of the Branch Net. In the numerical 
experiments section, we will demonstrate that this transfer learning strategy reduces the operator learning effort for related 
PDEs.

5. Numerical experiments

This section tests the efficacy of the proposed Bayesian DeepONet using two examples: an anti-derivative operator and 
a diffusion-reaction system. In addition, in Appendix A and Appendix B, we have added two more examples: a gravity 
pendulum system and an advection-diffusion system.

We first test how well the Bayesian DeepONet, trained with replica exchange SGLD (reSGLD) and accelerated replica 
exchange SGLD (m-reSGLD), approximates the solution operator of the examples. We compare the Bayesian DeepONet’s 
approximation and generalization power against the vanilla DeepONet trained with the state-of-the-art Adam algorithm. To 
this end, we systematically test the DeepONets using datasets of noisy output targets {G̃†

i }Ni=1 with different noise levels.
Predictive metrics. To test the performance of the Bayesian DeepONets and the vanilla DeepONet, we compute the L1

and L2 relative errors of 100 test trajectories selected from outside the training dataset. That is, for a given discretized 
input (u(x1), . . . , u(xm)), we predict using the DeepONets the solution trajectory at a collection of selected mesh points y ∈
Ym ⊂ Y . Denote the (mean) predicted solution of the test trajectory as vu := {Gθ (u)(y) : y ∈ Ym} and the true solution as 
wu := {G†(u)(y) : y ∈ Ym}, then we calculate the relative error as follows:

e1 = ‖vu − wu‖1
‖wu‖1 · 100%, e2 = ‖vu − wu‖2

‖wu‖2 · 100%. (13)

We then verify how the proposed Bayesian DeepONets (trained with reSGLD and m-reSGLD) handle the noisy targets 
and estimate the predictive uncertainty. To this end, we construct a 95% (2σ ) confidence interval for every test trajectory. In 
particular, the Bayesian DeepONet, trained with reSGLD (resp. m-reSGLD), constructs the confidence interval using the M−
prediction samples {GθNK +1−k (u)(y) : y ∈ Ym}Mk=1 obtained using Algorithm 1 (resp. Algorithm 2). In all of our experiments, 
we selected an ensemble of M = 2000. To enable the vanilla DeepONet to estimate the uncertainty, we adopt the non-
Bayesian framework of Dropout [17] and use the strategy described in [26].

Uncertainty metrics. To measure how well the confidence intervals quantify uncertainty, we compute the ratio of the true 
test trajectory that is within the confidence interval, i.e.,

e3 = # of points of wu in the confidence interval

# of points of wu
· 100%. (14)

5.1. Experiment 1: antiderivative operator

In this experiment, we use the proposed Bayesian DeepONet to approximate the solution operator of the following 
ordinary differential equation (ODE):
9
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Fig. 6. Distribution of the input samples u simulated from the GRF G(0,kl(x1, x2)) with RBF kernel and length-scale l = 0.2.

Fig. 7. Distribution of the operator targets G†(u)(y) obtained from the distribution of inputs depicted in Fig. 6 and used to train the DeepONet for the 
anti-derivative example.

ds

dt
= u(t), t ∈ [0,1], (15)

with initial condition u(0) = 0. Note that the solution operator for (15) corresponds to the anti-derivative operator:

s(t) =
t∫

0

u(τ )dτ , t ∈ [0,1].

Here u(t) denotes an external force that drives the response of the ode system (15). We sample this external force from 
the following mean-zero Gaussian Random Field (GRF):

u ∼ G(0,kl(x1, x2)),

where the covariance kernel kl(x1, x2) = exp(−||x1 − x2||2/2l2) is the radial-basis function (RBF) kernel with length-scale 
parameter l > 0. In this experiment, we set the length-scale parameter to l = 0.2. Fig. 6 illustrates the distribution of input 
samples simulated from the GRF and used to train the DeepONets. More specifically, the Branch Net takes the discretized 
version (u(x1), . . . , u(xm)) of these input samples u during training. Here, we discretized u using m = 100 sensors.

In addition, we present in Fig. 7 the distribution of the true operator targets associated with the input samples u. We 
can observe that these targets deviate largely from the mean. Thus, any predictive framework must capture the operator 
response over the whole output target space. Such a requirement makes this problem very challenging.

5.1.1. Small noise
We consider first training the DeepONet using operator targets {G̃†

i }Ni=1 with small noise. That is, we assume the noise εi
follows the normal distribution N (0, 0.012). We train the DeepONet for 8, 000 epochs using the three frameworks: reSGLD, 
10
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Fig. 8. Convergence results for the anti-derivative example with noise N (0, 0.012). The e1 errors are presented on the left while e2 errors are shown on 
the right. Top row: entire history. Middle row: zoom in the first 1, 000 epochs. Last row: zoom in the last 1, 000 epochs. The average errors after the burn 
in are presented in the Table 1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 1
Anti-derivative example with noise N (0, 0.012). The mean er-
rors after burn-in for all three frameworks.

frameworks e1 e2

Adam 13.099151 14.961829
reSGLD 6.953939 7.35423
m-reSGLD 7.82799 8.234294

m-reSGLD, and Adam. Furthermore, we compute the mean of the relative errors e1 and e2 of 100 test trajectories at each 
epoch. Fig. 8 shows how these errors converge during training, and Table 1 presents the average mean relative errors after 
a given number of burn-in epochs.

From Fig. 8 and Table 1, we can observe that the proposed Bayesian DeepONet trained with reSGLD and m-reSGLD 
converge much faster than the one trained with Adam. Moreover, the average relative errors after burn-in show that the 
11
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Fig. 9. Confidence intervals for the anti-derivative example with noise N (0, 0.012). Left: Adam. Middle: reSGLD. Right: m-reSGLD. In this example, e3 for 
all three frameworks is 100%.

Fig. 10. Anti-derivative example with noise N (0, 0.012). Computer running time per iteration for reSGLD and m-reSGLD. The average computation time of 
m-reSGLD is around 80.1% of reSGLD framework.

mean predictive performance of the proposed Bayesian framework outperforms the state-of-the-art Adam. Such improved 
accuracy illustrates that reSGLD and m-reSGLD handle much better noisy training data.

Besides the fast training convergence and improved mean predictive performance, we must check if the proposed frame-
works can capture the predictive uncertainty of the problem. To this end, we illustrate in Fig. 9, for a randomly selected 
test trajectory, the confidence interval and the error e3 for Adam with dropout and the Bayesian DeepONet trained reS-
GLD and m-reSGLD. We observe that the three frameworks can capture the true trajectory within their confidence intervals 
(e3 = 100%). Adam with dropout, however, seems to overestimate its predictive uncertainty, producing a wider confidence 
band.

We also verify how much of the computational cost of reSGLD is reduced when using m-reSGLD. To this end, during 
training, we record the per-iteration computational time for reSGLD and m-reSGLD (see Fig. 10). The results show that the 
computational time for m-reSGLD corresponds to 80.1% the computational time of reSGLD. This reduction of approximately 
20% of the cost of reSGLD is close to the theoretical maximum of 25%. Furthermore, m-reSGLD does not deteriorate the 
predictive performance of the DeepONet (see Table 1).

5.1.2. Increased noise
We now verify the performance of the proposed frameworks when the noise associated with the operator output tar-

gets {G̃†
i }Ni=1 increases. In particular, we assume the increased noise follows the normal distribution εi ∼N (0, 0.052). Fig. 11

depicts the training convergence results for the relative errors e1 and e2, and Table 2 presents the average errors.
We observe from Fig. 11 and Table 2 that the convergence performance of the three frameworks deteriorates in this 

increased noise scenario. However, our proposed Bayesian DeepONet (reSGLD and m-reSGLD) provides a faster training 
convergence and has much better mean predictive performance than Adam.

We also construct the confidence intervals for the three frameworks. Fig. 12 shows that, as expected, the predictive 
uncertainty (i.e., the width of the confidence band) estimated by the proposed framework has increased in this scenario. 
However, the confidence band of Adam with dropout is observed to be noisier and uncertain. Also, we note that the three 
frameworks capture the true solution trajectory, i.e., they have e3 = 100%. Thus, we conclude that the proposed frameworks 
are more effective in predicting uncertainty in this increased noise scenario.
12
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Fig. 11. Convergence results for the anti-derivative with noise N (0, 0.052). The e1 errors are presented on the left while e2 errors are shown on the right. 
Top row: entire history. Middle row: zoom in the first 1, 000 epochs. Last row: zoom in the last 1, 000 epochs. The average errors after the burn in are 
presented in the Table 2.

Table 2
Anti-derivative example with noise N (0, 0.052). The mean er-
rors after burn-in for all three frameworks.

frameworks e1 e2

Adam 14.877717 16.611967
reSGLD 11.970458 12.182682
m-reSGLD 11.367707 11.708988

We also illustrate (see Fig. 13) how much computational cost is saved when using m-reSGLD instead of reSGLD. The 
average per-iteration time (i.e., the computational cost) for m-reSGLD represents 76.9% of the per-iteration time used by 
reSGLD. Moreover, for this increased noise scenario, m-reSGLD is not only more efficient but also provides a better mean 
predictive performance (see Table 2).
13
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Fig. 12. Confidence intervals for the anti-derivative example with noise N (0, 0.052). Left: Adam. Middle: reSGLD. Right: m-reSGLD. In this example, e3 of 
Adam, reSGLD and m-reSGLD are all 100%.

Fig. 13. Anti-derivative example with noise N (0, 0.052). Computer running time per iteration for reSGLD and m-reSGLD. The average computation time of 
m-reSGLD is around 76.9% of reSGLD framework.

Table 3
Antiderivative operator transfer learning for small noise 
N (0, 0.012). The network is initialized using the model 
trained with increased noise (see section 5.1.2).

e1 e2

Direct training 6.953939 7.35423
Transfer learning 6.07787 6.370388

5.1.3. DeepONet transfer learning
We conclude this experiment by testing the efficacy of the proposed transfer learning strategy. The source for transfer 

learning corresponds to the Bayesian DeepONet trained using reSGLD and operator data with increased noise N (0, 0.052). 
The target is a Bayesian DeepOnet to approximate that we aim to train to approximate the same antiderivative operator but 
using operator data with smaller noise, i.e., εi ∼N (0, 0.012).

The proposed transfer learning strategy starts by initializing the target exploitation and exploration DeepONets for reS-
GLD using the source DeepONet. We fix the Trunk Net and train the Branch Net of the target DeepONet for 2000 epochs. 
Table 3 reports the average of the predictive errors for the transfer learning strategy after a given number of burn-in epochs. 
We compare these results with the predictive errors obtained when training the target DeepONet from random initialization 
(i.e., via direct training). One can observe that transfer learning obtained improved accuracy as direct training with a fraction 
of the computational cost.

5.2. Experiment 2: diffusion reaction system

In this experiment, we test the performance of the proposed Bayesian DeepONet with the following diffusion-reaction 
system,

∂s = D
∂2s

2
+ ks2 + u(x), x ∈ 
, t ∈ [0,1], (16a)
∂t ∂x

14
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Fig. 14. Distribution of the operator targets G†(u)(y) obtained from the distribution of inputs depicted in Fig. 6 and used to train the diffusion reaction 
example.

Fig. 15. Convergence results for the diffusion reaction example with noise N (0, 0.012). The e1 errors are presented on the left while e2 errors are shown 
on the right. The average errors after the burn-in are presented in the Table 4.

Table 4
Diffusion reaction example with noise N (0, 0.012). The mean 
errors after burn-in for all three frameworks.

frameworks e1 e2

Adam 31.854993 33.759108
reSGLD 9.644058 9.904289
m-reSGLD 11.344359 11.62751

s(x, t) = 0, x ∈ ∂
, (16b)

s(x,0) = 0, x ∈ 
 (16c)

where 
 = [0, 1] and k = −0.01. Similar to the antiderivative example, the input samples u(x) are simulated using the GRF 
(see Fig. 6) and discretized using m = 100 sensors. Fig. 14 shows the distribution of the true operator targets associated 
with the input samples u for the diffusion-reaction system.

5.2.1. Small noise
In this small noise scenario, the noise εi added to the operator targets follows the normal distribution N (0, 0.012). 

Fig. 15 shows the convergence results of the relative errors e1 and e2 during training. Also, Table 4 presents the average 
of these relative errors after the burn-in. Compared to the state-of-the-art Adam optimizer, the results show that the pro-
posed Bayesian DeepONet (trained with reSGLD and m-reSGLD) improves the training convergence and mean predictive 
performance.

We also show in Fig. 16 the estimated confidence intervals for the three frameworks on a test trajectory, representing 
the solution of the diffusion-reaction system at time t = 1.0. The results show that Adam with dropout overestimates the 
15



Fig. 16. Confidence intervals for the diffusion reaction example with noise N (0, 0.012). Left: Adam. Middle: reSGLD. Right: m-reSGLD. In this example, e3
of Adam is 71%, for reSGLD is 100%, and for m-reSGLD is 100%.

Fig. 17. Diffusion reaction example with noise N (0, 0.012). Computer running time per iteration for reSGLD and m-reSGLD. The average computation time 
of m-reSGLD is around 83.0% of reSGLD framework.

uncertainty (wider confidence band in some regions) and fails to capture the whole true test trajectory (e3 = 71%) within 
the confidence interval. On the other hand, the proposed Bayesian DeepONets, trained with reSGLD and m-reSGLD, provide 
more balanced confidence intervals that can capture the whole true trajectory (e3 = 100%).

We conclude the small noise scenario by plotting in Fig. 17 the per-iteration time consumed by the proposed training 
frameworks of reSGLD and m-reSGLD. Note that by using m-reSGLD, we can save 17% of the computational cost of re-SGLD. 
Furthermore, we can observe from Table 4 that the state-of-art algorithm Adam predicts with a relative error of more than 
30%. This indicates that the noisy scenario is very hard to learn. However, the proposed methods greatly reduce the error 
to around 10%. In particular, m-reSGLD achieves such a reduction (see Table 4) with less computational cost than reSGLD.

5.2.2. Increased noise
In this section, we increase the noise variance so that the noise follows the normal distribution N (0, 0.12). Fig. 18 shows 

the convergence results of e1 and e2 relative errors during training. Moreover, Table 5 presents the average of these errors 
after the burn-in. Compared to Adam, we observe that the proposed Bayesian DeepONet improves the mean predictive 
performance and training convergence.

The estimated confidence intervals are depicted in Fig. 19. The proposed frameworks capture much better the true 
trajectory in their confidence intervals (e3 = 100%). On the other hand, Adam with dropout seems affected by the noise and 
fails to capture the whole trajectory (e3 = 68%).

We conclude the increased noise scenario by plotting the per-iteration time for reSGLD and m-reSGLD (Fig. 20). The 
results show that m-reSGLD uses only 81.5% of the computational resources used by reSGLD. Such a reduction is achieved 
by the proposed m-reSGLD with (remarkably) improved predictive performance (see Table 5).

5.2.3. DeepONet transfer learning
To conclude this example, we test the efficacy of the proposed transfer learning strategy. The source for the transfer 

learning is the Bayesian DeepONet with increased noise (see Section 5.2.2). The target is to learn the solution operator of 
a diffusion-reaction system with different parameter k′ = 0.005 using a different input data distribution. We generate this 
input data using a GRF with an RBF kernel of length l′ = 0.6. Also, we assume the operator data is contaminated with 
smaller noise distributed as follows: εi ∼N (0, 0.075).
G. Lin, C. Moya and Z. Zhang Journal of Computational Physics 473 (2023) 111713
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Fig. 18. Convergence results for the diffusion reaction example with noise N (0, 0.12). The e1 errors are presented on the left while e2 errors are shown on 
the right. The average errors after the burn in are presented in the Table 5.

Table 5
Diffusion reaction example with noise N (0, 0.12). The mean 
errors after burn-in for all three frameworks.

frameworks e1 e2

Adam 31.954806 33.850071
reSGLD 11.670668 12.043854
m-reSGLD 9.040757 9.404453

Fig. 19. Confidence intervals for the diffusion reaction example with noise N (0, 0.12). Left: Adam. Middle: reSGLD. Right: m-reSGLD. In this example, e3 of 
Adam is 68%, for reSGLD is 100%, and for m-reSGLD is 100%.

Fig. 20. Diffusion reaction example with noise N (0, 0.12). Computer running time per iteration for reSGLD and m-reSGLD. The average computation time 
of m-reSGLD is around 81.5% of reSGLD framework.
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Fig. 21. Convergence results for the diffusion reaction example using direct training and transfer learning. The e1 errors are presented on the left while e2
errors are shown on the right. The average errors are presented in the Table 6.

Table 6
Transfer learning for diffusion-reaction system with different 
parameter k′ = −0.005. Bayesian DeepONet is initialized us-
ing the trained model from increased noise scenario (see Sec-
tion 5.2.2). The new dataset has small noise N (0, 0.0752).

e1 e2

Direct training 9.65037 11.1515
Transfer learning 5.251359 5.60123

The proposed transfer learning strategy trains the Branch Net of the target Bayesian DeepONet for 2000 epochs start-
ing from the source DeepONet. We compare the results with a Bayesian DeepONet trained for 2000 epochs starting from 
random initialization (i.e., using direct training). Fig. 21 shows the convergence of the predictive error e1 and e2 for the 
transfer learning and direct training strategy. The results clearly illustrate the advantages of transfer learning. It reduces the 
training/recalibration time needed to reach improved mean predictive performance. Finally, Table 6 shows the average of the 
predictive errors for transfer learning. We observe that transfer learning greatly outperforms direct training with a fraction 
of the computational training cost.

To conclude this section, we would like to remark that for all examples, the training strategies for Bayesian DeepONets, 
reSGLD, and m-reSGLD, converge much faster than Adam, with improved predictive accuracy. The proposed Bayesian Deep-
ONet can also handle the noise in the training data and capture the true solutions within the estimated confidence intervals. 
The performance of the DeepONet trained with Adam, on the other hand, deteriorates for the increased noise scenario. In 
addition, the benefit of the accelerated training regime of m-reSGLD is that it saves up to 25% of the computational cost of 
reSGLD. Such savings are achieved without deteriorating predictive performance. In fact, in some of the examples, m-reSGLD 
(remarkably) has even better mean predictive accuracy than reSGLD.

6. Conclusion

In this work, we study the problem of approximating the solution operator of parametric PDEs using the Deep Operator 
Network (DeepONet) framework and noisy data. To this end, we propose a Bayesian DeepONet based on replica exchange 
Langevin diffusion. The replica exchange algorithm can escape local minima (using one particle to explore and another to 
exploit the loss function landscape of DeepONets). Moreover, replica exchange enables the proposed framework to provide 
(1) improved training convergence in noisy scenarios and (2) (remarkably) enhanced mean predictive capability compared 
to vanilla DeepONets trained using state-of-the-art gradient-based optimization (e.g., Adam). We also demonstrate that the 
proposed framework effectively estimates the uncertainty of approximating solution trajectories of parametric PDEs. To 
reduce the computational cost of the replica, due to the doubled computational cost of using two particles, we propose 
(1) an accelerated replica exchange algorithm that randomly chooses to train one of the DeepONet sub-networks while 
keeping the other fixed and (2) a transfer learning strategy that disseminates training results to Bayesian DeepOnets that 
approximate PDEs with different parameter values using data with different levels of noise. In our future work, we will 
study the theoretical aspect of the accelerated replica exchange framework and empirically/theoretically extend the proposed 
framework to the scenario where the data has non-Gaussian noise.
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Fig. A.22. Distribution of the operator targets G†(u)(y) obtained from the distribution of inputs depicted in Fig. 6 and used to train the gravity pendulum.
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Appendix A. Experiment: gravity-pendulum ode system

In this experiment, we use the proposed frameworks to train a DeepONet that approximates the solution operator of the 
following gravity pendulum with external force,

ds1
dt

= s2, t ∈ [0,1], (A.1a)

ds2
dt

= −k sin(s1) + u(t), (A.1b)

with an initial condition (s1(0), s2(0)) = (0, 0), and k = 1. We simulate the discretized external force u(t) using a mean-zero 
GRF with RBF kernel (length-scale parameter l = 0.2) and m = 100 sensors. We illustrate in Fig. A.22 the distribution of the 
true operator targets associated with the input samples u and used to train the gravity pendulum system.

Small noise
We start by verifying the performance of the proposed frameworks using a small noise scenario. In particular, let us 

assume the noise εi for the target outputs follows the normal distribution εi ∼ N (0, 0.012). We train the DeepONet for 
8, 000 epochs using the three frameworks. Fig. A.23 shows the convergence results for the errors e1 and e2 during training. 
And Table A.7 presents the average of these errors after the burn-in. The results show that the proposed frameworks 
converge much faster during training and provide better mean predictive performance than the state-of-the-art optimization 
algorithm Adam.
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Fig. A.23. Convergence results for the gravity-pendulum with noise N (0, 0.012). The e1 errors are shown on the left while e2 errors are shown on the 
right. Top row: entire history. Middle row: zoom in the first 1, 000 epochs. Last row: zoom in the last 1, 000 epochs. The average errors after burn-in are 
presented in Table A.7.

Table A.7
Gravity-pendulum example with noise N (0, 0.012). The mean 
errors after burn-in for all three frameworks.

frameworks e1 e2

Adam 16.8571 18.6582
reSGLD 6.2147 5.7965
m-reSGLD 6.6997 6.2231

To test how well the proposed frameworks estimate the uncertainty, we select at random one test trajectory and plot the 
estimated confidence intervals in Fig. A.24. Fig. A.24 shows that the proposed replica exchange frameworks capture the true 
test trajectory within their confidence interval, i.e., e3 = 100%. Adam with dropout, on the other hand, fails to capture the 
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Fig. A.24. Confidence intervals for the gravity pendulum example with noise N (0, 0.012). Left: Adam. Middle: reSGLD. Right: m-reSGLD. In this example, 
the error e3 for Adam is 71%, for reSGLD is 100%, and for m-reSGLD is 100%.

Fig. A.25. Gravity pendulum example with noise N (0, 0.012). Computer running time per iteration for reSGLD and m-reSGLD. The average computation 
time of m-reSGLD is around 79.06% of reSGLD framework.

whole true trajectory (e3 = 71%), and also overestimates the predictive uncertainty by producing a wider confidence band 
in some regions.

We also compare the computational cost of reSGLD and m-reSGLD, and we plot in Fig. A.25 the per-iteration running 
time for both frameworks. We observe that the per-iteration time for m-reSGLD is shorter than that for reSGLD. Thus, the 
computational cost for m-reSGLD represents 79.06% of the computational cost for reSGLD. Such a reduction is achieved by 
m-reSGLD without compromising mean predictive accuracy (see Table A.7).

Increased noise
In this section, we verify the performance of the DeepONets when the noise variance for the operator targets increases. 

In particular, we assume the noise follows the normal distribution εi ∼ N (0, 0.052). Fig. A.26 and Table A.8 detail the 
convergence errors for this increased noise scenario. Similar to the anti-derivative example, the convergence results deteri-
orate when the noise increases. However, the proposed frameworks still provide improved training convergence and mean 
predictive performance compared with Adam.

The constructed confidence intervals for the three frameworks in this increased noise scenario are depicted in Fig. A.27. 
We observe that the proposed frameworks have a wider confidence band. This is expected since the increase in noise 
variance leads to larger uncertainty. Adam with dropout, however, seems to not change its estimate for this increased noise 
scenario. Furthermore, compared to Adam (e3 = 77%), we note that the proposed frameworks capture fairly well the true 
trajectory with their estimated confidence intervals (reSGLD: e3 = 93% and m-reSGLD: e3 = 100%).

We conclude this gravity pendulum example by illustrating in Fig. A.28 the per-iteration time used by reSGLD and 
m-reSGLD. The results show that the computational cost of m-reSGLD corresponds to 80.8% of the computational cost of 
reSGLD. As before, m-reSGLD achieves such a reduction without compromising the mean predictive performance.

Appendix B. Experiment: advection-diffusion system

In our final experiment, we verify the effectiveness of the proposed Bayesian DeepONet using the following advection-
diffusion system with periodic boundary conditions,
21
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Fig. A.26. Convergence results for the gravity-pendulum with increased noise N (0, 0.052). The e1 errors are shown on the left while e2 errors are shown 
on the right. Top row: entire history. Middle row: zoom in the first 1, 000 epochs. Last row: zoom in the last 1, 000 epochs. The mean errors after the 
burn-in are presented in Table A.8.

Table A.8
Gravity-pendulum example with increased noise N (0, 0.052). 
The mean errors after burn-in for all three frameworks.

frameworks e1 e2

Adam 18.8935 20.6669
reSGLD 12.6139 11.2885
m-reSGLD 12.2996 11.11955

∂s

∂t
+ ∂s

∂x
− D

∂2s

∂x2
= 0, x ∈ 
, t ∈ [0,1], (B.1a)

s(x,0) = u(x), (B.1b)
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Fig. A.27. Confidence intervals for the gravity pendulum example with noise N (0, 0.052). Left: Adam. Middle: reSGLD. Right: m-reSGLD. In this example, 
the error e3 for Adam is 77%, for reSGLD is 93%, and for m-reSGLD is 100%.

Fig. A.28. Gravity pendulum example with noise N (0, 0.052). Computer running time per iteration for reSGLD and m-reSGLD. The average computation 
time of m-reSGLD is around 80.8% of reSGLD framework.

Fig. B.29. Distribution of the operator targets G†(u)(y) obtained from the distribution of inputs depicted in Fig. 6 and used to train the advection-diffusion 
example.

where 
 = [0, 1], and D = 0.1. Here u(x) is an initial condition sampled from the GRF with an RBF kernel of length 
scale l = 0.2 and discretized using m = 100 sensors. Fig. B.29 shows the distribution of the true operator targets associated 
with the input samples u.
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Fig. B.30. Convergence results for the advection-diffusion example with noise N (0, 0.012). The e1 errors are shown on the left while e2 errors are shown 
on the right. Top row: entire history. Middle row: zoom in the first 1, 000 epochs. Last row: zoom in the last 1, 000 epochs. The average errors after the 
burn in are presented in the Table B.9.

Small noise
In the small noise scenario, we assume the training operator targets are corrupted by a noise that follows the normal 

distribution εi ∼ N (0, 0.012). We train the DeepONets for 8, 000 epochs. Fig. B.30 shows the convergence errors e1 and e2
and Table B.9 presents the average of these errors after 7, 000 burn-in epochs. From Fig. B.30 and Table B.9, we conclude 
that reSGLD and m-reSGLD have faster training converge and better mean predictive performance than Adam.

To illustrate how well our Bayesian DeepONet estimates the uncertainty, we select one test trajectory and plot, in 
Fig. B.31, the estimated confidence interval by the three frameworks. We observe that the three methods capture the true 
trajectory (e3 = 100%). Adam with dropout, however, seems to overestimate the uncertainty, yielding a wider confidence 
band.

We conclude this section by plotting (see Fig. B.32) the per-iteration time consumed by the proposed frameworks reSGLD 
and m-reSGLD. We observe that The average computation time of m-reSGLD is around 79.4% of the reSGLD framework. The 
24



G. Lin, C. Moya and Z. Zhang Journal of Computational Physics 473 (2023) 111713
Table B.9
Advection-diffusion example with noise N (0, 0.012). The 
mean errors after burn-in for all three frameworks.

frameworks e1 e2
Adam 14.3524 16.5843

reSGLD 8.9257 9.2734
m-reSGLD 7.3409 7.7345

Fig. B.31. Confidence intervals for the advection-diffusion example with noise N (0, 0.012). Left: Adam. Middle: reSGLD. Right: m-reSGLD. In this example, 
the error e3 for Adam is 100%, for reSGLD is 100%, and for m-reSGLD is 100%.

Fig. B.32. Advection-diffusion example with noise N (0, 0.012). Computer running time periteration for m-reSGLD and reSGLD. The average computation 
time of m-reSGLD is around 79.4% of reSGLD framework.

proposed accelerated training regime m-reSGLD achieves such a reduction even with improved mean predictive performance 
(see Table B.9).

Increased noise
Finally, we verify the performance of the proposed Bayesian DeepONet when the variance of the noise for the operator 

targets increases. In particular, for the advection-diffusion example, we assume the increased noise follows the normal 
distribution εi ∼ N (0, 0.12). Fig. B.33 and Table B.10 detail the convergence errors for this increased noise scenario. Similar 
to our previous experiments, the proposed frameworks present improved training convergence and better mean predictive 
performance than Adam. This shows that the proposed frameworks handle noise more effectively.

We verify next how well the DeepONets capture uncertainty in this increased noise scenario. To this end, we select a test 
trajectory randomly and plot the estimated confidence intervals in Fig. B.34. The results show that, as expected, the proposed 
frameworks are more uncertain in this increased noise scenario, capturing the whole true test trajectory (e3 = 100%). On 
the other hand, Adam with dropout seems to provide the same uncertainty estimate as for the small noise scenario.

We also plot the per-iteration time used by re-SGLD and m-reSGLD in Fig. B.35. We observe that m-reSGLD is more 
efficient; it consumes only 80.2% of the computational cost of re-SGLD.
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Fig. B.33. Convergence results for the advection-diffusion with increased noise N (0, 0.12). The e1 errors are shown on the left while e2 errors are shown 
on the right. Top row: entire history. Middle row: zoom in the first 1, 000 epochs. Last row: zoom in the last 1, 000 epochs. The average errors after the 
burn in are presented in the Table B.10.

Table B.10
Advection-diffusion example with increased noise N (0, 0.12). 
The mean errors after burn-in for all three frameworks.

frameworks e1 e2

Adam 21.5141 25.0701
reSGLD 11.2455 11.9178
m-reSGLD 14.2553 14.7162

Appendix C. M-ensemble analysis

In this section, we select 100 test trajectories and analyze how well the proposed Bayesian DeepONet predicts the 
uncertainty (for the diffusion-reaction system) as a function of the ensemble size M . Fig. C.36 illustrates that the uncertainty 
prediction for both Bayesian frameworks deteriorates when M ≤ 2000. For larger values of M , the performance always 
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Fig. B.34. Confidence intervals for the advection-diffusion example with noise N (0, 12). Left: Adam. Middle: reSGLD. Right: m-reSGLD. In this example, the 
error e3 for Adam is 100%, for reSGLD is 100%, and for m-reSGLD is 100%.

Fig. B.35. Advection-diffusion example with noise N (0, 0.12). Computer running time per iteration for m-reSGLD and reSGLD. The average computation 
time of m-reSGLD is around 80.2% of reSGLD framework.

Fig. C.36. The fraction of the true solution trajectories captured by the constructed confidence interval (error e3) as a function of the size M of the ensemble.

improves. However, if the ensemble size increases, the computational cost of inference also increases. As a result, in all our 
experiments, we selected M = 2000, which balances uncertainty prediction with inference cost.
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