Neural Computing and Applications (2023) 35:3789-3804
https://doi.org/10.1007/s00521-022-07886-y

ORIGINAL ARTICLE q

Check for
updates

DAE-PINN: a physics-informed neural network model for simulating
differential algebraic equations with application to power networks

Christian Moya' - Guang Lin'

Received: 23 May 2022 / Accepted: 22 September 2022/ Published online: 15 October 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract

Deep learning-based surrogate modeling is becoming a promising approach for learning and simulating dynamical systems.
However, deep-learning methods find it very challenging to learn stiff dynamics. In this paper, we develop DAE-PINN, the
first effective physics-informed deep-learning framework for learning and simulating the solution trajectories of nonlinear
differential-algebraic equations (DAE). DAEs are used to model complex engineering systems, e.g., power networks, and
present a “form” of infinite stiffness, which makes learning their solution trajectories challenging. Our DAE-PINN bases
its effectiveness on the synergy between implicit Runge—Kutta time-stepping schemes (designed specifically for solving
DAEs) and physics-informed neural networks (PINN) (deep neural networks that we train to satisfy the dynamics of the
underlying problem). Furthermore, our framework (i) enforces the neural network to satisfy the DAEs as (approximate)
hard constraints using a penalty-based method and (ii) enables simulating DAEs for long-time horizons. We showcase the
effectiveness and accuracy of DAE-PINN by learning the solution trajectories of a three-bus power network.

Keywords Deep learning - Data-driven scientific computing - Nonlinear differential-algebraic equations -
Implicit Runge—Kutta

1 Introduction To assess the power network’s dynamic secu-

rity [25, 46], utility operators implement an offline proce-

In recent years, we have seen the power network incor-
porate more and more transformative technologies, such as
integrating distributed energy resources, enabling a liber-
alized market, or adopting more complex communication
and control algorithms. Such transformation seeks to
enhance the reliability and efficiency of the power network
operation. However, this transformation pushes the power
network to operate under a more diversified set of operat-
ing conditions and contingencies that could compromise its
security.

< Guang Lin
guanglin@purdue.edu

Christian Moya
cmoyacal @purdue.edu
Department of Mathematics, Purdue University,

West Lafayette 47906, IN, USA

Department of Mechanical Engineering, Purdue University,
West Lafayette 47906, IN, USA

dure that seeks to predict whether the power network will
remain stable after facing a single contingency (e.g., the
trip of a generator) from a set of credible contingencies.
Such a procedure is known as N — 1 criteria [1] and
requires simulating the power network’s transient dynamic
response. Simulating the transient dynamic response
requires integrating a set of nonlinear differential-algebraic
equations (DAE) [25]. However, solving these DAEs is a
very challenging and expensive task. Indeed, the classical
explicit integration schemes (e.g., Euler’s method or RK-4)
may not be stable enough for such a task [19]. As a result,
most commercial solvers implement a partitioned approach
or implicit integration [33].

The partitioned approach solves the differential and
algebraic equations in sequence. However, freezing the
algebraic (resp. dynamic) variables to solve the dynamic
(resp. algebraic) variables introduces a delay error that
propagates throughout the simulation [48]. On the other
hand, the implicit integration method for DAEs simulta-
neously solves the dynamic and algebraic equations.

@ Springer

http://orcid.org/0000-0002-0976-1987
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07886-y&domain=pdf
https://doi.org/10.1007/s00521-022-07886-y

3790

Neural Computing and Applications (2023) 35:3789-3804

Implicit integration does not introduce delay errors but uses
iterative methods (e.g., Newton’s method) and matrix
inversion [19]. As a result, the computational cost and
memory required to integrate DAEs are very high and
constitute the main obstacle for deploying dynamic secu-
rity assessment in real-time [46]. Faster simulation and
prediction alternatives for dynamic security assessment
have been proposed by many works, which we will review
next.

1.1 Previous works
1.1.1 Parallel computing methods

To enable dynamic security assessment in real-time, many
works have proposed simulating the transient dynamic
response by using distributed, parallel, and high-perfor-
mance computing [46], which can enhance the assess-
ment’s efficiency or simulate numerous contingency cases.
For instance, several works [47, 50] have employed par-
allel computing for power network spatial decomposition.
Other methods [2, 13] use parallelization across numerical
solvers with possibly different accuracy. Many
works [6, 15, 37] have investigated how to implement
parallel simulations across the time domain. In particular,
the parallel in-time approach [15, 37] has demonstrated
computational effectiveness when simulating detailed
power network models. While parallel computing methods
for simulating DAEs can enhance efficiency, they still
require vast computational resources.

1.1.2 Energy function methods

Direct or energy function-based meth-
ods [10, 11, 18, 36, 51] constitute an alternate approach to
the traditional offline dynamic security assessment. These
direct methods provide a dynamic security certification
without the expensive integration of the power network’s
post-disturbance dynamics described using DAEs. In par-
ticular, they infer transient stability using a mathematical
model of the power network’s dynamics and an energy
function (i.e., a Lyapunov-like function), which certifies
the convergence of the states to the stable operating point.
Modern versions of these direct methods [10] have been
successfully engineered to the point that they were imple-
mented at the utility level. However, the scalability and
conservativeness of the classical energy-function method
limit their applicability to even relatively large power
networks. Moreover, direct methods do not provide the
state trajectories that operators often require for planning.

@ Springer

1.1.3 Deep learning methods

Motivated by the power network’s dynamic security
assessment application, in this paper, we seek to derive a
deep learning (DL) framework that accelerates simulating
nonlinear DAEs. Enabled by the exponential growth of
computational power and data availability, DL has
achieved outstanding performance in computer vision and
natural language processing applications [26] and promises
to revolutionize the scientific and engineering fields.
However, the current application of DL to learn scientific
and engineering dynamical systems is, at most, limited
since the cost of collecting data is prohibitive. Moreover,
most conventional DL methods (e.g., convolutional or
recurrent neural networks) lack robustness and general-
ization capabilities in such a small data regime.

1.1.4 Deep learning methods for solving differential
equations

In recent years, the scientific machine learning [3, 22]
community has proposed several learning methods for
solving ordinary and partial differential equations (e.g.,
physics-informed neural networks [22, 41]). We roughly
classify these methods into (i) identifying the governing
differential equations via dictionary learning and (ii)
learning to approximate the solution of differential equa-
tions. In particular, let us focus our analysis on time-de-
pendent differential equations.

Several works [4, 5, 45] use dictionary learning and
enormous time-series datasets to learn the governing
equations of the underlying dynamical system. For
instance, in [4, 5], the authors used a dictionary of smooth
functions to learn the governing equations of non-stiff
autonomous and non-autonomous systems. Furthermore,
the authors of [45] employed sparse approximation
schemes and a dictionary of functions to recover the
ordinary/partial differential equations of unknown systems.
Compared to dictionary learning-based methods, the
method proposed in this paper (i) does not require time-
series data and (ii) focuses on approximating the dynamic
response of more complex systems described by DAE:s.

On the other hand, there is growing interest in learning
to predict the future response of dynamical systems mod-
eled using differential equations. In recent years, the field
of scientific machine learning [3, 22] has provided us with
many transformative works (e.g., Physics-Informed Neural
Networks (PINN) [30, 31, 41, 54]) aimed at learning to
predict the future response of dynamical systems and,
hence, providing us with efficient alternatives to traditional
costly numerical solvers. Several of these works use the
idea of encoding the physical laws that govern these sys-
tems (i.e., the differential equations) as soft constraints

Neural Computing and Applications (2023) 35:3789-3804

3791

during training. The information from the differential
equations acts as a regularizing agent, limiting the space of
possible solutions and enabling generalizing well even
when the amount of data inputs is small. Admittedly, much
work is still needed to scale physics-informed deep learn-
ing methods so they can become accurate surrogate models
for large-scale systems (e.g., power networks [55] or
vehicular networks [8]). For instance, one could potentially
leverage bilayered parallel training architectures for dis-
tributed computing environments [7] and develop accurate
large-scale surrogate models that can (i) predict solution
trajectories for a large set of initial conditions and (ii)
maintain good accuracy for long-time horizons.

Other methods adopt data-driven strategies [12, 38—40]
for predicting the future response of unknown systems. For
instance, in [12], the authors trained a transformer with
data from the early stages of the PDE’s solution to predict
the solution recursively at future stages. Qin et al. [38]
used a residual neural network (ResNet) to approximate a
mapping from the current state to the next, given the step
size. Then, one can predict solution trajectories for long-
term horizons via the rollout of the trained ResNet. Most of
the above data-driven strategies suffer from compounding
errors, require enormous datasets, or generalize poorly
outside the training distribution. The proposed method in
this paper will also use a recursive prediction strategy for
long-term horizons as in [38, 40]. However, compared to
these works, DAE-PINN does not require labeled data and
inherits the generalization capabilities and robustness from
discrete PINNs [22, 41].

Despite the success of scientific machine learning in
approximating the solution trajectories of ordinary differ-
ential equations [54], developing a DL-based framework
for simulating the solution trajectories of nonlinear differ-
ential-algebraic equations remains an open problem. This is
because DAEs present a “form” of infinite stiffness [23]
represented through the algebraic equations. As a result,
training deep neural networks to approximate DAEs may
produce gradient pathologies [52] and ill-conditioned
optimization problems, leading to the failure of the
stochastic gradient descent-based training. The first
attempts to derive DL frameworks for learning the dynamic
response of stiff differential equations were presented
in [21] and [23]. In [21], the authors demonstrated that the
continuous version of the PINN model fails to learn stiff
differential equations and proposed using quasi-steady-
state assumptions to derive a simpler model, more suit-
able for PINN-based training. In [23], Kim et al. modified
neural ordinary differential equations [9] so that they could
learn the solution trajectories of stiff problems for long-
time horizons. These methods for learning stiff ODEs have
their merits. However, as presented, they are not

suitable for learning the solution trajectories of the DAEs
studied in this paper.

1.1.5 Deep learning for power networks

Many works have proposed to address the power network’s
dynamic security assessment problem using machine and
deep learning strategies. The main idea of most of these
works [14, 17, 20, 59] is to learn from data a binary indi-
cator that maps the initial post-disturbance conditions of
the power network to a certificate for transient stability. For
example, in [20], the authors designed a convolutional
neural network that observes PMU measurements from
disturbances and outputs a transient stability certificate.
Similarly, the authors of [59] developed a convolutional
neural network that maps the PMU measurements from
disturbances to a transient stability certificate and an esti-
mate of the stability margin.

The above machine/deep learning tools for dynamic
security assessment are fast. However, the information they
present may be insufficient for operators and planners. For
instance, operators often require trajectory information
after the disturbance to predict voltage and frequency
violations that may trigger load shedding. To predict whole
post-disturbance trajectories, the authors of this paper have
developed several deep learning-based alterna-
tives [28, 35, 57]. For instance, in [28], we developed a
deep learning framework that employs the long-term
memory network (LSTM) to predict the transient dynamic
response of a generator. However, this work requires vast
amounts of supervision and training data. To alleviate such
requirements, we formulated in [35] the post-disturbance
transient trajectory prediction problem as an infinite-di-
mensional operator regression problem. The results illus-
trated that a deep operator network (DeepONet) effectively
learns solution trajectories from small datasets obtained by
simulating DAEs. However, we cannot guarantee that the
proposed methods can predict the solution trajectories of
power networks for a given distribution feasible operating
conditions.

1.2 Our work

In this paper, we develop DAE-PINN, the first deep
learning-based framework for learning and simulating the
solution trajectories of semi-explicit differential-algebraic
equations (DAE) of index-1. In particular, our objectives in
this paper are:

1. Forward problem: deriving a framework that learns to
map a given distribution of initial conditions to the
solution trajectories (within a short-time interval) of a
dynamical system described by DAEs.

@ Springer

3792

Neural Computing and Applications (2023) 35:3789-3804

2. Long-time simulation of DAEs: designing an algorithm
that uses the trained framework to simulate DAEs over
long-time horizons.

Compared to more traditional methods to simulate the
dynamic response of power networks [33], we train our
DAE-PINN to solve the differential and algebraic equa-
tions simultaneously. As a result, the proposed DAE-PINN
framework does not (i) introduce delay error or (ii) require
matrix inversion during simulation.

We detail our contributions next.

1. We design a deep learning (DL) framework (DAE-
PINN—Sects. 3.1 and 3.2) that tackles the forward
problem by enabling the synergistic combination of a
discrete physics-informed neural network model with
an implicit Runge—Kutta scheme designed specifically
for solving DAEs. Thus, it effectively extends the
method proposed in [41] to DAEs.

2. A penalty-based method is then introduced (Sect. 3.3)
to facilitate the training of DAE-PINN. The penalty
method aims to enforce DAE-PINN to satisfy the
DAEs as (approximate) hard constraints.

3. For the long-time simulation of DAEs, we propose an
algorithm (Sect. 3.4) that iteratively evaluates the
trained DAE-PINN. Following a Markov-like proce-
dure, the proposed algorithm uses the DAE-PINN
prediction of the previous evaluation step as the initial
condition for the next step.

4. We illustrate the training protocols for DAE-PINN and
evaluate its effectiveness (Sect. 4) using a three-bus
power network example described by a set of stiff and
nonlinear DAEs.

We organize this work as follows. In Sect. 2, we introduce
the differential algebraic equations (DAE) studied in this
paper. In Sect. 3, after describing the implicit Runge—
Kutta (IRK) time-stepping scheme, we describe DAE-
PINN, i.e., the discrete physics-informed neural network
that allows us to use the IRK scheme (with an arbitrary
number of stages) for solving DAEs. We then describe the
penalty method that enforces DAE-PINN to satisfy the
DAEs as approximate hard constraints. We conclude
Sect. 3 by introducing Algorithm 2 that enables us to use
the trained DAE-PINN for simulating DAEs over long-
time horizons. In Sect. 4, we verify the effectiveness of the
proposed framework using a three-bus power network
example. We provide a discussion of our results and future
work in Sect. 5 and conclude the paper in Sect. 6.

@ Springer

2 Problem setup

In this paper, we develop DAE-PINN, a deep learning-
based framework that employs physics-informed neural
networks [41] and implicit Runge—Kutta schemes [19] for
learning the solution trajectories of nonlinear Differential-
Algebraic equations (DAE) [53] given in the semi-explicit
form

y=£(,2),
0=2g(,2),

y(to) = yo (1a)
Z(to) = 20, (lb)

where y = y(r) € R™ are the dynamic states, z = z(f) €
R™ are the algebraic variables, f:R™ x R™ — R™
describes the differential equations, g: R™ x R™ — R™
the algebraic equations, t € [fy, 7] the simulation time
interval, and T > ¢y the time horizon.

2.1 Assumptions

Let us assume that f and g are sufficiently often differen-
tiable and the initial conditions satisfy g(yo,z0) =0. We
also assume that the DAEs (1) are of index 1 [42], which
means the inverse of the Jacobian g, = 0g/0z exists and is
bounded in a neighborhood of the exact solution. This
implies that, by the implicit function theorem [44], the
algebraic equations (1b) have locally a unique solution
z= G(y). Hence, the DAE (1) is equivalent to the fol-
lowing system of ordinary differential equations

¥y =r,Gy)), (2)

with initial conditions (y(t),z(t%)) = (yo, G(y0)). Notice
that the examples studied in Ji et al. [21] (Stiff-PINNs)
correspond to a special case in our problem setup where the
algebraic variables z can be solved explicitly to obtain (2).

2.2 Applications

DAEs frequently arise in dynamic simulations of power
networks [25], mechanical problems, or trajectory control.
DAEs also originate from singular perturbation prob-
lems (SPP) of the form

y=rf2) (3a)
€z = g(yv Z)7 (3b)

by letting the parameter € > 0 approach zero. SPPs have
been used to study (i) nonlinear oscillations with large
parameters, (ii) structure-preserving power networks with
frequency-dependent dynamic loads, and (iii) chemical
kinetics with slow and fast reactions.

Neural Computing and Applications (2023) 35:3789-3804 3793
We conclude this section with the following remark. v

The DAE-PINN that we will develop in Sect. 3 could also Yntl =Yn +h Z bif (ij) Cj) (5¢)

be used for solving problems described in descriptor form =1

Mi=o(x), x(to) = x, @) 0=80ns1:2011). (5d)

where x € R™*" and M is a singular matrix. To that end,
we show next that (4) is mathematically equivalent to the
DAE (1). First, we decompose M (e.g., via Gaussian
elimination with total pivoting) as

I 0
M=S T

00
where S and T are invertible matrices and [is the identity
matrix with a dimension corresponding to the rank of M.
Then, we insert the above into (4) and use Tx = (yT,zT)—r
to obtain

() =57o(m(0)) = (o)

i.e., the semi-explicit DAE (1). Thus, the deep learning
framework that we will derive in Sect. 3 for (1) also
applies for problems in descriptor form (4), provided we
can decompose the matrix M.

3 Proposed method: DAE-PINN

This section describes our DAE-PINN framework, i.e., a
physics-informed neural network framework that allows
solving the DAE (1) using the implicit Runge—Kutta (IRK)
time-stepping scheme with v € Z, stages. We selected
IRK due to its stability guarantees for stiff problems [19].
However, we would like to remark that one can design
DAE-PINN using any stable scheme that can simultane-
ously solve differential and algebraic equations.

3.1 Implicit Runge-Kutta scheme

Let us start by assuming that the integration of (1) has been
carried out up to (,,yn,2,) and we seek to advance it
to (ty+1sYur1,2n+1), Where f,01 =1, +h and h > 0 is the
time step [19]. We apply the implicit Runge—Kutta
scheme with v stages [19, 42] to our system of DAEs (1)
and obtain

fj:yn+hzaj,f(fi7Ci)7 J=1..v (5a)
=1

Here & = y(t, + cjh), {; = z(t, + c;h), and {a;;, bj, ¢;} are
the known parameters of the IRK scheme. Following [19]
and to let the scheme be of nontrivial order, we impose the
following convention for the parameters

)
> aji=c.
i=1

3.2 Discrete physics-informed neural networks

In classical numerical analysis [19], implicit formulations
of Runge—Kutta schemes are usually constrained due to the
computational cost of solving (5). Moreover, these con-
straints become more severe if we increase the number of
IRK stages. To overcome these constraints, our DAE-PINN
framework employs a discrete physics-informed neural
network (PINN) model [41] to enable the implicit Runge—
Kutta scheme (5) with an arbitrary number of stages v.

In the discrete PINN model, the first step is to construct
multi-output neural networks with parameters 0 (see
Fig. 1a and 1b) as a surrogate for the solution of the IRK
scheme (5), which takes the input y, and outputs

[5?7--~a5?7)’2+1] (621)
[zl (6b)

Remark 1 Architecture: In this paper, we mainly adopt the
unstacked architecture depicted in Fig. 1b, which assigns
one neural network for the dynamic state variables y € R™
and another neural network for the algebraic vari-
ables z € R™. We remark, however, that one can also adopt
a stacked architecture, which assigns a single neural net-
work for each of the dynamic variables y; € R and each of
the algebraic variables z; € R. Empirically, we have
observed that the unstacked architecture provides improved
training results.

Remark 2 Complexity: As described in [41], PINN
enables us to employ implicit Runge—Kutta schemes with a
large number of stages at very little extra cost. More
specifically, only the number of neurons of the last layer of
the neural networks grows linearly with the total number of
stages, i.e., with cost ~ O(v).

In the second step for the discrete PINN model, we
restrict the neural networks to satisfy the differential and
algebraic equations described by the IRK scheme (5). In
practice, we restrict the neural networks on some set of
randomly distributed initial conditions scattered/sampled

@ Springer

3794

Neural Computing and Applications (2023) 35:3789-3804

Fig. 1 a The multi-output fully
connected neural

network (FNN) for the dynamic
states y. b Unstacked
architecture—DAE-PINN
framework for solving the
DAEs (1) using IRK (5)

throughout the domain [30], i.e., the set of training data
T = {Yu1,Yn2,- - Ynny } Of size N7'. To measure the
discrepancy between the neural networks and the IRK
scheme (5), we use the following loss function:

L(O;T) =wrLp(0;T) +weLg(0;T). (7)
In the above, w, and wy are the weights,
N7 v+l1
Lp(0;T) = ZZ vk = ¥ (O)112,
k 1 j=
where
yj;k(jk hZa, glk’ lk J=1..v
yl‘fLJI:l(G) yn+]k hzblf jk’ jk
and
L,(0;T) = !
Nr(v+1)

0
Z<Z 118(&j jk ||2+||g(yn+lk’ n+lk)||2>

In the last step for the discrete PINN model, we train the
neural network parameters by minimizing the loss function

using gradient-based optimizers, e.g., the Adam
optimizer [24]:
0 = in £(0;7).

arg min £(0; 7) (8)

We use the weight coefficients wy and w, in (7) to balance
the residual loss terms for the dynamic variables £; and the
algebraic variables L,. In this paper, we use a penalty-
based method [31] to update the value of the weight
coefficients wy and w,.

! Observe that our proposed framework does not require supervision,
i.e., it does not require to know target values of the solution trajectory.

@ Springer

output layer dynamic

3
FNN 5'9
v

o
ynJrl

@ cf

FNN C
174

n+1
algebraic

CL 0

(b)

3.3 Enforcing DAEs as approximate hard
constraints

In the DAE problem (1), the solution trajectories must
always satisfy the dynamic equations (la) and lie in the
manifold described by the algebraic equations (1b), i.e.,

{(v,2) 1 g(v,2) = 0},

which, for power networks, represents satisfying the power
flow equations [25]. However, it may be difficult to satisfy
the dynamic and algebraic equations exactly by using the
soft constraints approach for the loss function (7). This can
be seen as follows. Suppose the weight coefficients wy and
w, are selected too large, which severely penalizes the
violation of the DAEs. In that case, the optimization
problem may become ill-conditioned; hence, it may be
difficult to converge to a minimum. On the other hand, if
the values selected for wy and w, are too small, the solution
will not satisfy the dynamic equations or will not lie in the
manifold described by the algebraic equations.

To impose the DAEs as approximate hard constraints,
we implement the penalty-based method introduced in [31]
and summarized in Algorithm 1. The main idea behind this
method is to replace the optimization problem with
equality constraints (i.e., the differential and algebraic
equations) with a sequence of unconstrained problems with
varying penalty coefficients w}‘ and w}. More specifically,
during the kth “outer” iteration, we solve the following
unconstrained optimization problem

ménﬁ(@; T)= wfﬁf +w /Jg,

where w]’i and wif are the penalty coefficients for the kth

iteration. Furthermore, at the beginning of each iteration,
we increase the penalty coefficients by a constant factor
p>1:

k+l ﬁW - (ﬁ)kwg7

kH ﬁWf (ﬁ)kw(f)

Neural Computing and Applications (2023) 35:3789-3804

3795

As k — oo, and given that the neural networks are well
trained, the solution of the sequence of unconstrained
optimization problems will converge to the solution that
satisfies the DAEs approximately as hard con-
straints [31, 32]. In practice, however, if we fail to care-
fully select the hyper-parameters w?, wj, and f, the
optimization problem may become ill-conditioned or
experience slow convergence.

number v of stages to take a large time step h. However,
when simulating stiff and nonlinear DAEs (e.g., the power
network dynamics) for long-time horizons, it may be
necessary to take multiple time steps. Thus, this subsection
briefly describes how we can use our trained DAE-PINN
framework to simulate DAEs for long-time horizons. We
provide a detailed description of the proposed iterative
strategy in Algorithm 2 and an illustrative example in

Algorithm 1 Training using the penalty method [31]

Require: initial penalty coefficients w? and w_2, factor (, and number of

iterations K.
1. k— 0

[\

0° «— argmin, £°(0; T): train the neural network (7) from random

initialization, until the training loss has converged, i.e., £°(8; 7) < le-5.

while k < K do

k—~FLk+1
w’;<—6w’;_1

ko gl

A

0% «— argmin, £*(0; T): train the networks (7) from the initialization

6%~ until the training loss has converged, i.e., £L¥(0; T) < le-b.

8: end while

3.4 Simulating DAEs for long-time horizons

Until now, we have described how the DAE-PINN
framework enables integrating DAEs (1) from (#,, Y, z,) to
(ty + A, Ynt1,2041). Such a framework can use a large

Fig. 2. The main idea behind our strategy is to update
recurrently (in a Markov-like fashion) the input to DAE-
PINN vy, using the predicted dynamic states ygll from the
previous evaluation step.

N N

zn, O “o a2y

| i I {

e el
| ' ! {
I
YN-1 YN
[] [] []

Fig. 2 Illustration of how to use the proposed trained DAE-PINN (NNO‘) to simulate index-1 DAEs (1) for long-time horizons (i.e., for N time

steps of size h)

@ Springer

3796

Neural Computing and Applications (2023) 35:3789-3804

Thus, Algorithm 2 enables us to simulate the solution
trajectories of DAEs (1), y(f) and z(¢), within the time
interval ¢ € [0,k - N], using a single trained DAE-PINN
with time step 7. We remark that one can easily extend
Algorithm 2 to work with multiple trained discrete PINNs
with possibly different time steps /. Such a strategy can be
applied, for example, to problems with multiple time scales
(e.g., transients and steady-state).

dynamical system transitions from being non-stiff to stiff
and, finally, to a system of differential-algebraic equations.

4.1 Three-bus power network
We consider the following three-bus system (a slack bus, a

generator bus, and a load bus), which has been used for
energy function analysis [56], cascading failure predic-

Algorithm 2 Simulating DAEs for long-time horizons

Require: The number of time steps N, and the DAE-PINN with trained

parameters 6* and time step h.

1: Let the initial condition of (1a), yo, be the input to the DAE-PINN;, i.e.,

Yn = Yo-
2: for k =1,...,Ndo

3: compute the forward pass using the proposed framework, i.e.,

y’ILH [5?*7"'
Yo = [

&

sy Sy

0 0" .y
v 7yn+1] - Yk

0* 6" *
Zn+1] = Zk

4: update the input using the predicted value nyiH, i.€e.,

0*
Yn yn+1

. end for

[2 B

: The Algorithm computes the solution trajectory in the time interval [0, A -

N]. Such a solution trajectory is obtained by concatenating the outputs
from all forward passes, i.e., {V" }2_, and {Z0 }_,

4 Numerical experiments

This section contains a systematic study on a three-bus power
(Fig. 3) network that aims to demonstrate the performance of
our DAE-PINN framework. We also refer the interested
reader to Appendix A for an illustrative example that uses
the Van der Pol system [16, 49] to demonstrate how a

JBi2

Py

slack generator generator

pq bus

Fig. 3 Three-bus two-generator power network [56]

@ Springer

tion [43], and reduced-order modeling [27]. The three-bus
system is depicted in Fig. 3 and described by the following
set of nonlinear DAEs [56]

@1 = (1/M})(=Dao; + fi + 1)

ay = (1/My)(=Dwn, — f1)

9a
9b

53 = —(w1 —fZ/Dl) 9d

0=—(1/V3)(&1),

(9a)
(9b)
5 = wr — (9¢)
(9d)
(%)

where y = (w1, 02, 62, 53)T are the dynamic states, z = V3
the only unknown algebraic state, and
fi = B12ViVasin(0;) 4+ By Vo Vs sin(0, — 03) + P,
o = B13V1V3sin(d3) + B3V, Visin(d; — ;) + Py,
g1 = (Bi3 + B23)V; — B13V1 V3 cos(33)
— By3V, V3 cos(d3 — 62) + Q.

We fix the parameters of the power network to the fol-
lowing values M; =0.52, M, =0.0531, D =0.05,

Neural Computing and Applications (2023) 35:3789-3804

3797

D;=0.005, V;=1.02, V,=1.05, B, B3, B = 10,
P, =—2.0,P,=3.0,and 0, = 0.1.

4.2 Neural networks, hyper-parameters,
and learning protocols

We implemented DAE-PINN using PyTorch and published
all the codes on GitHub. All the experiments presented in
this section were trained by minimizing the loss func-
tion £(0T) (7) using the Adam [24] optimizer with
default hyper-parameters and initial learning rate n = 1073,
We reduced the learning rate whenever the value of the loss
function £ reached a plateau or started to increase. The
training and test datasets consist of initial conditions
sampled uniformly at random and as follows:
®1(0), @2 (0) ~U(—m,) and 5,(0), 3(0) ~U(—0.1,0.1).

The neural network that approximates the mapping
yn— (&1, &y ynr1) (e., dynamic equations) and the
neural network that approximates the mapping
yu—(C1y oo Gy zag1) (e., algebraic equations) were
implemented using the improved fully-connected archi-
tecture proposed in [52], which has the following forward
pass:

U=¢pXW' +b"),V = p(XW* +b°)

HY = ¢(xw=! 4+ b*")

z® = p(HB W +b°5, k=1,....d

H* =1 -zMeov+zWov, k=1,...,d
folx) = HEDW b,

Here, X is the input tensor to the neural network, d is the
number of hidden layers (i.e., the network’s depth), ® is
the Hadamard or element-wise product, and ¢, in this
paper, is a point-wise sinusoidal activation function. We
also assume that each hidden layer has a width w. The
trainable parameters of this novel network architecture,
which we initialize using the Glorot normal algorithm, are
collected in the following set:

0= {wW' b, W2 b {W* b} W, b}

Our experiments show that this novel architecture outper-
forms the conventional fully connected architecture. This is
because it explicitly accounts for the multiplicative inter-
actions between different inputs and enhances hidden-state
representation with residual connections [52]. Let us con-
clude this subsection with the following remark.

Remark 3 Output feature layer for the algebraic equation.
The term (1/V3) in (9¢) may lead to the loss for the
algebraic variables £, being a few orders of magnitude
larger than the loss for the dynamic variables £;. We have
observed empirically that such an imbalance compromises

gradient descent optimization. To mitigate such an issue,
we added the following output feature layer for the neural
network associated with the algebraic equations:

(é’lv ey va ZnJrl)’_}SOftplus(zlv sy va Zn+1)~

Note that the above feature layer constraints the bus volt-
age to be nonnegative, i.e., V3 > 0.

4.3 Convergence experiments

In this subsection, we investigate how the network archi-
tecture, the network size, and the training dataset affect the
training convergence of DAE-PINN. To this end, we train
DAE-PINN with a time step # = 0.1 for 50,000 epochs.

4.3.1 Network architecture

Our first convergence experiment evaluates which archi-
tecture, stacked or unstacked, provides better convergence
results for the training of DAE-PINN. The stacked archi-
tecture uses a neural network (width w =25 and depth
d = 4 layers) for each dynamic and algebraic state. On the
other hand, the unstacked architecture uses one neural
network (width w = 100 and depth d = 4 layers) for all the
dynamic states and another neural network (width w = 25
and depth d = 4 layers) for the algebraic state. Figure 4a
shows the results of running this experiment 10 times. We
observe that the unstacked architecture provides us with the
best training performance.

4.3.2 Network size

This experiment evaluates the effect of the size of the
networks during training. More specifically, we use an
unstacked architecture (to eliminate the network architec-
ture effect) to verify the training convergence while vary-
ing the width and depth of the neural networks. Figure 4b
illustrates the results when we vary the width (depth fixed
to d = 2 layers). We note that increasing the width from 10
to 200 decreases the train and test errors, but the errors
increase instead when we further increase the width. On the
other hand, Fig. 4c shows the results when we vary the
depth (width fixed to w = 100). We observe that the train
and test errors reach a minimum when we set the depth to
d = 4 or d = 8 hidden layers.

4.3.3 Training dataset

Our last experiment investigates how the size of the
training dataset, i.e., the number of training examples
N7 = |T|, affects the training convergence of DAE-PINN.
To eliminate the effect of the architecture and size of the
neural networks, we choose unstacked architectures with a

@ Springer

Neural Computing and Applications (2023) 35:3789-3804

3798
Fig. 4 Convergence 6% 103
experiments. a stacked versus
unstacked architectures.
b Network width. ¢ Network 5x 1073
depth. d Number of training
examples s
Z4x107°
=
3x 1073
Stacked
(a)
®
In
[JA)
(AR
1\
1 \
1 \
1 \
1 \
N ! \\
IR
= ||
1
I

Depth

()]

depth of d = 4 for the neural networks of the dynamic and
algebraic states. Further, we select a width of w = 100
(resp. w = 40) for the neural network of the dynamic (resp.
algebraic) states. The results illustrate that (see Fig. 4d)
including more training examples (initial conditions), in
general, leads to smaller train and test errors. We conclude
this section by describing the characteristics of our best
DAE-PINN model. This best model trains with N7 = 2000
initial condition points sampled from the state-space,
evaluates the performance of DAE-PINN every 1000
epochs using a test dataset with 1500 initial conditions not
included in the training dataset and uses unstacked neural
network architectures with d = 4 hidden layers. Moreover,
for this best DAE-PINN model, the neural network repre-
senting the dynamic (resp. algebraic) states has a width of
w = 100 (resp. w = 40).

4.4 Results for the best DAE-PINN model

In this subsection, we verify the effectiveness of DAE-
PINN in performing a long-time simulation of DAEs using
Algorithm 2. To this end, we train the best DAE-PINN
model with time-step & = 0.1 using the penalty-method

described in Algorithm 1 with hyper-parameters w) =

w)=1and f=2.

@ Springer

Hl Train == Train
B Test 2 X 1071 =@ Test
g
= 10
6x107°
10 10°
Unstacked Width
(b)
- Train 1.95 x 10~
-@- Test .
1.9 x 1073
1.85 x 1073
g
Z 18 x 107
=
1.75 x 1073
1.7x107°
10° 10°
No. of training examples |7 |
(d)

Figure 5 presents a simulated DAE trajectory for N =
80 time steps, corresponding to a representative initial
condition selected uniformly at random from the test
dataset. We note excellent agreement between the simu-
lated trajectory and the true trajectory (obtained by inte-
grating (9) using conventional numerical methods [53]).
To better understand the long-time simulation accuracy of
the DAE-PINN framework, we sample 100 initial condi-
tions from the test dataset and compute the mean and
standard deviation of each state variable’s L? relative error.
Table 1 reports the L? relative errors of each state variable.
From the reported results, we conclude that DAE-PINN
can simulate DAEs for long-time horizons with excellent
accuracy.

4.5 Comparison with other numerical
integration schemes

In this subsection, we design a brief comparison study to
illustrate that having more IRK stages v enhances the
robustness against error accumulation. Let us remark first
that using Algorithm 2 to simulate DAEs for long-time
horizons may accumulate errors, jeopardizing accuracy.
Thus, our goal in this section is to compare the prediction
accuracy of the proposed best DAE-PINN model (enabling
the IRK scheme with v = 100 stages) with two other DAE-

Neural Computing and Applications (2023) 35:3789-3804

3799

L ——
e ———
e ——

o000
(S feldy]

wl(t)

00
Sit=ty

wy(t)

e
=

bo(t)

e
o

0.1 =
= 00 —= Preicted
& —0.1
1.2
gg 1.0
0.87 p)] 6 8

time (sec)

Fig. 5 Predicted and true solution trajectories of the DAEs describing
the three-bus power network dynamics (9) within the simulation time
interval [0, N - h] = [0, 8] seconds for a initial condition sampled from
the test dataset

PINN models. The first model is a DAE-PINN that encodes
the classical backward Euler integration method [19] into
its loss function. The second model is a DAE-PINN that
enables the Gauss-Legendre IRK with v = 3 stages, which
is probably the largest IRK numerical scheme that is con-
sistent, stable, and with reasonable implementation
costs [19].

4.5.1 DAE-PINN enabling backward Euler

We built a DAE-PINN that encodes the backward Euler
integration method into its loss function. To this end, we
used the same neural network architecture and input/hidden
layers’ structure as for the best DAE-PINN model (see
Sects. 4.3 and 4.4). Note that the output layers for this
DAE-PINN are (y),,,2%,,). We trained this DAE-PINN
using the learning protocols described in Sect. 4.2 and the
following loss function that enables the backward
Euler [19] method:

L(0;T) = wLy(0:T) + wy £g(0;T).
In the above, wy and w, are the weights,
Table 1 Mean and standard deviation of the L? relative error of the

long-time simulation of 100 initial conditions sampled from the test
dataset

(0] ()] 52 53 V%
Mean 0.0382 0.0381 0.0093 0.0011 0.0002
St. dev. 1.01e-2 1.07¢-2 2.44 e-3 2.96e-4 2.98e-07

1 &
Lr(0T) = 5= Ik = a0,
k=1

where

0 0 0
y",k(e) = yn+l,k - hf(yn+l,k7zn+l,k)7

and

1 & 2
L,(6;T) = N_TZ ”g(y:(q)ﬂ?ka Zg+1,k)||2'
k=1

4.5.2 DAE-PINN enabling Gauss-Legendre IRK

We built and trained a DAE-PINN for enabling the Gauss—
Legendre IRK [19], i.e., an IRK with only v = 3 stages.
Note that the only differences between this DAE-PINN and
the best DAE-PINN model of Sect. 4.4 are the (i) structure
of the output layers, which depends on the number of
stages v =3 and (ii) known parameters {a;;, b;,c;}. We
refer the interested reader to [19] for the exact values of the
aforementioned parameters.

4.5.3 Comparison results

We used the three trained DAE-PINN models to simulate
(see Algorithm 2) the power network DAEs. In particular,
we simulated the solution trajectories for N = 80 time
steps (with time-step & = 0.1) and starting from an initial
condition y(0) e {y:w,m € [-m,7] and 91,9, €
[—0.1,0.1]} that does not belong to the training dataset.

Figure 6 illustrates the predicted solution trajectories
from the three DAE-PINNs. As described in the previous
section, the best DAE-PINN model (with IRK of v = 100
stages) generalizes well and effectively simulates the
solution trajectories, i.e., without accumulating errors. For
the dynamic variables y, the backward Euler DAE-PINN
fails to track the oscillatory response of y. At the same
time, the Gauss-Legendre DAE-PINN follows the oscil-
lations except for the angle state d3. On the other hand, for
the algebraic variable z = V3, the backward Euler DAE-
PINN tracks the instantaneous response. The Gauss—
Legendre DAE-PINN, however, accumulates errors
significantly.

We also illustrate (see Fig. 7) the I? relative error as a
function of N, i.e., the number of time steps, for the slack
machine speed w; and the load bus angle 5. In both cases,
the best DAE-PINN model is robust and does not accu-
mulate errors. The backward Euler DAE-PINN always
suffers from error accumulation, and the Gauss—Legendre
DAE-PINN accumulates errors significantly for the load
bus angle d3. In conclusion, a DAE-PINN that enables IRK

@ Springer

3800

Neural Computing and Applications (2023) 35:3789-3804

\
oo
aout

qu(f)
|OOO
=tey

time (sec)

Fig. 6 Comparing the long-time simulation accuracy of DAE-PINNs
enabling (i) IRK scheme with v =100 stages, (ii)) IRK Gauss—
Legendre scheme, and (iii) backward Euler method

J) .}
L*rel. error - 03 L” rel. error - wy

0 20 40 60 80
No. of time steps NV

Fig. 7 L? relative error for the slack generator speed @, and load bus
angle d3 as a function of the number of time steps N

methods with a large number of stages v provides robust-
ness when integrating DAEs using Algorithm 2. This is
because having a large number of stages controls the errors
propagated to the next integration/simulation step.

5 Discussion

5.1 On extending our framework to large-scale
power networks

Developing deep learning methods for simulating large-
scale scientific and engineering systems remains an open
problem. Thus, the straightforward application of DAE-
PINN for simulating large-scale power networks is not
feasible. We, however, believe that, similar to the author’s
previous work [28], our proposed framework can be used
in a plug-and-play fashion and replace the numerical

@ Springer

solvers for the DAEs describing the individual components
of the network (e.g., generators). To showcase such plug-
and-play ability, in our future work, we plan to construct a
surrogate model that can predict the response of a medium-
size power network whose components are pre-trained
using our framework. To this end, our method must gen-
eralize to unseen events and even predict unstable behav-
iors. The fully connected neural networks used in this paper
may not be powerful enough for such a challenge. Thus, it
is also part of our future work to enhance our method using
more sophisticated architectures, which we briefly describe
next.

5.2 On using more sophisticated Neural Network
architectures

In this paper, to simulate DAEs over a long-time horizon,
we employed a modified version of the conventional fully
connected neural network architecture. However, we real-
ize that other architectures may increase our ability to
simulate long-time dependencies [58]. Thus, in our future
work, we plan to implement DAE-PINN using neural
networks that can generalize well to unseen events. In
particular, we plan to employ the state-of-the-art deep
operator neural network (DeepONet) [29], a neural net-
work that approximates nonlinear operators (a mapping
from functions to functions), which has shown great
potential to reduce the generalization error significantly.
We can apply DeepONets to our framework by noting that
integration is an operation of the form: T}, : x(-)—x(- + h)
where the time-step & is a parameter.

5.3 On the inverse problem

We remark that extending the proposed framework to learn
unknown but identifiable parameters of DAEs is straight-
forward (see [41] for more details). Furthermore, in [34],
the authors already used a physics-informed continuous
deep learning model to learn unknown power network
parameters. It is, however, unclear whether the authors’
framework learns the stiff nonlinear DAEs or a non-stiff
ODE-based approximation of the power network dynam-
ics. As reported in [21] (and also our experience with
physics-informed continuous models), the learning process
of stiff ODEs and DAEs using physics-informed continu-
ous models is extremely unstable. Thus, it requires a
problem-dependent solution to avoid the failure of gradi-
ent-based training.

5.4 On the stochastic setting

With the increasing penetration of renewable resources, the
operating conditions for power networks are becoming

Neural Computing and Applications (2023) 35:3789-3804

Fig. 8 Comparing the long-time
simulation accuracy of DAE-
PINN for the non-stiff Van der
Pol system (parameter p = 1
and time-step & = 0.2).

a x(1) trajectory. b y(¢) trajectory

Fig. 9 Comparing the long-time
simulation accuracy of DAE-
PINN for the stiff Van der Pol
system (u € {10,100, 1000}
and time-step h = 0.2). a x(?)
trajectory for u = 10. b y(7)
trajectory for p = 10. ¢ x(¢)
trajectory for u = 100. d y(r)
trajectory for u = 100. e x(¥)
trajectory for u = 1000. e y(7)
trajectory for u = 1000

x(t)

z(t)

x(t)

)

&)

—

(=]

3801
2
1
—_— Tre o — The
= = DAE-PINN predicted = 0 = = DAE-PINN predicted
-1
-2
0 5 10 15 20 0 5 10 15 20
t t
(a) (b)
0.75
0.50
0.25
= True @ — True
= = DAE-PINN predicted = 0.00 = = DAE-PINN predicted
—0.25
—0.50
/ ~0.75
0 10 20 30 40 50 0 10 20 30 40 50
t t
(a) (b)
0.75
\ = True
050] == DAE-PINN predicted
0.25
— True <
— = DAE-PINN predicted = 000
—0.25
/ / —0.50
0 100 200 300 400 500 500
t 13
(© (d)
\ \ \ 0.50
0.25
= True

= = DAE-PINN predicted

/|

%

0 1000 2000 3000

t

(e)

4000

5000

y(t)

— True
= = DAE-PINN predicted

10002000

t

®

3000 4000 5000

@ Springer

3802

Neural Computing and Applications (2023) 35:3789-3804

more uncertain. Thus, developing an online dynamic
security assessment tool that considers such a stochastic
environment is necessary. To this end, in our future work,
we will develop a deep learning framework that learns and
simulates the stochastic differential-algebraic equations
describing power network dynamics for a given distribu-
tion of initial conditions and a set of uncertain parameters.

6 Conclusion

We developed DAE-PINN, a deep learning framework for
learning and simulating the set differential-algebraic
equations (DAE) that describes power networks. DAE-
PINN consists of a discrete physics-informed neural net-
work model that enables employing arbitrarily accurate
implicit Runge—Kutta schemes with a large number of
stages. Moreover, we implemented a penalty-based that
enforces DAE-PINN to satisfy the DAEs as approximate
hard constraints. We then proposed Algorithm 2, which
uses the trained DAE-PINN to simulate DAEs over long-
time horizons. Finally, we demonstrated the effectiveness
of our proposed framework using a three-bus power
network.

Appendix A: The Van der Pol system

In this appendix, we consider the classical Van der
Pol (VDP) system [16, 49]:

K4+ u(x*—1)+x=0,

where (x,X) is the state vector and u is the system’s
parameter. To facilitate our analysis, let us transform the
VDP system as follows. Consider the following identity:

Hm(xz—l):%(HuBf—xD.

If we let @(x) :=1x’ —x and z =x+ ug(x), the above

identity and the VDP system imply
F=i+wi(x® —1) = —x.

If we also let y := ﬁ then we can write the VDP system as

follows:
X = puly — o(x)] (A1)
y=- % (A2)

Now suppose the initial condition (xg, yo) is not too close to
the line described by the function y = ¢(x), i.e., assume
¥y — @(x)~O(1). Then Eq. (Al) implies that |x|~ O(u)
and Eq. (A2) implies that |y| ~O(u!).

@ Springer

A.1 Non-stiff Van Der Pol system

It is well known [49] that whenever u = 1, the Van Der Pol
system is non-stiff, i.e., |x|, [y| ~ O(1), the time-scales are
similar. Figure 8 presents the non-stiff solution trajectories
for the VDP system with initial condition (xo,yo) = (2,0).
Figure 8 also presents the predicted trajectory using a
modified version of DAE-PINN. Note that this version of
DAE-PINN is trained to satisfy Eqgs. (5a) and (5c) for the
VDP system. The results illustrate that the proposed DAE-
PINN can easily simulate the dynamic response of the non-
stiff VDP system.

A.2 Increasing stiffness

To increase the stiffness of the VDP system, one must
increase the value of the parameter u. Clearly,
|¥| ~O(p) > 1 and [y|~O(u™') < 1 when p increases
and is much bigger than one. In particular, the velocity in
the horizontal direction is considerable, while the velocity
in the vertical direction is minimal [49]. These two widely
separated time scales are a distinctive property of stiff
systems. Figure 9 illustrates the solution trajectories for the
VDP system with initial condition (xo, yo) = (2.0,0.0) and
parameter u € {10, 100, 1000}. Note that we can observe
both time scales in the graph of the x(#) trajectory. Figure 9
also illustrates the prediction of a modified DAE-PINN.
This DAE-PINN can effectively predict/simulate the tra-
jectory even for the very stiff VDP system, i.e., when
u = 1000.

A.3 Differential algebraic equations and infinite
stiffness

If we let the parameter increase to infinity, i.e., if we let
1 — o0, then the stiffness increases to infinity. Then, the
differential equations of the VDP system become the fol-
lowing differential-algebraic equations:

0=y— o)
) 1
y=—-=x
U
Note that the claim that DAEs present a “form” of infinite
stiffness [23] can be easily inferred from the previous
analysis.

Author contributions CM: Conceptualization, Methodology, Investi-
gation, Formal Analysis, Writing—Original Draft. GL: Conceptual-
ization, Supervision, Writing—Review, Editing, Funding Acquisition.

Funding This work was supported by the National Science Founda-
tion (DMS-1555072, DMS-1736364, DMS-2053746, and DMS-
2134209), and Brookhaven National Laboratory Subcontract 382247,

Neural Computing and Applications (2023) 35:3789-3804

3803

and U.S. Department of Energy (DOE) Office of Science Advanced
Scientific Computing Research program DE-SC0021142.

Availability of data and materials The data used for training the
proposed methods of this article can be generated using the code
available in Github (https://github.com/cmoyacal/DAE-PINNs).

Code availability The code for this article is available in GitHub
(https://github.com/cmoyacal/DAE-PINNs).

Declarations

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflict of interest The authors have no competing interests to
declare that are relevant to the content of this article.

References

10.

11.

12.

. Alvarado F, Oren S (2002) Transmission system operation and

interconnection. National transmission grid study—Issue papers,
pp A1-A35

. Aristidou P, Fabozzi D, Van Cutsem T (2013) Dynamic simu-

lation of large-scale power systems using a parallel schur-com-
plement-based decomposition method. IEEE Trans Parallel
Distrib Syst 25(10):2561-2570

. Baker N, Alexander F, Bremer T et al (2019) Workshop report on

basic research needs for scientific machine learning: Core tech-
nologies for artificial intelligence. Tech. rep, USDOE Office of
Science (SC), Washington, DC (United States)

. Brunton SL, Proctor JL, Kutz JN (2016) Discovering gov-

erning equations from data by sparse identification of non-
linear dynamical systems. Proc Natl Acad Sci
113(15):3932-3937

. Brunton SL, Proctor JL, Kutz JN (2016) Sparse identification of

nonlinear dynamics with control (sindyc). IFAC-PapersOnLine
49(18):710-715

. Chao H (2002) Implementation of parallel-in-time Newton

method for transient stability analysis on a message passing
multicomputer. In: Proceedings of international conference on
power system technology. IEEE, pp 1239-1243

. Chen J, Li K, Bilal K et al (2018) A bi-layered parallel training

architecture for large-scale convolutional neural networks. IEEE
Trans Parallel Distrib Syst 30(5):965-976

. Chen J, Li K, Philip SY (2021) Privacy-preserving deep learning

model for decentralized vanets using fully homomorphic
encryption and blockchain. IEEE Trans Intell Transp Syst

. Chen RT, Rubanova Y, Bettencourt J et al (2018) Neural ordi-

nary differential equations. arXiv preprint arXiv:1806.07366
Chiang HD (2011) Direct methods for stability analysis of elec-
tric power systems: theoretical foundation, BCU methodologies,
and applications. Wiley, New York

Chiang HD, Wu FF, Varaiya PP (1994) A bcu method for direct
analysis of power system transient stability. IEEE Trans Power
Syst 9(3):1194-1208

Chung E, Leung WT, Pun SM et al (2021) A multi-stage deep
learning based algorithm for multiscale model reduction. J Com-
put Appl Math 394(113):506

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Fabozzi D, Chieh AS, Haut B et al (2013) Accelerated and
localized newton schemes for faster dynamic simulation of large
power systems. IEEE Trans Power Syst 28(4):4936-4947

Gupta A, Gurrala G, Sastry P (2018) An online power system
stability monitoring system using convolutional neural networks.
IEEE Trans Power Syst 34(2):864-872

Gurrala G, Dimitrovski A, Pannala S et al (2015) Parareal in time
for fast power system dynamic simulations. IEEE Trans Power
Syst 31(3):1820-1830

Hairer E, Lubich C, Roche M (2006) The numerical solution of
differential-algebraic systems by Runge—Kutta methods, vol
1409. Springer, Berlin

He M, Zhang J, Vittal V (2013) Robust online dynamic security
assessment using adaptive ensemble decision-tree learning. IEEE
Trans Power Syst 28(4):4089-4098

Hiskens IA, Hill DJ (1989) Energy functions, transient stability
and voltage behaviour in power systems with nonlinear loads.
IEEE Trans Power Syst 4(4):1525-1533

Iserles A (2009) A first course in the numerical analysis of dif-
ferential equations, vol 44. Cambridge University Press, New
York

James J, Hill DJ, Lam AY et al (2017) Intelligent time-adaptive
transient stability assessment system. IEEE Trans Power Syst
33(1):1049-1058

Ji W, Qiu W, Shi Z et al (2020) Stiff-pinn: physics-informed
neural network for stiff chemical kinetics. arXiv preprint arXiv:
2011.04520

Karniadakis GE, Kevrekidis IG, Lu L et al (2021) Physics-in-
formed machine learning. Nat Rev Phys 3(6):422-440

Kim S, Ji W, Deng S et al (2021) Stiff neural ordinary differential
equations. arXiv preprint arXiv:2103.15341

Kingma DP, Ba J (2014) Adam: a method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980

Kundur P (2007) Power system stability. Power system stability
and control pp 7-1

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436-444

Li J, Stinis P (2019) Model reduction for a power grid model.
arXiv preprint arXiv:1912.12163

LiJ, Yue M, Zhao Y et al (2020) Machine-learning-based online
transient analysis via iterative computation of generator dynam-
ics. In: 2020 IEEE international conference on communications,
control, and computing technologies for smart grids (Smart-
GridComm). IEEE, pp 1-6

Lu L, Jin P, Pang G et al (2021) Learning nonlinear operators via
deeponet based on the universal approximation theorem of
operators. Nat Mach Intell 3(3):218-229

Lu L, Meng X, Mao Z et al (2021) Deepxde: a deep learning
library for solving differential equations. SIAM Rev
63(1):208-228

Lu L, Pestourie R, Yao W et al (2021c) Physics-informed neural
networks with hard constraints for inverse design. arXiv preprint
arXiv:2102.04626

Luenberger DG (1973) Introduction to linear and nonlinear pro-
gramming, vol 28. Addison-Wesley, Reading

Milano F (2010) Power system modelling and scripting. Springer,
Berlin

Misyris GS, Venzke A, Chatzivasileiadis S (2020) Physics-in-
formed neural networks for power systems. In: 2020 IEEE power
& energy society general meeting (PESGM). IEEE, pp 1-5
Moya C, Zhang S, Yue M et al (2022) Deeponet-grid-uq: A
trustworthy deep operator framework for predicting the power
grid’s post-fault trajectories. arXiv preprint arXiv:2202.07176
Pai M, Padiyar K, Radhakrishna C (1981) Transient stability
analysis of multi-machine ac/dc power systems via energy-
function method. IEEE Trans Power Appar Syst 12:5027-5035

@ Springer

https://github.com/cmoyacal/DAE-PINNs
https://github.com/cmoyacal/DAE-PINNs
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/2011.04520
http://arxiv.org/abs/2011.04520
http://arxiv.org/abs/2103.15341
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1912.12163
http://arxiv.org/abs/2102.04626
http://arxiv.org/abs/2202.07176

3804

Neural Computing and Applications (2023) 35:3789-3804

37.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Park B, Sun K, Dimitrovski A et al (2021) Examination of semi-
analytical solution methods in the coarse operator of parareal
algorithm for power system simulation. IEEE Trans Power Syst
36(6):5068-5080

. Qin T, Wu K, Xiu D (2019) Data driven governing equations

approximation using deep neural networks. J Comput Phys
395:620-635

Qin T, Chen Z, Jakeman JD et al (2021) Data-driven learning of
nonautonomous systems. SIAM J Sci Comput 43(3):A1607-
A1624

Raissi M, Perdikaris P, Karniadakis GE (2018) Multistep neural
networks for data-driven discovery of nonlinear dynamical sys-
tems. arXiv preprint arXiv:1801.01236

Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed
neural networks: a deep learning framework for solving forward
and inverse problems involving nonlinear partial differential
equations. J] Comput Phys 378:686-707

Roche M (1989) Implicit Runge—Kutta methods for differ-
ential algebraic equations. SIAM J Numer Anal
26(4):963-975

Roth J, Barajas-Solano DA, Stinis P et al (2021) A kinetic Monte
Carlo approach for simulating cascading transmission line failure.
SIAM J Multiscale Model Simul 19(1)

Rudin W et al (1976) Principles of mathematical analysis, vol 3.
McGraw-Hill, New York

Schaeffer H (2017) Learning partial differential equations via
data discovery and sparse optimization. Proc R Soc A Math Phys
Eng Sci 473(2197):20160446

Schainker R, Miller P, Dubbelday W et al (2006) Real-time
dynamic security assessment: fast simulation and modeling
applied to emergency outage security of the electric grid. IEEE
Power Energ Mag 4(2):51-58

Shu J, Xue W, Zheng W (2005) A parallel transient stability
simulation for power systems. IEEE Trans Power Syst
20(4):1709-1717

Stott B (1979) Power system dynamic response calculations. Proc
IEEE 67(2):219-241

Strogatz SH (2018) Nonlinear dynamics and chaos: with appli-
cations to physics, biology, chemistry, and engineering. CRC
Press, Boca Raton

@ Springer

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

Tomim MA, Marti JR, Wang L (2009) Parallel solution of large
power system networks using the multi-area thévenin equivalents
(mate) algorithm. Int J Electr Power Energy Syst 31(9):497-503
Varaiya P, Wu FF, Chen RL (1985) Direct methods for transient
stability analysis of power systems: Recent results. Proc IEEE
73(12):1703-1715

Wang S, Teng Y, Perdikaris P (2020) Understanding and miti-
gating gradient pathologies in physics-informed neural networks.
arXiv preprint arXiv:2001.04536

Wanner G, Hairer E (1996) Solving ordinary differential equa-
tions II, vol 375. Springer Berlin Heidelberg, New York
Yazdani A, Lu L, Raissi M et al (2020) Systems biology informed
deep learning for inferring parameters and hidden dynamics.
PLoS Comput Biol 16(11):e1007575

Zhao T, Yue M, Wang J (2022) Structure-informed graph
learning of networked dependencies for online prediction of
power system transient dynamics. IEEE Trans Power Syst
Zheng H, DeMarco CL (2010) A bi-stable branch model for
energy-based cascading failure analysis in power systems. In:
North American power symposium 2010. IEEE, pp 1-7

Zheng Y, Hu C, Lin G et al (2022) Glassoformer: a query-sparse
transformer for post-fault power grid voltage prediction. In:
ICASSP 2022-2022 IEEE international conference on acoustics,
speech and signal processing (ICASSP). IEEE, pp 3968-3972
Zhou H, Zhang S, Peng J et al (2020) Informer: beyond efficient
transformer for long sequence time-series forecasting. arXiv
preprint arXiv:2012.07436

Zhu L, Hill DJ, Lu C (2019) Hierarchical deep learning machine
for power system online transient stability prediction. IEEE Trans
Power Syst 35(3):2399-2411

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article
under a publishing agreement with the author(s) or other rightsh-
older(s); author self-archiving of the accepted manuscript version of
this article is solely governed by the terms of such publishing
agreement and applicable law.

http://arxiv.org/abs/1801.01236
http://arxiv.org/abs/2001.04536
http://arxiv.org/abs/2012.07436

	DAE-PINN: a physics-informed neural network model for simulating differential algebraic equations with application to power networks
	Abstract
	Introduction
	Previous works
	Parallel computing methods
	Energy function methods
	Deep learning methods
	Deep learning methods for solving differential equations
	Deep learning for power networks

	Our work

	Problem setup
	Assumptions
	Applications

	Proposed method: DAE-PINN
	Implicit Runge--Kutta scheme
	Discrete physics-informed neural networks
	Enforcing DAEs as approximate hard constraints
	Simulating DAEs for long-time horizons

	Numerical experiments
	Three-bus power network
	Neural networks, hyper-parameters, and learning protocols
	Convergence experiments
	Network architecture
	Network size
	Training dataset

	Results for the best DAE-PINN model
	Comparison with other numerical integration schemes
	DAE-PINN enabling backward Euler
	DAE-PINN enabling Gauss--Legendre IRK
	Comparison results

	Discussion
	On extending our framework to large-scale power networks
	On using more sophisticated Neural Network architectures
	On the inverse problem
	On the stochastic setting

	Conclusion
	Appendix A: The Van der Pol system
	A.1 Non-stiff Van Der Pol system
	A.2 Increasing stiffness
	A.3 Differential algebraic equations and infinite stiffness

	Author contributions
	Funding
	Code availability
	References

