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Abstract
Deep learning-based surrogate modeling is becoming a promising approach for learning and simulating dynamical systems.

However, deep-learning methods find it very challenging to learn stiff dynamics. In this paper, we develop DAE-PINN, the

first effective physics-informed deep-learning framework for learning and simulating the solution trajectories of nonlinear

differential-algebraic equations (DAE). DAEs are used to model complex engineering systems, e.g., power networks, and

present a ‘‘form’’ of infinite stiffness, which makes learning their solution trajectories challenging. Our DAE-PINN bases

its effectiveness on the synergy between implicit Runge–Kutta time-stepping schemes (designed specifically for solving

DAEs) and physics-informed neural networks (PINN) (deep neural networks that we train to satisfy the dynamics of the

underlying problem). Furthermore, our framework (i) enforces the neural network to satisfy the DAEs as (approximate)

hard constraints using a penalty-based method and (ii) enables simulating DAEs for long-time horizons. We showcase the

effectiveness and accuracy of DAE-PINN by learning the solution trajectories of a three-bus power network.

Keywords Deep learning � Data-driven scientific computing � Nonlinear differential-algebraic equations �
Implicit Runge–Kutta

1 Introduction

In recent years, we have seen the power network incor-

porate more and more transformative technologies, such as

integrating distributed energy resources, enabling a liber-

alized market, or adopting more complex communication

and control algorithms. Such transformation seeks to

enhance the reliability and efficiency of the power network

operation. However, this transformation pushes the power

network to operate under a more diversified set of operat-

ing conditions and contingencies that could compromise its

security.

To assess the power network’s dynamic secu-

rity [25, 46], utility operators implement an offline proce-

dure that seeks to predict whether the power network will

remain stable after facing a single contingency (e.g., the

trip of a generator) from a set of credible contingencies.

Such a procedure is known as N � 1 criteria [1] and

requires simulating the power network’s transient dynamic

response. Simulating the transient dynamic response

requires integrating a set of nonlinear differential-algebraic

equations (DAE) [25]. However, solving these DAEs is a

very challenging and expensive task. Indeed, the classical

explicit integration schemes (e.g., Euler’s method or RK-4)

may not be stable enough for such a task [19]. As a result,

most commercial solvers implement a partitioned approach

or implicit integration [33].

The partitioned approach solves the differential and

algebraic equations in sequence. However, freezing the

algebraic (resp. dynamic) variables to solve the dynamic

(resp. algebraic) variables introduces a delay error that

propagates throughout the simulation [48]. On the other

hand, the implicit integration method for DAEs simulta-

neously solves the dynamic and algebraic equations.
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Implicit integration does not introduce delay errors but uses

iterative methods (e.g., Newton’s method) and matrix

inversion [19]. As a result, the computational cost and

memory required to integrate DAEs are very high and

constitute the main obstacle for deploying dynamic secu-

rity assessment in real-time [46]. Faster simulation and

prediction alternatives for dynamic security assessment

have been proposed by many works, which we will review

next.

1.1 Previous works

1.1.1 Parallel computing methods

To enable dynamic security assessment in real-time, many

works have proposed simulating the transient dynamic

response by using distributed, parallel, and high-perfor-

mance computing [46], which can enhance the assess-

ment’s efficiency or simulate numerous contingency cases.

For instance, several works [47, 50] have employed par-

allel computing for power network spatial decomposition.

Other methods [2, 13] use parallelization across numerical

solvers with possibly different accuracy. Many

works [6, 15, 37] have investigated how to implement

parallel simulations across the time domain. In particular,

the parallel in-time approach [15, 37] has demonstrated

computational effectiveness when simulating detailed

power network models. While parallel computing methods

for simulating DAEs can enhance efficiency, they still

require vast computational resources.

1.1.2 Energy function methods

Direct or energy function-based meth-

ods [10, 11, 18, 36, 51] constitute an alternate approach to

the traditional offline dynamic security assessment. These

direct methods provide a dynamic security certification

without the expensive integration of the power network’s

post-disturbance dynamics described using DAEs. In par-

ticular, they infer transient stability using a mathematical

model of the power network’s dynamics and an energy

function (i.e., a Lyapunov-like function), which certifies

the convergence of the states to the stable operating point.

Modern versions of these direct methods [10] have been

successfully engineered to the point that they were imple-

mented at the utility level. However, the scalability and

conservativeness of the classical energy-function method

limit their applicability to even relatively large power

networks. Moreover, direct methods do not provide the

state trajectories that operators often require for planning.

1.1.3 Deep learning methods

Motivated by the power network’s dynamic security

assessment application, in this paper, we seek to derive a

deep learning (DL) framework that accelerates simulating

nonlinear DAEs. Enabled by the exponential growth of

computational power and data availability, DL has

achieved outstanding performance in computer vision and

natural language processing applications [26] and promises

to revolutionize the scientific and engineering fields.

However, the current application of DL to learn scientific

and engineering dynamical systems is, at most, limited

since the cost of collecting data is prohibitive. Moreover,

most conventional DL methods (e.g., convolutional or

recurrent neural networks) lack robustness and general-

ization capabilities in such a small data regime.

1.1.4 Deep learning methods for solving differential
equations

In recent years, the scientific machine learning [3, 22]

community has proposed several learning methods for

solving ordinary and partial differential equations (e.g.,

physics-informed neural networks [22, 41]). We roughly

classify these methods into (i) identifying the governing

differential equations via dictionary learning and (ii)

learning to approximate the solution of differential equa-

tions. In particular, let us focus our analysis on time-de-

pendent differential equations.

Several works [4, 5, 45] use dictionary learning and

enormous time-series datasets to learn the governing

equations of the underlying dynamical system. For

instance, in [4, 5], the authors used a dictionary of smooth

functions to learn the governing equations of non-stiff

autonomous and non-autonomous systems. Furthermore,

the authors of [45] employed sparse approximation

schemes and a dictionary of functions to recover the

ordinary/partial differential equations of unknown systems.

Compared to dictionary learning-based methods, the

method proposed in this paper (i) does not require time-

series data and (ii) focuses on approximating the dynamic

response of more complex systems described by DAEs.

On the other hand, there is growing interest in learning

to predict the future response of dynamical systems mod-

eled using differential equations. In recent years, the field

of scientific machine learning [3, 22] has provided us with

many transformative works (e.g., Physics-Informed Neural

Networks (PINN) [30, 31, 41, 54]) aimed at learning to

predict the future response of dynamical systems and,

hence, providing us with efficient alternatives to traditional

costly numerical solvers. Several of these works use the

idea of encoding the physical laws that govern these sys-

tems (i.e., the differential equations) as soft constraints
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during training. The information from the differential

equations acts as a regularizing agent, limiting the space of

possible solutions and enabling generalizing well even

when the amount of data inputs is small. Admittedly, much

work is still needed to scale physics-informed deep learn-

ing methods so they can become accurate surrogate models

for large-scale systems (e.g., power networks [55] or

vehicular networks [8]). For instance, one could potentially

leverage bilayered parallel training architectures for dis-

tributed computing environments [7] and develop accurate

large-scale surrogate models that can (i) predict solution

trajectories for a large set of initial conditions and (ii)

maintain good accuracy for long-time horizons.

Other methods adopt data-driven strategies [12, 38–40]

for predicting the future response of unknown systems. For

instance, in [12], the authors trained a transformer with

data from the early stages of the PDE’s solution to predict

the solution recursively at future stages. Qin et al. [38]

used a residual neural network (ResNet) to approximate a

mapping from the current state to the next, given the step

size. Then, one can predict solution trajectories for long-

term horizons via the rollout of the trained ResNet. Most of

the above data-driven strategies suffer from compounding

errors, require enormous datasets, or generalize poorly

outside the training distribution. The proposed method in

this paper will also use a recursive prediction strategy for

long-term horizons as in [38, 40]. However, compared to

these works, DAE-PINN does not require labeled data and

inherits the generalization capabilities and robustness from

discrete PINNs [22, 41].

Despite the success of scientific machine learning in

approximating the solution trajectories of ordinary differ-

ential equations [54], developing a DL-based framework

for simulating the solution trajectories of nonlinear differ-

ential-algebraic equations remains an open problem. This is

because DAEs present a ‘‘form’’ of infinite stiffness [23]

represented through the algebraic equations. As a result,

training deep neural networks to approximate DAEs may

produce gradient pathologies [52] and ill-conditioned

optimization problems, leading to the failure of the

stochastic gradient descent-based training. The first

attempts to derive DL frameworks for learning the dynamic

response of stiff differential equations were presented

in [21] and [23]. In [21], the authors demonstrated that the

continuous version of the PINN model fails to learn stiff

differential equations and proposed using quasi-steady-

state assumptions to derive a simpler model, more suit-

able for PINN-based training. In [23], Kim et al. modified

neural ordinary differential equations [9] so that they could

learn the solution trajectories of stiff problems for long-

time horizons. These methods for learning stiff ODEs have

their merits. However, as presented, they are not

suitable for learning the solution trajectories of the DAEs

studied in this paper.

1.1.5 Deep learning for power networks

Many works have proposed to address the power network’s

dynamic security assessment problem using machine and

deep learning strategies. The main idea of most of these

works [14, 17, 20, 59] is to learn from data a binary indi-

cator that maps the initial post-disturbance conditions of

the power network to a certificate for transient stability. For

example, in [20], the authors designed a convolutional

neural network that observes PMU measurements from

disturbances and outputs a transient stability certificate.

Similarly, the authors of [59] developed a convolutional

neural network that maps the PMU measurements from

disturbances to a transient stability certificate and an esti-

mate of the stability margin.

The above machine/deep learning tools for dynamic

security assessment are fast. However, the information they

present may be insufficient for operators and planners. For

instance, operators often require trajectory information

after the disturbance to predict voltage and frequency

violations that may trigger load shedding. To predict whole

post-disturbance trajectories, the authors of this paper have

developed several deep learning-based alterna-

tives [28, 35, 57]. For instance, in [28], we developed a

deep learning framework that employs the long-term

memory network (LSTM) to predict the transient dynamic

response of a generator. However, this work requires vast

amounts of supervision and training data. To alleviate such

requirements, we formulated in [35] the post-disturbance

transient trajectory prediction problem as an infinite-di-

mensional operator regression problem. The results illus-

trated that a deep operator network (DeepONet) effectively

learns solution trajectories from small datasets obtained by

simulating DAEs. However, we cannot guarantee that the

proposed methods can predict the solution trajectories of

power networks for a given distribution feasible operating

conditions.

1.2 Our work

In this paper, we develop DAE-PINN, the first deep

learning-based framework for learning and simulating the

solution trajectories of semi-explicit differential-algebraic

equations (DAE) of index-1. In particular, our objectives in

this paper are:

1. Forward problem: deriving a framework that learns to

map a given distribution of initial conditions to the

solution trajectories (within a short-time interval) of a

dynamical system described by DAEs.
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2. Long-time simulation of DAEs: designing an algorithm

that uses the trained framework to simulate DAEs over

long-time horizons.

Compared to more traditional methods to simulate the

dynamic response of power networks [33], we train our

DAE-PINN to solve the differential and algebraic equa-

tions simultaneously. As a result, the proposed DAE-PINN

framework does not (i) introduce delay error or (ii) require

matrix inversion during simulation.

We detail our contributions next.

1. We design a deep learning (DL) framework (DAE-

PINN—Sects. 3.1 and 3.2) that tackles the forward

problem by enabling the synergistic combination of a

discrete physics-informed neural network model with

an implicit Runge–Kutta scheme designed specifically

for solving DAEs. Thus, it effectively extends the

method proposed in [41] to DAEs.

2. A penalty-based method is then introduced (Sect. 3.3)

to facilitate the training of DAE-PINN. The penalty

method aims to enforce DAE-PINN to satisfy the

DAEs as (approximate) hard constraints.

3. For the long-time simulation of DAEs, we propose an

algorithm (Sect. 3.4) that iteratively evaluates the

trained DAE-PINN. Following a Markov-like proce-

dure, the proposed algorithm uses the DAE-PINN

prediction of the previous evaluation step as the initial

condition for the next step.

4. We illustrate the training protocols for DAE-PINN and

evaluate its effectiveness (Sect. 4) using a three-bus

power network example described by a set of stiff and

nonlinear DAEs.

We organize this work as follows. In Sect. 2, we introduce

the differential algebraic equations (DAE) studied in this

paper. In Sect. 3, after describing the implicit Runge–

Kutta (IRK) time-stepping scheme, we describe DAE-

PINN, i.e., the discrete physics-informed neural network

that allows us to use the IRK scheme (with an arbitrary

number of stages) for solving DAEs. We then describe the

penalty method that enforces DAE-PINN to satisfy the

DAEs as approximate hard constraints. We conclude

Sect. 3 by introducing Algorithm 2 that enables us to use

the trained DAE-PINN for simulating DAEs over long-

time horizons. In Sect. 4, we verify the effectiveness of the

proposed framework using a three-bus power network

example. We provide a discussion of our results and future

work in Sect. 5 and conclude the paper in Sect. 6.

2 Problem setup

In this paper, we develop DAE-PINN, a deep learning-

based framework that employs physics-informed neural

networks [41] and implicit Runge–Kutta schemes [19] for

learning the solution trajectories of nonlinear Differential-

Algebraic equations (DAE) [53] given in the semi-explicit

form

_y ¼ f ðy; zÞ; yðt0Þ ¼ y0 ð1aÞ

0 ¼ gðy; zÞ; zðt0Þ ¼ z0; ð1bÞ

where y ¼ yðtÞ 2 Rny are the dynamic states, z ¼ zðtÞ 2
Rnz are the algebraic variables, f : Rny � Rnz ! Rny

describes the differential equations, g : Rny � Rnz ! Rnz

the algebraic equations, t 2 ½t0; T� the simulation time

interval, and T [ t0 the time horizon.

2.1 Assumptions

Let us assume that f and g are sufficiently often differen-

tiable and the initial conditions satisfy gðy0; z0Þ ¼ 0. We

also assume that the DAEs (1) are of index 1 [42], which

means the inverse of the Jacobian gz ¼ og=oz exists and is

bounded in a neighborhood of the exact solution. This

implies that, by the implicit function theorem [44], the

algebraic equations (1b) have locally a unique solution

z ¼ GðyÞ. Hence, the DAE (1) is equivalent to the fol-

lowing system of ordinary differential equations

_y ¼ f ðy;GðyÞÞ; ð2Þ

with initial conditions ðyðt0Þ; zðt0ÞÞ ¼ ðy0;Gðy0ÞÞ. Notice
that the examples studied in Ji et al. [21] (Stiff-PINNs)

correspond to a special case in our problem setup where the

algebraic variables z can be solved explicitly to obtain (2).

2.2 Applications

DAEs frequently arise in dynamic simulations of power

networks [25], mechanical problems, or trajectory control.

DAEs also originate from singular perturbation prob-

lems (SPP) of the form

_y ¼ f ðy; zÞ ð3aÞ

� _z ¼ gðy; zÞ; ð3bÞ

by letting the parameter �[ 0 approach zero. SPPs have

been used to study (i) nonlinear oscillations with large

parameters, (ii) structure-preserving power networks with

frequency-dependent dynamic loads, and (iii) chemical

kinetics with slow and fast reactions.
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We conclude this section with the following remark.

The DAE-PINN that we will develop in Sect. 3 could also

be used for solving problems described in descriptor form

M _x ¼ uðxÞ; xðt0Þ ¼ x0; ð4Þ

where x 2 Rnyþnz and M is a singular matrix. To that end,

we show next that (4) is mathematically equivalent to the

DAE (1). First, we decompose M (e.g., via Gaussian

elimination with total pivoting) as

M ¼ S
I 0

0 0

� �
T

where S and T are invertible matrices and I is the identity

matrix with a dimension corresponding to the rank of M.

Then, we insert the above into (4) and use Tx ¼ y>; z>ð Þ>

to obtain

_y

0

� �
¼ S�1u T�1

y

z

� �� �
¼:

f ðy; zÞ
gðy; zÞ

� �
;

i.e., the semi-explicit DAE (1). Thus, the deep learning

framework that we will derive in Sect. 3 for (1) also

applies for problems in descriptor form (4), provided we

can decompose the matrix M.

3 Proposed method: DAE-PINN

This section describes our DAE-PINN framework, i.e., a

physics-informed neural network framework that allows

solving the DAE (1) using the implicit Runge–Kutta (IRK)

time-stepping scheme with m 2 Zþ stages. We selected

IRK due to its stability guarantees for stiff problems [19].

However, we would like to remark that one can design

DAE-PINN using any stable scheme that can simultane-

ously solve differential and algebraic equations.

3.1 Implicit Runge–Kutta scheme

Let us start by assuming that the integration of (1) has been

carried out up to ðtn; yn; znÞ and we seek to advance it

to ðtnþ1; ynþ1; znþ1Þ, where tnþ1 ¼ tn þ h and h[ 0 is the

time step [19]. We apply the implicit Runge–Kutta

scheme with m stages [19, 42] to our system of DAEs (1)

and obtain

nj ¼ yn þ h
Xm
i¼1

aj;if ðni; fiÞ; j ¼ 1; . . .; m ð5aÞ

0 ¼ gðnj; fjÞ; j ¼ 1; . . .; m ð5bÞ

ynþ1 ¼ yn þ h
Xm
j¼1

bjf ðnj; fjÞ ð5cÞ

0 ¼ gðynþ1; znþ1Þ: ð5dÞ

Here nj ¼ yðtn þ cjhÞ, fj ¼ zðtn þ cjhÞ, and faj;i; bj; cig are

the known parameters of the IRK scheme. Following [19]

and to let the scheme be of nontrivial order, we impose the

following convention for the parameters

Xm
i¼1

aj;i ¼ cj:

3.2 Discrete physics-informed neural networks

In classical numerical analysis [19], implicit formulations

of Runge–Kutta schemes are usually constrained due to the

computational cost of solving (5). Moreover, these con-

straints become more severe if we increase the number of

IRK stages. To overcome these constraints, our DAE-PINN

framework employs a discrete physics-informed neural

network (PINN) model [41] to enable the implicit Runge–

Kutta scheme (5) with an arbitrary number of stages m.
In the discrete PINN model, the first step is to construct

multi-output neural networks with parameters h (see

Fig. 1a and 1b) as a surrogate for the solution of the IRK

scheme (5), which takes the input yn and outputs

½nh1; . . .; n
h
m ; y

h
nþ1� ð6aÞ

½fh1; . . .; fhm ; zhnþ1�: ð6bÞ

Remark 1 Architecture: In this paper, we mainly adopt the

unstacked architecture depicted in Fig. 1b, which assigns

one neural network for the dynamic state variables y 2 Rny

and another neural network for the algebraic vari-

ables z 2 Rnz . We remark, however, that one can also adopt

a stacked architecture, which assigns a single neural net-

work for each of the dynamic variables yi 2 R and each of

the algebraic variables zi 2 R. Empirically, we have

observed that the unstacked architecture provides improved

training results.

Remark 2 Complexity: As described in [41], PINN

enables us to employ implicit Runge–Kutta schemes with a

large number of stages at very little extra cost. More

specifically, only the number of neurons of the last layer of

the neural networks grows linearly with the total number of

stages, i.e., with cost �OðmÞ.

In the second step for the discrete PINN model, we

restrict the neural networks to satisfy the differential and

algebraic equations described by the IRK scheme (5). In

practice, we restrict the neural networks on some set of

randomly distributed initial conditions scattered/sampled
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throughout the domain [30], i.e., the set of training data

T :¼ fyn;1; yn;2; . . .; yn;NT
g of size NT

1. To measure the

discrepancy between the neural networks and the IRK

scheme (5), we use the following loss function:

Lðh; T Þ ¼ wfLf ðh; T Þ þ wgLgðh; T Þ: ð7Þ

In the above, wg and wf are the weights,

Lf ðh; T Þ ¼ 1

NT ðmþ 1Þ
XNT

k¼1

Xmþ1

j¼1

kyn;k � yjn;kðhÞk
2
2;

where

yjn;kðhÞ :¼ nhj;k � h
Xm
i¼1

aj;if ðnhi;k; f
h
i;kÞ; j ¼ 1; . . .; m

ymþ1
n;k ðhÞ :¼ yhnþ1;k � h

Xm
j¼1

bjf ðnhj;k; f
h
j;kÞ;

and

Lgðh; T Þ ¼ 1

NT ðmþ 1Þ
XNT

k¼1

Xm
j¼1

kgðnhj;k; f
h
j;kÞk

2
2 þ kgðyhnþ1;k; z

h
nþ1;kÞk

2
2

 !
:

In the last step for the discrete PINN model, we train the

neural network parameters by minimizing the loss function

using gradient-based optimizers, e.g., the Adam

optimizer [24]:

h� ¼ argmin
h

Lðh; T Þ: ð8Þ

We use the weight coefficients wf and wg in (7) to balance

the residual loss terms for the dynamic variables Lf and the

algebraic variables Lg. In this paper, we use a penalty-

based method [31] to update the value of the weight

coefficients wf and wg.

3.3 Enforcing DAEs as approximate hard
constraints

In the DAE problem (1), the solution trajectories must

always satisfy the dynamic equations (1a) and lie in the

manifold described by the algebraic equations (1b), i.e.,

fðy; zÞ : gðy; zÞ ¼ 0g;

which, for power networks, represents satisfying the power

flow equations [25]. However, it may be difficult to satisfy

the dynamic and algebraic equations exactly by using the

soft constraints approach for the loss function (7). This can

be seen as follows. Suppose the weight coefficients wf and

wg are selected too large, which severely penalizes the

violation of the DAEs. In that case, the optimization

problem may become ill-conditioned; hence, it may be

difficult to converge to a minimum. On the other hand, if

the values selected for wf and wg are too small, the solution

will not satisfy the dynamic equations or will not lie in the

manifold described by the algebraic equations.

To impose the DAEs as approximate hard constraints,

we implement the penalty-based method introduced in [31]

and summarized in Algorithm 1. The main idea behind this

method is to replace the optimization problem with

equality constraints (i.e., the differential and algebraic

equations) with a sequence of unconstrained problems with

varying penalty coefficients wk
f and wk

f . More specifically,

during the kth ‘‘outer’’ iteration, we solve the following

unconstrained optimization problem

min
h

Lðh; T Þ ¼ wk
fLf þ wk

gLg;

where wk
f and wk

g are the penalty coefficients for the kth

iteration. Furthermore, at the beginning of each iteration,

we increase the penalty coefficients by a constant factor

b[ 1:

wkþ1
g ¼ bwk

g ¼ ðbÞkw0
g;

wkþ1
f ¼ bwk

f ¼ ðbÞkw0
f :

(a) (b)

Fig. 1 a The multi-output fully

connected neural

network (FNN) for the dynamic

states y. b Unstacked

architecture—DAE-PINN

framework for solving the

DAEs (1) using IRK (5)

1 Observe that our proposed framework does not require supervision,

i.e., it does not require to know target values of the solution trajectory.
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As k ! 1, and given that the neural networks are well

trained, the solution of the sequence of unconstrained

optimization problems will converge to the solution that

satisfies the DAEs approximately as hard con-

straints [31, 32]. In practice, however, if we fail to care-

fully select the hyper-parameters w0
f , w0

g, and b, the

optimization problem may become ill-conditioned or

experience slow convergence.

3.4 Simulating DAEs for long-time horizons

Until now, we have described how the DAE-PINN

framework enables integrating DAEs (1) from ðtn; yn; znÞ to
ðtn þ h; ynþ1; znþ1Þ. Such a framework can use a large

number m of stages to take a large time step h. However,

when simulating stiff and nonlinear DAEs (e.g., the power

network dynamics) for long-time horizons, it may be

necessary to take multiple time steps. Thus, this subsection

briefly describes how we can use our trained DAE-PINN

framework to simulate DAEs for long-time horizons. We

provide a detailed description of the proposed iterative

strategy in Algorithm 2 and an illustrative example in

Fig. 2. The main idea behind our strategy is to update

recurrently (in a Markov-like fashion) the input to DAE-

PINN yn using the predicted dynamic states yh
�

nþ1 from the

previous evaluation step.

Algorithm 1 Training using the penalty method [31]
Require: initial penalty coefficients w0

f and w0
g , factor β, and number of

iterations K.
1: k ←− 0
2: θ0 ←− argminθ L0(θ; T ): train the neural network (7) from random

initialization, until the training loss has converged, i.e., L0(θ; T ) ≤ 1e-5.
3: while k ≤ K do
4: k ←− k + 1
5: wk

g ←− βwk−1
g

6: wk
f ←− βwk−1

f

7: θk ←− argminθ Lk(θ; T ): train the networks (7) from the initialization
θk−1, until the training loss has converged, i.e., Lk(θ; T ) ≤ 1e-5.

8: end while

Fig. 2 Illustration of how to use the proposed trained DAE-PINN (NNh� ) to simulate index-1 DAEs (1) for long-time horizons (i.e., for N time

steps of size h)
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Thus, Algorithm 2 enables us to simulate the solution

trajectories of DAEs (1), y(t) and z(t), within the time

interval t 2 ½0; h � N�, using a single trained DAE-PINN

with time step h. We remark that one can easily extend

Algorithm 2 to work with multiple trained discrete PINNs

with possibly different time steps h. Such a strategy can be

applied, for example, to problems with multiple time scales

(e.g., transients and steady-state).

4 Numerical experiments

This section contains a systematic study on a three-bus power

(Fig. 3) network that aims to demonstrate the performance of

our DAE-PINN framework. We also refer the interested

reader to Appendix A for an illustrative example that uses

the Van der Pol system [16, 49] to demonstrate how a

dynamical system transitions from being non-stiff to stiff

and, finally, to a system of differential-algebraic equations.

4.1 Three-bus power network

We consider the following three-bus system (a slack bus, a

generator bus, and a load bus), which has been used for

energy function analysis [56], cascading failure predic-

tion [43], and reduced-order modeling [27]. The three-bus

system is depicted in Fig. 3 and described by the following

set of nonlinear DAEs [56]

_x1 ¼ ð1=M1Þð�Dx1 þ f1 þ f2Þ ð9aÞ

_x2 ¼ ð1=M2Þð�Dx2 � f1Þ ð9bÞ
_d2 ¼ x2 � x1 ð9cÞ

_d3 ¼ �ðx1 � f2=DlÞ ð9dÞ

0 ¼ �ð1=V3Þðg1Þ; ð9eÞ

where y ¼ ðx1;x2; d2; d3Þ> are the dynamic states, z ¼ V3

the only unknown algebraic state, and

f1 ¼ B12V1V2 sinðd2Þ þ B23V2V3 sinðd2 � d3Þ þ Pg;

f2 ¼ B13V1V3 sinðd3Þ þ B23V2V3 sinðd3 � d2Þ þ Pl;

g1 ¼ ðB13 þ B23ÞV2
3 � B13V1V3 cosðd3Þ

� B23V2V3 cosðd3 � d2Þ þ Ql:

We fix the parameters of the power network to the fol-

lowing values M1 ¼ 0:52, M2 ¼ 0:0531, D ¼ 0:05,

Fig. 3 Three-bus two-generator power network [56]

Algorithm 2 Simulating DAEs for long-time horizons
Require: The number of time steps N , and the DAE-PINN with trained

parameters θ∗ and time step h.
1: Let the initial condition of (1a), y0, be the input to the DAE-PINN, i.e.,

yn = y0.
2: for k = 1,. . . ,N do
3: compute the forward pass using the proposed framework, i.e.,

yn �→ [ξθ∗
1 , . . . , ξθ∗

ν , yθ∗
n+1] =: Y θ∗

k

yn �→ [ζθ∗
1 , . . . , ζθ∗

ν , zθ∗
n+1] =: Zθ∗

k

4: update the input using the predicted value yθ∗
n+1, i.e.,

yn ←− yθ∗
n+1

5: end for
6: The Algorithm computes the solution trajectory in the time interval [0, h ·

N ]. Such a solution trajectory is obtained by concatenating the outputs
from all forward passes, i.e., {Y θ∗

k }N
k=1 and {Zθ∗

k }N
k=1
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Dl ¼ 0:005, V1 ¼ 1:02, V2 ¼ 1:05, B12;B13;B23 ¼ 10,

Pg ¼ �2:0, Pl ¼ 3:0, and Ql ¼ 0:1.

4.2 Neural networks, hyper-parameters,
and learning protocols

We implemented DAE-PINN using PyTorch and published

all the codes on GitHub. All the experiments presented in

this section were trained by minimizing the loss func-

tion Lðh T Þ (7) using the Adam [24] optimizer with

default hyper-parameters and initial learning rate g ¼ 10�3.

We reduced the learning rate whenever the value of the loss

function L reached a plateau or started to increase. The

training and test datasets consist of initial conditions

sampled uniformly at random and as follows:

x1ð0Þ;x2ð0Þ�Uð�p; pÞ and d2ð0Þ; d3ð0Þ�Uð�0:1; 0:1Þ.
The neural network that approximates the mapping

yn 7!ðn1; . . .; nm; ynþ1Þ (i.e., dynamic equations) and the

neural network that approximates the mapping

yn 7!ðf1; . . .; fm; znþ1Þ (i.e., algebraic equations) were

implemented using the improved fully-connected archi-

tecture proposed in [52], which has the following forward

pass:

U ¼ /ðXW1 þ b1Þ;V ¼ /ðXW2 þ b2Þ
Hð1Þ ¼ /ðXWz;1 þ bz;1Þ
ZðkÞ ¼ /ðHðkÞWz;k þ bz;kÞ; k ¼ 1; . . .; d

Hðkþ1Þ ¼ ð1� ZðkÞÞ � U þ ZðkÞ � V ; k ¼ 1; . . .; d

fhðxÞ ¼ Hðdþ1ÞW þ b;

Here, X is the input tensor to the neural network, d is the

number of hidden layers (i.e., the network’s depth), � is

the Hadamard or element-wise product, and /, in this

paper, is a point-wise sinusoidal activation function. We

also assume that each hidden layer has a width w. The

trainable parameters of this novel network architecture,

which we initialize using the Glorot normal algorithm, are

collected in the following set:

h ¼ fW1; b1;W2; b2; fWz;l; bz;lgdl¼1;W ; bg:

Our experiments show that this novel architecture outper-

forms the conventional fully connected architecture. This is

because it explicitly accounts for the multiplicative inter-

actions between different inputs and enhances hidden-state

representation with residual connections [52]. Let us con-

clude this subsection with the following remark.

Remark 3 Output feature layer for the algebraic equation.

The term ð1=V3Þ in (9e) may lead to the loss for the

algebraic variables Lg being a few orders of magnitude

larger than the loss for the dynamic variables Lf . We have

observed empirically that such an imbalance compromises

gradient descent optimization. To mitigate such an issue,

we added the following output feature layer for the neural

network associated with the algebraic equations:

ðf1; . . .; fm; znþ1Þ7!softplusðf1; . . .; fm; znþ1Þ:

Note that the above feature layer constraints the bus volt-

age to be nonnegative, i.e., V3 [ 0.

4.3 Convergence experiments

In this subsection, we investigate how the network archi-

tecture, the network size, and the training dataset affect the

training convergence of DAE-PINN. To this end, we train

DAE-PINN with a time step h ¼ 0:1 for 50,000 epochs.

4.3.1 Network architecture

Our first convergence experiment evaluates which archi-

tecture, stacked or unstacked, provides better convergence

results for the training of DAE-PINN. The stacked archi-

tecture uses a neural network (width w ¼ 25 and depth

d ¼ 4 layers) for each dynamic and algebraic state. On the

other hand, the unstacked architecture uses one neural

network (width w ¼ 100 and depth d ¼ 4 layers) for all the

dynamic states and another neural network (width w ¼ 25

and depth d ¼ 4 layers) for the algebraic state. Figure 4a

shows the results of running this experiment 10 times. We

observe that the unstacked architecture provides us with the

best training performance.

4.3.2 Network size

This experiment evaluates the effect of the size of the

networks during training. More specifically, we use an

unstacked architecture (to eliminate the network architec-

ture effect) to verify the training convergence while vary-

ing the width and depth of the neural networks. Figure 4b

illustrates the results when we vary the width (depth fixed

to d ¼ 2 layers). We note that increasing the width from 10

to 200 decreases the train and test errors, but the errors

increase instead when we further increase the width. On the

other hand, Fig. 4c shows the results when we vary the

depth (width fixed to w ¼ 100). We observe that the train

and test errors reach a minimum when we set the depth to

d ¼ 4 or d ¼ 8 hidden layers.

4.3.3 Training dataset

Our last experiment investigates how the size of the

training dataset, i.e., the number of training examples

NT 	 jT j, affects the training convergence of DAE-PINN.

To eliminate the effect of the architecture and size of the

neural networks, we choose unstacked architectures with a
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depth of d ¼ 4 for the neural networks of the dynamic and

algebraic states. Further, we select a width of w ¼ 100

(resp. w ¼ 40) for the neural network of the dynamic (resp.

algebraic) states. The results illustrate that (see Fig. 4d)

including more training examples (initial conditions), in

general, leads to smaller train and test errors. We conclude

this section by describing the characteristics of our best

DAE-PINN model. This best model trains with NT ¼ 2000

initial condition points sampled from the state-space,

evaluates the performance of DAE-PINN every 1000

epochs using a test dataset with 1500 initial conditions not

included in the training dataset and uses unstacked neural

network architectures with d ¼ 4 hidden layers. Moreover,

for this best DAE-PINN model, the neural network repre-

senting the dynamic (resp. algebraic) states has a width of

w ¼ 100 (resp. w ¼ 40).

4.4 Results for the best DAE-PINN model

In this subsection, we verify the effectiveness of DAE-

PINN in performing a long-time simulation of DAEs using

Algorithm 2. To this end, we train the best DAE-PINN

model with time-step h ¼ 0:1 using the penalty-method

described in Algorithm 1 with hyper-parameters w0
f ¼

w0
g ¼ 1 and b ¼ 2.

Figure 5 presents a simulated DAE trajectory for N ¼
80 time steps, corresponding to a representative initial

condition selected uniformly at random from the test

dataset. We note excellent agreement between the simu-

lated trajectory and the true trajectory (obtained by inte-

grating (9) using conventional numerical methods [53]).

To better understand the long-time simulation accuracy of

the DAE-PINN framework, we sample 100 initial condi-

tions from the test dataset and compute the mean and

standard deviation of each state variable’s L2 relative error.

Table 1 reports the L2 relative errors of each state variable.

From the reported results, we conclude that DAE-PINN

can simulate DAEs for long-time horizons with excellent

accuracy.

4.5 Comparison with other numerical
integration schemes

In this subsection, we design a brief comparison study to

illustrate that having more IRK stages m enhances the

robustness against error accumulation. Let us remark first

that using Algorithm 2 to simulate DAEs for long-time

horizons may accumulate errors, jeopardizing accuracy.

Thus, our goal in this section is to compare the prediction

accuracy of the proposed best DAE-PINN model (enabling

the IRK scheme with m ¼ 100 stages) with two other DAE-

Stacked Unstacked
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Fig. 4 Convergence

experiments. a stacked versus

unstacked architectures.

b Network width. c Network

depth. d Number of training

examples
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PINN models. The first model is a DAE-PINN that encodes

the classical backward Euler integration method [19] into

its loss function. The second model is a DAE-PINN that

enables the Gauss–Legendre IRK with m ¼ 3 stages, which

is probably the largest IRK numerical scheme that is con-

sistent, stable, and with reasonable implementation

costs [19].

4.5.1 DAE-PINN enabling backward Euler

We built a DAE-PINN that encodes the backward Euler

integration method into its loss function. To this end, we

used the same neural network architecture and input/hidden

layers’ structure as for the best DAE-PINN model (see

Sects. 4.3 and 4.4). Note that the output layers for this

DAE-PINN are ðyhnþ1; z
h
nþ1Þ. We trained this DAE-PINN

using the learning protocols described in Sect. 4.2 and the

following loss function that enables the backward

Euler [19] method:

Lðh; T Þ ¼ wfLf ðh; T Þ þ wgLgðh; T Þ:

In the above, wf and wg are the weights,

Lf ðh; T Þ ¼ 1

NT

XNT

k¼1

kyk;k � yn;kðhÞk22;

where

yn;kðhÞ :¼ yhnþ1;k � hf ðyhnþ1;k; z
h
nþ1;kÞ;

and

Lgðh; T Þ ¼ 1

NT

XNT

k¼1

kgðyhnþ1;k; z
h
nþ1;kÞk

2
2:

4.5.2 DAE-PINN enabling Gauss–Legendre IRK

We built and trained a DAE-PINN for enabling the Gauss–

Legendre IRK [19], i.e., an IRK with only m ¼ 3 stages.

Note that the only differences between this DAE-PINN and

the best DAE-PINN model of Sect. 4.4 are the (i) structure

of the output layers, which depends on the number of

stages m ¼ 3 and (ii) known parameters faj;i; bj; cig. We

refer the interested reader to [19] for the exact values of the

aforementioned parameters.

4.5.3 Comparison results

We used the three trained DAE-PINN models to simulate

(see Algorithm 2) the power network DAEs. In particular,

we simulated the solution trajectories for N ¼ 80 time

steps (with time-step h ¼ 0:1) and starting from an initial

condition yð0Þ 2 fy : x1;x2 2 ½�p; p� and d1; d2 2
½�0:1; 0:1�g that does not belong to the training dataset.

Figure 6 illustrates the predicted solution trajectories

from the three DAE-PINNs. As described in the previous

section, the best DAE-PINN model (with IRK of m ¼ 100

stages) generalizes well and effectively simulates the

solution trajectories, i.e., without accumulating errors. For

the dynamic variables y, the backward Euler DAE-PINN

fails to track the oscillatory response of y. At the same

time, the Gauss–Legendre DAE-PINN follows the oscil-

lations except for the angle state d3. On the other hand, for

the algebraic variable z ¼ V3, the backward Euler DAE-

PINN tracks the instantaneous response. The Gauss–

Legendre DAE-PINN, however, accumulates errors

significantly.

We also illustrate (see Fig. 7) the L2 relative error as a

function of N, i.e., the number of time steps, for the slack

machine speed x1 and the load bus angle d3. In both cases,

the best DAE-PINN model is robust and does not accu-

mulate errors. The backward Euler DAE-PINN always

suffers from error accumulation, and the Gauss–Legendre

DAE-PINN accumulates errors significantly for the load

bus angle d3. In conclusion, a DAE-PINN that enables IRK
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ω
2(t

)

0.0

0.1

δ 2
(t
)

−0.1
0.0
0.1

δ 3
(t
) True

Predicted

0 2 4 6 8
time (sec)

0.8
1.0
1.2

V 3
(t
)

Fig. 5 Predicted and true solution trajectories of the DAEs describing

the three-bus power network dynamics (9) within the simulation time

interval ½0;N � h� ¼ ½0; 8� seconds for a initial condition sampled from

the test dataset

Table 1 Mean and standard deviation of the L2 relative error of the

long-time simulation of 100 initial conditions sampled from the test

dataset

x1 x2 d2 d3 V3

Mean 0.0382 0.0381 0.0093 0.0011 0.0002

St. dev. 1.01e-2 1.07e-2 2.44 e-3 2.96e-4 2.98e-07
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methods with a large number of stages m provides robust-

ness when integrating DAEs using Algorithm 2. This is

because having a large number of stages controls the errors

propagated to the next integration/simulation step.

5 Discussion

5.1 On extending our framework to large-scale
power networks

Developing deep learning methods for simulating large-

scale scientific and engineering systems remains an open

problem. Thus, the straightforward application of DAE-

PINN for simulating large-scale power networks is not

feasible. We, however, believe that, similar to the author’s

previous work [28], our proposed framework can be used

in a plug-and-play fashion and replace the numerical

solvers for the DAEs describing the individual components

of the network (e.g., generators). To showcase such plug-

and-play ability, in our future work, we plan to construct a

surrogate model that can predict the response of a medium-

size power network whose components are pre-trained

using our framework. To this end, our method must gen-

eralize to unseen events and even predict unstable behav-

iors. The fully connected neural networks used in this paper

may not be powerful enough for such a challenge. Thus, it

is also part of our future work to enhance our method using

more sophisticated architectures, which we briefly describe

next.

5.2 On using more sophisticated Neural Network
architectures

In this paper, to simulate DAEs over a long-time horizon,

we employed a modified version of the conventional fully

connected neural network architecture. However, we real-

ize that other architectures may increase our ability to

simulate long-time dependencies [58]. Thus, in our future

work, we plan to implement DAE-PINN using neural

networks that can generalize well to unseen events. In

particular, we plan to employ the state-of-the-art deep

operator neural network (DeepONet) [29], a neural net-

work that approximates nonlinear operators (a mapping

from functions to functions), which has shown great

potential to reduce the generalization error significantly.

We can apply DeepONets to our framework by noting that

integration is an operation of the form: Th : xð�Þ7!xð� þ hÞ
where the time-step h is a parameter.

5.3 On the inverse problem

We remark that extending the proposed framework to learn

unknown but identifiable parameters of DAEs is straight-

forward (see [41] for more details). Furthermore, in [34],

the authors already used a physics-informed continuous

deep learning model to learn unknown power network

parameters. It is, however, unclear whether the authors’

framework learns the stiff nonlinear DAEs or a non-stiff

ODE-based approximation of the power network dynam-

ics. As reported in [21] (and also our experience with

physics-informed continuous models), the learning process

of stiff ODEs and DAEs using physics-informed continu-

ous models is extremely unstable. Thus, it requires a

problem-dependent solution to avoid the failure of gradi-

ent-based training.

5.4 On the stochastic setting

With the increasing penetration of renewable resources, the

operating conditions for power networks are becoming
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more uncertain. Thus, developing an online dynamic

security assessment tool that considers such a stochastic

environment is necessary. To this end, in our future work,

we will develop a deep learning framework that learns and

simulates the stochastic differential-algebraic equations

describing power network dynamics for a given distribu-

tion of initial conditions and a set of uncertain parameters.

6 Conclusion

We developed DAE-PINN, a deep learning framework for

learning and simulating the set differential-algebraic

equations (DAE) that describes power networks. DAE-

PINN consists of a discrete physics-informed neural net-

work model that enables employing arbitrarily accurate

implicit Runge–Kutta schemes with a large number of

stages. Moreover, we implemented a penalty-based that

enforces DAE-PINN to satisfy the DAEs as approximate

hard constraints. We then proposed Algorithm 2, which

uses the trained DAE-PINN to simulate DAEs over long-

time horizons. Finally, we demonstrated the effectiveness

of our proposed framework using a three-bus power

network.

Appendix A: The Van der Pol system

In this appendix, we consider the classical Van der

Pol (VDP) system [16, 49]:

€xþ lðx2 � 1Þ þ x ¼ 0;

where ðx; _xÞ is the state vector and l is the system’s

parameter. To facilitate our analysis, let us transform the

VDP system as follows. Consider the following identity:

€xþ l _xðx2 � 1Þ ¼ d

dt
_xþ l

1

3
x3 � x

� �� �
:

If we let uðxÞ :¼ 1
3
x3 � x and z ¼ _xþ luðxÞ, the above

identity and the VDP system imply

_z ¼ €xþ l _xðx2 � 1Þ ¼ �x:

If we also let y :¼ z
l, then we can write the VDP system as

follows:

_x ¼ l½y� uðxÞ� ðA1Þ

_y ¼ � x

l
: ðA2Þ

Now suppose the initial condition ðx0; y0Þ is not too close to
the line described by the function y ¼ uðxÞ, i.e., assume

y� uðxÞ�Oð1Þ. Then Eq. (A1) implies that j _xj �OðlÞ
and Eq. (A2) implies that j _yj �Oðl�1Þ.

A.1 Non-stiff Van Der Pol system

It is well known [49] that whenever l ¼ 1, the Van Der Pol

system is non-stiff, i.e., j _xj; j _yj �Oð1Þ, the time-scales are

similar. Figure 8 presents the non-stiff solution trajectories

for the VDP system with initial condition ðx0; y0Þ ¼ ð2; 0Þ.
Figure 8 also presents the predicted trajectory using a

modified version of DAE-PINN. Note that this version of

DAE-PINN is trained to satisfy Eqs. (5a) and (5c) for the

VDP system. The results illustrate that the proposed DAE-

PINN can easily simulate the dynamic response of the non-

stiff VDP system.

A.2 Increasing stiffness

To increase the stiffness of the VDP system, one must

increase the value of the parameter l. Clearly,

j _xj �OðlÞ 
 1 and j _yj �Oðl�1Þ � 1 when l increases

and is much bigger than one. In particular, the velocity in

the horizontal direction is considerable, while the velocity

in the vertical direction is minimal [49]. These two widely

separated time scales are a distinctive property of stiff

systems. Figure 9 illustrates the solution trajectories for the

VDP system with initial condition ðx0; y0Þ ¼ ð2:0; 0:0Þ and
parameter l 2 f10; 100; 1000g. Note that we can observe

both time scales in the graph of the x(t) trajectory. Figure 9

also illustrates the prediction of a modified DAE-PINN.

This DAE-PINN can effectively predict/simulate the tra-

jectory even for the very stiff VDP system, i.e., when

l ¼ 1000.

A.3 Differential algebraic equations and infinite
stiffness

If we let the parameter increase to infinity, i.e., if we let

l ! 1, then the stiffness increases to infinity. Then, the

differential equations of the VDP system become the fol-

lowing differential-algebraic equations:

0 ¼ y� uðxÞ

_y ¼ � 1

l
x

Note that the claim that DAEs present a ‘‘form’’ of infinite

stiffness [23] can be easily inferred from the previous

analysis.
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