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Abstract

We consider the inverse source problem in the parabolic equation, where the
unknown source possesses the semi-discrete formulation. Theoretically, we
prove that the flux data from any nonempty open subset of the boundary can
uniquely determine the semi-discrete source. This means the observed area
can be extremely small, and that is the reason we call it sparse boundary data.
For the numerical reconstruction, we formulate the problem from the Bayesian
sequential prediction perspective and conduct the numerical examples which
estimate the space-time-dependent source state by state. To better demonstrate
the method’s performance, we solve two common multiscale problems from
two models with a long source sequence. The numerical results illustrate that
the inversion is accurate and efficient.
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1. Introduction

1.1. Background and literature

As a classical type of PDEs, the parabolic equation is widely applied in physics, engineer-
ing, finance, and so on. The inverse source problems in the parabolic equation have various
applications in the real world, and the corresponding research has a long history. We list rep-
resentative work here [2, 13, 15-17, 26]. Denoting the unknown source by F(x, ), to recover
it, we need the observations of the solution # on the whole domain R¢ x (0, co), which is
impractical in almost every situation. Therefore, in the research of the inverse problem, peo-
ple usually consider some special cases of unknown sources. For instance, a popular case is
the variable separable source, i.e., F(x, f) ;= p(x)q(f). Given the spatial component p(x) or the
temporal component g(f), recovering the other unknown part is a classical field in the inverse
problems. See [3, 13, 14, 22] and the references therein. Furthermore, the work [23] consid-
ered the case when p(x) and ¢(7) are both unknown; in [17] the authors recovered the unknown
source p(x', f) where x' € R¢~!. Compared with the variable separable form, the semi-discrete
formulation below simulates the general source F(x, ) better:

K
F(x,1):= Z Pk(x)Xte[tk,l,tky
k=1

We can see the above formulation can approximate the general form F(x, ) accurately if the
time mesh {0 <y <#; < ...} is fine enough. The parabolic equation with a space-time-
dependent source has many applications. For instance, in the area of medical research, one
needs to trace the blood distribution in some tissues of the human body; in the reservoir sim-
ulation area, one example is to trace the amount of liquid injected into an oil field consisting
of the impermeable rocks; in the ocean, people may need to determine the location of a leak-
ing oil tanker and so on. In [19], the inverse source problem with the semi-discrete source is
investigated.

In this work, the unknown source still has a semi-discrete formulation. The measurements
we used are the boundary flux data, meaning the observed area will be the subset of the
domain’s boundary. To save cost, absolutely, we want the observed area to be as small as
possible. In [19, 23], the authors considered the heat equation on the two-dimensional unit
disc and proved the uniqueness theorem under the boundary flux data from two chosen points
on the boundary. The proof depended on the explicit representation of the eigensystem of the
Laplacian A on the two-dimensional unit disc. The conclusions in [19, 23] confirm that in
the heat equation, if the domain has a smooth shape, then it is possible to recover the source
from sparse boundary data. There is a natural question: can we solve a similar inverse source
problem in the parabolic equation with a general domain, in which the explicit representation
of the eigensystem is not applicable?

1.2. Mathematical statement and main theorem

We give the mathematical model as follows:

K
@+ Aux, ) =Y pel®)Xiely_rqpr (1) € Q2 x (0,00),
k=1 (1.1)
u(x,t) =0, (x,1) € 092 x (0,00) U Q x {0},
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where 2 C R? is open and bounded. The operator A is a symmetric elliptic operator,
defined as

A = =V - (5()V) + g0, ¢ € HA(Q) N HY(S). (1.2)
Here « and g possess appropriate regularities to support the future proof, and they satisfy
0<C <k(x)<KCy<oo and ¢g(x) >0 forae. x € Q.

In the source term, the spatial components {p(x)}X | and the time mesh {7 }X_; are all
undetermined. The measurements we used are the boundary flux data:

%—(x, D, (,nel x(0,00)C IN x (0,00),

where T means the outward normal unit vector of the boundary and I' C 02 is the observed
area. Hence, the interesting inverse problem in this work is given as follows:

. . Ou
recovering {19, &, p(x) }~_, in the source from the data —— .
M [y 0.00)

Remark 1.1. In the parabolic case, because of the analytic continuation, the data 5)7“ 'x(0:00)

may be uniquely determined by % |FX oD with 7> 0. So we add this remark to explain why
we use the measurements for ¢ € (0, 00). The proof of uniqueness in this work depends on
corollary 3.2, which gives the relation between the measurements and unknowns. The convo-
lution structure in the conclusion of corollary 3.2 implies us to use the Laplace transform. This
is why we choose the data from (0, o). See section 3 for details.

The approach in this work is more appropriate for the case of finite propagation speed, such
as the wave equation. Since in such equations, the data from the finite time interval (0,7")
cannot determine the unknown source uniquely. So that we may only start the proof from the
data on (0, co). The analogous inverse source problem in wave equation is one of our future
works.

For this inverse problem, we have two goals: first, proving that the boundary flux data gen-
erated from a small observed area I' can uniquely determine the source; second, recovering
the unknown source from the sparse boundary data numerically. In the aspect of theoretical
analysis, we attempt to build the uniqueness theorem. Firstly, we give some prior assumptions
for the semi-discrete unknown source "5 | pu(X)Xrein_,10)-

Assumption 1.2.
(a) For the time mesh {7 }X_,, we have K € NT U {oo}, and there exists 7 > 0 such that
inf{‘tk—lk+1‘ k=0,...,K— 1} = .
b) {p(0)}E_ | C L2(Q), el # 0 for k=1,...,K, and ||px — piy1ll2) # 0 for
k=1,...,K—1.
In assumption 1.2(a), we do not require the time mesh {7 }X_ be finite, which means K can
be infinity. Also, assumption 1.2(b) is set to make sure the source Zle Pk(X)Xels, . cannot

be simplified further. Otherwise, if || py, [| 120y = l|Pt,—1 — P, 120y = O. then we can write the
source as

Zk¢{k0,k1—l,k1} Pk(x)Xte[tk,l,tk) + P (X)Xze[tkl )
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In the next section, we will give assumption 2.4. With assumptions 1.2 and 2.4, we can state
the main theorem of this work.

Theorem 1. Under assumptions 1.2 and 2.4, the flux data from any nonempty open subset
of 05 can uniquely determine the semi-discrete unknown source y | pk(X)Xrep_, 1)

More precisely, given two sets of unknowns {to, tr, pr(x)}X_, and {19, tx, pe(x)}X_,, we
denote the corresponding solutions by u and u respectively, assume assumptions 1.2 and 2.4
be valid, and let ' C OS2 be an arbitrary nonempty open subset. Provided

Ou on
= = N
on I'%(0,00) on I (0,00)

we have {to, te, pe()YE_, = {To, Tr, () Y.

Theorem 1 confirms that the data from any nonempty open subset of the boundary is
sufficient to support the uniqueness of this inverse source problem.

1.3. Bayesian formulation and outline

After proving theorem 1 for this inverse source problem, it is time to consider reconstructing the
unknown source numerically. The design of the algorithm will be challenging since there are
too many unknowns in the source. The conventional methods are hard to handle problems with
high dimensional unknowns and are very sensitive to the observation locations. However, from
the semi-discrete formulation, one needs to estimate a sequence of unknown states { pe(x)}&_|
recursively in time. Hence, one natural idea is to estimate each state p,(x) given a sequence
of observations up to k in time by the posterior distribution. This task of sequential prediction
based on the online observations can then be categorized as the standard Bayesian filtering
problem, which has been thoroughly studied in control theory [5, 10, 20, 24]. This motivates
us to formulate the inversion problem in the Bayesian framework.

The numerical reconstruction is a time series tracking problem and consists of construct-
ing the posterior probability distribution of a sequence of states based on observations. The
resulting model is typically highly nonlinear with non-Gaussian distribution, so obtaining an
explicit exact solution is hard work. This reminds us of estimating the state recursively via a
filtering approach [18]. In this work, we will use the particle filter (PF) algorithm to compute
the posterior of the state in a sequence. The benefit of the PF algorithm is that it can han-
dle any nonlinear properties and is capable to solve any distribution (no Gaussian assumption)
[9,25]. The PF algorithms usually involve sampling from a probabilistic model which depends
on the previous states and observations. The samples are called particles and constitute an
empirical approximation of the model. The trajectories are then extended by sampling the fol-
lowing state particles based on the existing particles and new observations. The degeneration
issue is a concern of the PF algorithm, but the resampling techniques can reduce the variance
of the particles. In this work, we use the systematical resampling [7, 9], and please check [7]
for a comprehensive review of the resampling schemes. Another concern of the PF algorithms
is the design of the proposal. Many techniques like linearization [8], extended Kalman filter,
and unscented PF [25] are among the most important options to this issue. In this work, we use
the transition prior, and the results are satisfactory. The details can be seen in section 4.

The contribution of this work can be summarized as follows:

(a) Prove the uniqueness theorem rigorously and confirm that the semi-discrete source can be
recovered by the flux data from any nonempty open subset of the boundary. This conclu-
sion can decrease the cost of real projects and is meaningful in practical applications.

4
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(b) To solve the inverse problem numerically, we formulate the process as a sequential pre-
diction and hence use the filter algorithm to predict the semi-discrete source. The method
enables us to solve the models with a long sequence of states and is very accurate.

Finally, we give the outline of this paper. In section 2, we collect several useful results and
show some lemmas which will be used in future proofs. In section 3 we will prove the main
result—theorem 1. The proof depends on the Laplace transform and the knowledge of complex
analysis. In section 4, we consider the numerical reconstruction of this inverse source problem.
The algorithm is given, and some satisfactory numerical results are provided. In section 5, we
list some future works for this inverse source problem.

2. Preliminaries

2.1. Eigensystem of A on Q

For the operator A defined in (1.2), we denote the eigensystem by {\,, ¢,(x)}22,. Since A
is positive definite and self-adjoint, we have that 0 < A\; < A\, < ...and A\, — oo as n — oo,
and the set of eigenfunctions {¢,(x)}°2, constitutes an orthonormal basis of the space L*((2).
Furthermore, if ¢, is an eigenfunction of A corresponding to A,, so is @,. Here @, means the
complex conjugate of ¢,. This gives that the set {,(x)}>, coincides with {©,(x)}>,. Also,
from the trace theorem, we have {%’%—’2 lon oo, € H'/2(92), and the next lemma concerns the

non-vanishing property of %‘%—1’ log.

| + Oy :
Lemma 2.1. [fT is a nonempty open subset of OS2, then for eachn € N, 52 cannot vanish
almost everywhere on .

Proof. Assume that there exists k € N and a nonempty open subset I' C 9 such that

g—‘in‘r = 0 a.e. on I'. This implies that we can find r > 0 and x¢ € OS2 such that ‘;% =0 ae.

on B(xy, r) N 95, where B(xo, r) is the ball centered at x with radius r in R?. Now define the
extension 2, of {2 as 2, = Q U B(xo, r) and the extended function ¢, , of ¢, on €2, as

@k(x)’ X € Qa
Pre(x) = 0. x € B(xo, )\

Obviously, ¢, € H'(9,). Now for any ¢ € C°(£2,), we have

/Q (KVke - Vb + qU0pretd — Mpretd)d

= /(vak,e -V + q(xX)pret) — Mepre)dx + / 0dx
Q B(XO,V)\Q

= /Q [(A — M)l dx = 0.

Hence, o, € H 1(€Q,) is a weak solution of the equation
(A—=v(x) =0, xe€,

and we can find B(x, ') C B(xo,r) C Q. s.t. ¢;, = 0 on B(x(, r’). By the unique continuation
principle, we have ¢, , = 0 on {2, i.e. ¢ vanishes on €2, which contradicts with the fact that

|kl 2@ = 1. Therefore we conclude that g—% does not vanish almost everywhere on any
nonempty open subset of 0€2, and the proof is complete. (]

5
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2.2. The set {&}7°,

In this part, we build the auxiliary set of functions {£;}7°, which will be used later. For ¢, ¢, €
LX), 13,1, € LA(OSY), we define

(W, o) = /Q GOTOdE, (s ) eon = /d RO CTRO,

and accordingly we give the induced norm || - [[ ;2. || - [|12¢.0602) @8
I 2y = Cdes I 20y = € )eoa-
Not hard to see | - || 2,00, i equivalent to the usual L* norm || - [|;25q,- The next lemma

considers a density property.

Lemma 2.2. For the eigenfunctions {@n}2, defined in section 2.1, we have
Span{% loa }2°, is dense in L*(k, OS2).

Proof. With the density of H*/2(9Q) in L*(92) under the norm || - || 2y, it is sufficient to

prove that ¥ € H¥?(0Q) vanishes almost everywhere on 952 if (zﬂ, % loq) k.00 = O for each
neNT,
We let ¢ satisfy the following system:

AY(x) =0, x €,
wz{b, x € 09.

The regularity ) € H>2(9Q) gives that ¢y € H>(2), then the Green’s identity can be used.
Fixing one n € NT, we have

~ Oy, 0
(A, on)a — (1, Apn)a = (¢, a—%%,aﬂ - <aj/(ﬁa@n>m8ﬂ~

With the results Ay = 0 on €2, ¢, = 0 on dQ and (1), %%)mag = 0, the above equality gives
that

<¢’ A(pn>Q - )\n<w, §0n>Q =0.

So we see that foreachn € N, (1, ¢,)o = 0. This together with the completeness of {¢,, }°°
in L*(2) yields that ||| 12, = 0. From the definition of the weak derivative, it is not hard to see
that the first-order weak derivative of 1) is also vanishing on €. This gives that |[1)|| ;1 = 0.
By the continuity of the trace operator, it holds that

Hw‘aQ”LZ(DQ) = ‘|7/’||L2(a§2) < C”¢HH‘(Q) =0.
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So we have ¢ = 0 almost everywhere on 9€2 and the proof is complete. (]

Now we can build the auxiliary set {&}7°,. With the density of Span{g%bg}gc:l in
L*(k,00), we can construct the orthonormal basis {fl}jﬁl in L*(r, 00) as follows. Firstly,

we set &) = a F+oa/ |5 ‘9—@; | 2(s.00)> and for I =2,3,..., we assume that the orthonormal set
{¢ ]} | has been constructed. Then we letn; € Nt be the smallest number such that \dQ ¢

Span{gj}j \» and after that we can pick &€ Span{ =L | 502, . .,51,1} such that

(€€ won =0 forj=1,...,1—1, HngLz(h’,,aQ) =1

The density of Span{g%bg}go:l in L2(r, O) ensures that {£,}7°, is an orthonormal basis
in L*(k,0€2). Also, from the smoothness property & 9y 9% |oq € H'?(0S2) we have {&}2,
H'2(09).
Next, for each I € N*, let &, € H'(Q2) be the weak solution of the following system:
{ AL(x) =0, xeQ,

- 2.1)
fl = 51, x € 990.

Then we get the auxiliary set {&}72, on §2.

2.3. The coefficients {c,,} and assumption 2.4

The proof of theorem 1 relies on assumption 2.4. Before stating assumption 2.4, we need to
build the coefficients {c,,}. For a fixed point z € J{2, we define the series wﬁ' € H'(Q) as

P = Z&z(z)&(x) xeq, 2.2)

=1

where {£,,&}7°, are defined in the above subsection. Then we consider the following system
and denote the solutions by {u }:

O+ A (x, 1) = 0, (x,1) € Q x (0, 00),
ul(x,0) =0, (x,1) € 99 x (0, 00), (2.3)
u?’(x,O): —1/1?’, x e Q.

The finite summation 1/1?’ is constructed following the role of the Dirac delta function, which
reflects the information of the targeted function on a specific point via integration. With the
following lemma, we can give the coefficients {c;, }.

Lemma 2.3. Foreachz € 00 and n € NT, limy_,oc <’(/)£V,W>Q exists.

Proof. Firstly from Green’s identities we have

WY o =X (WY, Az a

- _ 0%n opy
=" (v B0 — (W G5 o + (o Prleam

N
- o, ~
=AY G55 G wn =]
=1
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where the system (2.1) and the boundary condition of ¢, are used. From the definition
of {El}fil, we see that <g—%,§,>mm =0 for large I. Hence, if N is sufficiently large,
the value A, IZﬁlgl(z)@—%,&)wQ will not depend on the value of N. This means that
limy_soo (¢, P exists, and the proof is complete. O

Now we define,
Coni=1im (WY, Bu)o = lim s pen = (p(), 0a()) 2 (2.4)
N—o0 N—oo

it is time to state assumption 2.4.

Assumption 2.4.

(a) For k€ {1,...,K} and a.e. z € 99, there exists C > 0 which is independent of N such
that 37 |, pea| < C < oo foreach N € N*.

(b) Fora.e.z € A, it holds that Sk 5" |c. . pun| < 00.

(c) For a.e. t € [0, 00), the spatial components {p;(x)}X_, are smooth enough such that the
series Zleé,(x)(a%(-, 1), El(~)>mag converges to (,%“(x, 1) point-wisely for a.e. x € 9.

3. Uniqueness theorem

3.1. Representation of the boundary flux data

In this part, we will consider how to present the boundary flux Z%“ |aq by the unknown source.
Firstly, we give the next lemma.

Lemma3.1. Fora.e. z € 00, we define wﬁv = uiv + w;v, where ulz\’ and w;v are given by (2.3)
and (2.2), respectively. Then we have:

fora.e. t € [0, fp],

u
- ﬁ(Z7 t) - 07

fora.e. t € (tyy—1,tmy] With 1 <mg <K,

ou .
- ﬁ(z, nH= nggo /Q Pong YWY (x, £ — 1 —1)dx

mo—1

. N _ N _ .
+ m; Jim /Q PO (e, = 1) = wd Cr 1 = 1)1
fora.e. t € (tx,00) (when K is finite),
_ o (z.1) = EK: lim O (x, 1 — tyy1) — W (x, 1 — t,,)]dx
ajn by m:lN*)OO me z ) m—1 z 5 m .

Proof. From the definition of wﬁ’ , we see that (9, + A)wﬁl = 0. This result and (2.3) show
that wY satisfies the equation

O+ Auw =0, (x,1) € Q x (0,00),
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with the boundary condition w® |y = ¥ |9 and the initial condition w (x, 0) = 0. Therefore,
Green’s identities give that for each v € Hé (),

/(3, + q)wiv(x, Hu(x) + K(X)V’LUQ’()C, 1)-Voux)dx =0, te€(0,c).
Q
From (1.1), we obtain
/ / F(x, DwY (x,t — T)dx dr = / / O+ Ayu(x, TywY (x, t — 7)dx dr.
0Jo 0Ja

Green’s identities and the vanishing initial conditions of # and w?’ give that

/ / (0 + @u(x, T)wiv(x, t—7)dx dr = / /(3, + q)wiv(x, t — Tu(x, 7)dx dr,

0.JQ 0Ja

/ / — V- (kVu(x, T))wév(x, t—71)dx dr = / //i(x)Vu(x, T)- Vw?’(x, t —7)dxdr
0.JQ 0.JQ

— /0 /d Q/i(x)%(x, m)YY (x)dx dr.

Hence, we have

1
/ / F(x, T)’U);V(X, t —71)dxdr
0Jo

= / /(3, + q)wiv(x, t—1u(x,7)+ fi(x)VwéV(x, t—71) - Vu(x, 7)dxdr
0.JQ

_/()’/695(x)%(x,7)¢y(x)dxd7'
XL Ou <

=— 1), & dr.

/ > 660 (FwtnEo) o

For t € (tiy,—1,tmy] With I < mg < K, the left side of the above equality can be written as

t =ty —1
/ / Fx.t — Pw! (x, r)dx dr = / ’ / Py (Y (x, T)dx dr
0JQ 0 Q

mo—1

+Z/

m=1 t—tm

=l

/ pm(x)wév (x, T)dx dr.
Q

Similarly, if r > tx, we have

‘ K
/ /F(x, t— T)wiv(x, T)dxdr = Z
0.Ja

m=1

=ty
/ / pm(x)wiv (x, 7)dxdr.
t—tm Q

Then for the above equality, differentiating at time ¢ gives that for r € (£,,,—1,t,,] With
I <my <K,
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= /me(x)wiv(x, r— tm()—l)dx
K,0€) Q

N du ~
- 51(Z)< (1), fl(')>
240

mo—1

£y /Q P [0 et tyy)— 0 et — )],
m=1

and for t > tx (from assumption 1.2, we see that K is finite),
N ou . K
—Z£,<z)<a—_;<-, . 51(')> = / P [l (e, =t )— wl (.1 — 1)) dox.
n " Q
=1 w0 =1
From assumption 2.4(c) we have for a.e. t > tx,

Oou K .
— g @0 = Z}}L@O /me(x) [w¥ (et = ty-)— Wl (x, 1 = )] dx,

m=1

and for a.e. t € (fyy—1, 1] With 1 <mp <K,

ou .
_ajn(z, 1= A}g?c /meo(x)u)?’(x, t— typy—1)dx

mg—1

. N N
+ ) Jlim /Q Pn(0) [l (s £ = 1) = wl (1 = £)] .

m=1

Assumption 1.2(a) ensures that for a fixed ¢, the summations on the right sides of the above
results are finite. Therefore, the order of summation and limit can be exchanged. Moreover,
the proof for ¢ € [0, 0] is trivial. The proof is complete. (]

From the above lemma, the following corollary can be deduced.

Corollary 3.2. Fora.e.z € 9Q and t € (0, 00), it holds that

’Bu t K 0 s
- [ mrr = [3 s | Y capiatt e ar
0 0 k=1 n=1

Here p,,, and c., are defined in (2.4).

Proof. Firstly, let us evaluate the limit limy oo (pe(-), wY(-,0))q for k=1,...,K and
t € (0,00). Fixing N € NT, from the definition of ¥ we have ¢ € L*(). So the Fourier

expansion of ¢ can be given as ¢ = > ¥ B, where ¥, is defined in (2.4). Moreover,

from w?Y = u? + )" and equation (2.3), we have
w0 =, (1 —e Mg, ().
n=1

The above result together with the regularity ¢ € L*() yields that w(-,1) € L*() for t €
[0, 00). Also recall that p, € L*(€2), then

(e (), mk; = Zcﬁ,]npk,n(l —e M,

n=1

10
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The condition in assumption 2.4 implies that the dominated convergence theorem can be
applied to the above series. So we have

(o @]

00

—Ant : N —Ant

1\}l>m Cznpkn(l —e M) = E Nliglo cz,npk,n(l —e ).
n=1 =

From (2.4), we have
i (P, i, D)a = = Jim Z N el —e ) = Zcz,npk,n(l —e M),
n=1

Now we claim that for r > 0,

" Ou S ad B
[ mendr = [ | capat e 0 G
0 0 k=1 n=1

If t < 1y, from lemma 3.1 we have %(z, 7) = 0 for 7 < ¢. This means (3.1) is valid.
For t € (tpy—1,tmy] With I < mg < K, lemma 3.1 yields that

mg—1

/ (z,m)dr = Z / (z, T)dT — / %(z, T)dT

mo—1 m—1 oo
Z / Z Z Cz,np[,n(e_)\"(T_t/) _ e—)\,,(r—t/,l))d,r
m-1y=1 n=1
mo—1
+ Z / Zcfﬂpmn(l — e 1))dT
Im— I n=1
mp—1 oo

/ Z Z Cz,npl,n(ei)\"(Titl) _ e*)\n(T*tl—l))dT

Tmp—~1 |=1 n=1

o0
_)\n “imp—
/ Zcz,npmo,n(l — e M Img-1)q 7

fmg—1 p=1

=S+ 85 +85+ 8.

The straightforward computation gives that

mo lm U e @ mo lm U ty—ty
E —AnT E —AnT
Cz,npl,n(1 —e )dT Cz,npl,n(l —e )dT

mlll’l’llnl mlll’l’lnl

my—2 my—1 tm—1]1 my—2 mo—1 tm—t; X

= E E / E Coapin(l —e A”T)dT E E / E CconPin(l — e’)‘"T)dT

I=1 m=I[4+1m-171-1p=1 I=1 m=I4+1"Im-1"1 =1

my—2 00

['”O 1-1
Zc aPia(1—e " T)dr.

_ Z/rmo 11— IZC ,,pl,,(l—e )\nT)dT_ Z/
=1 71

-1 n=1
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Similarly, we have

mo—1 Im—Tp—1

S, = Z / cz,npm,,,(l—e—w)dr,
mg—1 =ty 00 my—1
83 = Z / Zcz,npl,n(l - ei/\nT)dT Z / ZCznpln(l —¢ /\"T)dT

mo 1—1— 1n=1 mO 1— tln 1
tftmofl s \ .
Sy = / Zcz,npmo,n(l —e M1 = / Xit— €[ty -1 ’mo)z CznPmy, W(1 —e M)dr.
0 n=1
These give that

my—2 t—ti_; © mo—2
S+ 80455 = z/ > conpall = wdr—z/ chpzn(l—e’“)

o0

Tty — Ity 1 0
* / > Canpm-1a(l —e M )dr — / D by iall —eMHdr

0 0

n=1 n=1

mo—1 t—t_; ©©

= Z/ Zcznpm(l—e M dr

tmo—1

= / ZX[ TE[_1,1) |:Zcznpln(l —¢ /\T):| T.

Hence, it holds that

" Ou
—/0 8ﬁn(Z,T)dTZSH+52+S3+S4

1 mo
/ Z Xt—7€lt_1.1) [Z ConPrn(l — eA"T)]
0

which confirms the claim.

When K is finite, we can pick 7 > 0 such that > #¢. In this case, the term S, is eliminated,
and my — 1 is replaced by K in the terms S, 52, S3. So the claim (3.1) is still valid.

Above all, we have proved the claim (3.1) and the proof is complete. ([

3.2. The analysis of Laplace transform

The proof of theorem 1 will rely on the Laplace transform £, defined as

L{(1)}s) = /Ooe*“z/;(t)dt, seC.
0

Recalling the result in corollary 3.2, it is not hard to see that

L{1—e™}s)=Ns s+ \)", Res>0.

12
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Also, assumption 2.4 gives that

t K (o] (o]
‘/ Z Xt—r€lty_1,1) [Z Cz,npk,n(l - e/\nT)‘| dr| < 2tZ Z |Cz,npk,n|
0 k=1 n=1

k=1 n=1

< Cta

and we have |e™*7] is integrable on (0, co) for Res > 0. This means that the dominated con-
vergence theorem can be used and it gives that for Re s > 0,

tau K 00 N 1 0 s
£{— /0 a—i;(z,T)dT}(s)z ; /0 = /0 N [’;cz,npk,n(l e )] dr dr

K 00 0 oo
|:/ e_”Xte[tkl,tk)dt] [/ e_StZ ConPra(l — e_)\"t)dt‘|
_ 0 0 =1
K oo
= s —e ) [Z ConPhn s + m‘] :

I
(]

k=1

k=1 n=1

Hence, we see that for Res > 0,

t K 00
szﬁ{— / %(Z, T)dT}(S) = (e —e ) [Z ConPenn(s + An)—‘] . (B2
0 k=1

n=1

We index the set of distinct eigenvalues as { A j}‘jx’:l with increasing order. Then we give the
next lemma, which contains the well-definedness and the analyticity of the above complex-
valued series.

Lemma 3.3. Under assumption 2.4, we have the following properties:

(@) For R>0 we define Ag:={sec C:|s| <R}, then for each ke {l,...,K},
S [ ConPin (s + A\o) L is uniformly convergent for s € ARN{=A 2

(b) >0 ConPen (s + A\y) "' is holomorphic on C\{-A\}Ey

(¢) The series Zle(e”k*” — e ) Y0 conDin (s + N~ is analyticon CT = {s € C:
Res > 0}.

Proof. For (a), fixing R > 0, since lim,,_,., A, = oo, then we can find large enough N; € N*
such that A, > 2R if n > Ny. For s € Ag\{—A;}%2, and n > Ny,

|s+ Ai| = |Res+ Ayl =Res+ X\, >\, — R.

This means that |A,(s + )\,,)’1\ < 2. Given € > 0, from assumption 2.4, we can find N, > 0
such that fo:no|czs,, Pl < €/21f ng > N,. Hence, for ng > max{Nj, N}, we have

Z ConPhn (s + A7 < 22 lconprnl < € fors € AR\{—=N;}72.

n=n n=ngq

This gives the uniform convergence.

For (b), fixing R > 0, it is clear that ¢, pr,\i(s + A\,) ! is holomorphic on Ag\{—\ j}jo: -
Then the uniform convergence gives that > - c..Pkadn(s + A,)~' is holomorphic on
AR\{=\;}}2,. Foreachsy € C\{—\;}%,, we can find a sufficiently large R > 0 such that sy €

13
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ARN{=X j};?il. This means that >~ .. Pead(s + Ay) ™! is holomorphic on s = s, which
leads to the desired result.

For (c), fors € C*, we have [e %15 — e %S| < 2and |\, (s + \,)~!| < 1. Also, assumption
2.4 gives that S 37 [, prn| < 00, then following the proof for (a), we obtain that the
series

K o0
Z (e 715 — g k) Z ConPkn (s + A7
k=1

n=1

is uniformly convergent on C*. Sequentially, from the proof for (b), the holomorphic result
can be derived, and the proof is complete. (]

3.3. Some auxiliary lemmas

Before showing theorem 1, we list and prove several auxiliary lemmas.

Lemma3.4. Recall that { \;}}2, is the set of distinct eigenvalues with increasing order. For
any nonempty open subset I' C 01, if

Z Conn =0 for j€ Nt andae. z €T,
A=A

then {n,},=, = {0}.

Proof. Fixing j € N, from the proof of lemma 2.4, we have

Con = >\j_l ngg <¢év’ A@>Q
1o . 0Pn oy
= )\j 1 1\}5?0 ((Aﬂfﬁv, ‘pn>Q - < ;\/’ a%>n,8(2 + <aﬁz/;;—, ‘Pn>m,80>

o 90, -
= —AIIZ&(ZXB%,&MQ.

=1

With the definition of the orthonormal basis {£;}7°,, the above series is actually finite. This
gives that fora.e.z € I,

- 0p, - e
;51(2)<ﬁ,fl>x,dﬂ = ﬁ(Z)’

which leads to ZAn:Ajnng%(z) =0fora.e.z € I'. Assume that {n, : A, = \;} # {0}, then the
linear independence of the set {,(x) : A, = A;} yields that ), _ A, ln@n(x) is not vanishing on
Q. However, we see that A=A, Pn (x) is an eigenfunction corresponding to the eigenvalue
Aj. These and lemma 2.1 give that ) |, _ AT ‘g—‘in’% cannot vanish almost everywhere on I', which
is a contradiction. Hence, we prove that {7, : A\, = \;} = {0} foreach j € N*, namely,n, = 0
for n € NT. The proof is complete. O

Lemma 3.5. Set I' C 99 10 be a nonempty open subset and let > .- c, 1, be absolute
convergent for a.e. 7 € I'. Then given € > 0, the result

14
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Zcz,nm(l —e™)=0 fortc(0,¢) andae.ze€T

n=1
implies thatn, = 0 forn € NT.

Proof. From [23,lemma 3.5] we have that ZAn:Ajcmnn = 0Oforeach j € Nt andae.z €I
Then lemma 3.4 gives the desired result and completes the proof. (]

Lemma 3.6. Let the conditions in lemma 3.5 be valid. For s € CT, if 3¢ > 0 such that

Res—oo

lim e lz ConAnMn(s + )\n)_l] =0 forae.z€el,

n=1

then {n,},>; = {0}.
Proof. Fora.e.z eI, we define

FAt):=Xi20) _ czutin(1 —e ™), 1 € (—00,00).

n=1

From the absolute convergence of the series >~ ¢, ,7,, we see that
o0
|F.(n)] < CZ lcznm] < € < o0.
n=1

Also, the direct computation yields that

0 t+e€ 00
/ |e*”|/0 |F.(T)|dT dr < C/ e ReS(¢ 4 e)dt

€

— CefRes/ e—tRest dr
0
= Ce®¥(Res) ? < oo
This implies the well-definedness of the integration [*|e~*| [,"*“|F,(r)|dr dr for Re s > 0 and

0
ae.zel.
Introducing the Heaviside function H(Z) := x>, we see that

o) t+e€ o) 00
/ e_‘”/ F,(r)drdt = / e_‘”/ H(t — 7 + e)F,(T)dT dt.
—€ 0 —00 —00

The above argument provides the well-definedness of the integral

/ e’“/ H(t — 7 + e)F,(T)dr dt

when Re s > 0. With Fubini theorem and the dominated convergence theorem, we have,

15
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/ e”s/ H(t — 7+ e)F . (7)dr dt

= / e dr / e”lzcmm(l—ew)ldf
—€ 0 n=1

= 572 e [Z cz,n)\n’r}n(s + )\n)il

n=1

, Res>0,

which leads to

lim / e”s/ H(t — 7+ e)F.(r)dr dt =

Res—oo |

Also, from the direct calculation, we have

00 00 ’ o I+e
/ e_"/ H(t — 71+ e)F(r)dTdr = / o [Z / (1 = e_A"T)dT] dr

— / (e=ns Z / nn(l—e‘A’”)dT]dt

00 00 t+e
+ / e ™ [Z Con / e —e—Aﬂ)dT} dr
0 n—1 0

=:85.1(8) + S;2(5).

For S, ,(s), the dominated convergence theorem and the absolute convergence of > ¢, .7
give that

1S.2(5)] < CZ |cZ,n77,,|/ e |1 + ¢|dr,
n=1 0

and clearly the right side converges to 0 as Re s — 00. So limgeyso0 Sz2(s) = 0. With the limit
assumption in this lemma, we have

lim S;i(s) = lim [S;1(s) +S;2(8)] — lim S.2(s) =0
Res—oo Res—o0 Res—o0

For each Ry € R, when Re s € (—o00, Ry), we can see

€ 0 €
1S.1(s)| < C / e TR e m|de < Cefo / tdr = C.g, < 00.
0 0

n=1

This with the limit result limges oo S2.1(s) = O yields that S, ;(s) is well-defined and bounded
on the whole complex plane C. The definition of S, ;(s) gives that S, (s) is holomorphic on C.
Hence, we have that S, | (s) is a bounded entire function for a.e. z € I', which with Liouville’s
theorem yields that S;; = C on C. Considering the limit result limgey o S;,1(s) = 0, it gives
that

S.1(s)=0 forsec C andae. zeT.

16
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Then we can see

€ 00 t
S.1(s) = / el s lz Con / e —e_’\”T)dT] dt
0 n—1 0
€ 00 t
=" / e > / N1 — e ™")dr | dr = 0,
0 n—1 0

which means for Re s > 0,

0= / ocef“H(e _ [Z Con / (1 — ew)dfl dr
0 - 0
— E{H(e - r)z Con / (1 — e)‘"T)dT}(S).
0

n=1

Using [11, corollary 8.1], it follows that
> t
D cen / (1 —eNdr =0, 1€ (0,0,
n=1 0

The absolute convergence of . ° ¢, ,7, supports the uniform convergence of

o0 ' -
Zcz,n/ Na(1 — e—A,,T)dT and Zcz,rﬂ?n(l _ e‘A”’)
n=1 0 n=1

on (0, €). Thus, from [21, theorem 7.17], differentiating the series Zzozlcw foln,,(l —e MN)dr
on ¢t yields that for# € (0,¢) and a.e. z € T,

d - ' —AnT - —Ant
0= @ [z_;c/o (1l —e )dT] = ;cz,,m,,(l —e M),

This together with lemma 3.5 leads to 1, = 0 for n € N, and completes the proof. ]

3.4. Proof of theorem 1

Now, it is time to show theorem 1. For shorten the proof, the following notations will be used:

DPkn = <Pk(), SOn()>Qa Qz,k(s) = Zcz,npk,nkn(s + )\n)_l;

n=1

f’k,n - <i7k()a SOn()>Qa Qz,k(s) = Zcz,ni)k,nkn(s + )\n)_l-

n=1

Proof of theorem 1. The result (3.2), lemma 3.3 and the analytic continuation give that for
se€Ctandae.z €T,

K K
Do =0 = Y (e — e ) 0(s). (3.3)
k=1 k=1

17
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Firstly, let us show 1y = 7. Without loss of generality, we can assume that 7y < Zo. Picking
€ > 0 such that ¢ < min{7y — fo, ] — fo}, from (3.3), we have for s € CT and a.e. 7 € T,

K
€ Q,1(s) = el FTOTIQ,  (5) = Y (T — (OO (s)
k=2

(3.4)

K
+ Z (e(E‘HO*tk—l)S _ e(6+t07tk)s)éz,k(s)-
k=1

We see that \,(s + \,)~" is uniformly bounded on CT. Recalling the convergence result
ZkKZIZ;ﬁdcz,npkﬂ < oo from assumption 2.4, the uniform convergence of the series
Zszz(e(e“O*’k*l” — -9 _,(s) on the half plane C* can be derived. Then we have,

Res—oo

K K
lim Z (e(6+f0*l‘k71)5 N e(e+toftk)S)QZ’k(s) _ Z Rgsiinoo (e(ethoftk,l)s _ e(6+t07tk)s)Qz,k(S) —-0.
k=2 k=2

Similarly, we see that other terms on the right side of (3.4) also tend to zero as Re s — oo.

So we have limgeg ;00 €°Q; 1 (s) = 0 for a.e. z € I'. This with lemma 3.6 gives that p; , = 0 for

n e Nt ie. |pill ;2 = 0, which contradicts with assumption 1.2. Hence, we have 7y = 7.
Inserting fy = fy into (3.3) and picking 0 < € < min{#; — 9,7, — fp }, we have

e“[0.1(5) — Q.1 (s)] = T Q. (5) — T (s5)

K
_ Z (e(€+t0—l/<71)s _ e(F+IO_tk)S)QZ’k(S)
k=2

K
£ 37 (e etnsion g (),
k=2

From the previous arguments, we can prove
lim e“[Q,1(s) — 0. 1(9)] =0, ae.zel.
Res—o0

Lemma 3.6 gives that py,, = pi,, for n € N*, namely ||p1 — p1//;2q) = 0.
Next we want to show #; = 7;. Owing to the results p;,, = p1, and £y = 7y into (3.3), it
follows that for s € CT and a.e.z € T,

e [Q.2(5) — Q.1 ()] = e ¥ [Qua(s) — Qui()] + e Q. 0(s) — e 20, 1(s)

X K
=3 e e Q) + D e — e H) 0.
k=3

k=3

Without loss of generality, we assume that 7; < 7; and pick 0 < € < min{f; — 11,5, — 11,1 —
11 }. Following the proof for 7y = 7o, we can show that ||p — pi|;2(q, = 0. This is a contradic-
tion. Hence 1, = 1.

18
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Now with the results o = 7, 1 = 7; and ||p; — pi |2 = 0. from (3.3), we have that for
Res>0Oandae.zcT,

X K
D = e0u(0) = Y (T = e )0
k=2

k=2

From the previous proof, we can derive that 1, = 7; and || p, — p»||;2(q) = 0. Using this tech-
nique recursively, we can conclude that

fo = 1o, k= Iy, Pk = Pell 2y =0 for k= 1,..., min{K,K}. (3.5)

Finally, we need to show K = K. (For the case of K = 00 and K = oo, we regard them as
K = K.) Without loss of generality assuming that K < K, from (3.3) and (3.5), we have for
Res>0andae.z €T,

S e — e )00 = 0.

k=K+1

The former proof gives that ||px 1|12y = 0, which is a contradiction. Hence, we have that
K = K, which together with (3.5) leads to the desired result. The proof is complete. (]

4. Numerical reconstructions

In this section, we are going to conduct several numerical experiments which realize the inver-
sion process described in theorem 1. The experiments focus on the recovery of the support
of the unknown source. Such experiments are common in some practical applications, such as
medical imaging, pollution control, and so on. As we mentioned in section 1, we formulate this
inverse source problem as estimating the state of the system (position of the source) when a
sequence of observations in time becomes available. The popular choice to solve the sequential
prediction problem is the sequential Monte Carlo (SMC) method, which is also called the PF.
In this work, we are going to use one variant of the SMC as the approach to solving the inverse
problem. Before presenting the results of the numerical experiments, we will first review some
preliminaries of the SMC algorithm.

4.1. Sequential Monte Carlo (SMC)
Consider a discrete-time Markov process {x,}/_:
xg ~ p(xo) and  Xu|xu—1 ~ p(xa|xn—1), 4.1

where ~ means distributed as, p(xo) is the prior of the initial state x, and p(x’|x) is the given
transition probability prior from current state x to the next state x’. We are interested in esti-
mating {x,}?_, which is also denoted as x.,, given the observations {y,}"_, at each time step.
The state x; is the position of the support of the source and y, is the flux on the boundary.
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The equation (4.1) together with the likelihood p(y,|x;) will define a Bayesian model. We

have the prior on the trajectory xg., := {xo, . . ., X, } as follows:

P(x0:n) = p(xo)Ti_y plxi|xi—1). (4.2)
Moreover,

PO X0:0) = Ly pO|x0)- (4.3)

From a Bayesian perspective, the posterior distribution of x., given a sequence of the obser-
vations Y., is:

p(XO:n, y():n)

, 4.4
p(yO:n) ( )

p(XO:n‘yO:n) =

where p(X:1, Yo.n) = POlgn|X0:0) P(X0:0) and p(yg.) = [ P(X0:05 Yo )dX0en-

In our application, the most time-consuming step is to evaluate the likelihood function
PVl X0:0), and we will follow the classical framework as in [24]. Denoting the forward solver,
which maps the input state u to the observation y as G, it follows that

y =G +mn,

where 7 is the error associated with the process. There are various sources of error. For example,
the error in the observation and the error of the forward solver. The total error 7 is then assumed
to follow the Gaussian distribution, N (0, B) where B is the covariance with a proper size. The
likelihood function then has the form:

p(y|u) = p(y — Gu)) = p(n) ~ N(0,B).

Now the area of interest is the tracking problem: find the current state given the observations.
Theoretically, this means that one needs to find a group of p(xo..|yo.,)- By the prior (4.2) and
the likelihood (4.3), the joint distribution p(x.,, y;.,) in (4.4) then satisfies

DP(X0:1, Yo:n) = P(X1:n, y1:n)p(yn|)€n)p(xn|xn71)a
and it follows that

P | X0 1) PV | Xn)
POnlyn-1)

P(XO:n‘yO:n) - P(Xo:n—l ‘yO:n—l) (45)

where p(yn |yn— 1 ) - f P(xn—l ‘y():n— 1 )p('xn ‘xn— 1 )P(Vn "xn)d'xﬂ— Lin-

Most particle filtering methods are created by a numerical approximation to (4.5). A com-
mon and powerful algorithm is the SMC approximation. One can use a set of samples (particles)
that are drawn from a posterior distribution to approximate the target posterior. More precisely,
the posterior is the average calculated by

N,
. 1
p(XO:nb’O:n) = ﬁp; 5}(6:! dxo..

Here, {xg,:,}f:"l are the particles and d(d-) is the standard delta function. As a result, when the
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number of samples N, is large enough, the average will approximate the true distribution. One
of the advantages of the method is that one can prove the asymptotic convergence to the target
distribution of interest. Besides, compared to some other approaches such as the extended
Kalman filter and unscented Kalman filter, the SMC approach does not assume that the state
models are Gaussian [9, 25]. One hence can apply the method in a broader area.

Unfortunately, it is not easy to draw samples from the posterior. An alternative way of
drawing is to sample from a proposal distribution g(xo.|y,,) and to approximate the posterior
using a weighted sum of particles. One usually calls this methodology the Bayesian important
sampling.

Now, two questions remain unsolved. One is how to design a proposal distribution; another
one is how to calculate the weight for each sample. How to select g(xo.|y,.) is an interesting
research topic. One usually requires that the g(xo.|y,,,) satisfies the following structure:

q(x0:4|Y0:0) = q(X0:4—11¥1:0-1)G(Xe| X0:1— 1, Y1:0)-

In this work, we are going to set g(xo|y,) = p(xo) and g(x;|x0:—1,yy,) = p(x¢|x;—1). According
to [1, 12], if the latent variable dimension is not large and the observations are not too infor-
mative, setting the proposal to be equal to transition probability is good enough. To verify our
method, we will conduct experiments with the transition probabilities p(x,|x;—1); the detailed
design is shown in sections 4.4 and 4.5. The weights can then be calculated as follows:

PO |x1)p(~xt‘~xt— 1)
- >
' CI(XzIXO:H,ym)

and w; = %w, where p(y,|x,) is the likelihood. We omit the derivation, and one can refer

to [1, 9, 25] for the details.

One issue of the algorithm is the degeneration of the weights; that is, the variance of the
importance weights will become larger and larger with respect to time. Consequently, there are
only a few samples that have a meaningful weight when ¢ is large. One way to reduce the effect
of degeneration is to use the resampling method. As a result, the algorithm is called sequential
importance resampling (SIR). We provide a SIR algorithm in appendix A. There are various
resampling methods; in this work, we apply systematic resampling as suggested in [9]; please
check appendix A for the details.

4.2. Sources

In the next two subsections, we are going to demonstrate how we set up the testing prob-
lems. For equation (1.1), we set £ = [0, 1]> and the terminal simulation time is 7 = 0.1.
Also r(x) is the given permeability which will be defined later in section 4.3, and the source
Zszl Pi(X) Xl 18 partially known. More specifically, the time mesh grid {#}X_ is given,
and the spatial components {p(x)}X_, are set to be characteristic functions. The kth source
Pr(x) is defined as:

Dk» X €Ay,
pelx) = . 4.6)
0, otherwise,

Here p, is a known constant; Ay is a square with a known size (is equal to 0.06 x 0.06 in all
our experiments), but the location is not given. Our target work is to find one vertex coordinate
of the Ay and k = 1,..., K. One possible p,(x) is shown in figure 1 (left). In the following
experiments, we will consider 2 sources. In both cases, K = 10 and p, = 1250 for all k.
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Source at a certain time step Source 1 trajectory Source 2 trajectory

oo 0.0 00

1200 1200 1200
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800 800 800
04 04 04
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400 400 400
o8

P L 00 8 200
10 0 10 L] 10 o
00 02 ©04 06 08 10 00 02 04 06 08 10 00 02 04 0§ 08 10

Figure 1. Demonstration of the source. Left: example of p;(x) which is the characteristic
function defined in equation (4.6). The middle and right images show the trajectories of
the source { pk(x)}f:,. Middle: source one, which is used in section 4.4. Right: source
two, which is used in section 4.5.
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Figure 2. Left: the first permeability field 2D demonstration. max x;(x) = 0.3978 and
min £ (x) = 0.0521. Right: the second permeability field 2D demonstration. The perme-
ability in the yellow channels and dots equals 10*, while the permeability in the purple
background is equal to 1.

We here list the vertices (left top) coordinates for both sources, and we will trace these
two sequences of the coordinates later by our proposed method. The first list of vertices is:
(0.12, 0.12), (0.20, 0.20), (0.28, 0.28), (0.36, 0.36), (0.44, 0.44), (0.52, 0.52), (0.60, 0.60),
(0.68, 0.68), (0.76, 0.76), (0.84, 0.84); the second list of vertices is: (0.12, 0.12), (0.20, 0.24),
(0.28, 0.36), (0.36, 0.48), (0.44, 0.56), (0.52, 0.64), (0.60, 0.72), (0.68, 0.78), (0.76, 0.84),
(0.84, 0.90). For better illustration, we plot the trajectories of the two sources in figure 1, and
we will discuss these two cases in sections 4.4 and 4.5 respectively.

4.3. Permeability fields

In equation (1.1), the operator .A includes the permeability field «(x). In order to better demon-
strate the idea of the theorem and the algorithm, we will solve several multiscale problems.
Two different permeability fields are used here. The first «;(x) has multiple frequencies and is
defined as follows:
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Algorithm 1. Transition algorithm.

1 Input: current x = (xy, x2)

2 Initialize: set the size related parameters 71, 7, > 0 and speed related parameter sy, and
draw a random number s ~ U(0, s;). We then define [} = so +s+rjandlp =so+ 5+ 12
3 Create a rectangle: the top right vertex coordinate is (x; + I; Ax, x, + [, Ax) and the size is

equal to (2r; Ax, 2r, Ax)
4 Draw a point x" from the rectangle above uniformly; this point will be the next sample

K1(x,y) = 15 sin(27 - 0.01x) - sin(27 - 0.05y) + 0.05 sin(27 - 6.5x) - sin(27 - 6y) + 0.1,

where (x,y) € Q:=[0, 17? and it is demonstrated in figure 2 left.
The second permeability field x,(x) (see figure 2 right for the illustration) has multiple high
contrast channels and is widely used in the multiscale finite element method society [4, 6].
The multiple frequencies in x;(x) and high contrast in x,(x) bring difficulty in solving the
corresponding equations numerically. We will use the standard finite element solver with spa-
tial discretization Ax = 1072 in this work. For the temporal approximation, the backward Euler
scheme is adopted, and the time discretization is Az = 1073,

4.4. The first set of experiments

In this part, we present the first set of experiments whose source is defined in the middle image
of figure 1. As we have discussed before, the proposal distribution g(x'|y’, x) is the same with
the transition probability p(x’|x) where x’,y" denote the new sample and the observation of
the next time step, respectively. We hence only need to specify p(x’|x), which is defined in
algorithm 1.

Here we set so = 6,5, = 5 and r; = r, = 4. It should be noted that if one is given the exact
current state x = (x1, x3), the next exact state is x’ = (x; + 8 Ax, xo + 8Ax) (please check the
trajectory of the first source in section 4.2); however, the center (mean) of all proposed regions
is deviated from the x’. This simulates the real-life scenario: one only knows the ship’s route
plan; however, the ship may depart from the original route, and one needs to find the real route,
and positions when the ship leaks.

The observation is the flux of the boundary. For the multiple frequencies example, we
measure the flux in the interval [0.45,0.52] from each boundary; while for the high contrast
permeability example, we only measure the flux in the interval [0.5,0.55]. In both cases, the
number of particles is 320. To evaluate our results, we calculate the mean of the samples at
each time step k (this indicates the time step in the source) and compare it with the pre-set val-
ues. The demonstration and the relative error are shown in figure 3. We can see that the error
decays in both examples. This is probably due to the error correction of the PF algorithm. The
initial guess has a relatively large error, but the algorithm can correct the error by sampling
from weighted samples whose weights are assigned by the algorithm. Starting from time step
6, the error is stabilized (figure 4).

4.5. The second set of experiments

In this set of experiments, we will use the second source, which is demonstrated as the right
image in figure 1. We use the same transition algorithm in algorithm 1, but we use a differ-
ent set of parameters, specifically, so = 4,5, = 5,r; = 4,r, = 5. Similar to the first source, all
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Trajectory of the samples mean for Relative error of the samples mean for
the multiple frequencies permeability (source 1) the multiple frequencies permeability (source 1)
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Figure 3. Samples mean and the relative error of the multiple frequencies’ permeability
with the first source. Left: samples mean and true source at each time step k. Right:
relative error of the sample mean.
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Figure 4. Samples mean and the relative error of the high contrast permeability with the
first source. Left: samples mean and true source at each time step &. Right: relative error
of the sample mean.

proposed regions’ center (mean) deviates from x’. This is a real situation in which the ship’s
actual route is different from the original plan. The setting makes the predictions more chal-
lenging. For the flux measurement, we choose an interval [0.40, 0.60] from each boundary for
the multiple frequencies permeability and [0.43, 0.58] from each boundary for the high con-
tract permeability. The results are shown in figures 5 and 6, respectively. The error in figure 5
evolves similar as before. For figure 6, the error in the initial guess is already small enough,
and hence it is fluctuating.

From the four examples presented above, we conclude that our algorithm is able to trace the
exact source positions even if the proposal is far away from the exact route. The next challenge
for us is to reduce the amount of observation data since by the theory, we can trace the source
with flux on any open subset of the boundary. We will study this topic in the future.
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Trajectory of the samples mean for Relative error of the samples mean for
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Figure 5. Samples mean and the relative error of the multiple frequencies’ permeability
with the second source. Left: samples mean and true source at each time step k. Right:
relative error of the sample mean.
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Figure 6. Samples mean and the relative error of the high contrast permeability with the
second source. Left: samples mean and true source at each time step k. Right: relative
error of the sample mean.

5. Concluding remarks and future works

This work considers the inverse source problem in the parabolic equation. The unknown source
has a semi-discrete formulation, which can be used to approximate the general form F(x, 7).
We prove the uniqueness theorem—theorem 1, which says the data from any nonempty open
subset of the boundary can support the uniqueness of the source. This conclusion is of signif-
icance in practical applications since it indicates that the source can be recovered from sparse
boundary data and then save the cost. For the theoretical analysis, there is an interesting and
meaningful work in the future: to determine the minimal observed area. Theorem 1 illustrates
that the nonempty open subset of the boundary is sufficient to support the uniqueness. How-
ever, only from this theorem, we do not know whether we can minimize the observed area
further. Finding the minimal observed area is one of our future works. Another exciting topic
is to study a more general source format. For example, the source is not separable.
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In the aspect of numerical reconstructions, since the model problem is a sequential predic-
tion with a sequence of observations up to the time 7, it is natural to formulate the problem as
the Bayesian filtering problem. We apply one PF algorithm to solve the inverse problem with
two multiscale permeabilities. Evaluating the likelihood function is the most time-consuming
step, since it requires solving a forward problem with a fine resolution solver. We use the finite
element solver in this work, however, the solver can be improved by the multiscale finite ele-
ment solver or the deep learning solver. These solvers are more efficient meanwhile preserving
accuracy, and we will study these topics in the future. We can also apply deep learning to train
a solver. This is equivalent to solving the stochastic parametric PDE with the deep neural net-
work. More precisely, we can train a mapping from the source to the flux on the boundary. One
benefit of the method is that it will increase the computation efficiency in evaluating the likeli-
hood function. Another benefit is that we can linearize the network; hence, more advanced PF
algorithms can be used.

Furthermore, in this work, we only consider the case that the unknown p,(x) possesses the
formulation (4.6) and the support A; has a regular shape. The numerical reconstruction of the
source with general formulation will be investigated in the future.
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Appendix A. Particle filter algorithm

See algorithm 2.
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Algorithm 2. Sequential importance resampling (SIR).

1 Initialize the number of time steps n and the number of particles V;

2 Step 0: at ¢t = 0, draw the states xf) for i = 1,..., N from the prior p(zg);

3 fort=1,2,...,n do

4 fori=1,...,N do

5 Sample 2} from the prior q(z¢|z},, ;,y1+) and extend the current trajectory by
adding the temporary proposed state j, = (z}.,_;,21);

6 Calculate the importance weights recursively and normalize the resulting weights as

i plydEDp(aly_y)
Wy =W
a(@]xh, 1, Y1)

7 end
fori=1,...,N do
Normalize the importance weights for the resampling purpose as

i

T = i
2‘7’:1 wy
10 end ‘ .
11 Resampling: multiply §amples 2., with the normalized resampling ‘weight w; to obtain
N random samples xj,, which is roughly distributed following p(x{..|y1:);
12 Set wi = W} = + forall i = 1,..., N;
13 The algorithm will finally return a set of samples whose average is an approximation of

the target distribution:

N

R 1
p(IO:t|y0:t) ~ (IO:t‘yO:t) = N 26(7(1“)((15500
i=1

14 end
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