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Abstract
We consider the inverse source problem in the parabolic equation, where the
unknown source possesses the semi-discrete formulation. Theoretically, we
prove that the flux data from any nonempty open subset of the boundary can
uniquely determine the semi-discrete source. This means the observed area
can be extremely small, and that is the reason we call it sparse boundary data.
For the numerical reconstruction, we formulate the problem from the Bayesian
sequential prediction perspective and conduct the numerical examples which
estimate the space-time-dependent source state by state. To better demonstrate
the method’s performance, we solve two common multiscale problems from
two models with a long source sequence. The numerical results illustrate that
the inversion is accurate and efficient.
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1. Introduction

1.1. Background and literature

As a classical type of PDEs, the parabolic equation is widely applied in physics, engineer-
ing, finance, and so on. The inverse source problems in the parabolic equation have various
applications in the real world, and the corresponding research has a long history. We list rep-
resentative work here [2, 13, 15–17, 26]. Denoting the unknown source by F(x, t), to recover
it, we need the observations of the solution u on the whole domain Rd × (0,∞), which is
impractical in almost every situation. Therefore, in the research of the inverse problem, peo-
ple usually consider some special cases of unknown sources. For instance, a popular case is
the variable separable source, i.e., F(x, t) := p(x)q(t). Given the spatial component p(x) or the
temporal component q(t), recovering the other unknown part is a classical field in the inverse
problems. See [3, 13, 14, 22] and the references therein. Furthermore, the work [23] consid-
ered the case when p(x) and q(t) are both unknown; in [17] the authors recovered the unknown
source p(x′, t) where x′ ∈ Rd−1. Compared with the variable separable form, the semi-discrete
formulation below simulates the general source F(x, t) better:

F(x, t) :=
K∑
k=1

pk(x)χt∈[tk−1,tk ).

We can see the above formulation can approximate the general form F(x, t) accurately if the
time mesh {0 � t0 < t1 < . . .} is fine enough. The parabolic equation with a space-time-
dependent source has many applications. For instance, in the area of medical research, one
needs to trace the blood distribution in some tissues of the human body; in the reservoir sim-
ulation area, one example is to trace the amount of liquid injected into an oil field consisting
of the impermeable rocks; in the ocean, people may need to determine the location of a leak-
ing oil tanker and so on. In [19], the inverse source problem with the semi-discrete source is
investigated.

In this work, the unknown source still has a semi-discrete formulation. The measurements
we used are the boundary flux data, meaning the observed area will be the subset of the
domain’s boundary. To save cost, absolutely, we want the observed area to be as small as
possible. In [19, 23], the authors considered the heat equation on the two-dimensional unit
disc and proved the uniqueness theorem under the boundary flux data from two chosen points
on the boundary. The proof depended on the explicit representation of the eigensystem of the
Laplacian Δ on the two-dimensional unit disc. The conclusions in [19, 23] confirm that in
the heat equation, if the domain has a smooth shape, then it is possible to recover the source
from sparse boundary data. There is a natural question: can we solve a similar inverse source
problem in the parabolic equation with a general domain, in which the explicit representation
of the eigensystem is not applicable?

1.2. Mathematical statement and main theorem

We give the mathematical model as follows:

⎧⎪⎪⎨
⎪⎪⎩

(∂t +A)u(x, t) =
K∑
k=1

pk(x)χt∈[tk−1,tk), (x, t) ∈ Ω× (0,∞),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞) ∪ Ω× {0},

(1.1)
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where Ω ⊂ Rd is open and bounded. The operator A is a symmetric elliptic operator,
defined as

Aψ = −∇ · (κ(x)∇ψ)+ q(x)ψ, ψ ∈ H2(Ω) ∩ H1
0(Ω). (1.2)

Here κ and q possess appropriate regularities to support the future proof, and they satisfy

0 < C1 � κ(x) � C2 < ∞ and q(x) � 0 for a.e. x ∈ Ω.

In the source term, the spatial components {pk(x)}Kk=1 and the time mesh {tk}Kk=0 are all
undetermined. The measurements we used are the boundary flux data:

∂u
∂−→n (x, t), (x, t) ∈ Γ× (0,∞) ⊂ ∂Ω× (0,∞),

where −→n means the outward normal unit vector of the boundary and Γ ⊂ ∂Ω is the observed
area. Hence, the interesting inverse problem in this work is given as follows:

recovering {t0, tk, pk(x)}Kk=1 in the source from the data
∂u
∂−→n

∣∣∣∣
Γ×(0,∞)

.

Remark 1.1. In the parabolic case, because of the analytic continuation, the data ∂u
∂−→n

∣∣
Γ×(0,∞)

may be uniquely determined by ∂u
∂−→n

∣∣
Γ×(0,T)

with T > 0. So we add this remark to explain why
we use the measurements for t ∈ (0,∞). The proof of uniqueness in this work depends on
corollary 3.2, which gives the relation between the measurements and unknowns. The convo-
lution structure in the conclusion of corollary 3.2 implies us to use the Laplace transform. This
is why we choose the data from (0,∞). See section 3 for details.

The approach in this work is more appropriate for the case of finite propagation speed, such
as the wave equation. Since in such equations, the data from the finite time interval (0, T )
cannot determine the unknown source uniquely. So that we may only start the proof from the
data on (0,∞). The analogous inverse source problem in wave equation is one of our future
works.

For this inverse problem, we have two goals: first, proving that the boundary flux data gen-
erated from a small observed area Γ can uniquely determine the source; second, recovering
the unknown source from the sparse boundary data numerically. In the aspect of theoretical
analysis, we attempt to build the uniqueness theorem. Firstly, we give some prior assumptions
for the semi-discrete unknown source

∑K
k=1 pk(x)χt∈[tk−1,tk ).

Assumption 1.2.

(a) For the time mesh {tk}Kk=0, we have K ∈ N+ ∪ {∞}, and there exists η > 0 such that
inf{|tk − tk+1| : k = 0, . . . ,K− 1} � η.

(b) {pk(x)}Kk=1 ⊂ L2(Ω), ‖pk‖L2(Ω) �= 0 for k = 1, . . . ,K, and ‖pk − pk+1‖L2(Ω) �= 0 for
k = 1, . . . ,K− 1.

In assumption 1.2(a), we do not require the time mesh {tk}Kk=0 be finite, which meansK can
be infinity. Also, assumption 1.2(b) is set to make sure the source

∑K
k=1pk(x)χt∈[tk−1,tk ) cannot

be simplified further. Otherwise, if ‖pk0‖L2(Ω) = ‖pk1−1 − pk1‖L2(Ω) = 0, then we can write the
source as ∑

k/∈{k0,k1−1,k1}
pk(x)χt∈[tk−1,tk) + pk1 (x)χt∈[tk1−2,tk1 )

.
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In the next section, we will give assumption 2.4. With assumptions 1.2 and 2.4, we can state
the main theorem of this work.

Theorem 1. Under assumptions 1.2 and 2.4, the flux data from any nonempty open subset
of ∂Ω can uniquely determine the semi-discrete unknown source

∑K
k=1pk(x)χt∈[tk−1,tk).

More precisely, given two sets of unknowns {t0, tk, pk(x)}Kk=1 and {̃t0, t̃k, p̃k(x)}K̃k=1, we
denote the corresponding solutions by u and ũ respectively, assume assumptions 1.2 and 2.4
be valid, and let Γ ⊂ ∂Ω be an arbitrary nonempty open subset. Provided

∂u
∂−→n

∣∣∣∣
Γ×(0,∞)

=
∂ũ
∂−→n

∣∣∣∣
Γ×(0,∞)

,

we have {t0, tk, pk(x)}Kk=1 = {̃t0, t̃k, p̃k(x)}K̃k=1.

Theorem 1 confirms that the data from any nonempty open subset of the boundary is
sufficient to support the uniqueness of this inverse source problem.

1.3. Bayesian formulation and outline

After proving theorem1 for this inverse source problem, it is time to consider reconstructing the
unknown source numerically. The design of the algorithm will be challenging since there are
too many unknowns in the source. The conventionalmethods are hard to handle problemswith
high dimensional unknowns and are very sensitive to the observation locations. However, from
the semi-discrete formulation, one needs to estimate a sequence of unknown states {pk(x)}Kk=1
recursively in time. Hence, one natural idea is to estimate each state pk(x) given a sequence
of observations up to k in time by the posterior distribution. This task of sequential prediction
based on the online observations can then be categorized as the standard Bayesian filtering
problem, which has been thoroughly studied in control theory [5, 10, 20, 24]. This motivates
us to formulate the inversion problem in the Bayesian framework.

The numerical reconstruction is a time series tracking problem and consists of construct-
ing the posterior probability distribution of a sequence of states based on observations. The
resulting model is typically highly nonlinear with non-Gaussian distribution, so obtaining an
explicit exact solution is hard work. This reminds us of estimating the state recursively via a
filtering approach [18]. In this work, we will use the particle filter (PF) algorithm to compute
the posterior of the state in a sequence. The benefit of the PF algorithm is that it can han-
dle any nonlinear properties and is capable to solve any distribution (no Gaussian assumption)
[9, 25]. The PF algorithms usually involve sampling from a probabilistic model which depends
on the previous states and observations. The samples are called particles and constitute an
empirical approximation of the model. The trajectories are then extended by sampling the fol-
lowing state particles based on the existing particles and new observations. The degeneration
issue is a concern of the PF algorithm, but the resampling techniques can reduce the variance
of the particles. In this work, we use the systematical resampling [7, 9], and please check [7]
for a comprehensive review of the resampling schemes. Another concern of the PF algorithms
is the design of the proposal. Many techniques like linearization [8], extended Kalman filter,
and unscented PF [25] are among the most important options to this issue. In this work, we use
the transition prior, and the results are satisfactory. The details can be seen in section 4.

The contribution of this work can be summarized as follows:

(a) Prove the uniqueness theorem rigorously and confirm that the semi-discrete source can be
recovered by the flux data from any nonempty open subset of the boundary. This conclu-
sion can decrease the cost of real projects and is meaningful in practical applications.

4



Inverse Problems 38 (2022) 125007 G Lin et al

(b) To solve the inverse problem numerically, we formulate the process as a sequential pre-
diction and hence use the filter algorithm to predict the semi-discrete source. The method
enables us to solve the models with a long sequence of states and is very accurate.

Finally, we give the outline of this paper. In section 2, we collect several useful results and
show some lemmas which will be used in future proofs. In section 3 we will prove the main
result—theorem1. The proof depends on the Laplace transform and the knowledge of complex
analysis. In section 4, we consider the numerical reconstruction of this inverse source problem.
The algorithm is given, and some satisfactory numerical results are provided. In section 5, we
list some future works for this inverse source problem.

2. Preliminaries

2.1. Eigensystem of A on Ω

For the operator A defined in (1.2), we denote the eigensystem by {λn,ϕn(x)}∞n=1. Since A
is positive definite and self-adjoint, we have that 0 < λ1 � λ2 � . . . and λn →∞ as n→∞,
and the set of eigenfunctions {ϕn(x)}∞n=1 constitutes an orthonormal basis of the space L2(Ω).
Furthermore, if ϕn is an eigenfunction of A corresponding to λn, so is ϕn. Here ϕn means the
complex conjugate of ϕn. This gives that the set {ϕn(x)}∞n=1 coincides with {ϕn(x)}∞n=1. Also,
from the trace theorem, we have { ∂ϕn

∂−→n |∂Ω}
∞
n=1 ⊂ H1/2(∂Ω), and the next lemma concerns the

non-vanishing property of ∂ϕn
∂−→n |∂Ω.

Lemma 2.1. If Γ is a nonempty open subset of ∂Ω, then for each n ∈ N
+, ∂ϕn

∂−→n cannot vanish
almost everywhere on Γ.

Proof. Assume that there exists k ∈ N+ and a nonempty open subset Γ ⊂ ∂Ω such that
∂ϕk
∂−→n = 0 a.e. on Γ. This implies that we can find r > 0 and x0 ∈ ∂Ω such that ∂ϕk

∂−→n ≡ 0 a.e.
on B(x0, r) ∩ ∂Ω, where B(x0, r) is the ball centered at x0 with radius r in Rd . Now define the
extension Ωe of Ω as Ωe = Ω ∪ B(x0, r) and the extended function ϕk,e of ϕk on Ωe as

ϕk,e(x) =

{
ϕk(x), x ∈ Ω,

0, x ∈ B(x0, r)\Ω.

Obviously, ϕk,e ∈ H1(Ωe). Now for any ψ ∈ C∞
c (Ωe), we have∫

Ωe

(κ∇ϕk,e · ∇ψ + q(x)ϕk,eψ − λkϕk,eψ)dx

=

∫
Ω

(κ∇ϕk,e · ∇ψ + q(x)ϕk,eψ − λkϕk,eψ)dx +
∫
B(x0,r)\Ω

0 dx

=

∫
Ω

[(A− λk)ϕk]ψ dx = 0.

Hence, ϕk,e ∈ H1(Ωe) is a weak solution of the equation

(A− λk)v(x) = 0, x ∈ Ωe,

and we can find B(x′0, r
′) ⊂ B(x0, r) ⊂ Ωe s.t. ϕk,e ≡ 0 on B(x′0, r

′). By the unique continuation
principle, we have ϕk,e ≡ 0 on Ωe, i.e. ϕk vanishes on Ω, which contradicts with the fact that
‖ϕk‖L2(Ω) = 1. Therefore we conclude that ∂ϕk

∂−→n does not vanish almost everywhere on any
nonempty open subset of ∂Ω, and the proof is complete. �

5
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2.2. The set {ξl}∞l=1

In this part, we build the auxiliary set of functions {ξl}∞l=1 whichwill be used later. Forψ1,ψ2 ∈
L2(Ω),ψ3,ψ4 ∈ L2(∂Ω), we define

〈ψ1,ψ2〉Ω =

∫
Ω

ψ1(·)ψ2(·)dx, 〈ψ3,ψ4〉κ,∂Ω =

∫
∂Ω

κ(·)ψ3(·)ψ4(·)dx,

and accordingly we give the induced norm ‖ · ‖L2(Ω), ‖ · ‖L2(κ,∂Ω) as

‖ · ‖2L2(Ω) = 〈·, ·〉Ω, ‖ · ‖2L2(κ,∂Ω) = 〈·, ·〉κ,∂Ω.

Not hard to see ‖ · ‖L2(κ,∂Ω) is equivalent to the usual L2 norm ‖ · ‖L2(∂Ω). The next lemma
considers a density property.

Lemma 2.2. For the eigenfunctions {ϕn}∞n=1 defined in section 2.1, we have
Span{ ∂ϕn

∂−→n |∂Ω}
∞
n=1 is dense in L

2(κ, ∂Ω).

Proof. With the density of H3/2(∂Ω) in L2(∂Ω) under the norm ‖ · ‖L2(∂Ω), it is sufficient to

prove that ψ̃ ∈ H3/2(∂Ω) vanishes almost everywhere on ∂Ω if 〈ψ̃, ∂ϕn
∂−→n |∂Ω〉κ,∂Ω = 0 for each

n ∈ N+.
We let ψ satisfy the following system:

{
Aψ(x) = 0, x ∈ Ω,

ψ = ψ̃, x ∈ ∂Ω.

The regularity ψ̃ ∈ H3/2(∂Ω) gives that ψ ∈ H2(Ω), then the Green’s identity can be used.
Fixing one n ∈ N+, we have

〈Aψ,ϕn〉Ω − 〈ψ,Aϕn〉Ω = 〈ψ̃, ∂ϕn
∂−→n 〉κ,∂Ω − 〈 ∂ψ

∂−→n ,ϕn〉κ,∂Ω.

With the results Aψ = 0 on Ω, ϕn = 0 on ∂Ω and 〈ψ̃, ∂ϕn
∂−→n 〉κ,∂Ω = 0, the above equality gives

that

〈ψ,Aϕn〉Ω = λn〈ψ,ϕn〉Ω = 0.

Sowe see that for each n ∈ N
+, 〈ψ,ϕn〉Ω = 0. This together with the completeness of {ϕn}∞n=1

in L2(Ω) yields that ‖ψ‖L2(Ω) = 0. From the definition of theweak derivative, it is not hard to see
that the first-order weak derivative of ψ is also vanishing on Ω. This gives that ‖ψ‖H1(Ω) = 0.
By the continuity of the trace operator, it holds that

‖ψ|∂Ω‖L2(∂Ω) = ‖ψ̃‖L2(∂Ω) � C‖ψ‖H1(Ω) = 0.

6
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So we have ψ̃ = 0 almost everywhere on ∂Ω and the proof is complete. �
Now we can build the auxiliary set {ξl}∞l=1. With the density of Span{ ∂ϕn

∂−→n |∂Ω}
∞
n=1 in

L2(κ, ∂Ω), we can construct the orthonormal basis {ξ̃l}∞l=1 in L2(κ, ∂Ω) as follows. Firstly,
we set ξ̃1 =

∂ϕ1
∂−→n |∂Ω/‖

∂ϕ1
∂−→n ‖L2(κ,∂Ω), and for l = 2, 3, . . . , we assume that the orthonormal set

{ξ̃ j}l−1
j=1 has been constructed. Then we let nl ∈ N+ be the smallest number such that

∂ϕnl
∂−→n |∂Ω /∈

Span{ξ̃ j}l−1
j=1, and after that we can pick ξ̃l ∈ Span{ ∂ϕnl

∂−→n |∂Ω, ξ̃1, . . . , ξ̃l−1} such that

〈ξ̃l, ξ̃ j〉κ,∂Ω = 0 for j = 1, . . . , l− 1, ‖ξ̃l‖L2(κ,∂Ω) = 1.

The density of Span{ ∂ϕn
∂−→n |∂Ω}

∞
n=1 in L2(κ, ∂Ω) ensures that {ξ̃l}∞l=1 is an orthonormal basis

in L2(κ, ∂Ω). Also, from the smoothness property ∂ϕn
∂−→n |∂Ω ∈ H1/2(∂Ω) we have {ξ̃l}∞l=1 ⊂

H1/2(∂Ω).
Next, for each l ∈ N+, let ξl ∈ H1(Ω) be the weak solution of the following system:{

Aξl(x) = 0, x ∈ Ω,

ξl = ξ̃l, x ∈ ∂Ω.
(2.1)

Then we get the auxiliary set {ξl}∞l=1 on Ω.

2.3. The coefficients {cz,n} and assumption 2.4

The proof of theorem 1 relies on assumption 2.4. Before stating assumption 2.4, we need to
build the coefficients {cz,n}. For a fixed point z ∈ ∂Ω, we define the series ψN

z ∈ H1(Ω) as

ψN
z (x) =

N∑
l=1

ξ̃l(z)ξl (x), x ∈ Ω, (2.2)

where {ξ̃l, ξl}∞l=1 are defined in the above subsection. Then we consider the following system
and denote the solutions by {uNz }:⎧⎪⎪⎨

⎪⎪⎩
(∂t +A)uNz (x, t) = 0, (x, t) ∈ Ω× (0,∞),

uNz (x, t) = 0, (x, t) ∈ ∂Ω× (0,∞),

uNz (x, 0) = −ψN
z , x ∈ Ω.

(2.3)

The finite summation ψN
z is constructed following the role of the Dirac delta function, which

reflects the information of the targeted function on a specific point via integration. With the
following lemma, we can give the coefficients {cz,n}.
Lemma 2.3. For each z ∈ ∂Ω and n ∈ N

+, limN→∞〈ψN
z ,ϕn〉Ω exists.

Proof. Firstly from Green’s identities we have

〈ψN
z ,ϕn〉Ω = λ−1

n 〈ψN
z ,Aϕn〉Ω

= λ−1
n

(
〈AψN

z ,ϕn〉Ω − 〈ψN
z ,

∂ϕn
∂−→n 〉κ,∂Ω + 〈∂ψ

N
z

∂−→n ,ϕn〉κ,∂Ω
)

= −λ−1
n

N∑
l=1

ξ̃l(z)〈
∂ϕn
∂−→n , ξ̃l〉κ,∂Ω =: cNz,n,

7
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where the system (2.1) and the boundary condition of ϕn are used. From the definition
of {ξ̃l}∞l=1, we see that 〈 ∂ϕn

∂−→n , ξ̃l〉κ,∂Ω = 0 for large l. Hence, if N is sufficiently large,

the value λ−1
n

∑N
l=1ξ̃l(z)〈 ∂ϕn∂−→n , ξ̃l〉κ,∂Ω will not depend on the value of N. This means that

limN→∞〈ψN
z ,ϕn〉Ω exists, and the proof is complete. �

Now we define,

cz,n := lim
N→∞

〈ψN
z ,ϕn〉Ω = lim

N→∞
cNz,n, pk,n := 〈pk(·),ϕn(·)〉Ω, (2.4)

it is time to state assumption 2.4.

Assumption 2.4.

(a) For k ∈ {1, . . . ,K} and a.e. z ∈ ∂Ω, there exists C > 0 which is independent of N such
that

∑∞
n=1|cNz,npk,n| < C < ∞ for each N ∈ N+.

(b) For a.e. z ∈ ∂Ω, it holds that
∑K

k=1

∑∞
n=1|cz,npk,n| < ∞.

(c) For a.e. t ∈ [0,∞), the spatial components {pk(x)}Kk=1 are smooth enough such that the
series

∑∞
l=1ξ̃l(x)〈 ∂u

∂−→n (·, t), ξ̃l(·)〉κ,∂Ω converges to ∂u
∂−→n (x, t) point-wisely for a.e. x ∈ ∂Ω.

3. Uniqueness theorem

3.1. Representation of the boundary flux data

In this part, we will consider how to present the boundary flux ∂u
∂−→n |∂Ω by the unknown source.

Firstly, we give the next lemma.

Lemma 3.1. For a.e. z ∈ ∂Ω,we definewN
z = uNz + ψN

z , where u
N
z and ψ

N
z are given by (2.3)

and (2.2), respectively. Then we have:

for a.e. t ∈ [0, t0],

− ∂u
∂−→n (z, t) = 0;

for a.e. t ∈ (tm0−1, tm0 ] with 1 � m0 � K,

− ∂u
∂−→n (z, t) = lim

N→∞

∫
Ω

pm0 (x)w
N
z (x, t− tm0−1)dx

+

m0−1∑
m=1

lim
N→∞

∫
Ω

pm(x)[w
N
z (x, t− tm−1)− wN

z (x, t − tm)]dx;

for a.e. t ∈ (tK ,∞) (when K is finite),

− ∂u
∂−→n (z, t) =

K∑
m=1

lim
N→∞

∫
Ω

pm(x)[wN
z (x, t− tm−1)− wN

z (x, t− tm)]dx.

Proof. From the definition of ψN
z , we see that (∂t +A)ψN

z = 0. This result and (2.3) show
that wN

z satisfies the equation

(∂t +A)wN
z = 0, (x, t) ∈ Ω× (0,∞),

8
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with the boundary conditionwN
z |∂Ω = ψN

z |∂Ω and the initial conditionwN
z (x, 0) = 0. Therefore,

Green’s identities give that for each v ∈ H1
0(Ω),∫

Ω

(∂t + q)wN
z (x, t)v(x)+ κ(x)∇wN

z (x, t) · ∇v(x)dx = 0, t ∈ (0,∞).

From (1.1), we obtain∫ t

0

∫
Ω

F(x, τ )wN
z (x, t − τ )dx dτ =

∫ t

0

∫
Ω

(∂t +A)u(x, τ )wN
z (x, t− τ )dx dτ.

Green’s identities and the vanishing initial conditions of u and wN
z give that∫ t

0

∫
Ω

(∂t + q)u(x, τ )wN
z (x, t − τ )dx dτ =

∫ t

0

∫
Ω

(∂t + q)wN
z (x, t− τ )u(x, τ )dx dτ ,

∫ t

0

∫
Ω

−∇ · (κ∇u(x, τ ))wN
z (x, t− τ )dx dτ =

∫ t

0

∫
Ω

κ(x)∇u(x, τ ) · ∇wN
z (x, t − τ )dx dτ

−
∫ t

0

∫
∂Ω

κ(x)
∂u
∂−→n (x, τ )ψN

z (x)dx dτ.

Hence, we have∫ t

0

∫
Ω

F(x, τ )wN
z (x, t− τ )dx dτ

=

∫ t

0

∫
Ω

(∂t + q)wN
z (x, t − τ )u(x, τ )+ κ(x)∇wN

z (x, t− τ ) · ∇u(x, τ )dx dτ

−
∫ t

0

∫
∂Ω

κ(x)
∂u
∂−→n (x, τ )ψN

z (x)dx dτ

= −
∫ t

0

N∑
l=1

ξ̃l(z)

〈
∂u
∂−→n (·, τ ), ξ̃l(·)

〉
κ,∂Ω

dτ.

For t ∈ (tm0−1, tm0 ] with 1 � m0 � K, the left side of the above equality can be written as∫ t

0

∫
Ω

F(x, t− τ )wN
z (x, τ )dx dτ =

∫ t−tm0−1

0

∫
Ω

pm0 (x)w
N
z (x, τ )dx dτ

+

m0−1∑
m=1

∫ t−tm−1

t−tm

∫
Ω

pm(x)wN
z (x, τ )dx dτ.

Similarly, if t > tK, we have

∫ t

0

∫
Ω

F(x, t− τ )wN
z (x, τ )dx dτ =

K∑
m=1

∫ t−tm−1

t−tm

∫
Ω

pm(x)wN
z (x, τ )dx dτ.

Then for the above equality, differentiating at time t gives that for t ∈ (tm0−1, tm0 ] with
1 � m0 � K,

9
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−
N∑
l=1

ξ̃l(z)

〈
∂u
∂−→n (·, t), ξ̃l(·)

〉
κ,∂Ω

=

∫
Ω

pm0 (x)w
N
z (x, t− tm0−1)dx

+

m0−1∑
m=1

∫
Ω

pm(x)
[
wN
z (x, t− tm−1)− wN

z (x, t− tm)
]
dx,

and for t > tK (from assumption 1.2, we see that K is finite),

−
N∑
l=1

ξ̃l(z)

〈
∂u
∂−→n (·, t), ξ̃l(·)

〉
κ,∂Ω

=

K∑
m=1

∫
Ω

pm(x)
[
wN
z (x, t− tm−1)− wN

z (x, t− tm)
]
dx.

From assumption 2.4(c) we have for a.e. t > tK,

− ∂u
∂−→n (z, t) =

K∑
m=1

lim
N→∞

∫
Ω

pm(x)
[
wN
z (x, t− tm−1)− wN

z (x, t− tm)
]
dx,

and for a.e. t ∈ (tm0−1, tm0 ] with 1 � m0 � K,

− ∂u
∂−→n (z, t) = lim

N→∞

∫
Ω

pm0 (x)w
N
z (x, t− tm0−1)dx

+

m0−1∑
m=1

lim
N→∞

∫
Ω

pm(x)
[
wN
z (x, t− tm−1)− wN

z (x, t− tm)
]
dx.

Assumption 1.2(a) ensures that for a fixed t, the summations on the right sides of the above
results are finite. Therefore, the order of summation and limit can be exchanged. Moreover,
the proof for t ∈ [0, t0] is trivial. The proof is complete. �

From the above lemma, the following corollary can be deduced.

Corollary 3.2. For a.e. z ∈ ∂Ω and t ∈ (0,∞), it holds that

−
∫ t

0

∂u
∂−→n (z, τ )dτ =

∫ t

0

K∑
k=1

χt−τ∈[tk−1,tk )

[ ∞∑
n=1

cz,npk,n(1− e−λnτ )

]
dτ.

Here pk,n and cz,n are defined in (2.4).

Proof. Firstly, let us evaluate the limit limN→∞〈pk(·),wN
z (·, t)〉Ω for k = 1, . . . ,K and

t ∈ (0,∞). Fixing N ∈ N+, from the definition of ψN
z we have ψN

z ∈ L2(Ω). So the Fourier
expansion of ψN

z can be given as ψN
z =

∑∞
n=1c

N
z,nϕn, where c

N
z,n is defined in (2.4). Moreover,

from wN
z = uNz + ψN

z and equation (2.3), we have

wN
z (x, t) =

∞∑
n=1

cNz,n(1− e−λnt)ϕn(x).

The above result together with the regularity ψN
z ∈ L2(Ω) yields that wN

z (·, t) ∈ L2(Ω) for t ∈
[0,∞). Also recall that pk ∈ L2(Ω), then

〈pk(·),wN
z (·, t)〉Ω =

∞∑
n=1

cNz,n pk,n(1− e−λnt).

10
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The condition in assumption 2.4 implies that the dominated convergence theorem can be
applied to the above series. So we have

lim
N→∞

∞∑
n=1

cNz,npk,n(1− e−λnt) =
∞∑
n=1

lim
N→∞

cNz,npk,n(1− e−λnt).

From (2.4), we have

lim
N→∞

〈pk(·),wN
z (·, t)〉Ω = lim

N→∞

∞∑
n=1

cNz,npk,n(1− e−λnt) =
∞∑
n=1

cz,n pk,n(1− e−λnt).

Now we claim that for t > 0,

−
∫ t

0

∂u
∂−→n (z, τ )dτ =

∫ t

0

K∑
k=1

χt−τ∈[tk−1,tk )

[ ∞∑
n=1

cz,npk,n(1− e−λnτ )

]
dτ. (3.1)

If t � t0, from lemma 3.1 we have ∂u
∂−→n (z, τ ) = 0 for τ � t. This means (3.1) is valid.

For t ∈ (tm0−1, tm0 ] with 1 � m0 � K, lemma 3.1 yields that

−
∫ t

0

∂u
∂−→n (z, τ )dτ = −

m0−1∑
m=1

∫ tm

tm−1

∂u
∂−→n (z, τ )dτ −

∫ t

tm0−1

∂u
∂−→n (z, τ )dτ

=

m0−1∑
m=1

∫ tm

tm−1

m−1∑
l=1

∞∑
n=1

cz,npl,n(e
−λn(τ−tl) − e−λn(τ−tl−1))dτ

+

m0−1∑
m=1

∫ tm

tm−1

∞∑
n=1

cz,npm,n(1− e−λn(τ−tm−1))dτ

+

∫ t

tm0−1

m0−1∑
l=1

∞∑
n=1

cz,npl,n(e
−λn(τ−tl) − e−λn(τ−tl−1))dτ

+

∫ t

tm0−1

∞∑
n=1

cz,n pm0,n(1− e−λn(τ−tm0−1))dτ

=: S1 + S2 + S3 + S4.

The straightforward computation gives that

S1 =
m0−1∑
m=1

m−1∑
l=1

∫ tm−tl−1

tm−1−tl−1

∞∑
n=1

cz,n pl,n(1− e−λnτ )dτ −
m0−1∑
m=1

m−1∑
l=1

∫ tm−tl

tm−1−tl

∞∑
n=1

cz,n pl,n(1− e−λnτ )dτ

=

m0−2∑
l=1

m0−1∑
m=l+1

∫ tm−tl−1

tm−1−tl−1

∞∑
n=1

cz,n pl,n(1− e−λnτ )dτ −
m0−2∑
l=1

m0−1∑
m=l+1

∫ tm−tl

tm−1−tl

∞∑
n=1

cz,n pl,n(1− e−λnτ )dτ

=

m0−2∑
l=1

∫ tm0−1−tl−1

tl−tl−1

∞∑
n=1

cz,n pl,n(1− e−λnτ )dτ −
m0−2∑
l=1

∫ tm0−1−tl

0

∞∑
n=1

cz,n pl,n(1− e−λnτ )dτ.
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Similarly, we have

S2 =
m0−1∑
m=1

∫ tm−tm−1

0

∞∑
n=1

cz,npm,n(1− e−λnτ )dτ ,

S3 =
m0−1∑
l=1

∫ t−tl−1

tm0−1−tl−1

∞∑
n=1

cz,npl,n(1− e−λnτ )dτ −
m0−1∑
l=1

∫ t−tl

tm0−1−tl

∞∑
n=1

cz,npl,n(1− e−λnτ )dτ ,

S4 =
∫ t−tm0−1

0

∞∑
n=1

cz,npm0,n(1− e−λnτ )dτ =

∫ t

0
χt−τ∈[tm0−1,tm0 )

∞∑
n=1

cz,n pm0,n(1− e−λnτ )dτ.

These give that

S1 + S2 + S3 =

m0−2∑
l=1

∫ t−tl−1

0

∞∑
n=1

cz,n pl,n(1 − e−λnτ )dτ −
m0−2∑
l=1

∫ t−tl

0

∞∑
n=1

cz,n pl,n(1− e−λnτ )dτ

+

∫ t−tm0−2

0

∞∑
n=1

cz,n pm0−1,n(1− e−λnτ )dτ −
∫ t−tm0−1

0

∞∑
n=1

cz,n pm0−1,n(1− e−λnτ )dτ

=

m0−1∑
l=1

∫ t−tl−1

t−tl

∞∑
n=1

cz,n pl,n(1 − e−λnτ )dτ

=

∫ t

0

m0−1∑
l=1

χt−τ∈[tl−1 ,tl)

[ ∞∑
n=1

cz,n pl,n(1 − e−λnτ )

]
dτ.

Hence, it holds that

−
∫ t

0

∂u
∂−→n (z, τ )dτ = S1 + S2 + S3 + S4

=

∫ t

0

m0∑
l=1

χt−τ∈[tl−1,tl)

[ ∞∑
n=1

cz,npl,n(1− e−λnτ )

]
dτ ,

which confirms the claim.
When K is finite, we can pick t > 0 such that t > tK. In this case, the term S4 is eliminated,

and m0 − 1 is replaced by K in the terms S1, S2, S3. So the claim (3.1) is still valid.
Above all, we have proved the claim (3.1) and the proof is complete. �

3.2. The analysis of Laplace transform

The proof of theorem 1 will rely on the Laplace transform L, defined as

L{ψ(t)}(s) =
∫ ∞

0
e−stψ(t)dt, s ∈ C.

Recalling the result in corollary 3.2, it is not hard to see that

L{1− e−λnt}(s) = λns
−1(s+ λn)

−1, Re s > 0.

12
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Also, assumption 2.4 gives that∣∣∣∣∣
∫ t

0

K∑
k=1

χt−τ∈[tk−1,tk)

[ ∞∑
n=1

cz,npk,n(1− e−λnτ )

]
dτ

∣∣∣∣∣ � 2t
K∑
k=1

∞∑
n=1

|cz,npk,n|

� Ct,

and we have |e−stt| is integrable on (0,∞) for Re s > 0. This means that the dominated con-
vergence theorem can be used and it gives that for Re s > 0,

L
{
−
∫ t

0

∂u
∂−→n (z, τ )dτ

}
(s) =

K∑
k=1

∫ ∞

0
e−st

∫ t

0
χt−τ∈[tk−1,tk )

[ ∞∑
n=1

cz,npk,n(1− e−λnτ )

]
dτ dt

=
K∑
k=1

[∫ ∞

0
e−stχt∈[tk−1,tk)dt

][∫ ∞

0
e−st

∞∑
n=1

cz,npk,n(1− e−λnt)dt

]

=

K∑
k=1

s−2(e−tk−1s − e−tks)

[ ∞∑
n=1

cz,npk,nλn(s+ λn)−1

]
.

Hence, we see that for Re s > 0,

s2L
{
−
∫ t

0

∂u
∂−→n (z, τ )dτ

}
(s) =

K∑
k=1

(e−tk−1s − e−tks)

[ ∞∑
n=1

cz,npk,nλn(s+ λn)−1

]
. (3.2)

We index the set of distinct eigenvalues as {λ j}∞j=1 with increasing order. Then we give the
next lemma, which contains the well-definedness and the analyticity of the above complex-
valued series.

Lemma 3.3. Under assumption 2.4, we have the following properties:

(a) For R > 0 we define ΛR := {s ∈ C : |s| < R}, then for each k ∈ {1, . . . ,K},∑∞
n=1cz,npk,nλn(s+ λn)−1 is uniformly convergent for s ∈ ΛR\{−λ j}∞j=1;

(b)
∑∞

n=1cz,npk,nλn(s+ λn)−1 is holomorphic on C\{−λ j}∞j=1;
(c) The series

∑K
k=1(e

−tk−1s − e−tks)
[∑∞

n=1cz,npk,nλn(s+ λn)−1
]
is analytic onC+ := {s ∈ C :

Re s > 0}.

Proof. For (a), fixing R > 0, since limn→∞ λn = ∞, then we can find large enoughN1 ∈ N+

such that λn � 2R if n > N1. For s ∈ ΛR\{−λ j}∞j=1 and n > N1,

|s+ λn| � |Re s+ λn| = Re s+ λn � λn − R.

This means that |λn(s+ λn)−1| � 2. Given ε > 0, from assumption 2.4, we can find N2 > 0
such that

∑∞
n=n0

|cz,n pk,n| < ε/2 if n0 > N2. Hence, for n0 > max{N1,N2}, we have∣∣∣∣∣
∞∑

n=n0

cz,npk,nλn(s+ λn)−1

∣∣∣∣∣ � 2
∞∑

n=n0

|cz,npk,n| < ε for s ∈ ΛR\{−λ j}∞j=1.

This gives the uniform convergence.
For (b), fixing R > 0, it is clear that cz,n pk,nλn(s+ λn)−1 is holomorphic on ΛR\{−λ j}∞j=1.

Then the uniform convergence gives that
∑∞

n=1cz,npk,nλn(s+ λn)−1 is holomorphic on
ΛR\{−λ j}∞j=1. For each s0 ∈ C\{−λ j}∞j=1, we can find a sufficiently largeR > 0 such that s0 ∈

13
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ΛR\{−λ j}∞j=1. This means that
∑∞

n=1cz,npk,nλn(s+ λn)−1 is holomorphic on s = s0, which
leads to the desired result.

For (c), for s ∈ C+, we have |e−tk−1s − e−tks| � 2 and |λn(s+ λn)−1| � 1. Also, assumption
2.4 gives that

∑K
k=1

∑∞
n=1|cz,npk,n| < ∞, then following the proof for (a), we obtain that the

series

K∑
k=1

(e−tk−1s − e−tks)

[ ∞∑
n=1

cz,npk,nλn(s+ λn)
−1

]

is uniformly convergent on C+. Sequentially, from the proof for (b), the holomorphic result
can be derived, and the proof is complete. �

3.3. Some auxiliary lemmas

Before showing theorem 1, we list and prove several auxiliary lemmas.

Lemma 3.4. Recall that {λ j}∞j=1 is the set of distinct eigenvalues with increasing order. For
any nonempty open subset Γ ⊂ ∂Ω, if∑

λn=λ j

cz,nηn = 0 for j ∈ N
+ and a.e. z ∈ Γ,

then {ηn}∞n=1 = {0}.

Proof. Fixing j ∈ N+, from the proof of lemma 2.4, we have

cz,n = λ−1
j lim

N→∞
〈ψN

z ,Aϕn〉Ω

= λ−1
j lim

N→∞

(
〈AψN

z ,ϕn〉Ω − 〈ψN
z ,

∂ϕn
∂−→n 〉κ,∂Ω + 〈∂ψ

N
z

∂−→n ,ϕn〉κ,∂Ω
)

= −λ−1
j

∞∑
l=1

ξ̃l(z)〈
∂ϕn
∂−→n , ξ̃l〉κ,∂Ω.

With the definition of the orthonormal basis {ξ̃l}∞l=1, the above series is actually finite. This
gives that for a.e. z ∈ Γ,

∞∑
l=1

ξ̃l(z)〈
∂ϕn
∂−→n , ξ̃l〉κ,∂Ω =

∂ϕn
∂−→n (z),

which leads to
∑

λn=λ j
ηn

∂ϕn
∂−→n (z) = 0 for a.e. z ∈ Γ. Assume that {ηn : λn = λ j} �= {0}, then the

linear independence of the set {ϕn(x) : λn = λ j} yields that
∑

λn=λ j
ηnϕn(x) is not vanishing on

Ω. However, we see that
∑

λn=λ j
ηnϕn(x) is an eigenfunction corresponding to the eigenvalue

λ j. These and lemma 2.1 give that
∑

λn=λ j
ηn

∂ϕn
∂−→n cannot vanish almost everywhere on Γ, which

is a contradiction.Hence, we prove that {ηn : λn = λ j} = {0} for each j ∈ N
+, namely,ηn = 0

for n ∈ N+. The proof is complete. �

Lemma 3.5. Set Γ ⊂ ∂Ω to be a nonempty open subset and let
∑∞

n=1cz,nηn be absolute
convergent for a.e. z ∈ Γ. Then given ε > 0, the result

14
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∞∑
n=1

cz,nηn(1− e−λnt) = 0 for t ∈ (0, ε) and a.e. z ∈ Γ

implies that ηn = 0 for n ∈ N+.

Proof. From [23, lemma 3.5] we have that
∑

λn=λ j
cz,nηn = 0 for each j ∈ N+ and a.e. z ∈ Γ.

Then lemma 3.4 gives the desired result and completes the proof. �

Lemma 3.6. Let the conditions in lemma 3.5 be valid. For s ∈ C+, if ∃ε > 0 such that

lim
Res→∞

eεs
[ ∞∑
n=1

cz,nλnηn(s+ λn)−1

]
= 0 for a.e. z ∈ Γ,

then {ηn}∞n=1 = {0}.

Proof. For a.e. z ∈ Γ, we define

Fz(t) :=χt�0

∞∑
n=1

cz,nηn(1− e−λnt), t ∈ (−∞,∞).

From the absolute convergence of the series
∑∞

n=1cz,nηn, we see that

|Fz(t)| � C
∞∑
n=1

|cz,nηn| � C < ∞.

Also, the direct computation yields that∫ ∞

−ε

|e−st|
∫ t+ε

0
|Fz(τ )|dτ dt � C

∫ ∞

−ε

e−tRes(t + ε)dt

= C eεRes
∫ ∞

0
e−tRest dt

= C eεRes(Re s)−2 < ∞.

This implies the well-definedness of the integration
∫∞
−ε |e−st|

∫ t+ε

0 |Fz(τ )|dτ dt for Re s > 0 and
a.e. z ∈ Γ.

Introducing the Heaviside function H(t) :=χt�0, we see that∫ ∞

−ε

e−st
∫ t+ε

0
Fz(τ )dτ dt =

∫ ∞

−∞
e−st

∫ ∞

−∞
H(t− τ + ε)Fz(τ )dτ dt.

The above argument provides the well-definedness of the integral∫ ∞

−∞
e−st

∫ ∞

−∞
H(t− τ + ε)Fz(τ )dτ dt

when Re s > 0. With Fubini theorem and the dominated convergence theorem, we have,
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∫ ∞

−∞
e−ts

∫ ∞

−∞
H(t− τ + ε)Fz(τ )dτ dt

=

∫ ∞

−ε

e−ts dt
∫ ∞

0
e−τs

[ ∞∑
n=1

cz,nηn(1− e−λnτ )

]
dτ

= s−2 eεs
[ ∞∑
n=1

cz,nλnηn(s+ λn)
−1

]
, Re s > 0,

which leads to

lim
Res→∞

∫ ∞

−∞
e−ts

∫ ∞

−∞
H(t− τ + ε)Fz(τ )dτ dt = 0.

Also, from the direct calculation, we have

∫ ∞

−∞
e−ts

∫ ∞

−∞
H(t− τ + ε)Fz(τ )dτ dt =

∫ ∞

−ε

e−ts
[ ∞∑
n=1

cz,n

∫ t+ε

0
ηn(1− e−λnτ )dτ

]
dt

=

∫ ε

0
e(ε−t)s

[ ∞∑
n=1

cz,n

∫ t

0
ηn(1− e−λnτ )dτ

]
dt

+

∫ ∞

0
e−ts

[ ∞∑
n=1

cz,n

∫ t+ε

0
ηn(1− e−λnτ )dτ

]
dt

=: Sz,1(s)+ Sz,2(s).

For Sz,2(s), the dominated convergence theorem and the absolute convergence of
∑∞

n=1cz,nηn
give that

|Sz,2(s)| � C
∞∑
n=1

|cz,nηn|
∫ ∞

0
e−tRes|t + ε|dt,

and clearly the right side converges to 0 as Re s→∞. So limRes→∞ Sz,2(s) = 0. With the limit
assumption in this lemma, we have

lim
Res→∞

Sz,1(s) = lim
Res→∞

[Sz,1(s)+ Sz,2(s)]− lim
Res→∞

Sz,2(s) = 0.

For each R0 ∈ R, when Re s ∈ (−∞,R0), we can see

|Sz,1(s)| � C
∫ ε

0
e(ε−t)Rest

∞∑
n=1

|cz,nηn|dt � C eεR0
∫ ε

0
t dt = Cε,R0 < ∞.

This with the limit result limRes→∞ Sz,1(s) = 0 yields that Sz,1(s) is well-defined and bounded
on the whole complex plane C. The definition of Sz,1(s) gives that Sz,1(s) is holomorphic on C.
Hence, we have that Sz,1(s) is a bounded entire function for a.e. z ∈ Γ, which with Liouville’s
theorem yields that Sz,1 ≡ C on C. Considering the limit result limRes→∞ Sz,1(s) = 0, it gives
that

Sz,1(s) = 0 for s ∈ C and a.e. z ∈ Γ.
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Then we can see

Sz,1(s) =
∫ ε

0
e(ε−t)s

[ ∞∑
n=1

cz,n

∫ t

0
ηn(1− e−λnτ )dτ

]
dt

= eεs
∫ ε

0
e−ts

[ ∞∑
n=1

cz,n

∫ t

0
ηn(1− e−λnτ )dτ

]
dt ≡ 0,

which means for Re s > 0,

0 ≡
∫ ∞

0
e−stH(ε− t)

[ ∞∑
n=1

cz,n

∫ t

0
ηn(1− e−λnτ )dτ

]
dt

=L
{
H(ε− t)

∞∑
n=1

cz,n

∫ t

0
ηn(1− e−λnτ )dτ

}
(s).

Using [11, corollary 8.1], it follows that

∞∑
n=1

cz,n

∫ t

0
ηn(1− e−λnτ )dτ = 0, t ∈ (0, ε).

The absolute convergence of
∑∞

n=1cz,nηn supports the uniform convergence of

∞∑
n=1

cz,n

∫ t

0
ηn(1− e−λnτ )dτ and

∞∑
n=1

cz,nηn(1− e−λnt)

on (0, ε). Thus, from [21, theorem 7.17], differentiating the series
∑∞

n=1cz,n
∫ t
0ηn(1− e−λnτ )dτ

on t yields that for t ∈ (0, ε) and a.e. z ∈ Γ,

0 =
d
dt

[ ∞∑
n=1

cz,n

∫ t

0
ηn(1− e−λnτ )dτ

]
=

∞∑
n=1

cz,nηn(1− e−λnt).

This together with lemma 3.5 leads to ηn = 0 for n ∈ N+, and completes the proof. �

3.4. Proof of theorem 1

Now, it is time to show theorem 1. For shorten the proof, the following notations will be used:

pk,n = 〈pk(·),ϕn(·)〉Ω, Qz,k(s) =
∞∑
n=1

cz,n pk,nλn(s+ λn)−1,

p̃k,n = 〈p̃k(·),ϕn(·)〉Ω, Q̃z,k(s) =
∞∑
n=1

cz,n p̃k,nλn(s+ λn)−1.

Proof of theorem 1. The result (3.2), lemma 3.3 and the analytic continuation give that for
s ∈ C+ and a.e. z ∈ Γ,

K∑
k=1

(e−tk−1s − e−tks)Qz,k(s) =
K̃∑
k=1

(e−̃tk−1s − e−̃tks)Q̃z,k(s). (3.3)
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Firstly, let us show t0 = t̃0. Without loss of generality, we can assume that t0 < t̃0. Picking
ε > 0 such that ε < min{̃t0 − t0, t1 − t0}, from (3.3), we have for s ∈ C+ and a.e. z ∈ Γ,

eεsQz,1(s) = e(ε+t0−t1)sQz,1(s)−
K∑
k=2

(e(ε+t0−tk−1)s − e(ε+t0−tk)s)Qz,k(s)

+

K̃∑
k=1

(e(ε+t0−̃tk−1)s − e(ε+t0−̃tk)s)Q̃z,k(s).

(3.4)

We see that λn(s+ λn)−1 is uniformly bounded on C+. Recalling the convergence result∑K
k=1

∑∞
n=1|cz,npk,n| < ∞ from assumption 2.4, the uniform convergence of the series∑K

k=2(e
(ε+t0−tk−1)s − e(ε+t0−tk)s)Qz,k(s) on the half plane C+ can be derived. Then we have,

lim
Res→∞

K∑
k=2

(e(ε+t0−tk−1)s − e(ε+t0−tk)s)Qz,k(s) =
K∑
k=2

lim
Res→∞

(e(ε+t0−tk−1)s − e(ε+t0−tk)s)Qz,k(s) = 0.

Similarly, we see that other terms on the right side of (3.4) also tend to zero as Re s→∞.
So we have limRes→∞ eεsQz,1(s) = 0 for a.e. z ∈ Γ. This with lemma 3.6 gives that p1,n = 0 for
n ∈ N+, i.e. ‖p1‖L2(Ω) = 0, which contradicts with assumption 1.2. Hence, we have t0 = t̃0.

Inserting t0 = t̃0 into (3.3) and picking 0 < ε < min{t1 − t0, t̃1 − t0}, we have

eεs[Qz,1(s)− Q̃z,1(s)] = e(ε+t0−t1)sQz,1(s)− e(ε+t0−̃t1)sQ̃z,1(s)

−
K∑
k=2

(e(ε+t0−tk−1)s − e(ε+t0−tk)s)Qz,k(s)

+

K̃∑
k=2

(e(ε+t0−̃tk−1)s − e(ε+t0−̃tk)s)Q̃z,k(s).

From the previous arguments, we can prove

lim
Res→∞

eεs[Qz,1(s)− Q̃z,1(s)] = 0, a.e. z ∈ Γ.

Lemma 3.6 gives that p1,n = p̃1,n for n ∈ N+, namely ‖p1 − p̃1‖L2(Ω) = 0.
Next we want to show t1 = t̃1. Owing to the results p1,n = p̃1,n and t0 = t̃0 into (3.3), it

follows that for s ∈ C+ and a.e. z ∈ Γ,

e−t1s[Qz,2(s)− Qz,1(s)] = e−̃t1s[Q̃z,2(s)− Q̃z,1(s)]+ e−t2sQz,2(s)− e−̃t2sQ̃z,2(s)

−
K∑
k=3

(e−tk−1s − e−tks)Qz,k(s)+
K̃∑
k=3

(e−̃tk−1s − e−̃tks)Q̃z,k(s).

Without loss of generality, we assume that t1 < t̃1 and pick 0 < ε < min{̃t1 − t1, t2 − t1, t̃2 −
t1}. Following the proof for t0 = t̃0, we can show that ‖p2 − p1‖L2(Ω) = 0. This is a contradic-
tion. Hence t1 = t̃1.
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Now with the results t0 = t̃0, t1 = t̃1 and ‖p1 − p̃1‖L2(Ω) = 0, from (3.3), we have that for
Re s > 0 and a.e. z ∈ Γ,

K∑
k=2

(e−tk−1s − e−tks)Qz,k(s) =
K̃∑
k=2

(e−̃tk−1s − e−̃tks)Q̃z,k(s).

From the previous proof, we can derive that t2 = t̃2 and ‖p2 − p̃2‖L2(Ω) = 0. Using this tech-
nique recursively, we can conclude that

t0 = t̃0, tk = t̃k, ‖pk − p̃k‖L2(Ω) = 0 for k = 1, . . . , min{K, K̃}. (3.5)

Finally, we need to show K = K̃. (For the case of K = ∞ and K̃ = ∞, we regard them as
K = K̃.) Without loss of generality assuming that K < K̃, from (3.3) and (3.5), we have for
Re s > 0 and a.e. z ∈ Γ,

K̃∑
k=K+1

(e−̃tk−1s − e−̃tks)Q̃z,k(s) = 0.

The former proof gives that ‖ p̃K+1‖L2(Ω) = 0, which is a contradiction. Hence, we have that
K = K̃, which together with (3.5) leads to the desired result. The proof is complete. �

4. Numerical reconstructions

In this section, we are going to conduct several numerical experiments which realize the inver-
sion process described in theorem 1. The experiments focus on the recovery of the support
of the unknown source. Such experiments are common in some practical applications, such as
medical imaging, pollution control, and so on. As we mentioned in section 1, we formulate this
inverse source problem as estimating the state of the system (position of the source) when a
sequence of observations in time becomes available. The popular choice to solve the sequential
prediction problem is the sequential Monte Carlo (SMC) method, which is also called the PF.
In this work, we are going to use one variant of the SMC as the approach to solving the inverse
problem. Before presenting the results of the numerical experiments, we will first review some
preliminaries of the SMC algorithm.

4.1. Sequential Monte Carlo (SMC)

Consider a discrete-time Markov process {xt}nt=0:

x0 ∼ p(x0) and xn|xn−1 ∼ p(xn|xn−1), (4.1)

where ∼ means distributed as, p(x0) is the prior of the initial state x0 and p(x′|x) is the given
transition probability prior from current state x to the next state x′. We are interested in esti-
mating {xt}nt=0 which is also denoted as x0:n, given the observations {yt}nt=0 at each time step.
The state xt is the position of the support of the source and yt is the flux on the boundary.
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The equation (4.1) together with the likelihood p(yt|xt) will define a Bayesian model. We
have the prior on the trajectory x0:n := {x0, . . . , xn} as follows:

p(x0:n) = p(x0)Π
n
k=1p(xk|xk−1). (4.2)

Moreover,

p(y0:n|x0:n) = Πn
k=1p(yk|xk). (4.3)

From a Bayesian perspective, the posterior distribution of x0:n given a sequence of the obser-
vations y0:n is:

p(x0:n|y0:n) =
p(x0:n, y0:n)
p(y0:n)

, (4.4)

where p(x0:n, y0:n) = p(y0:n|x0:n)p(x0:n) and p(y0:n) =
∫
p(x0:n, y0:n)dx0:n.

In our application, the most time-consuming step is to evaluate the likelihood function
p(y0:n|x0:n), and we will follow the classical framework as in [24]. Denoting the forward solver,
which maps the input state u to the observation y as G, it follows that

y = G(u)+ η,

where η is the error associatedwith the process. There are various sources of error. For example,
the error in the observation and the error of the forward solver. The total error η is then assumed
to follow the Gaussian distribution,N (0,B) where B is the covariance with a proper size. The
likelihood function then has the form:

p(y|u) := p(y− G(u)) = p(η) ∼ N (0,B).

Now the area of interest is the tracking problem: find the current state given the observations.
Theoretically, this means that one needs to find a group of p(x0:n|y0:n). By the prior (4.2) and
the likelihood (4.3), the joint distribution p(x0:n, y0:n) in (4.4) then satisfies

p(x0:n, y0:n) = p(x1:n, y1:n)p(yn|xn)p(xn|xn−1),

and it follows that

p(x0:n|y0:n) = p(x0:n−1|y0:n−1)
p(xn|xn−1)p(yn|xn)

p(yn|yn−1)
, (4.5)

where p(yn|yn−1) =
∫
p(xn−1|y0:n−1)p(xn|xn−1)p(yn|xn)dxn−1:n.

Most particle filtering methods are created by a numerical approximation to (4.5). A com-
mon and powerful algorithm is the SMCapproximation.One can use a set of samples (particles)
that are drawn from a posterior distribution to approximate the target posterior. More precisely,
the posterior is the average calculated by

p̂(x0:n|y0:n) =
1
Np

Np∑
i=1

δxi0:t
dx0:t.

Here, {xi0:t}
Np
i=1 are the particles and δ(d·) is the standard delta function. As a result, when the
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number of samples Np is large enough, the average will approximate the true distribution. One
of the advantages of the method is that one can prove the asymptotic convergence to the target
distribution of interest. Besides, compared to some other approaches such as the extended
Kalman filter and unscented Kalman filter, the SMC approach does not assume that the state
models are Gaussian [9, 25]. One hence can apply the method in a broader area.

Unfortunately, it is not easy to draw samples from the posterior. An alternative way of
drawing is to sample from a proposal distribution q(x0:t|y0:t) and to approximate the posterior
using a weighted sum of particles. One usually calls this methodology the Bayesian important
sampling.

Now, two questions remain unsolved. One is how to design a proposal distribution; another
one is how to calculate the weight for each sample. How to select q(x0:t|y0:t) is an interesting
research topic. One usually requires that the q(x0:t|y0:t) satisfies the following structure:

q(x0:t|y0:t) = q(x0:t−1|y1:t−1)q(xt|x0:t−1, y1:t).

In this work, we are going to set q(x0|y0) = p(x0) and q(xt|x0:t−1, y1:t) = p(xt|xt−1). According
to [1, 12], if the latent variable dimension is not large and the observations are not too infor-
mative, setting the proposal to be equal to transition probability is good enough. To verify our
method, we will conduct experiments with the transition probabilities p(xt|xt−1); the detailed
design is shown in sections 4.4 and 4.5. The weights can then be calculated as follows:

wt = wt−1
p(yt|xt)p(xt|xt−1)
q(xt|x0:t−1, y1:t)

,

andw1 =
p(x1)p(y1|x1)
q(x1 |y1) , where p(yt|xt) is the likelihood.We omit the derivation, and one can refer

to [1, 9, 25] for the details.
One issue of the algorithm is the degeneration of the weights; that is, the variance of the

importanceweights will become larger and larger with respect to time. Consequently, there are
only a few samples that have a meaningful weight when t is large. One way to reduce the effect
of degeneration is to use the resampling method. As a result, the algorithm is called sequential
importance resampling (SIR). We provide a SIR algorithm in appendix A. There are various
resampling methods; in this work, we apply systematic resampling as suggested in [9]; please
check appendix A for the details.

4.2. Sources

In the next two subsections, we are going to demonstrate how we set up the testing prob-
lems. For equation (1.1), we set Ω = [0, 1]2 and the terminal simulation time is T = 0.1.
Also κ(x) is the given permeability which will be defined later in section 4.3, and the source∑K

k=1pk(x)χt∈[tk−1,tk) is partially known.More specifically, the time mesh grid {tk}Kk=0 is given,
and the spatial components {pk(x)}Kk=1 are set to be characteristic functions. The kth source
pk(x) is defined as:

pk(x) =

{
pk, x ∈ Ak,

0, otherwise,
(4.6)

Here pk is a known constant; Ak is a square with a known size (is equal to 0.06× 0.06 in all
our experiments), but the location is not given. Our target work is to find one vertex coordinate
of the Ak and k = 1, . . . ,K. One possible pk(x) is shown in figure 1 (left). In the following
experiments, we will consider 2 sources. In both cases, K = 10 and pk = 1250 for all k.
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Figure 1. Demonstration of the source. Left: example of pk(x) which is the characteristic
function defined in equation (4.6). The middle and right images show the trajectories of
the source {pk(x)}Kk=1. Middle: source one, which is used in section 4.4. Right: source
two, which is used in section 4.5.

Figure 2. Left: the first permeability field 2D demonstration. maxκ1(x) = 0.3978 and
minκ1(x) = 0.0521. Right: the second permeability field 2D demonstration. The perme-
ability in the yellow channels and dots equals 104, while the permeability in the purple
background is equal to 1.

We here list the vertices (left top) coordinates for both sources, and we will trace these
two sequences of the coordinates later by our proposed method. The first list of vertices is:
(0.12, 0.12), (0.20, 0.20), (0.28, 0.28), (0.36, 0.36), (0.44, 0.44), (0.52, 0.52), (0.60, 0.60),
(0.68, 0.68), (0.76, 0.76), (0.84, 0.84); the second list of vertices is: (0.12, 0.12), (0.20, 0.24),
(0.28, 0.36), (0.36, 0.48), (0.44, 0.56), (0.52, 0.64), (0.60, 0.72), (0.68, 0.78), (0.76, 0.84),
(0.84, 0.90). For better illustration, we plot the trajectories of the two sources in figure 1, and
we will discuss these two cases in sections 4.4 and 4.5 respectively.

4.3. Permeability fields

In equation (1.1), the operatorA includes the permeability field κ(x). In order to better demon-
strate the idea of the theorem and the algorithm, we will solve several multiscale problems.
Two different permeability fields are used here. The first κ1(x) has multiple frequencies and is
defined as follows:
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Algorithm 1. Transition algorithm.

1 Input: current x = (x1, x2)
2 Initialize: set the size related parameters r1, r2 > 0 and speed related parameter s0, and
draw a random number s ∼ U(0, st). We then define l1 = s0 + s+ r1 and l2 = s0 + s+ r2

3 Create a rectangle: the top right vertex coordinate is (x1 + l1Δx, x2 + l2Δx) and the size is
equal to (2r1Δx, 2r2Δx)

4 Draw a point x′ from the rectangle above uniformly; this point will be the next sample

κ1(x, y) = 15 sin(2π · 0.01x) · sin(2π · 0.05y)+ 0.05 sin(2π · 6.5x) · sin(2π · 6y)+ 0.1,

where (x, y) ∈ Ω := [0, 1]2 and it is demonstrated in figure 2 left.
The second permeability field κ2(x) (see figure 2 right for the illustration) has multiple high

contrast channels and is widely used in the multiscale finite element method society [4, 6].
The multiple frequencies in κ1(x) and high contrast in κ2(x) bring difficulty in solving the

corresponding equations numerically. We will use the standard finite element solver with spa-
tial discretizationΔx = 10−2 in this work. For the temporal approximation, the backwardEuler
scheme is adopted, and the time discretization is Δt = 10−3.

4.4. The first set of experiments

In this part, we present the first set of experiments whose source is defined in the middle image
of figure 1. As we have discussed before, the proposal distribution q(x′|y′, x) is the same with
the transition probability p(x′|x) where x′, y′ denote the new sample and the observation of
the next time step, respectively. We hence only need to specify p(x′|x), which is defined in
algorithm 1.

Here we set s0 = 6, st = 5 and r1 = r2 = 4. It should be noted that if one is given the exact
current state x = (x1, x2), the next exact state is x′ = (x1 + 8Δx, x2 + 8Δx) (please check the
trajectory of the first source in section 4.2); however, the center (mean) of all proposed regions
is deviated from the x′. This simulates the real-life scenario: one only knows the ship’s route
plan; however, the ship may depart from the original route, and one needs to find the real route,
and positions when the ship leaks.

The observation is the flux of the boundary. For the multiple frequencies example, we
measure the flux in the interval [0.45, 0.52] from each boundary; while for the high contrast
permeability example, we only measure the flux in the interval [0.5, 0.55]. In both cases, the
number of particles is 320. To evaluate our results, we calculate the mean of the samples at
each time step k (this indicates the time step in the source) and compare it with the pre-set val-
ues. The demonstration and the relative error are shown in figure 3. We can see that the error
decays in both examples. This is probably due to the error correction of the PF algorithm. The
initial guess has a relatively large error, but the algorithm can correct the error by sampling
from weighted samples whose weights are assigned by the algorithm. Starting from time step
6, the error is stabilized (figure 4).

4.5. The second set of experiments

In this set of experiments, we will use the second source, which is demonstrated as the right
image in figure 1. We use the same transition algorithm in algorithm 1, but we use a differ-
ent set of parameters, specifically, s0 = 4, st = 5, r1 = 4, r2 = 5. Similar to the first source, all
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Figure 3. Samples mean and the relative error of the multiple frequencies’ permeability
with the first source. Left: samples mean and true source at each time step k. Right:
relative error of the sample mean.

Figure 4. Samples mean and the relative error of the high contrast permeability with the
first source. Left: samples mean and true source at each time step k. Right: relative error
of the sample mean.

proposed regions’ center (mean) deviates from x′. This is a real situation in which the ship’s
actual route is different from the original plan. The setting makes the predictions more chal-
lenging. For the flux measurement, we choose an interval [0.40, 0.60] from each boundary for
the multiple frequencies permeability and [0.43, 0.58] from each boundary for the high con-
tract permeability. The results are shown in figures 5 and 6, respectively. The error in figure 5
evolves similar as before. For figure 6, the error in the initial guess is already small enough,
and hence it is fluctuating.

From the four examples presented above, we conclude that our algorithm is able to trace the
exact source positions even if the proposal is far away from the exact route. The next challenge
for us is to reduce the amount of observation data since by the theory, we can trace the source
with flux on any open subset of the boundary. We will study this topic in the future.
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Figure 5. Samples mean and the relative error of the multiple frequencies’ permeability
with the second source. Left: samples mean and true source at each time step k. Right:
relative error of the sample mean.

Figure 6. Samples mean and the relative error of the high contrast permeability with the
second source. Left: samples mean and true source at each time step k. Right: relative
error of the sample mean.

5. Concluding remarks and future works

This work considers the inverse source problem in the parabolic equation. The unknown source
has a semi-discrete formulation, which can be used to approximate the general form F(x, t).
We prove the uniqueness theorem—theorem 1, which says the data from any nonempty open
subset of the boundary can support the uniqueness of the source. This conclusion is of signif-
icance in practical applications since it indicates that the source can be recovered from sparse
boundary data and then save the cost. For the theoretical analysis, there is an interesting and
meaningful work in the future: to determine the minimal observed area. Theorem 1 illustrates
that the nonempty open subset of the boundary is sufficient to support the uniqueness. How-
ever, only from this theorem, we do not know whether we can minimize the observed area
further. Finding the minimal observed area is one of our future works. Another exciting topic
is to study a more general source format. For example, the source is not separable.
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In the aspect of numerical reconstructions, since the model problem is a sequential predic-
tion with a sequence of observations up to the time n, it is natural to formulate the problem as
the Bayesian filtering problem. We apply one PF algorithm to solve the inverse problem with
two multiscale permeabilities. Evaluating the likelihood function is the most time-consuming
step, since it requires solving a forward problem with a fine resolution solver. We use the finite
element solver in this work, however, the solver can be improved by the multiscale finite ele-
ment solver or the deep learning solver. These solvers are more efficient meanwhile preserving
accuracy, and we will study these topics in the future. We can also apply deep learning to train
a solver. This is equivalent to solving the stochastic parametric PDE with the deep neural net-
work. More precisely, we can train a mapping from the source to the flux on the boundary.One
benefit of the method is that it will increase the computation efficiency in evaluating the likeli-
hood function. Another benefit is that we can linearize the network; hence, more advanced PF
algorithms can be used.

Furthermore, in this work, we only consider the case that the unknown pk(x) possesses the
formulation (4.6) and the support Ak has a regular shape. The numerical reconstruction of the
source with general formulation will be investigated in the future.
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Algorithm 2. Sequential importance resampling (SIR).
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