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Abstract
Data-driven discovery of differential equations relies on estimating model parameters using
information about a solution that is often incomplete and corrupted by noise. Moreover, the
sizes of the uncertainties in the model and data are usually unknown as well. This paper
develops a likelihood-type cost function which incorporates both sources of uncertainty and
provides a theoretically justified way of optimizing the balance between them. This approach
accommodates missing information about model solutions, allows for considerable noise in
the data, and is demonstrated to provide estimates which are often superior to regression
methods currently used for model discovery and calibration. Practical implementation and
optimization strategies are discussed both for systems of ordinary differential and partial
differential equations. Numerical experiments using synthetic data are performed for a variety
of test problems, including those exhibiting chaotic or complex spatiotemporal behavior.
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Introduction

Increases in computing power and the potential of leveraging machine learning concepts in
scientific modeling have led to growing interest in data-driven model discovery and calibra-
tion. This is especially necessary in fields such as materials science, geophysics and biology,
where first principle model derivations are elusive. Even when this can be done success-
fully, inference of constitutive details using observations can prove more satisfactory than
theoretical derivations because of inherent uncertainties about the model itself.

There have been a variety of methods proposed recently for data-driven discovery of
differential equations (Brunton et al. 2016; Rudy et al. 2017; Schaeffer 2017; Wang et al.
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2019; Maddu et al. 2019; Long et al. 2019; Raissi et al. 2019). Discovery of model equations
has two aspects: determining the model’s structure based on criteria that are either physically
inspired or rely on notions of sparsity; and secondly, estimation of model parameters within
this framework. The first aspect relies to a great degree on the second, and this is the one
which we will focus on. Estimation is often accomplished by optimizing a cost function
that accounts for uncertainties in the data, model equation, or both. In the latter case, the
relative trade-off between terms in the cost function has not been extensively investigated,
and theoretical justifications for such a cost functions are generally not provided. This paper’s
aim is to provide a theoretically motivated regression method that is able to automatically
assess the relative sizes of data and model uncertainty.

The importance of considering uncertainties in both data and underlying models has been
understood for some time, in particular in the context of Bayesian inference (Kennedy and
O’Hagan 2001; Brynjarsdottir and O’Hagan 2014; Plumlee 2017; Sargsyan et al. 2019).
The high dimensionality in the problems considered here creates significant challenges for
Bayesian estimation, which likely explains its absence in many popular techniques for data-
driven discovery of differential equations. In the spirit of theseworks, we consider the simpler
task of parameter estimation via regression and leave generalizations for future work.

Regression techniques have long enjoyed success in estimating parameters in differential
equations.A commonapproach is tominimize the difference (typically least squares) between
the model output and the provided data over a set of model parameters (Fullana et al. 1997;
Ackleh et al. 1998; Ashyraliyev et al. 2008; Garvie et al. 2010; Jin and Maass 2012; Croft
et al. 2015; Ramsay and Hooker 2017; Sgura et al. 2019; Zhao et al. 2020). The major
drawbacks of this method are inherent to all non-convex optimization problems: algorithms
for their solution may be inefficient, and proliferation of local minima can make the problem
intractable. Another less obvious issue is that most models are themselves uncertain, and
the statistical underpinning of this type of regression is predicated on uncertainty in the data
alone.

An alternative approach to determining parameters involves minimizing the residual error,
which is the discrepancy in the model equations evaluated using data (Ramsay and Hooker
2017; Brunel 2008; Gugushvili and Klaassen 2012; Liang and Hulin 2008; Brunton et al.
2016; Schaeffer 2017). For models that are linear in their parameters, this amounts to a
standard least squares problem, whose solution is both unique and easily obtained. On the
other hand, it is well accepted that this method is highly susceptible to noisy data (Schaeffer
and McCalla 2017; Reinbold et al. 2020). This is not surprising, as in this case the cost
function may be interpreted as a measure of model uncertainty alone.

It also possible to combine the two regression approaches (Ramsay et al. 2007; Voss et al.
2004; Raissi and Karniadakis 2018). The balance between the two loss function terms is
provided by a interpolating hyperparameter which is often selected according to the user’s
intuition or taste. The approach developed in this paper falls into the category of hybrid
methods but in our case the interpolation parameter is selected automatically by a rationally-
based criteria.

Outside of these regression techniques, there are many other proposals for estimation
and model discovery in differential equations. These include long-standing approaches like
Kalman filter techniques (Evensen 2009), Gaussian process regression (Raissi et al. 2017;
Raissi and Karniadakis 2018), as well as implementations of Bayesian inference in spe-
cific applications (Dewar et al. 2010; Barajas-Solano and Tartakovsky 2019; Yoshinaga and
Tokuda 2020; Zhao et al. 2021). In addition, neural networks and deep learning technologies
have been explored for learning partial differential equations from data (Long et al. 2019;
Raissi and Karniadakis 2018; Raissi et al. 2019; Xu et al. 2019).
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This paper relies on a classical approach to parameter identificationbyderiving a likelihood
function incorporating uncertainty in both the supplied data and the model itself. This results
in a two-stage optimization procedure, which is solved using techniques drawn from both
optimization and numerical partial differential equations. We find several virtues to this
formulation:

• Estimates are generally superior to other regression techniques, especially when signifi-
cant noise is added to both the model and data.

• Incomplete data is utilized in a natural way, and missing data is reconstructed as a by-
product of the method.

• Difficulties inherent in non-convex optimization are mitigated by a convex term that
effectively regularizes the problem.

This paper is organized as follows. Section 1 describes the problem setup and reviews
existing regression-type methods. Our new formulation is derived in Sect. 2, where practical
implementation issues are discussed. Applications to ordinary differential equations are given
in Sect. 3. Finally, some examples of pattern formation and spatio-temporal behavior in PDEs
is given in 4.

1 Optimization formulations of parameter estimation

This paper considers a model of the form

N (u; θ) = 0, (1)

where u is called the state variable and θ is a vector comprising the unknown parameters.
N () is assumed to be a smooth, generic nonlinear operator, which may arise from either
algebraic or differential equations. Although the state variable may formally be in an infinite
dimensional space (as for differential equations), in practice, discretization renders it finite. It
is therefore sufficient to suppose that u ∈ R

n and N : Rn ×R
p → R, where n is the number

of degrees of freedom in u and p the number of parameters. The fundamental challenge is
to infer values of θ given information about the state u, denoted û. Here the domain D of û
may be smaller than u itself, representing incomplete information about the state u.

One widely adopted approach to this problem is to find the best fit between solutions of
(1) and the supplied data (Fullana et al. 1997; Ackleh et al. 1998; Ashyraliyev et al. 2008;
Garvie et al. 2010; Jin and Maass 2012; Croft et al. 2015; Ramsay and Hooker 2017; Sgura
et al. 2019; Zhao et al. 2020). Supposing that for each θ this equation has a unique solution
u(θ), the parameter estimate θ∗ can be obtained as a nonlinear least squares (NLS) problem

θ∗ = argminθ

∥
∥
∥u(θ)|D − û

∥
∥
∥

2
, (2)

where |D is restriction to the domain of û. In principle, various choices for norm || · || can
be made, but for simplicity this will always denote the usual Euclidean norm here. The
formulation (2) is generally robust to noise in the data, but suffers from the usual problems
with non-convex optimization; in particular, there are often a great number of irrelevant local
minima (see, for example, Sect. 3.2).

A complimentary method is to employ the estimate

θ∗ = argminθ ||N (û; θ)||2. (3)
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instead. This formulation has been alternately called residualminimization (RM) or “gradient
matching" in the differential equations context (Ramsay and Hooker 2017). Provided N () is
linear in its parameters, this is simply a linear least squares problem. This type of formulation
is the basis for recent sparse regression techniques (Brunton et al. 2016; Schaeffer 2017; Rudy
et al. 2017), and can be solved very efficiently. The main drawback, especially in differential
equations, is that noise in the data easily corrupts the estimate. In addition, incomplete data
is not automatically accommodated.

Remedies for using residual-minimization type estimates to handle noisy and incomplete
data have been proposed. The simplest way of dealing with noise in the data is by low-pass
filtering (Schaeffer 2017). This process can improve the quality of estimates but requires a
tuning of the filter which is not a-priori known (Glasner 2021). An attractive alternative is to
replace the residual with integral terms, akin to weak formulations of differential equations
(Schaeffer and McCalla 2017; Reinbold et al. 2020; Messenger and Bortz 2021).

It is tempting to combine (2) and (3) in order tomitigate the drawbacks of each, for example
by minimization over a linear combination (Voss et al. 2004; Raissi and Karniadakis 2018).
Another hybrid method is to minimize both over the state and parameter values, for example

min
u,θ

∥
∥
∥N (u; θ)

∥
∥
∥

2 + λ

∥
∥
∥u|D − û

∥
∥
∥

2
, (4)

where λ is an adjustable hyperparameter. This is a form of “profiled estimation” (Ramsay
et al. 2007; Ramsay and Hooker 2017), which has been observed to mitigate some of the
drawbacks of both nonlinear least squares (2) and residual minimization (3). Notice that
as λ → ∞, the minimizer in (4) is approximately u = û, and therefore θ approximately
minimizes (3). Conversely, if λ → 0, then u ≈ u(θ), which means that θ is selected as in
(2). Therefore (4) can be thought of as an interpolation of both regression approaches, and
limits to each one for large or small λ; we exploit this fact when comparing our approach to
others.

The optimization problem derived below is in someways an extension of (4), and provides
a statistical interpretation that justifies its importance. In addition, a selection mechanism is
provided for the interpolation parameter λ.

2 Approximatemodel inference

To capture uncertainty in the observed state û and the model, it is supposed that

û = u|D + ũ, N (u; θ) + Ñ = 0, (5)

where the unknown discrepancies ũ, Ñ are regarded as component-wise random variables
with distribution functions fu, fN , respectively, which have single isolated maxima. It is
sufficient to assume that ũ, Ñ have zero mean, since the parameter set can be amended
to include the means mu,mN , and û and Ñ can be replaced with û − um and Ñ − mN ,
respectively.

The approximations which follow are based on an assumption of small variances. In
this limit, it is reasonable to suppose that fu, fN are approximated by normal distributions
with variances σ 2

1 , σ 2
2 , respectively, as tails of the distribution provide only a subdominant

contribution. The conditional probability distribution of observing data û given the actual
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state u is therefore

P(û|u) ≈ (
√
2πσ1)

−n̂ exp

(

−||û − u|D||2
2σ 2

1

)

, (6)

where n̂ ≤ n is the number of components in the provided data. The probability distribution
of u given parameter θ is likewise

P(u|θ) ≈ (
√
2πσ2)

−n exp

(

−||N (u; θ)||2
2σ 2

2

)

| det∇N (u)|. (7)

Assuming ũ, Ñ are independent, it follows that the probability of the observation for a given
parameter value can be approximated

P(û|θ)=(
√
2πσ1)

−n̂(
√
2πσ2)

−n
∫

Rn
exp

(

−||û − u|D ||2
2σ 2

1

− ||N (u; θ)||2
2σ 2

2

)

| det∇N (u; θ)|du.

(8)

For small variances, the integral may be approximated by Laplace’s method. Setting
λ = σ 2

2 /σ 2
1 , the resulting approximation is

P(û|θ) ≈ λn̂/2

(
√
2πσ2)n̂

√| det∇2F(u∗, θ, λ)| exp
(

− F(u∗, θ, λ)

2σ 2
2

)

| det∇N (u∗; θ)|, (9)

where

u∗(θ, λ) ≡ argminu F(u, θ, λ), F ≡ λ

∥
∥
∥û − u|D

∥
∥
∥

2 +
∥
∥
∥N (u; θ)

∥
∥
∥

2
. (10)

Here it is assumed that the minimizer in (10) is unique, which does not seem problematic in
practice.

The corresponding log-likelihood function is

l(θ, σ2, λ) = n̂

2
ln(λ/σ 2

2 )−1

2
ln | det∇2F(u∗, θ, λ)|− 1

2σ 2
2

F(u∗, θ, λ)+ln | det∇N (u∗; θ)|.
(11)

Maximizing this over σ2 leads to

σ 2
2 = F(u∗, θ, λ)

n̂
. (12)

which provides an estimate of the variance. Inserting into (11) leads to the reduced likelihood
function

l2(θ, λ) = n̂

2
ln λ− 1

2
ln | det∇2F(u∗, θ, λ)|− n̂

2
ln F(u∗, θ, λ)+ln | det∇N (u∗; θ)|. (13)

The estimates for both θ and λ can be obtained by setting

(θ, λ) = argmaxl2(θ, λ) (14)

The estimation procedure outlined will be referred hereafter as approximate model inference
(AMI).
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2.1 Optimizationmethods

The problem (14) involves two levels of optimization, an “inner” problem for the minimizing
state u∗ and an “outer” maximization over parameters. This can be accomplished either by
determining u∗ = u∗(θ, λ) exactly to evaluate (13), or by simultaneous minimization of
F(u, θ, λ) and l2(θ, λ; u), where u is regarded as a parameter in the latter objective function.
The best choice appears to be problem specific, and is described for the examples below.

There are a variety of algorithms that can be used for unconstrained optimization in
(10). It should be noted for differential equations, gradient descent of (10) is numerically
equivalent to a parabolic partial differential equation, often of high order. Therefore, explicit
gradient descent methods popular in machine learning contexts (e.g. Kingma and Ba 2014)
are not appropriate. Alternatively, Newton and quasi-Newton methods may have difficulty
converging for highly non-convex problems. A reasonable compromise between gradient
descent and Newton approaches is the Levenberg-Marquardt (LM) method. The LMmethod
is practical when the associated Hessian is not too difficult to invert. This is not typically the
case for discretizations of PDE, however. Two possible alternatives are semi-implicit gradient
descent methods, and nonlinear conjugate gradient (NCG)methods (Hager and Zhang 2006).
For the latter, efficiency requires a good choice of preconditioner; we explain how this is done
in the context of our examples.

Optimization over parameters (14) is generally a low dimensional problem, however, the
implicit dependence on u∗ makes analytic evaluations of the gradient and Hessian compli-
cated. This can be avoided by quasi-Newton methods which rely solely on evaluations of the
objective function.

The function (10) is generally non-convex, and might appear to create intractable diffi-
culties associated with a multitude of local minima. In practice, this does not seem to be
the case, which might be due to the fact that the term involving λ partially convexifies the
problem. In general, the choice of a moderate (typically between 1 and 100) initial guess for
λ seems to be beneficial for both efficiency of the optimization algorithm and reasonableness
of the resulting estimates (Glasner 2021).

In the following experiments, we will make comparisons to approximate NLS (2) and RM
(3) estimates. We do this by fixing λ = 10−3 and λ = 103, respectively in (10) and carry
out maximization only over the second term in (13) using the same algorithm as for the AMI
estimate (14).

3 Ordinary differential equations

Here we consider problems of the form

ut = f (u; θ), u(0) = U , (15)

where u : R → R
k and 0 < t < T . To discretize this system, the values of u at times t j = jh

are given by u j , where h is the step size, and j = 0, 1, 2, ...,m with m = T /h. A simple
approximation of (15) can be obtained by the trapezoid rule, so that the nonlinear operator
is defined by

N j (u; θ) ≡ u j+1 − u j

h
− h f ([u j + u j+1]/2; θ), j = 1, 2, . . . ,m. (16)

To account for the initial condition, we define N0 ≡ u0 − U , so that all together N has
k(m + 1) equations and unknowns. Although the initial condition U can be regarded as
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another parameter to be determined,U can be analytically eliminated since maximization in
(13) over U leads to U = u0. We can therefore reduce (10) to

F(u, θ, λ) =
m

∑

j=1

|N j (u, θ)|2 + λ

m
∑

j=0

|û j − u j |2. (17)

Here it is supposed to begin with that the data û is supplied as pointwise values (t j , û j )

(of course in practical applications, this may require interpolation of non-aligned data). The
situation of incomplete data is addressed in the section 3.3.

The optimization procedure involves minimization of (17) for given values of θ, λ. This
is accomplished efficiently by an adaptive version of the Levenberg-Marquardt algorithm,
which interpolates between Gauss-Newton and gradient descent methods. This requires an
initial guess for u, which is provided by û in the first evaluation of the minimum of (17), and
subsequently by the results of the previous minimization.

Once the minimizer is determined, the likelihood function (13) may be evaluated. The
log-determinant terms are straightforward to compute: ∇2F is provided by the Hessian used
in the LM minimization, and the determinant is easily found from diagonal entries in an
LU-decomposition. When the vector components ukj are ordered in a natural way, ∇N (u)

represents a block lower triangular matrix. The determinant of this term results from the
product of determinants of the diagonal blocks.

Finally, optimization for l2(θ, λ) was accomplished by a general purpose quasi-Newton
method that only requires evaluation of the objective function (rather than numerical gradi-
ents). In general, this produced good convergence with relatively few function evaluations,
typically 100 − 200.

MATLAB code for parameter estimates (14) suitable for arbitrary systems of ODEs is
publicly available at https://github.com/karlglasner/AMI. This repository also includes codes
used for specific subsequent examples.

3.1 Example: FitzHugh–Nagumo equations

To illustrate the proposed method and compare it to other estimation methods, we consider
the well-known FitzHugh–Nagumo system

dV

dt
= c2(V − V 3/3 + R), (18)

dR

dt
= −(V − a − bR), (19)

where θ = (a, b, c) are the parameters to be estimated. Synthetic data were obtained
by numerical integration (fourth order Runge-Kutta), using the initial condition V (0) =
.1, R(0) = .2 and exact parameters θ∗ = (3.179, 0.258, 3). The solution was sampled at 500
evenly spaced values on the interval [0, 10] (see Fig. 1), corresponding to h = 0.02 in (15).
Normally distributed noise with variance n2d was added pointwise to the sampled values.
To incorporate model uncertainty, Wiener process (Brownian) noise with variance hn2m was
added to (18–19).

Estimation was carried out with three methods: the approximate NLS and RM methods
discussed in Sect. 2.1, and AMI optimization. In all cases, initial guesses (a, b, c) = (1, 1, 1)
and u = û were used. The estimated parameter values were compared to the exact values by
computing the relative error, defined as the Euclidean norm of [(a−a∗)/a∗, (b−b∗)/b∗, (c−
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Fig. 1 Left: numerical solution to (18) without noise. Right: sampled data with noise levels nd = 0.4 and
nm = 0.1

Fig. 2 Relative errors of parameter estimates for the FitzHugh-Nagumo system, using nonlinear least squares
(dotted, black), residual minimization (dashed, red), and the AMI estimate (solid, blue). The errors were
averaged over 20 realizations of synthetic data for each combination of nd and nm

c∗)/c∗]. For each value of nd , nm , 20 realizations of randomized noise were used, and the
reported relative errors were averaged over these.

The results of the estimation procedure with differing levels of noise is shown in Fig.
2. In the absence of any noise, all estimation procedures yielded a learned system which
reproduced the input solution almost exactly. The small discrepancy, in this case, can be
ascribed to discretization error alone. With only noise added to the data (Fig. 2 left), the AMI
andNLS estimates were nearly identical. Residual minimization, on the other hand, produced
generally poor results, which might be expected since it essentially relies on differentiating
noisy data. When only model noise was added, again the AMI and NLS results were similar,
and better than the RM estimate. In this case, the parameter estimation error can be ascribed
to the uncertainty in the model rather than the data. When both model and data noise are
included (Fig. 2 middle and right), the AMI formulation produced superior estimates.

Notice that there is a crossover between the quality of the NLS and RM estimates, depend-
ing on whether data or model noise is dominant, consistent with the theory in Sect. 2. The
virtue of the proposed method is to form a compromise between the two, determining the
proper balance (via the parameter λ) from the data alone.

3.2 Example: Lorenz equations

Here we consider the well-studied Lorenz system
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Fig. 3 Left: numerical solution to (20) without noise. Right: sampled data with noise levels nd = 4 and
nm = 2

Fig. 4 Difference between NLS
estimates and the exact parameter
value θ∗ (y-axis) versus the
difference between initial guesses
of the exact parameter value. This
illustrates the proliferation of
local minimizers

dx

dt
= σ(y − x), (20)

dy

dt
= x(ρ − z) − y, (21)

dz

dt
= xy − βz, (22)

where θ = (σ, ρ, β) is the parameter set. In the experiments below, synthetic data is created
using θ∗ = (10, 28, 8/3) and initial data (x, y, z) = (−5.6866,−8.4929, 17.8452). These
produce a trajectory near the classic chaotic attractor (see Fig. 3).

Various levels of model and data noise were tested, using the same procedure as in the
previous example. Initial parameter guesses were also set to one as before. Significantly,
optimization for the NLS method was typically unable to find reasonable estimates, even
without noise, unless initial parameter guesses were artificially adjusted to be very close to
the exact values. To illustrate this, 100 random initial guesses for θ were tried. NLS estimates
(Fig. 4) were computed for each, showing the difficulty posed by local minimizers of (2).
While methods to deal with this issue in non-convex optimization exist, it is not clear how
practical they might be.

The results of the numerical experiments are shown in Fig. 5. The relative parameter errors
were computed as before and averaged over 10 realizations of random noise. The estimates
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Fig. 5 Relative errors of parameter estimates for the Lorenz system, using residual minimization (dashed, red),
and the AMI estimate (solid, blue). The errors were averaged over 10 realizations of synthetic data for each
combination of nd and nm . Estimates using nonlinear least squares were extremely poor and are not shown

for NLS are not shown, since they were universally poor. As expected, the RM estimate is
good at handling noise in the model but not the data. In contrast, the AMI method obtained
good estimates for even the most extreme cases.

3.3 Incomplete data and data reconstruction

One virtue of the proposed methodology is that data may be supplied only over part of the
domain. The estimation process not only provides parameter estimates but yields a state u∗
which reconstructs the missing data.

To implement the optimization strategy detailed above, it is necessary to provide a reason-
able initial guess for u. We find this is best done by first simply setting missing data points to
zero, and optimizing with an intermediate fixed value of lambda (λ = 100 here) to obtain a
crude estimate for parameters. The initial guess for u was then reset by filling in the missing
data regions by integration of (20), using parameters obtained by the crude estimates. Finally,
optimization with variable λ was performed with the new initial values for both u and θ .

To illustrate the performance when a limited amount of data is provided, noisy (nd = 0.4)
synthetic data for the system (18) was provided, and a certain percentage removed at random.
Ten instances of random data removal were averaged for each percentage level. Figure 6
shows the quality of the estimates as a function of the data fraction. Reasonable estimates
were observed when only 5% of the original data was retained.

To illustrate the ability to reconstruct data missing from an entire subdomain, synthetic
data for the Lorenz system was generated as before, and data noise (nd = 4) was added
before the domain of û was restricted to (0, 3) ∪ (7, 10) ( Fig. 7). The reconstruction is
shown in the bottom panel of Fig. 7. The corresponding estimated parameters were θ =
(10.1242, 28.0102, 2.6718), whose relative error was 1.26%. The L∞ norm between the
unadulterated data and the reconstructed state (top and bottom plots in Fig. 7) was 2.58.

The chaotic behavior of the Lorenz system likely limits the size of the interval that is
removed from the data. Indeed, if the interval was much larger than the Lyapunov time, it
would be impossible to accurately estimate the missing trajectories within this interval, even
if the exact system was known. On the other hand, if the interest was in estimating only the
parameters and the complete state, the remaining data might still be informative.
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Fig. 6 Estimation error for the
FitzHugh–Nagumo system as a
function of the fraction of data
values used in the AMI estimate

Fig. 7 Top: numerical simulation of the Lorenz system; middle: incomplete data with noise added; bottom:
resulting state u∗ after parameter optimization was complete

4 Partial differential equations

The formulation in Sect. 2 can be adapted in a straightforward manner for partial differential
equations. There are, however, some unique challenges these problems pose, largely stem-
ming from the high dimensionality of the discretized systems. Optimization algorithms that
rely on the inversion of the exact Hessian, such as the LMmethod used above, becomes inef-
ficient. We instead employ either a nonlinear conjugate gradient approach, or semi-implicit
gradient descent, as explained below.

Another challenge involves the computation of the log-determinant terms in (13). Direct
factorization is impractical, since the Hessian and gradient matrices are not narrow-banded
along the diagonal. Various strategies to approximate the log-determinant of large matrices
have been proposed (Barry and Pace 1999; Boutsidis et al. 2017), generally involvingMonte-
Carlo estimates the trace of a series approximation of the matrix logarithm. This was tried
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Fig. 8 Left: numerical solution to (24) without noise. Middle: the same state with data noise nd = 0.4 added.
Right: uses the same initial data as other plots, but noisewas added to themodel with nm = 0.2. All simulations
use the same initial condition

here, but the randomness introduced led to undesirable artifacts and poor performance. A
more satisfactory approach was obtained by noting that most of the large eigenvalues of
both ∇2F and ∇N arise from the differential operators. Approximating by excluding the
non-differential terms results (in our examples) in constant coefficient operators. Spectral
discretization of the linear operators provides analytic expressions for eigenvalues from
which log determinants can be evaluated.

With this approximation, optimization in (13) and (10) can be done simultaneously, since
the log determinant terms no longer depend explicitly on u∗. An equivalent problem is
therefore to minimize

− n̂

2
ln λ + 1

2
ln | det∇2F | + n̂

2
ln F(u, θ, λ) − ln | det∇N |. (23)

over u,θ and λ at the same time.

4.1 Example: patterns in the Swift–Hohenberg equation

To illustrate the methodology in the context of partial differential equations, we consider the
Swift–Hohenberg equation (Cross and Hohenberg Jul 1993)

ut = −(� + K 2)2u + αu + βu2 − γ u3 ≡ N (u, θ), (24)

where the parameter set considered here is θ = (K , α, β, γ ). The spatial domain is a square
[0, 100]2, equipped with periodic boundary conditions. Our interest is in data representing
spatial patterns, regarded as equilibria or near-equilibria of (24).

The spatial discretization of (24) uses a regular grid of size 2562, and derivatives are
evaluated pseudo-spectrally (Trefethen 2000). The function

F(u; θ, λ) =
∫

D
||N (u, θ)||2 + λ||u − û||2dx .

is correspondingly evaluated using the trapezoid rule.
Synthetic data was obtained by simulating (24) using random initial conditions up to a

specified large time T = 104. Normally distributed noise in the model and data was added
pointwise to N (u, θ) and the final state u(x, T ), with variances n2m, n2d , respectively. Typical
synthetic data is shown in Fig. 8.
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Fig. 9 Relative errors of parameter estimates for the Swift-Hohenberg equation, using nonlinear least squares
(dotted, black), residual minimization (dashed, red), and the AMI estimate (solid, blue). The errors were
averaged over 10 realizations of synthetic data for each combination of nd and nm

For log determinant computations, the Hessian of the system was approximated by the
operator∇2F ≈ 2[−(�+K 2)4+λ]. Similarly,∇N was approximated by−(�+K 2)2. Two
different optimizationmethods were used: a semi-implicit operator splittingmethod (Glasner
and Orizaga 2016) for the gradient decent, and the NCG method using the Polak–Ribière
update formula. The preconditioner for the latter was given by the approximate Hessian
operator, which is easily inverted spectrally. Gradient descent was used until convergence
(measured as a reduction of the gradient norm) became poor; at this point the NCG method
was used.

Numerical experiments were conducted for various combinations of data andmodel noise.
As in the previous section, parameter estimates were obtained using approximate NLS and
RM for comparison. The relative parameter errors were computed as before, and averaged
over ten different randomly generated states.

The results of the experiments are shown in Fig. 9. Consistent with prior experiments,
noise in the data leads to poor performance of RM estimation. In general, AMI estimates
were best, although in a few circumstances NLS performed somewhat better. It is not clear
if this can be ascribed to the approximations of the determinant terms.

4.2 Example: the Kuramoto–Sivashinsky equation and spatiotemporal data

Space and time dependence is now considered using the Kuramoto–Sivashinsky equation

ut = auux + buxx + cuxxxx . (25)

Here,u(x, t) : [0, L]×[0, T ] → Rwith L = 40,T = 64, and spatial boundary conditions are
periodic. An initial condition is applied to generate synthetic data, but is otherwise determined
automatically in the parameter estimation process, analogous to the method for ODEs.

In this model, a pseudo-spectral discretization is used for the spatial dependence on a
regular grid with N = 256 points. The temporal discretization was the same as in Sect.
3, which is essentially the semi-implicit trapezoid rule with M = 257 points and timestep
�t = T /(M − 1). Writing ui, j for approximation at the i th spatial grid-point and the j th
timestep, the corresponding optimization function F is given by

F(u; a, b, c, λ) =
M−1
∑

j=0

N
∑

i=1

(
ui, j+1 − ui, j

�t
− Ki, j (u)

)2
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Fig. 10 Numerical solution to (25) without noise (left), with noise nd = 1 added to the solution (middle) and
noise nm = 1 added to model (right)

Fig. 11 Relative errors of parameter estimates for the Kuramoto-Sivashinsky equation, using nonlinear least
squares (dotted, black), residual minimization (dashed, red), and the AMI estimate (solid, blue). The errors
were averaged over 10 realizations of synthetic data for each combination of nd and nm

+λ

M
∑

j=0

N
∑

i=1

(ui, j − ûi, j )
2, ui, j = ui, j + ui, j+1

2
,

where K is the spectrally discretized version of the right hand side in (25).
To general synthetic data, parameters a = 1, b = −1, c = −1 were used together with

the initial condition

u(x, 0) = r1 sin(12πx/L) + r2 exp(−(x − 2)2/5);

where r1 and r2 are random and normally distributed. Noise in the model and data was
introduced as in prior experiments, applying normally distributed fluctuations pointwise to
K and û, respectively. The resulting spatiotemporal patterns are shown in Fig. 10.

The Hessian was approximated by

∇2F ≈ 2[∂t t + (b∂xx + c∂xxxx )
2 + λ], (26)

where derivatives correspond to their discrete counterparts,with periodic boundary conditions
in x and Neumann boundary conditions in t . This operator is diagonalized by a Fourier
transform in space and discrete cosine transform in time. The eigenvalues can therefore be
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easily obtained as

λi, j = 2
(

ω j + (−bk2i + ck4i )
)2 + λ

where ki are the Fourier wavenumbers and ω j are eigenvalues of the spectral discretization
of ∂t t (Trefethen 2000). An analogous computation was done for the ∇N term.

The hybrid gradient descent/ NCG optimization was used here as in the previous problem.
In this case, the NCG method used the Fletcher-Reeves update formula, and the Hessian
approximation (26) as a preconditioner.

Numerical experiments were conducted as before, making a comparison to NLS and RM
estimates by averaging the estimation error over ten realizations of synthetic data for each
combination of data andmodel noise. Figure 11 shows that theAMImethod generally obtains
better estimates, although these might be somewhat compromised by approximations made
to the likelihood function. The RM estimates were generally very poor (and in many cases
too high to appear in the figures).

5 Conclusion

Wehave demonstrated that uncertainties on both the data and underlyingmodelmust be taken
into account for the accurate estimation of parameters. Our method could be viewed as an
interpolation between NLS and RM regression, which individually may give poor estimates.
Our procedure provides a principled approach to determining the interpolation parameter λ

from the data alone.
The methodology can be readily adapted to data that is not evenly distributed in time

or space. This can be done using several approaches. If the data is not sparse, it could
be interpolated onto a regular grid, for example. Alternatively, the underlying numerical
discretization can be designed to fit the structure of the data. Finally, the data can be treated
as incomplete, which was shown to nonetheless produce reasonable estimates.

We have not attempted to quantify uncertainty in the estimates. This is often done in the
framework of Bayesian inference (Dewar et al. 2010; Barajas-Solano and Tartakovsky 2019;
Yoshinaga and Tokuda 2020; Zhao et al. 2021). This would require sampling techniques
which are a challenging undertaking for systems with a large number of degrees of freedom.
Our method might be a point or departure for this type of estimation, however.

Another natural extension of this approach is model discovery. This could be done in the
context of sparse regression methods (Brunton et al. 2016; Schaeffer 2017), for example,
by including terms in the objective function which penalize the number of model terms.
Other extensions include accommodating multiple training data sets, which can be done in
a straightforward manner in the probabilistic formulation. Beyond model calibration and
system identification, there are numerous potential uses for the method developed here,
including data restoration and analysis.
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