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ABSTRACT. We study the large time behavior of classical solutions to the two-
dimensional Vlasov-Poisson (VP) and relativistic Vlasov-Poisson (RVP) sys-
tems launched by radially-symmetric initial data with compact support. In
particular, we prove that particle positions and momenta grow unbounded as
t — oo and obtain sharp rates on the maximal values of these quantities on
the support of the distribution function for each system. Furthermore, we es-
tablish nearly sharp rates of decay for the associated electric field, as well as
upper and lower bounds on the decay rate of the charge density in the large
time limit. We prove that, unlike (VP) in higher dimensions, smooth solutions
do not scatter to their free-streaming profiles as ¢ — oo because nonlinear,
long-range field interactions dominate the behavior of characteristics due to
the exchange of energy from the potential to the kinetic term. In this way, the
system may “forget” any previous configuration of particles.

1. Introduction. The motion of an electrostatic and collisionless plasma in two
spatial and momentum dimensions (i.e., x,v € R?) is given by the Vlasov-Poisson

system:
Of+v-Vof+E-V,f=0

p(t,z) = . ft, z,v)dv (VP)

r—y
E(t,l?) - [Rz |l‘ _ y‘gp(t7y) dy
Here, t > 0 represents time, f(¢,z,v) > 0 is the particle density, p(¢,x) is the
associated charge density, E(t,z) is the self-consistent electric field generated by
the charged particles, and we have chosen units such that the mass and charge of
each particle are normalized. In the present paper, we consider the Cauchy problem
and require given initial data fo € CL(R*) such that f(0,z,v) = fo(z,v) > 0 to
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complete the description of the system. One can also consider relativistic effects,
for which the velocity, now denoted by
v

VI[P

is no longer a multiple of the momentum v, and (VP) is replaced by the relativistic
Vlasov-Poisson system

’[/}:

Of+0-Vof +E-Vyuf=0

p(t,z) = . ft,z,v)dv, (RVP)
E(t,z) = /Rz ﬁp(w) dy.

We refer to [7] as a general reference concerning these well-known plasma models.

It is known that given smooth initial data both (VP) and (RVP) possess smooth
global-in-time solutions [20, 24, 25]. In fact, global existence of classical solutions
to the former system has also been established in three-dimensions [15, 19, 22].
Contrastingly, the unsolved problem of interest here concerns the large-time as-
ymptotic behavior of such models. Results of this nature exist for (VP) and (RVP)
in some special cases, including the three-dimensional problem with small [1, 13, 17]
or symmetric data [11, 16, 23], and in a one-dimensional setting [2, 8, 9, 21]. In
general, determining the large time asymptotic behavior of the two-dimensional sys-
tems should be significantly more challenging than in higher dimensions [18], as the
long-range particle interactions induced by the electric field are stronger for d < 3
than the dispersive effects engrained within the Vlasov equation.

In the case of radially-symmetric initial data, i.e. in which fj is invariant under
rotations in phase space, the solutions of both (VP) and (RVP) are known [12] to
remain radially-symmetric for all ¢ > 0. In this case, it is useful to consider new
variables that completely describe solutions with such symmetry. In particular,
defining the spatial radius, radial momentum, and square of the angular momentum
respectively by

T:|I|a w:;a £:|:L'/\U|2, (1)
T

the radial-symmetry of fy implies that the distribution function, charge density,
potential, and electric field take special forms for all time. Namely, in the classical
case the particle distribution f = f(t,r, w,¢) satisfies the reduced Vlasov equation

8tf + warf + (:; + m2(;7rr)> awf =0, (2)

whereas in the relativistic case this equation takes the form

or=3 t
warf+( r +m(’?n)
V14 w2+ fr—2 V14 w2 + fr—2 27r

Here, the mass and charge density satisfy the reduced descriptions

n@ﬂ%ﬂ@mm@ (4)

of + >c’9wf—0. (3)

and

pwﬂ:iﬁw[%fwnw@ﬁmde~ (5)
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The electric field is then given by the expression

m(t,r) T

E(t,z) = (6)

2rr 1’
and the associated electric potential
1
Ut,r) = ~3- In |x| * p(t, z)
1 (" m(tq)

= —— 7dq—/ t,q)qIn(q) dg
e [ pt0am)

satisfies
m(t,r) x

—VaU(tr) = TS < Bt ).

For completeness, a full derivation of these representations is given in the appendix.

Notice that while the symmetry does not significantly alter the complexity of the
Vlasov equation (i.e., phase space is described by three independent variables rather
than four), the form of the resulting electric field is considerably simpler and will
allow us to easily orient the force imposed on particles with respect to the origin.
The total mass is conserved and can be expressed as

M = 27r/ / / fo(r,w, 0)0~Y? dtdwdr
0 —o0 J0

so that 0 < m(t,r) < M for allt > 0 and r > 0. Finally, the energy of either system
is conserved in time and can be written as the sum of the kinetic and potential parts:

1 o0 o0 o0
Eve = / / / (w? + 0r=2) f(t, r,w, 0)0~? dedwdr
0 —o0 J0

%/ / /U(t,r)f(t,r,w,e)w/? dldwdr
0 —o0 JO

for (VP), and

Ervp = / / / V14 w2+ b2 f(t,r,w, )02 dldwdr
0 —o0 J O

%/ / /U(t,r)f(t,r,w,€)€_1/2dédwdr
0 —o0 J0

for (RVP). Though the sum of the kinetic and potential energies balances at all
times, we will show that each quantity actually tends to infinity with rate O(In(t))
as t — oo (see also [5], [6]). This feature will be a crucial mechanism in establishing
rates for the large time behavior of the maximal position and momentum on the
support of the solution. Note that it is not a prior: obvious that the energies are, in
fact, finite. However, we will assume (see (A) below) that the angular momenta of
particles are uniformly bounded below on the support of the distribution function,
and this condition ensures finite energy, as mentioned in the forthcoming Remark
1.1.

In the angular coordinates described above, the characteristics of the Vlasov
equation also assume a reduced form. In particular, for (VP) these are

R(s) = W(s),
W) = 55+ ®
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while for (RVP) they are

: W(s)
R(s) JIIWE)? F L)R(s) 2
W(s) _ L(s)R(s)~3 m(s, R(s)) (9)
VI+W(s)2 + L(s)R(s)2 21R(s)
L(s) = 0.

We will study forward characteristics of these systems with initial conditions
R(0) =, W(0) = w, L0)=¢ (10)
and note that the traditional convention for notation has been shortened so that
R(s) =R(s,0,r,w,l), W(s) =W(s,0,r,w,¥), L(s) = L(s,0,r,w, ).

Additionally, because the angular momentum of particles is conserved in time on
the support of f(t), we note that L(s) = ¢ for every s > 0.

Though we will focus on two-dimensional problems, it is useful to note that such
solutions can also satisfy analogous three-dimensional problems. In particular, if
one prescribes initial data for (VP) or (RVP) with z,v € R? that is cylindrically
symmetric [23], independent of z3, and possesses a Dirac delta dependence on vs,
then any solution of (2) or (3), respectively, will automatically satisfy these equa-
tions in the sense of distributions.

In establishing the forthcoming results, we face some challenging issues. As
we will show, the methods used to understand the behavior of solutions in three-
dimensions cannot obtain sharp rates for the two-dimensional (VP) problem, as the
energy transfer in the latter system is the driving force for the behavior of charac-
teristics. An additional issue is that the supremum of the field decays very slowly
in time, and thus no convergence of momentum characteristics can be expected.

In order to precisely state the main results, we first define notation for the (inte-
rior) support of f and the maximal particle position and radial momentum on this
set. For every t > 0, define

S(t) ={(r,w,£): f(t,r,w,£) >0},

as well as

R(t) = sup  R(t,0,r,w,l),
(r,w,£)eS(0)

and

W(t) = sup (W(t,0,r,w, ).
(r,w,€)€S(0)

We further define the projection
m(S(t) =A{r: (r,w,l) € S(t)}

with analogous notation for m,, and my. Additionally, we use the notation A(t) <
B(t) to mean that there is C' > 0 , independent of ¢, such that

A(t) < CB(t)

for all ¢ sufficiently large with an analogous definition for 2, and A(t) ~ B(t) to
mean

B(t) S A() £ B(t).
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Throughout we will assume that all particles possess some positive angular momen-
tum on the support of f, namely there is C' > 0 such that

inf ,(S(0)) = inf{¢: (r,w,¢) € S(0)} > C. (A)

Remark 1.1. Note that the compact support of fy and (A) guarantee that the
potential and kinetic energies are finite for both (VP) and (RVP). Indeed, these
energies involve the term ¢~1/2, and the kinetic energy has the term 72 in addition.
The compact support of fy guarantees that the support of f(t) remains compact
for all times so that there are no issues of integrability at infinity. Moreover, (A)
guarantees that the support of fj is bounded away from both r = 0 and ¢ = 0, and
this remains true for the support of f(t) at later times.

With this, we prove decay rates for the field, as well as sharp growth rates for the
maximal particle momenta and positions for each system. Here, the leading order
dynamics of the particle characteristics for (VP) are not driven merely by their
angular momentum, which is the case for the 3D spherically-symmetric problem,
but also by the transfer from potential energy to kinetic energy. Furthermore, the
asymptotic rates attained by solutions of (VP) and (RVP) differ from one another,
unlike in the three-dimensional case.

Theorem 1.2. Let fo € C*(R*) be nontrivial and radially-symmetric with compact
support satisfying (A), and let p € (2,00]. Then, for any solution of (VP), we have

W(t) ~ +/In(t),
R(t) ~ t/In(t)
U)o ~ In(2),

as well as the field and density estimates

_1+% —14+2
(tvin@®) " S IE@I, S

() S o) St

and the pointwise estimates

1 SW(t,0,r,w, ) < +/In(t),
t SR 0,7m,w, ) S ty/In(t)
for (r,w,?) € S(0).
Theorem 1.3. Let fo € C*(R*) be nontrivial and radially-symmetric with compact
support satisfying (A), and let p € (2,00]. Then, for any solution of (RVP) we
have
(1) ~ In(t),
R(t) ~t,
U)o ~ In(2),
as well as the field and density estimates
142
1Bl ~ 7,
2 S lp)lle St
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and the pointwise estimates
1 <SW(t,0,7r,w,0) < In(t),
R(t,0,r,w, L) ~t
for (r,w, ?) € S(0).

The reader will note that we do not obtain sharp pointwise estimates of the
positions and momenta, with the exception of R(¢) in Theorem 1.3. Hence, it is
possible that not all particles asymptotically disperse at the same rate. Indeed,
equations (13) and (19), which will be presented later, show that particles which
continually experience a nontrivial force (i.e., m(t, R(t)) > C > 0) will disperse at
the greater asymptotic rates, while it is possible that those particles which experi-
ence arbitrarily small forces will instead have positions and momenta that grow at
lesser rates. For this reason, it remains an open problem to either demonstrate the
multiple asymptotic dynamics of characteristics or obtain the sharp lower bound.
Additionally, we note that the contribution of the electric field can dominate the
influence of dispersive effects in the asymptotic behavior of characteristics. Indeed,
for characteristics satisfying m(t, R(t)) 2 1, we have

(W(t,r,r,w,£) —w| = /Tt (W + ZR(S)_?’) ds

>0 [ (svini) s 2 vin®)

for (8) and similarly
¢
(W(t,r,r,w, ) —w| > C’/ s~ tds > In(t)

for (9) by taking 7 sufficiently large and (r,w,¢) € S(7). Thus, either system may
contain particles such that R(t) and W(t) ultimately “forget” their values at any
previous time, and these momentum characteristics cannot converge as t — co. An
analogous calculation for characteristics of (VP) further yields

[R(t, 7,7, w,l) — (r+ wt)| 2 t/In(¢)

for 7 sufficiently large and (r,w, ¢) € S(7). In particular, we note that the distance
between the spatial characteristics and their free-streaming counterparts is growing
faster than the free-streaming trajectories themselves as t — oco. Therefore, unlike
solutions of the three-dimensional problem [13, 16, 17] in which this difference is
lower order, it is not clear if one can obtain modified convergence of the particle dis-
tribution or its spatial average as t — oo. We therefore present this as an interesting
open problem that remains elusive, though we conjecture that the distribution of
the angular momentum, which is time-independent, is the only microscopic infor-
mation retained in the time-asymptotic limit.

The paper proceeds as follows. The proofs of Theorems 1.2 and 1.3 are contained
within Section 5. Section 2 is devoted to obtaining preliminary estimates for the
particle characteristics, potential, and electric field, some of which are further im-
proved in Section 3 using the growth of the kinetic energy. The charge density is
then estimated in Section 4. Within the proofs we inherently assume fo € C}(R*)
is nontrivial and radially symmetric, and note that C' will represent a constant that
may change from line to line, but when necessary to denote a certain constant, we
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will distinguish this value with a subscript, e.g. Cy. As mentioned in the discussion,
all theorems herein pertain only to the large time behavior of solutions.

2. Estimates of the characteristics, the field, and the potential. In this
section, we state and prove a variety of lemmas concerning the behavior of particle
characteristics, the potential, and the electric field. An important quantity here
and in the sequel shall be w? + ¢r~—2, which is simply the representation of |v|?
in the aforementioned coordinates (see (37) in Appendix A and the surrounding
discussion).

2.1. Behavior of characteristics. We first study the behavior of the characteris-
tics (8) and (9) corresponding to the classical and relativistic systems, respectively.
Some of the ideas here are derived from the three-dimensional problem with spher-
ical symmetry [3, 4, 11, 16]. The repulsive force is crucial for our methods, as it
guarantees that particles only experience forces that push them away from the ori-
gin. Indeed, in the attractive case, steady state solutions are known to exist, and
the particles need not disperse.

Lemma 2.1. Let r,f >0 and w € R be given, and let (R(t), W(t),{) satisfy either
(8) or (9) for all t > 0, with initial conditions as in (10). Then, we have the
following:
1. For solutions of (8)
R(t)* > r—2t?
for every t > 0, while for solutions of (9)
2 or? 2
R 2 L

for every t > 0.
2. There is C > 0 such that for any (r,w,£) € S(0), we have

R(t)? > Ct?

for every t > 0.
3. There exists a “turn-around time” T = T(r,w,£) > 0 such that

W(t)=R(t) >0
for allt € (T, 00). Furthermore, for both solutions of (8) and (9) it holds that
T=0iw>0. Ifw <0, then for solutions of (8)

0<T<M
— e )

while for solutions of (9)

[w|r3v/1 + w? + fr—2
7 .
Proof. We first prove the result for the characteristics (8) of (VP) and then for
the characteristics (9) of (RVP). To begin, we note the convexity of the spatial
characteristics. In particular, we find
d2
dat?
Similarly, the momentum characteristics satisfy
W(t) > IR(t)™3 >0, (12)

0<T<

(R(H?) = 2 (WD) + ER(1)2) + ~m(t, R(1) > 2 (WD) +R(1)2) . (11)
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and thus W(t) is increasing for ¢ € [0,00). Finally, the square of the momentum
magnitude satisfies

d 2 -2\ _ m(t,R(t))
= WO +R(H)™) = IR

We first consider the case w > 0. Then, by (12) it follows that W(t) > w > 0
for all ¢ > 0. The identity (13) together with the positivity of the mass both imply
that

W(t). (13)

d

- W(®)? +IR(6)7%) = 0

for all ¢ > 0, and because this function is increasing, (11) then yields
d2
dt?

Integrating in ¢ twice then implies

R(t)* > r° +2rwt + (w? 4+ or72) 2 > br 2

(R(t)?) = 2(w* + £r2).

which provides the stated lower bound.
Now, instead consider the case w < 0. Then, define the “turn-around” time

To =sup{t > 0: W(t) < 0} (14)

and note that w < 0 implies that T > 0. We first show that T < oo. For the sake
of contradiction, assume Ty = oo. Then, we have R(t) = W(t) <0 for all ¢ > 0 and
thus R(t) < r for all t > 0. From (8) and the nonnegativity of the mass, we find

¢ mERE) e
R T anm 2RO 2

and upon integrating this yields

R(t) =

W(t) > r=3t +w

for all t > 0. Taking t > _“ZTS implies W(t) > 0, thus contradicting the assumption
that Ty = 0o, and we conclude that T must be finite. With this, the upper bound

Ty < ﬂz’“s follows, as well.

Since Ty < oo and W(t) > 0 for all t > 0, we find
W(t) < 0 for ¢ € [0,Tp),
W(Tp) =0, and
W(t) > 0 for t € (Tp, 00).

With this, we proceed as in the w > 0 case, but on the interval [T, co). In particular,
(13) shows that

L wr +emy )| = mDRI)

fad - T =
dt t=To mR(To) WiTo) =0

and implies that W(t)? +¢R(t)~2 is minimized at Ty, as the derivative changes from
negative to positive at t = Ty. Thus, we define

2 = 3 2 — T 2
Ry = minR(t)” = R(Ip)

and

Vi = min (W(t)? + (R(t)"?) = (R(Tp) >
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The identity
(=TR3VE (15)
then follows immediately.
Now, using equation (11) we find
d2
dt?
for all ¢ > 0. Integrating twice in time yields
R(t)? > R(To)* + 2R(To)W(To)(t — Ty) + Va(t — Tp)?

(R(t)*) = 2 (W(t)* + (R(£) %) = 2§

= RV T
for any ¢t > 0. In particular, evaluating this expression at ¢t = 0 gives
r? > RE+ VITy. (16)
Returning to the original lower bound for R(¢)?, we divide by 2 to find
R(t)?* _ RE+Vi(t—Tp)
2~ t2 '
The right side of this inequality can then be minimized over all ¢ > 0 and we find
RE4VA(E-To? . R
t2 T Ry + VTS’
which then yields the lower bound

R2VE
R(t)? > =20 __42 17
"= 7T "
Using (15) with (16) in (17) yields
R(t)? > ¢ t2 > or—2?

T RE+VETE T
and the desired lower bound is again achieved. Because this occurs in both cases,
the proof of the first result for (VP) is complete.

The second result merely follows from the compactness of the set S(0) and (A).
Indeed, for (r,w,£) € S(0), there is C' > 0 such that r < C, and using this lower
bound within the first result yields

R(t)* > C1? > Ct2.

Finally, the last result merely follows from the previous argument with T' = 0 if
w>0and T =Ty if w <O0.

Next, we establish the stated results for solutions of (9) using similar methods.
We first observe that in the relativistic case

1d* N (R(E)"2m(t, R(t)) IR(t)™2 + W(t)?
2ae R =5 L+ W12+ (R()-2)*? L+ W(H)? + (R(t) 18)
m(t, R(t))
2 (1 4+ W(t)? + (R(t)=2)"/?
IR() ™2+ W(t)? -0 (19)

T IWP +R() 2 ©

and
(R(t)=3 m(t,R(t))

T I WEZ R 2 2nR(t)

Wi(t)
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Therefore, W(t) is increasing for all ¢ > 0. Another essential quantity is the deriv-
ative of the rest momentum, namely

%V T W@ R 2 = L RIORO

VT W[)? +R(t) 2 wi) (20)

the sign of which depends on W(¥).
We first consider the case w > 0. Then, since W(t) > 0, we know W(¢) > w >0
so that the derivative of the rest momentum is nonnegative. This implies

W(t)? +LR(t)2 > w?® 4 br~2
for all ¢ > 0. As a consequence, we deduce

W(t)? + IR(t) 2 < w? + fr=2

T+WE)2Z+IR()"2 — 1+w2+4r—2 >0

for all t > 0, which in view of (19), provides a lower bound for %(R(t)z) that is in-

dependent of t. Therefore, integrating twice in time and using the initial conditions
yields

w2+ =2, 2rw 9

R(t)? > t+r

t
T 14 w? 4 2 + V14 w2+ fr—2

This lower bound is a perfect square, which we write as

£T72 w 2 €T72
> S IS —
T ltwrlr? L+w2+0r—2) — 1+w?+4Ir2

and this is the desired lower bound for (RVP).

In the case w < 0, we again aim to show that the “turn-around” time T as
defined in (14) is finite. This is shown via contradiction as before; we outline the
proof for completeness. If Ty = oo, then W(t) < 0 for all ¢ > 0 so that R(¢) < r for
all t > 0, as R(t) and W(t) have the same sign. From (20) we find

R(t)? 2

3

t2+<r+

W)+ IR(t) "2 < w? + r—2

for all t > 0. Using the expression (9) for W(t) we have

o I(R(t)=3 m(t,R(t))
W) = VIFWHZ IR 27R(t)
(R(t)™3 - 1

TVIEWEZHRE)2 T VI w2

A simple integration in time leads to

0t
W(t) > +
()77‘3\/1+w2—|—€7’—2 v

for all ¢ > 0, and we immediately observe that for any ¢ > —wrVituw?+er—2 W we
have W(t) > 0, contradicting the assumption that Ty = co. Thus, we conclude that
Ty < 0o, and moreover, the preceding argument leads us to the bound

—wr3y/1 + w? + fr—2
7 .

T <
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Since Ty < oo and W(t) > 0 for all t > 0, we find
W(t) < 0 for t € [0,Tp),
W(T,) =0, and
W(t) > 0 for t € (Tp, 00).

Now, the preceding analysis which relied on w > 0 can be reproduced, only for
times t > Ty. From (20) we have

d T To, R(Tp))R(Tp)t

7\/1 ¥ W(t)g + [R,(t)72 _ W( O)m( 0 ( 0)) ( 0) _ 0,

dt =T, 271'\/1 + W(Tp)2 + (R(Tp) 2

and this implies that both R(¢)? and W(t)? + ¢R(t) 2 are minimized at Ty, as their
respective derivatives change from negative to positive at t = Ty. Thus, we define

2. 2 _ 2
RG = ItIlZI(I)lR(t) = R(Ty)

and
V= min (W(t)* + eR(t) %) = ¢R(Ty) 2
For brevity we also define Vo := Vo /v/1+ V2. Then the following inequality holds:
RAE 4 ¢

2p2 — = > . 21
RoVo 1+4V2  14V2 = 1+w?+0r2 1)

From (19) it follows that
1 d?
2 dt?
for all ¢ > 0, which leads to

IR(E)™2+W(t)? .
RO = T @+ may

Y%
[k}

R(1)? = RE + Vi(t = Tp)? (22)
for all ¢ > 0 since W(Tp) = 0. Evaluating at ¢ = 0 one obtains
r? > RE+VITE. (23)

Since our goal is to bound R(¢) from below by 2, we consider (22) divided by #*:
R(t)? _ RE+V3(t — Tp)?
>
2 = 2
which holds for any ¢ > 0. Now, the right side can be minimized over ¢ > 0 (by
simply taking its derivative and determining roots). One finds

RE+V5(t—To)> . RgVp
2 T R+ V3T
and we therefore obtain .
R2V2
R(t)* > 00 42 (24)

T R4 VITE
Plugging into (24) the bounds (21) and (23), we find

RO — T g
T 14w+ r2
as required. The second result follows, as before, from the compactness of the set
S(0) and the angular momentum assumption (A). Indeed, for (r,w,£) € S(0), there
is C' > 0 such that
r2(1 +w2) +4<C,
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and using this bound within the first result yields

R(t)* > C1t? > Ct2.
Finally, the statement about the “turn-around” time is again obtained by setting
T=0ifw>0and T =T, if w <0. O

2.2. Field and potential estimates. We can now estimate the electric field in L>°
(Lemma 2.2) and LP for p > 2 (Lemma 2.3), and then determine the asymptotic
behavior of the potential ¢ (Lemma 2.4). The only nontrivial element from the
prequel which is required is the bound

R(t,0,7,w,0)* > Ct?, Y(r,w,{) € S(0)

for ¢ > 0. As this was established for both (VP) and (RVP), the estimates here
hold for both systems as well.

Lemma 2.2. For solutions of (VP) or (RVP) we have
Rt SIEM e St (25)

Proof. We first show the upper bound and begin by estimating the enclosed mass.
The Vlasov equation implies that for every ¢t > 0 and (r,w, ¢) € S(t)

flt,ryw, €) = fo(R(0, ¢, r,w, £), W(0,t,r,w,L),L). (26)
Hence, we find for any R > 0

R o) 0o
m(t,R) = 277/0/ /0 f(t,r,w, 002 dedwdr

27 ///f(taraw7€)]]-{r§}%}£_l/2 dgd’lUd’l"
S(t)

2 // fo(’R(OJ,r,w,f),W(O,t,r,w,€)7f)]l{T2§Rz}€_1/2 dldwdr
S(t)

2n // f0(~’w’E)]l{R(t,o,f,w,ZPgm}g_lm dldwdr
5(0)

where, in the last equality, we have used the change of variables
7 =R(0,t,7,w,¥)
w = W(0,t,7,w,¥)
0= L00,t,r,w, ) =1

with inverse mapping

0= L(¢,0,7,w,0) = /
and the well-known measure-preserving property (cf. [7]) which guarantees
o(r,w,l)|
A7, w, f) ’ B

Due to Lemma 2.1, we find

R(t,0,7,w, )% > Ct?
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and thus

{(7,w,0) € S(0) : R(t,0,7,w,£)* < R*} C {(7,w,¢) € S(0) : Ct* < R?}.
Using this produces the upper bound

m(t,R) < 277// fo(7o, 0)1ycpac gy 0 1/? dbdwdF

S(0)
= M1{0t2§R2}-
With this, we have
m(t,r) = M _
|E(ta-r)| = oy = % {ct2<r2} < (Ct 1

for every t > 0,z € R?, and thus
IEM)|eo < Ct1. (27)

Next, we turn our attention to the lower bound in (25) by representing the mass
along the largest nontrivial spatial characteristic. Using (26) and the aforemen-
tioned change of variables, it follows that for any ¢ > 0

R(t) poo  poo R(0) poo  poo s B
/ / / f(t,r w, 002 dwdldr = / / / fo(7, @, 0)0~ Y% diwdldy.
0 0 —00 0 0 —o0

Inserting the radial charge density into the representation of the enclosed mass and
using the above equality, we have

R(t) poo poo
m(t,R(t)) = 2« / / / f(t,r,w, 002 dwdtdr
0 0 —00

R(0) poo poo s 5
= o7 / / / fo(7, @, 00~ divdldr
0 0 —0o0

= o7 // fo(7, @, )02 diwdldr
5(0)
= M.
Thus, due to the field representation we find for any ¢ > 0
m(t,R(t)) M
E(t t))| = = .
ECRON =5 R%0 ~ 2w

Because fj is nontrivial, we conclude M # 0. Finally, since |E(¢, x)| attains this
value at some = € R?, we have

IE®)] > CR() ™!
for ¢ > 0 and the proof is complete. O

To conclude the estimates implied by the repulsive force, we estimate the field in
LP(R?) for 2 < p < oo and obtain bounds that will lead to the stated decay rates.

Lemma 2.3. Forp € (2,00) and solutions of (VP) or (RVP), we have

142 1-2
R SNE@p SIE®) oo ”
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Proof. These estimates are similar to those for the three-dimensional problem (see
[16]), but we include them for completeness. Indeed, we decompose the field integral
as

 m(t,r)P

/|E(t,az)|p dazz/ |E(t,x)|pdx+(27r)1_p/ g — A+ B
lz|<R R rP
and estimate
R
A< B, [ rdr =B
0

while B satisfies
B< (27r)1_p/\/lp/ r~Pdr < CR*P
R
for p > 2. Optimizing in R yields R = C||E(¢)||! so that

[1Bop d < clE@]?

for any ¢t > 0. Raising this to the ]% power yields the stated upper bound.
Next, we prove the lower bound. In particular, using the definition of the field
and the maximal spatial support of f, we find

/|E(t,x)|p dr = (277)1_p/ m(t,r)Pri=P dr > (27r)1_p/ m(t,r)Pri=P dr.
0 R(t)

Now, for r > 2R(t), we note that m(t,r) = M as shown in the proof of Lemma 2.2.
Thus, we have

o0 (o) Mp
/ m(t,r)Pri=P dr = Mp/ P dr = R(t)>P
R(¢) R(t) p—2

for p > 2. Finally, this implies
/ B(t,2)P de > CR(1)2P
and hence

IE@)], = CR(t)™' 5
for any t > 1. O

Finally, we estimate the behavior of the potential along characteristics and obtain
preliminary estimates of characteristics using the field bound.

Lemma 2.4. Along particle characteristics of both (8) and (9), the potential U(t, )
satisfies

—U(t, R(t)) ~ In(¢) and l4(t) |0 ~ In(t).
Furthermore, in the classical case (8) we have
W(t) < In(t) and t S R(t) S tln(e),
while in the relativistic case (9) we have

W(t) < In(t) and R(t) ~ t.
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Proof. We begin by establishing the maximal position and momentum estimates.
From Lemma 2.1, taking the supremum over the support of fy immediately yields
R(t) 2 t. Conversely, integrating the characteristic ODEs and using Lemma 2.2,
we have

Wl < W +c [ "t ds <) (28)

for the characteristics of both (VP) and (RVP).
Using the momentum bound for the spatial characteristics then yields

R(t) <R(1) /Cl+ln( )) ds S tin(t) (29)

and this further implies
R(t) < tln(t). (30)

Again, this estimate holds in both the classical and relativistic cases, though due to
the relativistic velocity in (8) being uniformly upper bounded by 1, we can further
obtain

R(t) <7€(1)+/t1 ds <t
1
and
R(t) St (31)

for characteristics of (RVP).
With this, we can estimate the potential. Replacing r with R(¢) in (7) and then
changing variables (as in the proof of Lemma 2.2) gives

R(t) IS
UL R() = = / LUGT / p(t,g)qIn(q) dg

27 q

L o ) g,

// / ft,q,w,0)In(g) €12 At dw dg

1 (RO (t 9,

// / fo(@ @ <(t0q,w€))2‘1/2dédwdqi

The nonnegativity of the mass and the lower bound on spatial characteristics from
Lemma 2.1, namely R(t) = ¢, then give the lower bound

~U(t,R(t)) = 1/R(t) m(t, q) dq

// / fol@, <(t0q,w€))i‘1/2dédmdq

>0+ CMIn(Ct)
2 In(t).
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Next, due to Lemma 2.1, the support of m(t,r) is bounded away from r = 0 for ¢
sufficiently large, and using (29) and (30) we obtain the upper bound

~Ut,R()) = 1/R(t) m(t, q) dq

// / fol@, <(t0q,w€))€~*1/2d2dwdq

< MIn(AR(t)) + CM In(R(1))
< Cln(tlnt)
< In(t).

This proves the stated behavior of —U(¢, R(t)). Finally, as
[UE)||oo > U, R(t) = In(t)

and the upper bound on —U(t, R(t)) is uniform in R(¢), it immediately follows that
[lA(t)]| oo ~ In(t), and the proof is complete. O

3. Energy estimates. Now that we have obtained sharp estimates for the behav-
ior of the potential, we can use energy conservation to further refine the growth
estimates of momenta in the classical case and obtain lower bounds for both sys-
tems. Here, we treat separately (VP) and its relativistic counterpart (RVP), as the
velocity and kinetic energy in these cases are different, and this leads to different
rates within the two systems. For either system, we define

To= sup T(r,w,?)
(r,w,£)eS(0)

where T'(r,w, ) is the “turn-around time” (defined in Lemma 2.1), and note that
Tp is bounded above by a constant that depends only on S(0) due to Lemma 2.1
and (A). Hence, taking ¢ sufficiently large implies

W(t,0,r,w,€) >0 (32)
for all (r,w, ¢) € S(0).
3.1. The (VP) system. We start with (VP) and its corresponding system of char-
acteristics (8).

Lemma 3.1. Let (r,w,f) € S(0) be given and let (R(t), W(t),£) satisfy (8) and
(10) for allt > 0. Then, we have

W(t,0,r,w, £) < 4/In(t),
and
R(t,0,r,w,l) < t\/m.
Furthermore, the mazimal positions and momenta satisfy
W(t) ~ /In(t),

and

t) ~ t/In(?).
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Proof. To prove the first conclusion, we will use the exchange of energy from po-
tential to kinetic. In particular, computing an augmented change in energy along
particle trajectories, we find

% (% (W(t)? + ER(1)72) + Ut R(t)))
= W(E)W(t) = (R(6)°W(t) + BU(t. R()) + 8, UL, R())W()
— W() <m(t)3 it R0) ;;ét))) — IR - m;;g%”)
+ 8t ( (t))
—oU

/ / / wq f(t, q,w, )0 Y2 qdwdy.
R(t)

The last equality is obtained by taking a time derivative of the expression (7) of
U, using the Vlasov equation (2) to eliminate the term 9;f and finally integrat-
ing by parts in g. Due to (32), all momenta on the support of f(t) are positive
for sufficiently large times, and it follows that the above derivative is eventually
nonpositive. Integrating for large times gives

%(W(t)Q +IR(t) %) + UL, R(E)) < %(W(TO)Q +(R(Tp)?) + U(Tp, R(Ty))

for all ¢ > Ty. Therefore, using Lemma 2.4 we find
W(t)? S C—U(t,R(t) < In(t),

and the first conclusion follows. Of course, integrating the upper bound on momenta
yields the position estimate

R(t) < R(Tp) +C t VIn(s) ds < t/In(t).

Further taking the supremum over (r,w,¢) € S(0) also yields the upper bounds on
the maximal position and momentum.

Finally, we use energy conservation to obtain the stated lower bounds. In par-
ticular, we find

1 o] o0 (o]
Evp — 5/ / / U(t, ) f(t,r,w, 002 dedwdr
0 —oo JO
= 1/ / / (w? + er=2) f(t, r,w, )2 dldwdr

= / / / W(t,0,r,w, £)* + ER(LO,T,w,E)_Q)fO(r,w,€)€_1/2 dldwdr

<W(t)? + 2

From Lemma 2.4, the left side satisfies

1 o0 o0 o0
Evp — 7/ / / Ut,r) f(t, 7w, 062 dedwdr

=&vp+ = / / / Ut R(t,0,r,w e)))fo(r,w,@e*/? dbdwdr

= 1+1In(t
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Combining these inequalities and taking ¢ sufficiently large yields
W(t) 2 /1n(t).

To obtain the lower bound on positions, we use the virial identity. In particular, a
brief calculation (see [7, eq. (4.60)]) gives

dt2 ( / / / ft,rw 5)51/2d€dwdr>
= / / / <w2 + fr—2 + lm(tﬂa)) f(t’r>w7£)£_1/2d€dwdr_
0 —oo0 J0 2

In view of the lower bound on the kinetic energy established above and the nonneg-
ativity of the mass, we find

( / / / flit,ryw 6)61/2d€dwdr> 2> In(t).

Lastly, integrating twice gives

2n(t / / / Ftrw, 00 2dedwdr < R(H)?,

which proves the final lower bound. O

3.2. The (RVP) system. Now we consider the relativistic system (RVP), for which
particle velocities are uniformly bounded above by one, and the kinetic energy is
first-order, rather than second-order, in the momentum variable. Consequently, we
obtain a logarithmic lower bound for the outward momentum W(t).

Lemma 3.2. The mazimal momentum on the support of f(t) satisfies
W(t) 2 In(t).

Proof. As in the proof of Lemma 3.1, we use energy conservation to obtain the
result. In particular, we find

Ervp — %/ / / U(t,r)f(t,r,wl)é_l/z dldwdr
0 —o0 JO

:/ / / V14 w2+ 0r=2f(t,r,w, )02 dédwdr
0 —o0 J0

:/ / / VI+WI(L,0,7m,w, 02 + (R(L,0,r,w, £)=2 fo(r,w, £)¢? dedwdr
0 —o0 JO

1+20(t)2 + 2.
From Lemma 2.4, the left side satisfies

1 oo oo o0
Ervp — */ / Z/{(t,1")}”(75,7“,10,6)571/2 dldwdr
0

= Ervp + 3 / / / U(t, R(t,0,r,w é)))fo(r,w,€)€_1/2 dldwdr

21+ In(t
Combining these 1nequaht1es and taking t sufficiently large yields
W(t) 2 In(t)
as desired. O
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4. Estimates of the charge density. We first address upper bounds for the (VP)
and (RVP) systems.

Lemma 4.1. The solutions of (VP) and (RVP) both satisfy

lp(®)lloe St

Proof. Our strategy is similar to that of [11], and we use backwards characteristics to
estimate the size of the w support of f(¢,r, w,£) for fixed r,£ > 0. As the estimates
may depend more sensitively on time, we may employ the generic constant C' > 0
in some places, rather than the “<” notation. First, consider solutions of (VP).
Note that due to Lemma 2.2 and the time-reversibility of characteristics, we have
m(7, R(T,t,r,w,{))
27 R(T,t,r,w, £)
for any 7 > 2 and (r,w,f) € S(t). Let (7“ wy, £), (r,wa, ) € S(t) be given. Then,
integrating the characteristic equations (8) we find for ¢t > 2 and k = 1,2

R(2,t,r,wi, £) =17 — wy(t — 2) //( 27r7z )+€R()3> drds.

Hence, subtracting these expressions and using (33) yields for ¢ sufficiently large

+ (R(T,t,T, w,ﬁ)*?’ <Cr ! (33)

|R(2,t,r,w1,0) — R(2,t,r,we, b)| > |wy —wa|(t—2) C’// 1 drds

> |w1—w2|(t—2)

Due to the global existence result, f(2,r,w,¥) is compactly supported and we note
that

‘R(Qv t,r,wi, 6) - R(27 t,r, wa, £)| < |R(2a t,r, w17£)| + |R(2a t,r, wa, £)| <C.
Rearranging the inequality above then produces
|wy —ws| S 1.

Therefore, the diameter of the momentum support is uniformly bounded. This
implies that for any t sufficiently large and fixed r, ¢ > 0, there is C' > 0 and wg € R
such that

{w: ft,r,w,€) #0} C{weR: |w—wy| <C}. (34)

To obtain a similar estimate in the case of the relativistic system (RVP), we
merely repeat the steps of this argument, using the same field bound. A straightfor-
ward calculation as above then allows us to estimate the difference between differing
velocities for ¢ sufficiently large, namely

w1 w2 <1
Vitwi+r2 T+ wl+ 2
upon integrating the field bound. Finally, because the derivative of w — W

is positive and uniformly bounded below on the support of f(¢), this bound also
holds for the difference of momenta. Hence, we again arrive at (34) in the relativistic
case.

Next, we use the spherical representation of p(¢,r) to complete the estimate for
solutions of (VP). Let r > 0 be given. Note that if r € m,.(S(¢)), then f(¢,r,w,f) =
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0 for all w € R and ¢ > 0, and thus p(t,r) = 0. Alternatively, if r € m,(S(¢)) then
there exists (7,w,¢) € S(0) such that
r=R(t,0,7 7).
By Lemma 2.1, we find
r = R(,0,7, @, 07 <t

Using this along with the invariance of ¢ along characteristics, the assumption (A)
on S(0), and (34), we have

1 oo oo
p(t,r) = */ / f(t,r,w,é)f_l/2 dwdl
< Otl/ / f(t,rw, 002 dwde

< Cllfollst™ l/c Hw : f(t,r,w, 0) £ 0} 72 de

< ot !

for r € m,(S(t)) and ¢ large. Combining this with the case r € 7,(S(t)) and taking
the supremum then yields

lp(®)lloe <7 (35)
for either (VP) or (RVP). O

Finally, a lower bound on the supremum of the charge density follows trivially.
Lemma 4.2. There is C > 0 such that solutions of (VP) and (RVP) satisfy
lp()lloe > CR(t) 2
for any t > 0.

Proof. Using the enclosed mass, we find for any ¢ > 0

R (1)
M = m(t, R(t)) = 2 / ap(t, @) dq < Cllp(t) | SR(D)>.

Rearranging this inequality then yields the result. O

5. Proof of Theorems.

Proof of Theorem 1.2. To obtain the estimates stated in Theorem 1.2, we merely
collect results of the lemmas. In particular, Lemma 3.1 yields the sharp asymptotic
behavior of R(t) and 20(¢), while combining the upper bounds of this lemma with
Lemma 2.1 provide the stated pointwise estimates on characteristics. The behavior
of the potential is directly implied by Lemma 2.4. Using the upper bound on
positions from Lemma 3.1, namely

t) < ty/In(t), (36)

within Lemma 2.2 gives the upper and lower bounds on || E(t)||» and further insert-
ing these estimates into Lemma 2.3 provides the upper and lower bounds on || E(t)||,
for any p € (2,00). Finally, Lemma 4.1 gives the upper bound on the charge density,
and inserting (36) into the result of Lemma 4.2 gives the lower bound. O
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Proof of Theorem 1.3. As in the previous proof, we merely collect results of the
lemmas. In particular, upper bounds on 20(¢) and 9i(¢) are obtained from (28) and
(31), respectively, while the lower bound on 2(¢) follows from R(¢) 2 ¢ in Lemma
2.1 and that for 20(¢) is given by Lemma 3.2. Combining these upper bounds with
the results of Lemma 2.1 provide the stated pointwise estimates on characteristics.
As in the previous proof, the behavior of the potential is directly implied by Lemma
2.4 and the remaining asymptotic behavior for the field and charge density follows
by using Lemmas 2.2, 2.3, 4.1, and 4.2 with the estimate 2R(¢) < ¢ to provide the
necessary lower bounds. O

Appendix A. Derivation of the radially-symmetric expressions. In the ap-
pendix we demonstrate how to change variables from integrals in Cartesian co-
ordinates in R* to the radially-symmetric variables and justify the forms of the
charge density, potential , electric field, and energy. First, we consider a function
¢ : R* = R of the form
o(z,0) = 6(r,w, b)
whose dependence can be represented exactly in terms of the radial coordinates
x-v
r=|z|, w=—-, 0=z Av]?
T

To compute the v-integral of this function, we first note that we can, without
loss of generality, rotate a given vector = € R? so that it points in the v; direction.
In particular, we express such a vector as z = [r,0]7 where r = |z| and rewrite

/(b(x,v) dv //¢) <$c|7 %, x/\v2) dvydvg
= // o(r,v1,72v2) dvidvs.

Because the integrand is even in vy, we find

oo oo
// o(r,v1,7?03) dvidvy = 2/ / o(r,v1,7%03) dvado .
—o00 J0

Next, we change variables so that
a = v
b=r’v3

v = a
vy = r~1p1/?

so that C% = %7“16_1/2 and find

o0 o0 o0 o)
2/ / o(r, v1,r2v§) dvodvy :/ / T_lb_1/2(b(7‘,a,b) dbda.
—o0 J0 —00 J0

Finally, relabeling the variables of integration yields

/(b(m,v) dv = /_Z /0(><> P Y Y2 (w0, 0) dbduw,

and in particular,

p(t,x)=/f(t,x,v) du:rl/_oo /Oooﬁl/Qf(t,r,w,é) dldw

or
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so that p(t,z) can be expressed uniquely in terms of the radial spatial variable as
p(t,r). Furthermore, the enclosed mass can be expressed using radial coordinates

as
2 r
m(t,x)=/ p(t,y) dy:/ / qp(t,q) dqdo,
ly| < || 0 0

which shows that m also depends only upon the radial variable and simplifies to

m(t,r)=27r// / Y2 f(t, g, w, ) dedwdg.
0 —o0 J0

Next, we derive the stated formula for the potential. In particular, because the
charge density is radial and we have

U(t, ) = — 5 Wl e plt )

we find that U = U(t,|z|) is radial, as it is the convolution of radial functions.
Furthermore, using polar coordinates the above formula implies

U(t,0) = —% /1n(|y|)p(t» lyl) dy = — /OOO qIn(q)p(t, q) dg.

As the potential is radial, the electric field E(t,z) points in the outward radial
direction due to the relationship E(t,z) = =V U(t, z) so that

B(t,x) = E(t,r)g,

where £ is determined by the Divergence Theorem. In particular, we have

m(t,r) = / p(t,|z|) de = / V.- E(t,x) do
|z|<r |z|<r
= / E(t,xz) -n dS =2nr&(t,r),
|z|=r

which implies

m(t,r) x
E(t,x) = -
(t,2) 2rr r
With this, the potential must satisfy
m(t,r)
-0 U(t,r) = ———=.
WUt ) 2nr

Thus, integrating and using the formula for U(t,0) computed above gives

Ut,r) = *% /OT m(;’Q)dq - /OOO qIn(q)p(t,q) dg.

Finally, the energy of either system can be derived in a straightforward manner
using the radial coordinates. In particular, as

\v\Q | - v|2+|:c/\v|2—w +0r 2, (37)

we can write the energy for (VP) as

Evp = /|v|ftxv dvdx+// (t,z)f(t, z,v) dvdx

= 5/ / / (w? + r=2) f(t,r,w, 00 dedwdr
0 —oo J0
+%/ / / Ut ) f(t,r,w, )02 dedwdr
0 —o0 J0
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with an analogous representation for Egyp, as stated in the introductory section.
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