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Abstract Machine learning methods have greatly changed
science, engineering, finance, business, and other fields. De-
spite the tremendous accomplishments of machine learning
and deep learning methods, many challenges still remain.
In particular, the performance of machine learning meth-
ods is often severely affected in case of diverse data, usu-
ally associated with smaller data sets or data related to ar-
eas of study where the size of the data sets is constrained
by the complexity and/or high cost of experiments. More-
over, data with limited labeled samples is a challenge to
most learning approaches. In this paper, the aforementioned
challenges are addressed by integrating graph-based frame-
works, multiscale structure, modified and adapted optimiza-
tion procedures and semi-supervised techniques. This re-
sults in two innovative multiscale Laplacian learning (MLL)
approaches for machine learning tasks, such as data classifi-
cation, and for tackling diverse data, data with limited sam-
ples and smaller data sets. The first approach, called multi-
kernel manifold learning (MML), integrates manifold learn-
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ing with multikernel information and solves a regularization
problem consisting of a loss function and a warped kernel
regularizer using multiscale graph Laplacians. The second
approach, called the multiscale MBO (MMBO) method, in-
troduces multiscale Laplacians to a modification of the fa-
mous classical Merriman-Bence-Osher (MBO) scheme, and
makes use of fast solvers for finding the approximations to
the extremal eigenvectors of the graph Laplacian. We demon-
strate the performance of our methods experimentally on a
variety of data sets, such as biological, text and image data,
and compare them favorably to existing approaches.
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1 Introduction

Artificial intelligence, including machine learning, has irre-
versibly changed many fields including science and engi-
neering [48, 53]. In fact, the combination of artificial intelli-
gence (AI) and big data has been referred to as the “fourth
industrial revolution” [89]. Nevertheless, machine learning
tasks face several challenges.

First, while the big data challenge is well known, lit-
tle attention is paid to the diverse data challenge. The suc-
cess behind machine learning is that the behavior in un-
known domains can be accurately estimated by quantita-
tively learning the pattern from sufficient training samples.
However, while data sets in computer vision and image anal-
ysis often contain millions or billions of points, it is typi-
cally difficult to obtain large data sets in science [46]. We
often deal with diverse data originating from a relatively
small data set lying in a huge space. For example, due to
the complexity, ethnicity, and high cost of scientific experi-
ments [43,86,90,91], it is extremely difficult to collect a rel-
atively small set of drug candidates of the order of 106 for a
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therapeutic target, while the size of the underlying chemical
space of potentially pharmacologically active molecules is
about 1060 [11]. Therefore, researchers try to cover as many
components as possible with a small number of sampling
points. The diversity is created by deliberately sampling a
wide distribution in the huge space to understand the land-
scape of potential drugs. This practice is very common in
scientific explorations. Similar diverse data sets exist in ma-
terials design [30,110]. Overall, diverse data originated from a
relatively small data set lying in a huge chemical space
gives rise to a serve challenge for machine learning. Mathe-
matically, diverse data involves disconnected submanifolds
and/or nested submanifolds corresponding to multiphysics
and multiscale natures of the diversity, respectively [23, 70].
The multiphysics and multiscale representations of data have
been addressed by the authors’ earlier work on element-
specific persistent homology [14, 16–18]. However, multi-
scale graph learning models have hardly been developed.
The proposed algorithms of this paper fill the gap, address-
ing the multiphysics nature of data diversity through a mul-
tiphysics data representation, such as the element-specific
feature extraction developed in [14, 16–18, 69].

Second, the success of many existing approaches for ma-
chine learning tasks, such as data classification, is dependent
on a sufficient amount of labeled samples. However, obtain-
ing enough labeled data is difficult as it is time-consuming
and expensive, especially in domains where only experts can
determine experimental labels; thus, labeled data is scarce.
As a result, the majority of the data embedded into a graph
is unlabeled data, which is often much easier to obtain than
labeled data but more challenging to predict. Overall, one
of the key limitations of most existing approaches is their
reliance on large labeled sets; in particular, deep learning
approaches often require massive labeled sets to learn the
patterns behind the data. These challenges call for innova-
tive strategies to revolutionize the current state-of-the-art.

Recently, algorithms involving the graph-based frame-
work, such as those described in Section 2.1, have recently
become some of the most competitive approaches for ap-
plications ranging from image processing to the social sci-
ences. Such methods have been successful in part due to the
many advantages offered by using a graph-based approach.
For example, a graph-based framework provides valuable
information about the extent of similarity between elements
of both labeled and unlabeled data via a weighted similarity
graph and also yields information about the overall struc-
ture of the data. Moreover, in addition to handling nonlinear
structure, a graph setting embeds the dimension of the fea-
tures in a graph during weight computations, thus reducing
the high-dimensionality of the problem. The graph frame-
work is also able to incorporate diverse types of data, such
as 3D point clouds, hyperspectral data, text, etc.

Ekaterina Merkurjev et al.

Inspired by the recent successes, we address the afore-
mentioned challenges by integrating similarity graph-based
frameworks, multiscale structure, modified and adapted op-
timization techniques and semi-supervised procedures, with
both labeled and unlabeled data embedded into a graph. Over-
all, this paper formulates two multiscale Laplacian learning
(MLL) approaches for machine learning tasks, such as data
classification, and for dealing with diverse data, data with
limited samples and smaller data sets. The first approach, the
multikernel manifold learning (MML) method, introduces
multiscale kernels to manifold regularization. This approach
integrates new multiscale graph Laplacians into loss-function
based minimization problems involving warped kernel reg-
ularizers. The second approach, the multiscale Merriman-
Bence-Osher (MMBO) method, adapts and generalizes the
classical Merriman-Bence-Osher (MBO) scheme [67] to a
multiscale graph Laplacian setting for learning tasks. The
MMBO approach also makes use of fast solvers, such as
[10, 31, 32] and [6], for finding approximations of the ex-
tremal eigenvectors of the graph Laplacian. We validate the
proposed M L L  approaches using a variety of data sets.

There are several strengths of the proposed methods:

– The methods address the multiscale nature of data through
a multiphysics data representation, allowing them to per-
form well in the case of diverse data, which often occurs
in, e.g., scientific applications.

– The methods require less labeled training data to ac-
curately classify a data set compared to most existing
machine learning techniques, especially supervised ap-
proaches, and often in considerably smaller quantities.
This is in part due to the usage of a similarity graph-
based framework and the fact that the majority of the
data embedded into the graph is unlabeled data. In fact,
in most cases, a good accuracy can be obtained with at
most 1%-5% of the data elements serving as labeled
data. This is an important advantage due to the scarcity
of labeled data for most applications.

– Although equally applicable and successful in the case
of larger data, the new methods also perform well in the
case of smaller data sets, which often result in unsatis-
factory performances for existing machine learning tech-
niques, due to an often insufficient number of labeled
samples and a decreased ability for machine learning-
based models to learn from the observed data.

The proposed MMBO method offers specific advantages:

– Although it can perform just as successfully on smaller
data, the MMBO algorithm is equipped with a structure
which allows it to be easily adapted and designed specif-
ically for the use of large data. In particular, in the case of
large data, one can use a slight modification of the fast
Nystrom extension procedure [10, 31, 32] to com-pute
an approximation to the extremal eigenvectors of
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the multiscale graph Laplacian using a dense graph with-
out the need to compute all the graph weights; in fact,
only a small portion of the weights need to be calculated.
Overall, the method uses a low-dimensional subspace
spanned by only a small number of eigenfunctions.

– Once the Ne eigenvectors of the graph Laplacian are com-
puted, the complexity of this algorithm is linear. More-
over, the Nystrom extenstion procedure allows the Ne

eigenvectors of the graph Laplacian to be computed us-
ing only O(NNe) operations, where Ne < <  N and N is
the number of data elements.

The paper is organized as follows. In Section 2, we present
background, previous work and an overview of graph learn-
ing methods. In Section 3, we derive the proposed MML and
MMBO methods and provide details on the computation of
eigenvectors of the graph Laplacian for the latter method.
The results from experiments are described in Section 4, and
we present a conclusion in Section 5.

2 Background

2.1 Previous work

In this section, we review recent graph-based methods for
data classification and semi-supervised learning, including
approaches related to convolutional neural networks, sup-
port vector machines, neural networks, label propagation,
embedding methods, multi-view and multi-modal methods.

Convolutional neural networks have recently been ex-
tended to a graph-based framework for the purpose of semi-
supervised learning. In particular, [52] presents a scalable
approach using graph convolutional networks by integrating a
convolutional architecture motivated by a localized first-
order approximation of spectral graph convolutions. Deeper
insights into the graph convolutional neural network model
are discussed in [55]. Moreover, a dual graph-based con-
volutional network approach is described in [117], while a
Bayesian graph convolutional network procedure is derived
in [111]. In [4], a multi-scale graph convolution model is
presented. In [13], generalizations of convolutional neural
networks to signals defined on more general domains using
two constructions are described; one of the generalizations
is based on the spectrum of the graph Laplacian.

Neural networks have also been extended to a graph-
based framework for the task of semi-supervised learning.
For example, attention-based graph neural networks [97],
graph partition neural networks [57], and graph Markov neu-
ral networks [85] have been proposed.

Moreover, support vector machines are also applied to
semi-supervised learning using a graph-based framework.
In [21], graph-based support vector machines are derived to
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emphasize low density regions. Also, Laplacian support vec-
tor machines (LapSVM) [9, 60] and Laplacian twin support
vector machines (Lap-TSVM) [84] have been formulated.

Label and measure propagation methods are discussed
in, e.g., [44], where the authors derive a transductive label
propagation method that is based on the manifold assump-
tion. Label propagation techniques and the use of unlabeled
data in classification are investigated in [115]. Dynamic la-
bel propagation is studied in [99], while semi-supervised
learning with measure propagation is described in [95].

Embedding methods are also used for semi-supervised
learning. Nonlinear embedding algorithms for use with shal-
low semi-supervised learning techniques, such as kernel meth-
ods, are applied to deep multi-layer architectures in [104].
Other graph embedding methods are presented in [108].

Multi-view and multi-modal methods include [77], which
proposes a reformulation of a standard spectral learning model
that can be used for multiview clustering and semi-supervised
tasks. The work [76] proposes novel multi-view learning,
while [38] describes multi-modal curriculum learning.

Other techniques for graph-based semi-supervised learn-
ing include fast anchor graph regularization [101], a Bayesian
framework for learning hyperparameters [49], and random
subspace dimensionality reduction. In [37], a classification
method is proposed to learn from dissimilarity and similar-
ity information on labeled and unlabeled data using a novel
graph-based encoding of dissimilarity. Random graph walks
are used in [58], and sampling theory for graph signals is
utilized in [34]. In [100], a bivariate formulation for graph-
based semi-supervised learning is shown to be equivalent to
a linearly constrained max-cut problem. Lastly, reproducing
kernel Hilbert spaces are used in [93].

Various approaches involving graph-based regularization
terms include regularization frameworks [113, 114], regu-
larization developments [20], anchor graph regularization
[101], manifold regularization [9], measure propagation [95],
approximate energy minimization [12], nonlocal discrete reg-
ularization [28], power watershed [27], spectral matting [54],
Laplacian regularized least squares [94], locality and simi-
larity preserving embedding [29], and clustering [79]. Ex-
amples for graph Laplacian regularization include label prop-
agation [115] and deep semi-supervised embedding [104].

Merkurjev and co-authors have studied graph-based spec-
tral approaches [35,36,61–66] using Ginzburg-Landau tech-
niques and modifications of the MBO scheme [67], which is
an efficient method for evolving an interface by mean curva-
ture in a continuous setting and which can be linked to op-
timization problems involving the Ginzburg-Landau func-
tional. Specifically, the MBO scheme can be derived from
a Ginzburg-Landau functional minimization procedure, and
can be modified and transferred to a graph setting using
more general operators on graphs, as shown in Merkurjev’s
work on data classification [35, 61, 64–66].
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Overall, Merkurjev and co-authors have shown that mul-
ticlass data classification can be achieved using techniques
from topological spaces and the Gibbs simplex [35, 64]. In
particular, MBO-like methods were developed for image pro-
cessing applications [65], hyperspectral imaging [36, 66],
Cheeger and ratio cut applications [63], heat kernel pager-
ank applications [62], and unsupervised learning [61]. The
subject of this paper is to integrate elements of this prior
work, prior work on manifold learning and novel graph-
based formulations into a multiscale framework to develop
new multiscale graph-based methods for machine learning
tasks, such as data classification. Our methods will be able
to deal with a variety of scales present in many data sets.

2.2 Graph-based framework

The methods presented in this paper use a similarity graph
framework consisting of a graph G =  (V; E ), where V =
fx1; : : : ; xN g is a set of vertices associated with the elements
of the data set, and E  is a set of edges connecting some pairs
of vertices. The edges are weighted by a weight function w
: V V !  R,  where w(xi; x j ) measures the degree of sim-ilarity
between xi and x j. Larger values indicate similar ele-ments
and smaller values indicate dissimilar elements. Natu-rally,
the embedding of data into a graph depends greatly on the
edge weights. This section provides more details about
graph construction, but the exact manner of weight construc-
tion for particular data sets is described in Section 4.

The use of the graph-based framework offers many ad-
vantages. First, it provides valuable information about the
extent of similarity between pairs of elements of both la-
beled and unlabeled data via a weighted similarity graph
and also yields information about the overall structure of the
data. This reduces the amount of labeled data needed for
good accuracy. Moreover, a graph-based setting embeds the
dimension of the features in the graph during weight compu-
tations, thus reducing the high-dimensionality of the prob-
lem. It also provides a way to handle nonlinearly separa-
ble classes and affords the flexibility to incorporate diverse
types of data. In addition, in image processing, the graph
setting allows one to capture texture more accurately.

The exact technique of computing the similarity value
between two elements of data depends on the data set, but
first involves feature (attribute) vector construction and a
distance metric chosen specifically for the data and task at
hand. For example, for hyperspectral data, one may choose
the feature vector to be the vector of intensity values in its
many bands and the distance measure to be the cosine dis-
tance. For 3D sensory data, one can take the feature vector to
contain both geometric and color information; the weights
can be calculated using a Gaussian function incorporating
normal vectors, e.g., [7]. For text classification, popular fea-
ture extraction methods include term frequency- inverse doc-
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ument frequency and bag-of-words, both described in [2].
For biological data tasks, such as protein classification, per-
sistent homology [14] can be used for feature construction.

Once the features are constructed, the weights are com-
puted. Popular weight functions include the Zelnik-Manor
and Perona function [83] and the Gaussian function [98]:

w(xi; x j ) =  exp  
d(xi; x j )2 

; (1)

where d(xi; x j ) represents a distance between feature vectors
of data elements xi and x j, and s  >  0. Using the weight
function w, one can construct a weight matrix W defined as
Wi j =  w(xi; x j ), and define the degree of a vertex xi 2  V as
d(xi) =  å j  w(xi; x j ). If D is the diagonal matrix with
elements d(xi), then the graph Laplacian is defined as

L  =  D      W: (2)

It is sometimes beneficial to use normalized versions of the
graph Laplacian, such as a symmetric graph Laplacian [98].

For some data, it is more desirable to compute the weights
directly by calculating pairwise distances. In this case, the
efficiency can be increased by using parallel computing or
by reducing the dimension of data. Then, a graph is often
made sparse using, e.g., thresholding or a nearest neighbors
technique, resulting in graph where most of the edge weights
are zero. Thus, the number of needed computations is re-
duced. Overall, a nearest neighbor graph can be computed
efficiently using the kd-tree code of VLFeat library [3]. In
particular, for the nearest neighbor technique, vertices xi and
x j are connected only if xi is among the Nn nearest neigh-
bors of x j or if x j is among the Nn nearest neighbors of xi.
Otherwise, w(xi; x j ) is set to 0.

For very large data sets, one can efficiently construct an
approximation to the full graph using e.g. sampling-based
approaches, such as the fast Nystrom Extension method [31].

2.3 Semi-supervised setting

Despite the tremendous accomplishments of machine learn-
ing, its success depends on a sufficient amount of labeled
samples. However, obtaining enough labeled data is difficult
as it is time-consuming and expensive. Therefore, labeled
data is scarce for most applications.

However, unlabeled data is usually easier and less costly
to obtain than labeled data. Therefore, it is advantageous to
use a semi-supervised setting, which uses both labeled and
unlabeled data to construct the graph in order to reduce the
amount of labeled data needed for good accuracy. In fact,
the use of unlabeled data for graph construction allows one
to obtain structural information of the data. Overall, for most
graph-based semi-supervised methods, the majority of data
embedded into a graph is unlabeled data. This paper derives
methods which use a semi-supervised setting of this kind.
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3 Methods

3.1 Background and related graph Laplacian methods

3.1.1 Manifold learning

For the derivation of the MML method, let K  be the number
of classes, L  be the set of labeled vertices, and U  be the set
of unlabeled vertices. We assume that L  is drawn from the
joining distribution P on V R, while U  is drawn from the
marginal distribution P of P. We also assume that the con-
ditional distribution P(yjx) varies smoothly in the intrinsic
geometry generated by P , where y 2  [1; K] and x 2 V .

In graph-based methods, information about labeled data
and the geometric structure of the marginal distribution P
of the unlabeled samples is incorporated into the problem:

f  =  arg 
f
min 

j L  j x i 2 L  
J( f ; xi ; yi ) + gAk f k2 + gI k f k2; (3)

where the Mercer kernel M : V V !  R  uniquely defines a
reproducing kernel Hilbert space (RKHS) H M  with the cor-
responding norm k:kM, J  is a loss function which gives rise
to different types of regularization problems, gA >  0, gI >  0,
and k f k2 is an additional regularizer that reflects the intrin-
sic geometry of P . The solution f  to (3) can be described
using the classical representer theorem [1]:

5

where M =  [mi j ] is the Gram matrix with mi j =  M(xi; x j ), Mx

denotes the vector (M(x1; x); M(x2; x);  ; M(xn; x))T , and Mz

denotes the vector (M(z1; x); M(z2; x);  ; M(zn; x))T .
The regularization problem for the warped kernel M is:

f  =  arg 
f
min

˜ j L  j x i 2 L  
J( f ; xi ; yi ) + gAk f k2 : (8)

Problem (8) exploits the intrinsic geometry of P via the
data-dependent kernel M but still makes use of the classi-
cal regularization solvers. In fact, the classical representer
theorem [1] allows f  in (8) to be expressed as:

f (x) =  å  aiM(x; xi): (9)
x i 2 L

In practice, fa i g  are numerically determined by an appro-
priate optimization solver, e.g., [26].

3.1.2 MBO reduction

For the derivation of the MMBO method, we first note that a
typical learning algorithm involves finding an optimal la-bel
matrix U =  (u1; : : : ; uN )T associated with data elements,
where ui 2  R K  represents the probability distribution over
the classes for data element xi; the ith row of U is set to ui.
The vector ui is an element of the Gibbs simplex:

Z
f (x) =  å  ai M(xi ; x) + a (z)M(x; z)dP (z);

x i 2 L

(4) S K  =  f(z1; : : : ; zK ) 2  [0; 1]K j å z k  =  1g; (10)
k =1

where S  is the support of the marginal distribution P [9].
In practice, that marginal distribution is unknown. In

spite of that, one could empirically estimate k f kI by making
use of the weighted graph as discussed in Section 2.2. With
the pre-defined graph Laplacian matrix L ,  the manifold reg-
ularizer k f k2 can be empirically estimated [9] as

k f kI =  å  ( f (xi )   f (x j ))2 wi j =  fT Lf; (5)
i; j =1

where f =  [ f (x1); f (x2);  ; f (xn)]T .
The ambient norm k:kM and the intrinsic norm k:kI in

(3) can be integrated in one term under the warped kernel
M [94]. This kernel defines an alternative reproducing kernel
Hilbert space H  by considering a modified inner product:

h f ; giHM 
=  h f ; giHM + f T  Pg; (6)

where P is a positive semi-definite matrix defined on labeled
and unlabeled data, f =  [ f (x1); f (x2);  ; f (xn)]T and g =
[g(x1); g(x2);  ; g(xn)]T . With h:; :iH  ̃

, the warped kernel M
is shown in [94] to have the following representation:

M(x; z) =  M(x; z)      MT ( I + PM) 1PMz; (7)

where K  is the number of classes. Moreover, the kth vertex
of the simplex is given by the unit vector ek.

A  general form of a graph-based problem for data clas-
sification is the minimization of E (U) =  R(U) +  Fid(U),
where U is the data classification function, R(U) is a graph-
based regularization term incorporating the graph weights,
and Fid(U) is a term incorporating labeled points.

Not surprisingly, the choice of the regularization term
has non-trivial consequences in the final accuracy. In [35],
Garcia et al. successfully take for the regularization term a
multiclass graph- based Ginzburg-Landau (GL) functional:

K
!

GL(U) =  
2

hU; LUi + 
2e i k =1 4 

kui      ekkL1        
: (11)

Here, e >  0, L  is a normalized graph Laplacian, K  is the
number of classes, hU; LUi =  trace(UT LU), ui is the ith row
of U, ui is a vector indicating prior class knowledge of xi, ek is
an indicator vector of size K  with one in the kth component and
zero elsewhere, and mi is a parameter that takes the value of m
>  0 if xi is a labeled data element and zero otherwise. The
variable ûi =  ek if xi is a labeled element of class k. The
first (smoothing) term in (11) measures variations in the
vector field, while the second (potential) term in (11) drives
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the system closer to the vertices of the simplex. The third
(fidelity) term enables the incorporation of labeled data.

While it is possible to develop a convex splitting scheme
to minimize the graph-based multiclass GL energy [35], a
more efficient technique involves MBO reduction. Specif-
ically, if one considers the minimization of the GL func-
tional plus a fidelity term (consisting of a fit to elements
of known class) in the continuous case, one can apply L2

gradient descent resulting in a modified Allen-Cahn equa-
tion. If a time-splitting scheme is then applied, one obtains a
procedure where one alternates between propagation using
the heat equation with a forcing term and thresholding. In
such a state, the resulting procedure has similar elements to
the MBO scheme [68], which evolves an interface by mean
curvature, in a continuous, rather than graph-based, setting.
The procedure can then be transferred to a graph-based set-
ting using [35, 64, 65]. Moreover, in order for the scheme
to be applicable to the multiclass case, one can convert the
thresholding operation to the displacement of the vector field
variable towards the closest vertex in (10) [35, 64, 65].

3.2 The derivation of the multiscale setting and the
proposed methods

3.2.1 Multiscale graph Laplacian operator

The dominance of multiscale information over the single
one has been proved in various biophysic-related works, such
as those involving thermal fluctuation predictions [81, 105]
and binding affinity predictions [72]. Therefore, it is promis-
ing to explore how the multiscale approach can improve the
accuracy of graph-based data classification. We examine a
novel multiscale graph Laplacian in the form of

Lmultiscale =  å c t L t  
t ; (12)

t =0

where pt >  0, ct >  0, and Lt is an extended Laplacian matrix
defined by L t  =  Dt      Wt , where Dt is a degree matrix, and
Wt is an extended adjacent graph edge matrix

[Wt ]i j =  p
s t  

H 
jjxi      x j jj e

     
jjxi  x j jj

2 

; (13)

where s t  >  0 and H is the tth order Hermite polynomial.
Usually, only two or three multiscale Laplacian terms in
(12), i.e., m =  1 or m =  2, are needed to obtain a significant
improvement in accuracy; by setting m =  0 and c0 =  1, one
can restore the regular graph Laplacian discussed in (2). In
this formulation, s t  is automated scale filtration parameter
that controls the shape of a submanifold for a data set, while ct

weighs contributions from different scales. The parame-ters
ct and s t  may vary for different Hermite polynomials.
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In case of large data for which computing all the graph
weights can be computationally expensive, one can use the
Nystrom extension method [10, 31, 32] to compute approx-
imations to the few smallest eigenvalues and corresponding
eigenvectors of the multiscale graph Laplacian while calcu-
lating only a small fraction of the graph weights. We will
modify the Nystrom procedure to incorporate the new mul-
tiscale graph Laplacian Lmultiscale . In this case, the weights
in the procedure are computed using

m

Wmultiscale = ctWt 
t ; (14)

t =0

where, in most cases, m =  1 or m =  2 is enough to obtain a
significant accuracy improvement.

When the number of data elements is not too large, one
can compute the eigenvectors via the Rayleigh-Chebyshev
method [6] or the Shifted Block Lanczos algorithm [40].

3.2.2 Multikernel manifold learning (MML) scheme

In multikernel manifold learning (MML), the multiscale Lapla-
cian matrices proposed in (12) is employed to form N -nearest
neighbors subgraphs. By setting P =  gI Wmultiscale in (7), we
attain an MML scheme enabling the reconstruction of the
regularization problem presented in (3). Even with the inte-
gration of multiscale Laplacian operator into the data ker-
nel, the manifold learning algorithms still retains its classi-
cal representation as presented in (8). One, therefore, could
utilize traditional solvers to derive the multiscale manifold
learning’s optimizer [94]. The MML procedure is summa-
rized as Algorithm 1.

Algorithm 1 MML Algorithm (multiscale)

Require: labeled data L  =  f(xi ; yi )gi , where yi is the label of xi, un-
labeled data U  =  fx j g j , Nn (# of nearest neighbors), m +  1 (#
of scales), where 2 or 3 scales is usually sufficient, fc  g (Lapla-
cian matrix coefficients), fpt gm      (matrix powers), fst gm      (kernel
scales), and gI >  0, gA >  0 (scalars).

Ensure: Estimated optimizer f , where f (x) is the prediction for x.
1: Construct m + 1 multiscale subgraphs with Nn nearest neighbors
with weights [Wt ]i j for t =  0; :::;m, where it is usually sufficient to
use m =  1 or m =  2, i.e. two or three scales.
2: Select the kernel M(x; xi), e.g., radial basis function kernel or a
Gaussian kernel.

3: Compute the Gram matrix M =  [mi j ] with mi j =  M(xi; x j ).
4: Compute the multiscale Laplacian Lmultiscale using (12) and
fct gt =1 , f pt gt =0 and fst gt =0 .
5: Formulate the warped kernel M(x; xi) using (7) and P =
Lmultiscale .
6: Solve for optimizer of (8) using an SVM quadratic programing
solver for soft margin loss, e.g., [26].
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3.2.3 Multiscale MBO (MMBO) scheme

Our proposed MMBO scheme uses a semi-implicit approach
where the multiscale Laplacian term is computed implicitly
due to the stiffness of the operator which is caused by a wide
range of its eigenvalues. An implicit term is needed since
an explicit scheme requires all scales of eigenvalues to be
resolved numerically.

To derive the MMBO scheme, let U represent a matrix
where each row is a probability distribution of each data ele-
ment over the classes and let ui represent the ith row of U. In
addition, let N be the number of data set elements, K  be the
number of classes, dt >  0, and m be a vector which takes a
value m in the ith place if xi is a labeled element and 0 other-
wise. Moreover, let Ulabeled be the following matrix: for rows
corresponding to labeled points, the entry corresponding to
the class of the labeled point is set to 1. All other entries of
the matrix are set to 0. Lastly, let m (U      Ulabeled) indicate
row-wise multiplication by a scalar.

As described in Section 3.1.2, if one considers the mini-
mization of a GL functional plus a fit to elements of known
class in the continuous case, an L2 gradient descent results in
a modified Allen-Cahn equation. If a time-splitting scheme
is then applied, one obtains a procedure where one alternates
between propagation using the heat equation with a forcing
term and thresholding. The scheme can then be transferred
to a graph-based setting and the Laplace operator can be re-
placed by a graph-based multiscale Laplacian. The thresh-
olding can be changed to the displacement of the variable
towards the closest vertex in (10). A  projection to the sim-
plex is then necessary before the displacement step.

Our proposed MMBO procedure thus consists of the fol-
lowing procedure. Starting with an initial guess for U, obtain
the next iterate of U via the following three steps:

1. Multiscale heat equation with a forcing term: Un+ 2 =
Un      dtfLmultiscaleUn+ 1 

+ m (Un      Ulabeled)g,
where m is a vector which takes a value m in the ith place
if xi is a labeled element and 0 otherwise, and m (Un

Ulabeled) indicates row-wise multiplication by a scalar.
2. Projection to simplex: Each row of Un+ 1     

is projected
onto the simplex using [24].

3. Displacement: ui
n+1 =  ek, where ui

n+1 is the ith row of
Un+1, and ek is the indicator vector (with a value of 1 in
the kth place and 0 elsewhere) associated with the ver-
tex in the simplex closest to the ith row of the projected
Un+ 1 

from step 2.

This implicit scheme allows the evolution of U to be numer-
ically stable regardless of the time step dt, in spite of the
“stiffness” of the differential equations which could other-
wise force dt to be impractically small.

One can compute Un+ 2 very efficiently using spectral
techniques and projections onto a low-dimensional subspace
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spanned by a small number of eigenfunctions in the follow-
ing manner, where I  is the identity:

Un+ 2 =  Xmultiscale (I + dt L multiscale ) 1 XmultiscaleUupdate;

(15)

where Uupdate =  Un      dtm (Un      Ulabeled), Xmultiscale is an N
Ne truncated matrix retaining only Ne < <  N smallest
eigenvectors of the multiscale graph Laplacian Lmultiscale ,
and L multiscale is a Ne  Ne diagonal matrix retaining the
smallest eigenvalues of Lmultiscale along the diagonal.

The proposed MMBO procedure is detailed as Algo-
rithm 2. It is important to note that in the MMBO method,
the graph weights are only used to compute the few eigen-
vectors and eigenvalues of the multiscale graph Laplacian,
and the multiscale MMBO procedure themselves do not in-
volve graph weights. This crucial property allows one to use
the Nystrom extension procedure [10,31,32] to approximate
the extremal eigenvectors of the Laplacian by only comput-
ing a small portion of the graph weights; this enables one to
apply the multiscale models very efficiently on large data.

For initialization, the rows of U corresponding to labeled
points are set to the vertices of the simplex corresponding
to the known labels, while the rows of U corresponding to
the rest of the points initially represent random probability
distributions over the classes.

The energy minimization proceeds until a steady state
condition is reached. The final classes are obtained by as-
signing class k to node i if ui is closest to vertex ek on
the Gibbs simplex. Consequently, the calculation is stopped
when, for a positive constant h >  0,

max kui
n+1      ui

nk2

max kui
n+1k2 <  h: (16)

In regards to computational complexity, in practice, once
the Ne eigenvectors of the graph Laplacian are computed, the
complexity of the MMBO scheme is linear in the number of
data elements N. In particular, let K  be the number of classes
and m + 1 be the number of terms in the multiscale Lapla-
cian (12). Usually, m = 1 or m = 2 is enough to obtain a good
accuracy. Then, one needs O(NKNe) operations for the mul-
tiscale heat equation with a forcing term, O(N K log K) op-
erations for the projection to the simplex and O(N K ) opera-
tions for the displacement step. Moreover, [10,31,32] allows
one to compute the Ne eigenvectors of the multiscale graph
Laplacian using O(NNem) operations. Since Ne < <  N and
K  < <  N, in practice, the complexity of this method is linear.

3.3 Computation of eigenvalues and eigenvectors of the
multiscale graph Laplacian

The MMBO method requires one to compute a few of the
smallest eigenvalues and the corresponding eigenvectors of
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the multiscale graph Laplacian to form Xmultiscale . We exam-
ine and use three techniques for this task. Nystrom exten-
sion [10, 31, 32] is the preferred method for very large data.

Algorithm 2 MMBO Algorithm (multiscale)

Require: labeled data L  =  f(xi ; yi )gi , where yi is the label of xi, un-
labeled data U  =  fx j g j , Nn (# of nearest neighbors), m + 1 (# of
scales), fct g (Laplacian matrix coefficients), f pt g (matrix
powers), fs t g        (kernel scales), dt >  0, N (# of data set elements),
N < <  N (# of eigenvectors to be computed), N (maximum # of
iterations), m (an N 1 vector which takes a value m in the ith place if
xi is a labeled element and 0 otherwise).

Ensure: out =  Uend; the ith row of Uend is a probability distribution
of data element xi over the classes.
1. For larger data, go to Step 4. For smaller data, go to Step 2.
2: Construct m + 1 multiscale subgraphs with Nn nearest neighbors
with weights [Wt ]i j for t =  0; :::;m, where it is usually sufficient to
use m =  1 or m =  2, i.e. two or three scales.
3: Compute the multiscale Laplacian Lmultiscale using (12) and
fct gt =0 , f pt gt =0 and fst gt =0 .
4: Compute Ulabeled;Lmultiscale and Xmultiscale as described in Sec-
tion 3.2.3 and using Ne < <  N. For smaller data, use methods such
as [6]. For larger data, use Nystrom extension [10, 31, 32].

5: Complete the following steps: starting with n =  1.
for i =  1 !  N do

U 0 rand((0; 1)); ui
0 pro jectToSimplex(ui

0) using [24],
where ith row of U0.

If mi >  0; U 0 Ulabeledik
end for
B (I + dtLmultiscale ) 1 Xmultiscale

T

while Stop criterion not satisfied or n >  N do
C Un      dtm(Un      Ulabeled)
A B C
Un+1 Xmultiscale A
for i =  1 !  N do

u n+1 pro jectToSimplex(u n+1 ) using [24]
ui

n+1 ek, where k is closest simplex vertex to ui
n+1

end for
The matrix Un+1 is such that its ith row is ui

n+1 .
n n + 1

end while

3.3.1 Nystrom extension for fully connected graphs

Nystrom extension [10,31,32] is a matrix completion method,
and it performs faster than many other techniques because it
computes approximations to eigenvectors and eigenvalues
using much smaller submatrices of the original matrix.

Note that if l  is an eigenvalue of W =  D     2 WD     2 , then
1      l  is an eigenvalue of the symmetric Laplacian L s  =
I      D     2 WD     2 , and the two matrices have the same eigen-
vectors. Thus, one can use Nystrom extension to calculate
approximations to the eigenvectors of W and thus of Ls .

Now, consider the problem of approximating the extremal
Ne eigenvalues and eigenvectors of a full graph W and let
ŵ(xi ; x j ) = Wi j . Nystrom extension [10,31,32] approximates
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the eigenvalue equation using a quadrature rule and Ne < <  N
randomly chosen interpolation points from V , which rep-
resents data elements. Denote the set of N randomly chosen
points by X =  fxigNe     and its complement by Y . Partitioning V
into V =  X [ Y  and letting fk (x) be the the kth eigenvector of
W and l k  be its associated eigenvalue, we obtain:

å  ŵ(yi ; x j )fk (x j ) =  l k f k (y i )  8yi 2 Y; 8k 2  1; :::;Ne: (17)
x j 2X

This system cannot be solved directly since the eigenvectors
are unknown; thus, the Ne eigenvectors of W are approxi-
mated using much smaller submatrices of W.

The efficiency of Nystrom extension lies with the fol-
lowing fact: when computing the Ne eigenvalues and eigen-

vectors of an N N matrix, where N is large, the algorithm
approximates them using much smaller matrices, the largest

of which has dimension N Ne, where Ne < <  N. In partic-
ular, when the method is applied to W or W, only a small
portion of the weight matrix W or W needs to be computed.
In our experience, Ne =  100 or Ne =  200 were good choices.

If the number of scales is m + 1, the complexity of the
Nystrom procedure is O(NNe (m + 1)), which is linear in N.

3.3.2 Rayleigh-Chebyshev method

The Rayleigh-Chebyshev method [6] is a fast algorithm for
finding a small subset of eigenvalues and eigenvectors of
sparse symmetric matrices, such as a symmetric graph Lapla-
cian which can be made sparse using techniques such as
Nn-nearest neighbors. The method is a modification of an
inverse subspace iteration procedure and uses adaptively de-
termined Chebyshev polynomials.

3.3.3 A shifted block Lanczos algorithm

A  shifted block Lanczos algorithm [40], as well as other
variations of the Lanczos method [82] that is an adaptation
of power methods, are efficient techniques for solving sparse
symmetric eigenproblems and for finding a few of the ex-
tremal eigenvalues. They can be used to find a subset of the
eigenvalues and eigenvectors of the symmetric graph Lapla-
cian which can be made sparse using Nn-nearest neighbors.

4 Results and discussion

4.1 Data sets

In this work, we validate the proposed MML and MMBO
methods against three common data sets:

– G50C is an artificial data set inspired by [39] and gener-
ated from two normal covariance Gaussian distributions.
This data set has 550 data points located in R50 and two
labels f  1; +1g.
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– USPST data set includes images of handwritten digits
taken from the USPS test data set. This data has 2007
images to be classified into ten labels corresponding to
ten numbers from 0 to 9.

– Mac-Win data set categorizes documents, taken from 20-
Newsgroups data, into 2 classes: mac or windows [96].
This set has 1946 elements and each element is repre-
sented by a vector in R7511.

– WebKB data set is taken from the web documents of the
CS  department of four universities and has been used
extensively. It has 1051 data samples and two labels:
course and non-course. There are two ways to describe
each web document: the textual content of the webpage
(called page representation), and the anchor text on hy-
perlinks pointing from other webpages to the current
one. The data points with page representation are in R3000,
while the ones with link representation belong to R1840.
When we combine two different kinds of representa-
tions, we achieve the data points in R4840.

– a ; b -protein data set consists of three different protein
domains, namely alpha proteins, beta proteins, and mixed
alpha and beta proteins, classified based on protein sec-
ondary structures [15]. This data has 900 biomolecules,
and each family has 300 instances.

The details of the data sets are outlined in Table 1.

4.2 Hyperparameters selection

In the MMBO setting, for each data point, we do not com-
pute the complete graph but instead construct a Nn-nearest
neighbor graph for the calculation efficiency. The param-
eter l is one of the hyperparameters and is selected on a
case by case basis. Moreover, as discussed in Section 2.2,
the weight function used is the Gaussian kernel w(xi; x j ) =
exp( d(xi ; x j )2=s 2). Here, the scalar s  is optimized so that
it perfectly fits the labeled set information. In the multiscale
approach, each kernel is assigned different s  values depend-
ing on the outcome of hyperparameter selection. Overall,
due to the random initialization of the non-labeled points,
we use the same random seed for all the experiments in this
work for reproducible purposes.

The Nystrom extension method [10, 31, 32] allows for
fast computations even in case of larger data since this ap-
proach approximates the eigenvalues and eigenvectors of
the origin matrix using much smaller matrices randomly se-
lected from the bigger ones. Thus, only a small portion of
the graph weights need to be computed. However, in case of
smaller data, it is often more advantageous to use meth-ods
such as [6] which can directly compute the eigenvalues and
eigenvectors. Therefore, to obtain optimal results, we
employ the Rayleigh-Chebyshev procedure [6] (see Section
3.3.2) for our experiments. This method is well-known for

9

efficiently calculating the smallest eigenvectors of a sparse
symmetric matrix. The hyperparameters of the MMBO mod-
els are the number of leading eigenvalues (Ne), the time step
for solving heat equation (dt), the constraint constant on fi-
delity term (m), and the number of iterations (N ).

The hyperparameter selection for MML model is car-
ried out in a similar fashion as that of the MMBO algorithm.
The tunning parameters are: the number of nearest neigh-
bors (Nn), the scaler factor (s ), the penalty coefficient (gA),
the manifold regularizer constraint (gI ), and the Laplacian
degree (p). The optimizer is solved using the primal SVM
solver [60]. The optimal hyperparameters of the proposed
methods are documented in the Supporting Information.

4.3 Performance and discussion

4.3.1 Non-biological data sets

The non-biological data sets we used for our experiments are
the G50C, USPST, Mac-Win, and WebKB data sets. In the
experiments involving these data sets, we utilize the origi-
nal representations without carrying out any feature gener-
ation procedures. In addition, following the previous work
[21, 93], we only consider accuracy as the main evaluation
metric for the G50C, USPST, and Mac-Win data sets, and
compute the Precision/Recall Breakeven Point (PRBEP) for
the WebKB data set due to its imbalanced labeling.

In all cases, the results of the proposed MML and MMBO
methods show promising improvements from non-multiscale
frameworks. Specifically, the best performances of the algo-
rithms are achieved with three kernels. In particular, there
is a significant accuracy improvement from single kernel to
two kernel architectures on the USPST data (from 86.11%
to 90.57% for the MML model, and from 86.55% to 88.65%
for the MMBO model) and Mac-Win data (from 89.98% to
90.01% for the MML model, and from 92.06% to 93.49%
for the MMBO model). The improvement from single ker-
nel to multi-kernel learning is less for the G50C and WebKB
data, but that is to be expected since G50C is a small data
set consisting of 550 samples. Furthermore, it is an artificial
data set drawn from two unit covariance normal distribu-
tions. As a result, a single kernel is enough to capture the
crucial structure of data. Moreover, the WebKB data poses a
challenge for multiscale learning due to its imbalanced data.

In almost all experiments, the proposed models obtain
the best results. In particular, in most experiments, the pro-
posed MMBO model obtains the best results, all with three-
kernel learning, while the proposed MML model obtains the
best result for USPST. In particular, for G50C, the MMBO
method achieves the best accuracy (95.06%), but the MML
method is still comparable with its accuracy being 94.56%.
Moreover, the superior performance of our proposed algo-
rithms over the state-of-the-art models is also displayed in
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Table 1: Data sets used in the experiments.

Data set
G50C
USPST
Mac-Win
WebKB (page)
WebKB (link)
WebKB (page+link)
a; b -protein

No. of classes
2

20
2
2
2
2
3

Sample dim.
50

256
7511
3000
1840
4840

50

No. of data elements
550

2007
1946
1051
1051
1051
900

No. of labeled data
50
50
50
12
12
12

720

the case of the more complex USPST data, a set of hand-
written digit images with 1440 samples. While the proposed
MML algorithm obtains the best accuracy at 90.57%, the
MMBO method with three-kernel information still obtains a
good accuracy of 88.73%. The other published approaches,
such as LapRLS, obtain lower accuracies. For Mac-Win,
our multi-scale models perform slightly lower than ÑTSVM
(94.3%) [21] and LDS (94.9%) [21]; the fact that there are
only 1966 samples but the dimension of each sample is very
high, i.e., 7511, might indicate noisy information which can
reduce the performances of graph-based kernel models. For
WebKB, our proposed methods perform extremely well. We-
bKB is the last data set in this category and has three differ-
ent feature representations, namely, link, page and page+link.
The overall performance of our proposed models is very en-
couraging. We see that using only one kernel already pro-
duces great results, with a little improvement in using mul-
tiple kernels. The best model is the MMBO method with
3 kernels which obtains a PRBEP at 96.22%, 97.93%, and
98.87% for the link, page, and page+link experiments, re-
spectively. The MML method obtains the next best result
with a PRBEP of 95.75%, 95.81%, and 95.84% for the link,
page, and page+link experiments, respectively. After the pro-
posed MMBO and MML methods, the next best result is
obtained by LapSVM: 94.3%, 93.4%, and 94.9%.

The results for non-biological data sets are shown in Fig-
ure 1. In most experiments with non-biological data, the pro-
posed MMBO method is clearly the most dominant. The
other proposed model, the MML method, is the second best
model with promising performances.

4.3.2 Alpha and beta protein classification

We also tested the proposed multiscale learning models us-
ing biological data, such as data involving protein classifica-
tion. In this data, based on the secondary structure, proteins
are typically grouped into three classes, namely alpha he-
lices, beta sheets, and mixed alpha and beta domains. Figure 2
plots the secondary-structure representations of 3 types of
protein structures. The data, which consists of 900 structures
equally distributed into three classes, was collected by Cang
et al [15] and taken from SCOPe (Structural Classification
of Proteins-extended), an online database [33].

Five-fold cross validation is conducted to examine the
performance of the proposed models. To preserve the un-
biased information, in each fold, the test set consisted of
180 instances with 60 samples from each group. Overall,
the protein data sets originally provide the coordinates and
atom types for each structure. However, feature generation
is needed to translate such information to a vector format
suitable for machine learning algorithms. Moreover, for this
data, the feature generation has to sustain crucial physical
and chemical interactions such as covalent and non-covalent
bonds, electrostatic, hydrogen bonds, etc. In the past few
years, we have developed numerous mathematical-based fea-
ture engineering models including geometric and algebraic
graph [69, 73], differential geometry [71], persistent homol-
ogy [14], and persistent graph [102] for representing 3D
molecular information in low dimensional representations.

We employ our geometric graph representation in [73].
In order to represent the physical and chemical properties of
a biomolecule, we consider four atom types, namely Ca ,  C,
N, and O. In particular, the protein structures are described
by vectors of 50 components. Overall, the details of the pa-
rameters for the feature generated approach is provided in
the Supporting Information.

Both MMBO and MML models perform well. More-
over, similarly to previous experiments, multiscale informa-
tion strengthens the accuracy of both MML and MMBO ap-
proaches. In fact, there is an encouraged improvement from
the one kernel model to the two kernel model , i.e., 84%
to 85% accuracy for the MMBO model. There is also an im-
provement in the MMBO method results using three kernels,
i.e. 85.11%. For the MML method, there is a slight improve-
ment by using multiple kernels. For this data, the MMBO
method outperforms its counterpart, which indicates the ver-
satility of the MMBO algorithm when dealing with a variety
of data. All results are presented in Figure 3.

4.4 Comparison Algorithms

We compare our algorithms to many recent methods, most
of which are from 2015 and later.

For WebKB data, we compare classification accuracy
against recent methods such as semi-supervised multi-view
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Fig. 1: Comparison of MML and MMBO with other methods on non-biological data. The proposed methods are in red, and
other methods are in blue. We note that some of the comparison methods for USPST use more labeled samples than the
proposed methods. Please refer to Section 4.4 for more details.
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a. b. c.

Fig. 2: Secondary-structure representations of proteins taken from a; b -protein data. Here, alpha helix is colored in red, beta
sheet is colored in blue. a) Alpha protein (PDBID: 1WIX), b) Beta protein (PDBID: 3O4P), c) Mixed-alpha and beta protein
(PDBID: 2CNQ). PDBID stands for protein data bank ID with experimental structures available at https://www.rcsb.org/.

Fig. 3: The performances of MMBO and MML models on the protein classification data set.

deep discriminant representation learning (SMDDRL) [45],
vertical ensemble co-training (VE-CoT) [51], auto-weighted
multiple graph learning (AMGL) [78], multi-view learning
with adaptive neighbors (MLAN) [75], deep canonically cor-
related autoencoder (DCCAE) [103], multi-view discrimi-
native neural network (MDNN) [80], semi-supervised learn-
ing for multiple graphs by gradient flow (MGSC) [59], multi-
domain classification w/ domain selection (MCS) [22], multi-
view semi-supervised learning (FMSSL, FMSSL-K) [109],
and semi-supervised multimodal deep learning framework
(SMDLF) [25]. Our results are obtained using 105 labels,
and using the classification accuracy metric. Results for SD-
MDRL, VE-CoT, AMGL, MLAN, SMDLF, DCCAE and
MDNN are from [45], the results for MGSC and MCS are
from [59], and the results for FMSSL and FMSSL-K are
from [109]. All methods use 105 labels.

For USPST, we compare against recent methods such as
transductive minimax probability machines (TMPM) [42],
semi-supervised extreme learning machines (SS-ELM) [41],
graph embedding-based dimension reduction with extreme

learning machines (GDR-ELM) [106], extreme learning ma-
chine auto-encoder (ELM- AE) [50], extreme learning ma-
chine auto-encoder with invertible functions (ELM- AEIF)
[107] and extreme learning machines for dimensionality re-
duction (SR-ELM) [5]. Our results are obtained using only
50 labels. The results for TMPM (with 50 labels) are from
[42], the results for GDR-ELM, ELM-AE, ELM-AEIF and
SR-ELM (with 150 labels) are from [106], and the result for
SS-ELM (with 100 labels) are from [41].

For G50C, we compare against recent methods such as
classtering (CLSST) [88], semi-supervised broad learning
system (SS- BLS)  [112], classification from positive and un-
labeled data (PNU) [87], classification from unlabeled pos-
itive and negative data (PUNU) [87], semi-supervised ex-
treme learning machines (SS-ELM) [41], semi-supervised
hierarchical extreme learning machine (SS-HELM) [92], safe
semi-supervised support vector machines (S4VM) [56], ro-
bust and fast transductive support vector machines (RTSVM,
RTSVM- LDS) [19]. Our results are obtained using 50 la-
bels. The result for C L S S T  is from [88], the results for SS-
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BLS,  SS-ELM and SS-HELM are obtained from [112], the
results for PNU, PUNU and S4VM are obtained from [87],
and the results for RTSVM and RTSVM-LDS are obtained
from [19]. All comparison methods use 50 labels.

For Mac-Win, we compare against recent methods such
as support vector machines with manifold regularization and
partially labeling privacy protection (SVM-MR&PLPP) [74]
and a scalable version (SSVM-MR&PLPP) [74]. These re-
sults are obtained from [74]. All comparison methods and
the proposed algorithms use 50 labels, the same number of
labeled samples as the proposed methods.

We also compare results for all data sets with slightly
older methods such as transductive graph methods (Graph-
Trans), closely related to [8, 113, 116], transductive support
vector machines (TSVM) [47], support vector machines on a
graph-distance derived kernel (Graph-density) [21], TSVM
by gradient descent (ÑTSVM) [21], low density separation
(LDS) [21], Laplacian support vector machines (LapSVM)
[93] and Laplacian regularized least squares (LapRLS) [93].
For WebKB, we use the PRBEP metric when comparing
against these methods. The results for all older methods,
except LapSVM and LapRLF, are obtained from [21], the
results for LapSVM and LapRLF are from [93]. All com-
parisons with older methods use the same number of labeled
samples as the proposed methods: 12 labels for WeBKB and
the PRBEP metric, and 50 labels for the rest of the data.

4.5 Efficiency

The proposed MML and MMBO procedures are very effi-
cient. The timing results are listed for all data sets in Table 2
(for MMBO) and Table 3 (for MML).

The timing of the proposed MMBO method is divided
into two parts: (1) the timing for the construction of the
graph weights and the calculation of the extremal eigenvec-
tors of the multiscale graph Laplacian, and (2) the timing of
the MMBO procedure. From Table 2, one can see that the
proposed MMBO procedure takes under 2 seconds for all
data sets, and the graph construction and computation of the
eigenvectors takes little time as well.

The timing of the proposed MML method consists of
two categories: (1) the timing for the construction of the
warped kernels, and (2) the timing of the optimizer. One
can see from Table 3 that the procedure of generating the
multiscale graph and the warped kernel is the most time-
consuming step of the MML algorithm, but it is still under
5 seconds when handling the Mac-Win data set having 1946
samples with a feature dimension of 7511. For other data
sets, the MML method takes under 0.3 seconds to formulate
the multiscale graph and the warped kernel. Due to the sim-
plified version of the optimizer of the MML method, one can
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directly use the standard solver of SVM for the MML algo-
rithm. This procedure is extremely fast and needs no more
than 0.03 seconds to complete the task for all experiments.
The computations were performed on a personal laptop 2.4
GHz 8-Core Intel Core i9.

5 Conclusion

This work presents several methods for machine learning
tasks and for dealing with some of the challenges of ma-
chine learning, such as data with limited samples, smaller
data sets, and diverse data, usually associated with small
data sets or data related to areas of study where the size of
the data sets is constrained by the complexity and/or high
cost of experiments. In particular, we integrate graph-based
techniques, multiscale structure, adapted and modified op-
timization procedures and semi-supervised frameworks to
derive two multiscale Laplacian learning (MLL) approaches
for machine learning tasks, such as data classification.

The first approach introduces a multiscale kernel repre-
sentation to a manifold learning technique and is called the
multikernel manifold learning (MML) algorithm .

The second approach combines multiscale analysis with
an interesting adaptation and modification of the famous
classical Merriman-Bence-Osher (MBO) scheme, originally
intended to approximate motion by mean curvature, and is
called the multiscale MBO (MMBO) algorithm.

The performance of the proposed M L L  approaches is fa-
vorably compared to existing recent and related approaches
through experiments on a variety of data sets. The two new
M L L  methods form powerful techniques for dealing with
some of the most important challenges and tasks in machine
learning and data science.

Supporting Information

We present the optimal hyperparameters of the proposed
MMBO and MML methods for all experiments conducted
in this work in Online Resource: Supporting Information.
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The source code for the proposed MMMBO and MML meth-
ods is available at Github: https://github.com/ddnguyenmath/
Multiscale-Laplacian-Learning.
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Table 2: The timing of the proposed MMBO method

Data set

G50C
USPST
Mac-Win
WebKB (page)
WebKB (link)
WebKB (page+link)
a; b -protein

Size of
data set

550
1440
1946
1051
1051
1051
900

Sample
dimension

50
1024
7511
3000
1840
4840

50

Timing
(Construction of graph

and eigenvectors)
0.02 seconds
1.41 seconds
9.8 seconds

1.04 seconds
0.67 seconds
1.58 seconds
0.18 seconds

Timing
(MMBO procedure)

0.31 seconds
1.52 seconds
1.17 seconds
0.60 seconds
0.60 seconds
0.60 seconds
1.96 seconds

Table 3: The timing of the proposed MML method

Data set

G50C
USPST
Mac-Win
WebKB (page)
WebKB (link)
WebKB (page+link)
a; b -protein

Size of
data set

550
1440
1946
1051
1051
1051
900

Sample
dimension

50
1024
7511
3000
1840
4840

50

Timing
(Deformed Kernel)

0.039 seconds
0.24 seconds
4.51 seconds
0.21 seconds
0.15 seconds
0.28 seconds
0.05 seconds

Timing
(Optimization)
0.001 seconds
0.003 seconds
0.002 seconds
0.02 seconds
0.01 seconds
0.02 seconds
0.02 seconds
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