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2-D SIGNATURE OF IMAGES AND TEXTURE CLASSIFICATION

SHENG ZHANG, GUANG LIN, AND SAMY TINDEL

ABSTRACT. We introduce a proper notion of 2-dimensional signature for images. This
object is inspired by the so-called rough paths theory, and it captures many essential features
of a 2-dimensional object such as an image. It thus serves as a low-dimensional feature for
pattern classification. Here we implement a simple procedure for texture classification. In
this context, we show that a low dimensional set of features based on signatures produces
an excellent accuracy.

1. INTRODUCTION

Signatures of paths are fascinating objects which have been under intense scrutiny for
the past 25 years. In this introduction we will first put our own investigation into context,
summarizing some of the contributions for signatures of paths indexed by a 1-dimensional
(1-d) parameter. This will be the content of Section 1.1. Then in Section 1.2 we introduce
the concept of signature for paths indexed by a 2-dimensional (2-d) parameter. This is the
natural framework in order to deal with image processing. Eventually we will summarize
our main results and draw some conclusions.

1.1. 1-d signatures. Before going further, let us mention that the 7-d in 1-d signatures
refers to the fact that the paths = we are considering for now are indexed by a 1-d parameter
t € [0, 0] for a given time horizon ¢ > 0 (as opposed to the 2-d parameter (s;t) € [0, 0] x [0, 7]
considered in the next sections). Nevertheless, the path z is generally Re-valued, that is
r; € R4 for all t € [0, 0].

Signatures of paths are prominent objects in analysis and data science due to several
remarkable properties: they show up naturally in fundamental computations, they enjoy
suitable algebraic and analytic relations, they characterize paths, and they have been suc-
cessfully applied in a data analysis context. Let us briefly review those features.

(i) Prominence of signatures in system approximations. One of the simplest situations in
which signatures pop up in a very natural way is through basic change of variables formulae.
Namely consider a regular enough C'-path (or curve) z : [0, 0] — R? and a smooth function
f: R4 — R. We denote by z' each component of x, so that x = (2!, ..., 2%). For notational
sake, we also write 0;f for the partial derivative 0f/dx;. Then the most basic form of a

change of variable formula asserts that for 0 < s < § < ¢ we have

) - fa) =3 / 0, (2, dat 1)
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In order to get further expansions according to relation (1), let us introduce the first two
elements of the signature of x. They are defined as iterated integrals of x as follows,

1 ] 2.41,1 1 ]
x =2l -2l = / dr!  and x"7 = / da} dz;2.
s<r1<8 s<r1<reo<s§

With this notation in hand and iterating formula (1), we get the following approximation

flxs) — Z ) XG4 07 fa) x5 (2)

11,82

As one can see from relation (2), the elements x!,x? play the role of monomials in a Taylor
type expansion along the path x. They can thus be thought of as building blocks for a
faithful representation of the path x.

Extrapolating on this kind of consideration, the signature of x summarizes all the iterated
integrals of x in a single object [S(x)]ss which can be written as

o

[S(z)]ss =1+ Z/ dz,, ®dz,, ® --- @ dx,,. (3)

n=1 <r1<re<---<rp<§

For a given couple s, § with s < §, the element [S(z)]ss, called the signature of z, lies in the
space T(RY) = @ ,(R4)®". Tt should be mentioned that S(z) also appears very naturally
when computing Taylor type expansions of ordinary differential equations. This fundamental
property is the one that made signatures the central object in rough paths analysis. Rough
paths can be seen as a new point of view on stochastic differential equations, and had a
profound impact on stochastic analysis over the past two decades. Proper generalizations of
rough paths are also at the heart of the celebrated regularity structure theory [Hail4].

(ii) Algebraic and analytic properties. The fact that S(z) belongs to the free algebra T'(R?)
induces very convenient properties for algebraic manipulations. To name just a few, one can
prove that if x Ll y denotes the concatenation of two paths z and y, then (see e.g. [FV10,
Theorem 7.11|) we have

S(xUy) = S(x) © S(y), (4)

where the product in the right hand side of (4) is the polynomial type product on T'(R%).
Invariance by reparametrization also holds. More specifically, if ¢ : [0,0] — [0, 0] is a non-
decreasing surjection and if we set 2% = z 0 ¢, then for all 0 < s < 5§ < o the following holds
true:

[S(@)]s(s)06) = S(2%)ss. (5)
On the analytic side, the essential bound on signatures asserts a factorial decay with

respect to the order of the integral. Namely, if S,,(z) denotes the n-th order integral in (3),
then we have the following upper bound:

(Cra)"
n!

[19n(2)]] < : (6)

where the constant C;, does not depend on n. Notice that relation (6) yields crucial bounds
on differential equations driven by x, which can be then extended to stochastic cases.




2-D SIGNATURE 3

(i) Characterization of paths. One of the most fundamental properties of signatures (es-
pecially with data analysis in mind) is that they characterize paths. Specifically, for two
Lipschitz paths x,y we have

S(x)or = S(¥)or it x~y, (7)
where x ~ y means that x, y only differs by a tree-like path. This result is proved in [HL10|,
while [Gen17] provides an algorithm allowing to reconstruct a path from its signature. Along
the same lines, any continuous map f : C'([0,0]) — R can be approximated by a linear

functional of the signature. This point of view leads to more quantitative versions of (7),
see [KLA20|.

(iv) Signatures and data analysis. Due to the algebraic, analytic and characterization prop-
erties recalled above, signatures have been recently used as efficient features in data analysis
for paths. The literature on this topic is now abundant. Among those contributions, let us
single out the very successful Chinese character recognition algorithm [Gral3|. Other signif-
icant applications include Finance time series [LNO14|, topological data analysis [CNO20)]
and diagonosis prediction [MLG19|. It is fair to claim that signatures are now accepted as
an efficient set of features for classification or prediction of paths.

1.2. 2-d signatures. Although there are now promising steps in the analysis of signatures
for fields indexed by m-dimensional rectangles, this area of research is still in its infancy.
Following the structure of Section 1.1, let us recall what has been done in case of fields
indexed by [0, 0] x [0, 7].

(1) Signatures for calculus in the plane. Let us start from the equivalent of relation (1) in the
plane. Namely consider a C?-field x : [0, o] x [0, 7] — R? and a smooth function f : R? — R<.
In order to write more compact equations below, we will use the following conventions:
ani;t dsdt d Qg — 81:i;t 3xg;t
A PR
Also recall that we write 0;f for the partial derivatives of f. In addition, increments like
f(zs)— f(zs) in (1) should be replaced by rectangular increments. Specifically, for a rectangle
[s,3] x [t, 1] and a field y defined on [0, 0] x [0, 7] we write

dsdt. (8)

i
dipxy, =

Ogsti ¥ = Y = Ysii — Ysit + Yst- (9)
Then the equivalent of (1) in rectangles gives a change of variables formula for the rectangular
increments of y = f(x). It reads

d
Oesuif (y) = Z /< B /Kt . a?jf('rsl;tl) diémg;gl
§<81<8 1

1,7=1

d
3 / / 0if (Tory) diol 5. (10)
i—1 Y s<s1<8 Ji<ti<t ;

With respect to (1), the appearance of the term djsx in (10) is obviously a major difference.
As a result when one tries to push forward Taylor type expansions up to order 2 like in (2),
the number of terms explodes. A description of those terms is given in [CG14; CT15] for
second order calculations, but we are not aware of extensions up to an arbitrary order.
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Therefore obtaining an expression for a 2-d signature S(z) similar to (3) is still a challenging
open problem. Let us also mention that the stochastic calculus for plane-indexed processes
does not fit into the general regularity structure framework [Hail4|, due to some boundary
type singularities.

(ii) Algebraic and analytic properties. Since the very definition of S(z) for paths indexed
by (s,t) is still open, the literature on its algebra is obviously scarce. The recent preprint
[Giu+-22| gives an account on the algebraic structure generated by the increments

/ / Adiizsuh ® -+ @ dis%s,st,- (11)
5<81 < <sp < Jt<t) <oo<tn <t

Some potential generalization of (4)-(5)-(6) are provided therein. In particular, the invari-
ance property (5) is restricted to coordinate-wise changes of variables of the form

¢(s,1) = d1(s)2(t), (12)

with two non-decreasing surjections ¢; and ¢s.

(iii) Characterization of paths. Here again, only partial information for 2-d signatures is
available. However, [Giu+22, Theorem 6| is encouraging. Indeed this theorem claims that
signatures generated by (11) do characterize paths, albeit in a topological weak sense.

(iv) Signature and data analysis. A RGB image can be fairly well represented by a field
z:[0,0]x[0,7] = R?, where each x4y = (x},, 22, 22,,) represents a pixel and every coordinate
stands for a fundamental color (say 1 = red, 2 = green, 3 = blue). Nevertheless, to the best
of our knowledge, 2-d signatures have not been used as features in image processing or other
multiparametric data analysis problems. The need for nonlinear functionals of the field x
in texture classification was acknowledged in the influential paper [SM14], leading to a wide
variety of generalizations. One can also mention the recent contribution [CGW21|, where
regularity structures based features are used for prediction purposes. However, the fact that
2-d signatures are natural objects to consider for image processing is not mentioned in those
two references.

1.3. Outline. With the above preliminaries in mind, our objective can be summarized as fol-
lows: we wish to show empirically that 2-d signatures are natural are efficient low-dimensional
features for image processing. We propose to achieve this by considering a simple texture
identification problem. We will see that considering a 12-dimensional feature and applying
standard classification methods, one can achieve an excellent accuracy. This certainly calls
for further developments, which will be highlighted in our concluding remarks.

Our paper is structured as follows: in Section 2 we give a mathematical description of the
signatures we are using for classification purposes, together with their discretized versions.
Section 3 focuses on the numerical experiment, as well as the outcome in terms of accuracy
for our classification task. We finish the paper with some concluding remarks in Section 4.

2. DESCRIPTION OF THE 2-D SIGNATURES

This section is devoted to introduce the features we advocate for in this paper. In Sec-
tion 2.1 we define those objects in the (continuous) plane, while Section 2.2 focuses on the
corresponding discrete objects.
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2.1. Features in continuous space. The integrals considered below are based on a notion
of simplex in the plane. The first of these objects is simply a rectangle of the form [s, §] x [, £].
It is denoted below as

81<S, §,t,£) = {(Sl,tl) S R2,S <s <S5, t<t < 7?} (13)

Notation (13) can then be easily extended in order to describe the simplex used for second
order integrals. Specifically, we integrate over domains of the form

SQ(S,é;t,E) = {(Sl,SQ,tl,tQ) S R4, S <8 < 89 < §,t <t <ty < Lt} (14)

With the above notation (13) in hand, the first order increments used as features can be
written as

(1,2)5i1 i1 (1,2);ir _ i1
Xsé;tf - N d12x81;t1 and ng;tf = . d12$s1;t1- (15)
SI(S7§;t7t) Sl(svg;t7t)

Notice that xg’jg;“
Taking into account the fact that the color index 4, lies in {1, 2, 3}, we get 6 features of order

1 defined by (15).

Let us now turn to the definition of second order increments. Recalling notation (14), we
now have several possibilities combing spatial differentials and color indices. We get

above is simply the rectangular increment O, ,; x introduced in (9).

s§;t

(11,22)3i1,42 __ i in (11,22)si1,32 _ i io
X, i = oty drgy, and x = dipry, disTay, . (16)
82(S7§;t1t) 82(S7§;t1t)

Remark 2.1. A wider variety of second order increments is available, when one mixes the d
and dj; differentials defined by (8). One can also decide to integrate in one direction only
for some of the integrals. See [CT15, p. 5 and p. 18] for an exhaustive first of necessary
increments for a rough integration in the plane. From this long list of possible increments,
we will also appeal to x'?2 and x!'1322_ respectively, defined by

(11,22)i040 i i (11,22)5i132 i1 o
Xs§;t£ - ) d12x31;t1d12x82;t2 and ng;tf - R d12x81;t1d12x82;t2' (17)
52(87‘§;t’t) 52(S7§;t7t)

Remark 2.2. In this article we focus on low dimensional features. We will thus only consider
the increments in (16) for iy = iy. Specifically, the collection of first and second order
increments used below will be

{x(l,Q);i’ x(i,ﬁ);i’ x(11,22);i,i’ x(ii,ﬁé);m‘7 x(li,2§);z‘,i7 x(il,QQ);i,i;i —1,2, 3} ' (18)

We thus end up with a 18-dimensional feature space.

Remark 2.3. As mentioned in the introduction, the collection (18) of iterated integrals enjoys
some complex algebraic properties. We refer to [CG14, Section 5.1] for an account on these
relations. See also the aforementioned article |Giu+22|.

Remark 2.4. Analytic properties are part of the appeal of signatures as features. Since our
considerations in the current article are restricted to second order increments, the factorial
decay exhibited in relation (6) does not really make sense. However, assuming that z is a
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C?-signal, it is readily checked that for all 0 < s < § < o and 0 <t < < 7 we have

(1,2),i (1,2

sé;tt + xsstt < C ‘S_S| |t_t} (19>
(11,22),ii (11,22),ii (11,22),i4 (11,22),ii A 202
s§;tt + Is§;tf + ms§;tf + xs§;tf < Cm |S - S| }t - t‘

2.2. Discretization procedure. An image is a collection of pixels. For notational sake,
we will consider that it can be represented as a field indexed by N? and we denote by % the
discrete quantities. Otherwise stated we have

g={aps ke{l,... K}, le{l,... . L}, ic{1,2,3}}, (20)

for two constants K, L > 1. In this context the discrete first order increments are deduced
from their continuous counterparts (15) as

4 k-1 -1
i,(ﬁfl;“ = Z > Okt 27 (21)

=k 1=l

o k=1 -1
Roa = Z D@ — T ) @ — ). (22)

=k 1=l

As far as the equivalents of (16) are concerned, the discrete form of x(?2) ig

k-1 i-1 ko—112—1
~(11 22)ji1i2 i
kk ai - E E : E E Dkl,k1+1 sl +1 .1' Dkz,k2+1;12,12+1 . (23>

=k lo=l \ki=k 1=l

For sake of conciseness, the discrete expressions for the other increments in (18) are left to
the patient reader. Let us just mention that central difference approximations will be applied
when considering the first-order derivatives in djs (see expression (8)).

3. NUMERICAL EXPERIMENT

In this section, we illustrate the use of 2-d signatures as features for image texture clas-
sification. There are two ways to look at the set of features we are considering in this
experiment:

(i) One uses a classic principal component analysis (PCA) on the image pixels, then this
data is enriched with the second order increments in (18).

(ii) One directly uses all the increments in (18), and performs a PCA on the first order
increments x(1?# defined by (15).

Since the value of each pixel can be deduced from the boundary terms {xf,,, z%.4; s € [0, o],

t
[0,7]} and the increments x(1?)% it is readily checked that the two approaches (i) and (ii)
are equivalent.

Principal component analysis is one of the classical methods in image classification prob-
lems, successfully implemented for applications such as face classification. The technique
using PCA for face classification was named eigenfaces [TP91], whose basis set for all im-
ages is formed by principal components. In particular, the original training images may be
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01-Felt 02-Polyester 03-Terrycloth 04-Rough_Plastic 05-Leather 06-Sandpaper

10-Plaster 11-Tree _Bark 12-Artificial_Grass

09-Frosted_Glass

07-Velvet

08-Pebbles

15-Cork

13—Rdéﬁhg_$hingle 14—AIuminumFoiI 16-Rough_Tile 18-Styrofoam

24-Loofa

19-Sponge 20-Lamb_Wool 23-Quarry_Tile

29-Limestone

21-Lettuce_Leaf 22-Rabbit_Fur

26-Crumpled_Paper ] 27—Slte 28-Painted_Spheres

30-Straw

36-Aquarium_Stones

31-Brick 32-Corduroy 33-Salt_Crystals 34-Linen 35-Cotton

41-Wood

39-Bread

37-Concrete 38-Corn_Husk

42-Cracker

40-Soleirolia_Plant

Ficure 1. Forty-two different textures are used in this experiment.

represented by their projections on the principal components. Dimensionality reduction and
feature extraction are achieved by keeping just the first few principal components, which
have higher signal-to-noise ratio. Here we extend this method to texture classification, en-
riching our data with the natural nonlinear features given by second order signatures. We
also use simple PCA features as a baseline. Let us highlight again the fact that principal
components can be embedded in our signature analysis, when including both first and second
order signatures in our set of features.
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F1cURE 2. Ten samples from the texture “21-Lettuce Leaf” in Figure 1.

3.1. Training and testing data. The forty-two textures used for this experiment are de-
picted in Figure 1. They are from a standard data set called CuRRET: Columbia-Utrecht
Reflectance and Texture Database [Cur|. We randomly sample (100 x 100)-sized images
from each texture. Ten samples from every texture are used for training. As an illustration,
the training data from the texture “21-Lettuce Leaf” are shown in Figure 2. Now, we have
10 x 42 = 420 different images belonging to 42 different texture categories in the training
data. Since the data are easy to generate, we have used a larger size of testing data to more
accurately evaluate the predictive performance of the machine learning model. Specifically,
one hundred images from every texture have been sampled for testing. In total, this yields
100 x 42 = 4200 testing data.

3.2. Feature engineering with symmetry. Feature engineering is the process of extract-
ing useful information from raw data. If properly designed, the extracted features are of low
dimension while preserving most of the important information in the data. This process can
improve the performance of machine learning algorithms. As mentioned above, traditional
ways of image feature engineering include PCA, which projects the data onto the first few
principal components. Those components are encoded in the first order features (15).

For our experiment, we use the 2-d signatures described in Section 2.2 to construct more
features for image classification. For each image, we can calculate the discretized signatures
using the above formulae (21)-(22)-(23). Since the texture should be symmetric, i.e. inde-
pendent of the orientation of an image, we design the features as the average of the signatures
under eight different orientations, the isometric group generated by rotation of 90° and re-
flection. As an image has 3 channels (red, green, blue) and we are using 4 second order
signatures, we have in total 12 features constructed by second order signatures for every
image. We are also adding the first N; = 0 to 40 principal components related to the first

I(:le?” in (21). In the end, we are thus resorting to N, = 12 to 52 features

in our study. In an image processing context, this should be thought of as a low-dimensional
set of features.

order increments X

3.3. Training. We now assume that the training data of Section 3.1 (including the images
and their corresponding classes), as well as the features constructed in Section 3.2, are
given. We then train a random forest classifier using the joint features to reconstruct the
corresponding classes of the training data. The classifier will then output a class label for
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15% 4

10% A

Percentage of explained variance

5% 4
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0 5 10 15 20 25 30 35 40
Principal component

FicUrE 3. The percentage of explained variance of the first 40 principal components. Most of the
variance is explained by the first 3 components. Principal component analysis is performed on the
training data, where an image is reshaped into a vector.

any new input image. A good classifier should obviously be able to distinguish properly
between different classes.

3.4. Testing. For each testing image, we calculate its features using the same formula as the
training data. Then, the features are fed into the trained classifier to predict the class label.
Next, we compare the predicted class labels with the true labels across all images in the
testing data, and calculate the overall accuracy of the classification algorithm in identifying
the true labels.

3.5. Results. Our aforementioned image classification pipeline uses features generated by
principal components as well as features constructed by signatures. The percentage of ex-
plained variance of the first 40 principal components is shown in Figure 3. As one can see,
most of the variance is explained by the first 3 components. Next to visualize the testing
data in the high-dimensional feature space, we use a nonlinear dimensionality reduction tech-
nique called t-distributed stochastic neighbor embedding (t-SNE) [MHO08]. T-SNE embeds
high-dimensional data into two dimensional space, while trying to preserve local structures
and relative distances of the data. See Figure 4. The 15-dimensional vectors of features,
generated by the first 3 principal components and 12 second order signatures, are embedded
into a 2-dimensional space. Each point represents an image. The points of the same color
represent the images of the same class. As one can see on the figure, the images are well dif-
ferentiated by this 15-dimensional set of features, even before plugging into the classification
algorithm.



10 S. ZHANG, G. LIN, AND S. TINDEL

01-Felt
02-Polyester
03-Terrycloth
04-Rough_Plastic
05-Leather
06-Sandpaper
07-Velvet

801

%%

» 08-Pebbles
? 09-Frosted_Glass
w f 10-Plaster
" 11-Tree _Bark
40 - 9 " A 12-Artificial_Grass
[ ] 13-Roofing_Shingle

14-Aluminum_Foil
15-Cork

16-Rough_Tile
20 4 o i 17-Rug
P N L. ‘ 18-Styrofoam
v* o 19-Sponge
SV ¢ ° 20-Lamb_Wool

21-Lettuce_Leaf
22-Rabbit_Fur
23-Quarry_Tile
24-Loofa
25-Insulation
26-Crumpled_Paper

e’
A o
—204 Q'* K/ ‘.ﬁ 27-Slate
- % -t 28-Painted_Spheres
29-Limestone
30-Straw
'\E"" 31-Brick

—40 32-Corduroy
33-Salt_Crystals
3 34-Linen

35-Cotton

sg . 36-Aquarium_Stones

—60 4 YL 37-Concrete
38-Corn_Husk
39-Bread
40-Soleirolia_Plant
41-Wood
42-Cracker

© o © o o © © o o o © o o o © 0 0 0 & 0 0 0 0 0 o

25
¥ 4

—80 4

-80 —60 —40 =20 o] 20 40 60 80

FIGUrRE 4. Two-dimensional t-distributed stochastic neighbor embedding of the 15-dimensional
vectors of features of testing data. The features are generated by the first 3 principal components
and 12 second order signatures. Each point represents an image. The points of the same color
represent the images of the same class. The images are well differentiated by this 15-dimensional
set of features, even before plugging into the classification algorithm.

The classification accuracies of the trained random forest classifiers on testing data are
demonstrated in Figure 5. We include accuracies under different feature sets. To be spe-
cific, we compare the accuracies with different numbers of principal components, as well as
with and without features constructed by second order signatures. We also contrast the
classification task with or without symmetry in the construction of the signature features.
Eventually, we compare the results under different sizes of training data, while the test-
ing data keep the same. As one might expect, having more training data can improve the
classification accuracy.

The numerical results suggest that when we use symmetric signatures and the first 3
principal components as features, best performance is attained. The 15-dimensional feature
set yields close to 100% classification accuracy when there are just 10 training data in
every class. As nonlinear features complementary to the linear features provided by PCA,
second order signatures can enhance the classification of textures. In fact, as the decay of
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1 training data in every class 2 training data in every class

100% - —— With symmetric signatures 100% - —— With symmetric signatures
With signatures With signatures
—— No signature —— No signature
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Classification accuracy on testing data
Classification accuracy on testing data

0% T T T T T T T 0% T T T T T T T
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Classification accuracy on testing data
Classification accuracy on testing data

Ficure 5. Classification accuracies of the random forest classifiers. When there is no signature or
principal component, the accuracy is fixed at 1/42 since there is no feature and we are predicting
1 out of 42 classes.

performance when adding too many principal components suggests, not very useful features
can negatively impact the machine learning classifier. On top of that, the procedure to
average over 8 orientations when constructing features from signatures is helpful in improving
the classification accuracy, and this is consistent under different sizes of training data.

4. CONCLUSION

We have produced a low dimensional set of features, based on first and second order
signatures of 2-d indexed fields. Those objects stem naturally from elementary calculus
in the plane considerations. Therefore they provide a very convenient set of parameters,
expressed as nonlinear functionals of a field indexed by R2. In addition, we have shown that
2-d signatures yield excellent performances for texture classification on a concrete example.

In view of the above observations, 2-d and more generally higher dimensional signatures
certainly deserve further investigations. Below is a non exhaustive list of the research lines
we wish to explore:

(i) Increase the number of experiments, progressively asserting the validity of 2-d signatures
as a meaningful set of characteristics for different categories of fields. Specific domains of
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application should include material science as well as civil engineering, where texture type
features play a prominent role.

(ii) Get a better grasp on the underlying algebraic structures related to 2-d signatures. This
study should go beyond the investigation lead in [Giu+22| (restricted to the djsx differentials
introduced in (8)), and will probably involve advanced structures such as Hopf algebras. One
of the main objective in this direction is to construct all signatures (up to a given order) in
a systematic way.

(iii) Generalizations of rough paths notions to fields indexed by R have recently given rise
to breakthroughs in the definition of singular PDEs. Those advances have been achieved
either in the landmark of regularity structures [Hail4; Che+21] or paracontrolled calculus
|GIP15], and they all rely on convolution type iterated integrals. Since PDEs are known to
be related to various fundamental problems in image processing (see [AK06]), it is likely that
those iterated convolution integrals are also meaningful for image classification purposes. In
particular the paracontrolled approach hinges on Fourier modes, which could complement
the direct modes feature introduced in (18).

As the reader can see, the signature method for image processing is a promising research
direction, which deserves further investigations and improvements. Those questions will be
addressed in subsequent publications.
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