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Abstract

We introduce a novel relaxation of combinatorial discrepancy called Gaussian discrepancy,
whereby binary signings are replaced with correlated standard Gaussian random variables. This
relaxation effectively reformulates an optimization problem over the Boolean hypercube into one
over the space of correlation matrices. We show that Gaussian discrepancy is a tighter relaxation
than the previously studied vector and spherical discrepancy problems, and we construct a fast online
algorithm that achieves a version of the Banaszczyk bound for Gaussian discrepancy. This work also
raises new questions such as the Komlós conjecture for Gaussian discrepancy, which may shed light
on classical discrepancy problems.
Keywords: combinatorial optimization, Gaussian discrepancy, online discrepancy, spherical discrep-
ancy, vector discrepancy

1. INTRODUCTION AND OVERVIEW OF THE PAPER

In this work we introduce a probabilistic relaxation of the classical combinatorial discrepancy
problem that we call Gaussian discrepancy. In this section, we first briefly survey discrepancy theory
and formally define our relaxation. Then we discuss our main results which consist of (i) sharp
comparisons of Gaussian discrepancy to previously studied relaxations, and (ii) a fast algorithm for
online Gaussian discrepancy. We conclude this overview with some open problems and an outline of
the remainder of the paper.

1.1. Discrepancy theory and Gaussian discrepancy

1.1.1. BACKGROUND ON COMBINATORIAL DISCREPANCY

Discrepancy theory is a rich area of mathematics which has both inspired the development of novel
tools for its study, and found numerous applications in a variety of fields such as combinatorics,
computer science, geometry, optimization, and statistics; see the textbooks Matoušek (1999); Chazelle
(2000). In one of its most fundamental forms, discrepancy asks the following question: given an
m⇥ n matrix A 2 Rm⇥n, determine the value of the discrepancy of A, defined as

disc(A) := min
�2{±1}n

kA�k1 = min
�2{±1}n

max
1im

|(A�)i| . (1)
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GAUSSIAN DISCREPANCY

This question can be interpreted in terms of vector balancing: if v1, . . . , vn denote the columns of A,
then we are looking for a signing, that is, a vector of signs � 2 {±1}n, that makes the signed sumPn

j=1 �jvj have small entries.
A seminal result in this area, due to Spencer (1985) and independently Gluskin (1989) (see

also Giannopoulos (1997)), states that

disc(A)  6
p
n (2)

when m = n and the entries of A are bounded in magnitude by 1. This remarkable result is the best
possible, up to the constant factor 6, and should be compared with the discrepancy incurred by a
signing chosen uniformly at random which is of order ⇥(

p
n log n). A far-reaching extension of this

result is the Komlós conjecture (Spencer, 1985).

Conjecture 1 (Komlós conjecture) There exists a constant K > 0 such that for any matrix A

whose columns have Euclidean norm at most 1, it holds that

disc(A)  K .

This conjecture remains one of the most important open problems in the field, and the best known
bound for the Komlós problem, due to Banaszczyk (1998), yields disc(A) = O(

p
log(m ^ n)).1

The Komlós conjecture contains as a special case the long-standing Beck–Fiala conjecture which
states that if A has t-sparse columns in {0, 1}m, then disc(A) = O(

p
t) (Beck and Fiala, 1981).

The original proofs of these results are non-constructive in the sense that they do not readily yield
efficient algorithms for computing signings which achieve these discrepancy upper bounds. In the
last decade, considerable effort was devoted to matching these upper bounds algorithmically. Starting
with the breakthrough work of Bansal (2010), there are now a number of algorithmic results matching
Spencer’s bound (Lovett and Meka, 2012; Harvey et al., 2014; Levy et al., 2017; Rothvoss, 2017;
Eldan and Singh, 2018). The task of making Banaszczyk’s bound algorithmic was more challenging,
and it was settled in the last few years in a line of works (Bansal et al., 2016; Levy et al., 2017; Bansal
et al., 2018; Dadush et al., 2019).

Recently, online discrepancy minimization (Bansal and Spencer, 2020; Bansal et al., 2020;
Alweiss et al., 2021; Bansal et al., 2021; Liu et al., 2022) has seen increasing interest and has led to a
new perspective on Banaszczyk’s result. In the oblivious online setting, an adversary picks in advance
vectors v1, . . . , vT 2 Rm, each with Euclidean norm at most 1. During each round t = 1, . . . , T , the
algorithm receives the vector vt, and it must output a sign �t 2 {±1}. The goal of the algorithm is to
minimize the maximum discrepancy incurred at any time, i.e. the quantity maxt2[T ] k

Pt
s=1 �svsk1.

Alweiss et al. (2021) conjecture the following online version of the Banaszczyk bound.

Conjecture 2 (Online Banaszczyk) There exists a randomized algorithm for online balancing in
the oblivious adversarial setting that with high probability achieves the bound

max
t2[T ]

���
tX

s=1

�svs

���
1

.
p
log(mT ) ,

for any sequence v1, . . . , vT 2 Rm of vectors with Euclidean norm at most 1.

This would be nearly optimal, as a lower bound of e⌦(
p
log T ) is established in Bansal et al. (2020).

1. Here m ^ n = min{m,n}.

2



GAUSSIAN DISCREPANCY

1.1.2. GAUSSIAN DISCREPANCY AND THE COUPLING PERSPECTIVE

Motivated by the aforementioned longstanding conjectures, recent algorithmic progress, and the goal
of shedding new light on the classical discrepancy minimization problem, in this work we introduce
a novel relaxation called Gaussian discrepancy. Our route to Gaussian discrepancy is through an
alternative perspective on the discrepancy objective (1) based on couplings of random variables.

Recall that a Rademacher random variable is distributed uniformly on {±1}. A coupling of
Rademacher random variables is a random vector for which each marginal distribution is Rademacher.
Since a signing � 2 {±1}n and its negative�� achieve the same discrepancy, the uniform distribution
on the set of optimal signings furnishes an optimal Rademacher coupling that minimizes the right-
hand-side of (1) in expectation. Precisely, it holds that

disc(A) = min
n
EkA�k1 : P(�j = �1) = P(�j = +1) =

1

2
for all j 2 [n]

o
, (3)

where the minimization above is over couplings of Rademacher random variables.2

The coupling perspective plays an important role in discrepancy theory and its applications.
The recent algorithmic proof of Banaszczyk’s theorem by Bansal et al. (2018) relies on the equiv-
alence between Banaszczyk’s theorem3 and the existence of sub-Gaussian distributions supported
on {

Pn
j=1 �jvj}�2{±1}n , as established by Dadush et al. (2019) . Their algorithm, known as the

Gram-Schmidt walk, focuses on correlating the entries of � in order to control the sub-Gaussian
constant of A�. Further, in applications of discrepancy theory such as randomized control trials, it is
important to output not only a single signing but rather a distribution over low-discrepancy signings
for the purpose of inferring treatment effects (Krieger et al., 2019; Turner et al., 2020; Harshaw et al.,
2021).

To construct our relaxation, we replace the Rademacher distribution with the standard Gaussian
distribution in the coupling interpretation (3) of combinatorial discrepancy. The Gaussian discrepancy
is defined to be

Gdisc(A) = min
n
EkAgk1 : gj ⇠ N (0, 1) for all j 2 [n] , g1, . . . , gn jointly Gaussian

o
, (4)

where N (0, 1) denotes the standard normal distribution. Equivalently, the minimization is over
covariance matrices ⌃ for the random vector g = (g1, . . . , gn) that lie in the elliptope En, the set of
all positive semidefinite matrices whose diagonal is the all-ones vector. Unlike Rademacher couplings
which require, a priori, an exponential number of parameters to describe, joint Gaussian couplings
admit a compact description that is completely determined by the covariance matrix ⌃ 2 Rn⇥n.

Let us record the simple observation that Gaussian discrepancy is indeed a relaxation of combina-
torial discrepancy.

Proposition 3 For any matrix A, it holds that Gdisc(A) 
p
2/⇡ disc(A) .

Proof Given an optimal signing � for disc(A), let gj = �j⇠ for j 2 [n], where ⇠ is a standard
Gaussian (equivalently, the covariance matrix of g is ⌃ = ��

T). Then,

Gdisc(A)  EkAgk1 = kA�k1 E|⇠| =
p
2/⇡ disc(A) .

2. Such a minimization can be seen as an instance of a multimarginal optimal transport problem (Pass, 2015; Altschuler
and Boix-Adserà, 2021).

3. More precisely, in this statement we refer to the general result of Banaszczyk (1998) about balancing vectors to lie in a
convex body K; the case where K is the scaled `1 ball corresponds to the combinatorial discrepancy.
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GAUSSIAN DISCREPANCY

As a consequence, results on ordinary discrepancy, such as Spencer’s theorem and Banaszczyk’s
theorem, immediately translate into bounds on the Gaussian discrepancy.

1.2. Notation

We write x ^ y = min{x, y}, x _ y = max{x, y}, and [n] = {1, 2, . . . , n}. We write N (µ,⌃)
for the Gaussian distribution with mean µ and covariance matrix ⌃. Sn�1 denotes the unit sphere
centered at the origin in Rn, and Sn+ denotes the set of symmetric positive semidefinite n⇥n matrices.
For A,B 2 Sn+ we write A � B if B � A 2 Sn+. For vectors x 2 Rn we write kxkp, p 2 [1,1]
for the `p norm of x, while for matrices X , kXkp!q denotes the induced operator norm from `p

to `q. We write h·, ·i for both the Euclidean inner product between vectors and the Frobenius inner
product between matrices. For two sequences of positive real numbers (an), (bn) we write an . bn

if there exists a constant C > 0 with an  Cbn for all sufficiently large n, and write an ⇣ bn

if an . bn . an. Thus, an . bn is a synonym for an = O(bn). The n ⇥ n identity matrix
is denoted by In, and the all-ones vector is denoted by 1n 2 Rn. We define the elliptope to be
En = {⌃ 2 Rn⇥n : ⌃ ⌫ 0, diag(⌃) = 1n}.

1.3. Results

1.3.1. COMPARISONS BETWEEN RELAXATIONS OF DISCREPANCY

In this section we develop an understanding of Gaussian discrepancy by comparing it to the vector
discrepancy and spherical discrepancy relaxations of combinatorial discrepancy. Let us first define
these notions and describe some results known about them.

The vector discrepancy relaxation replaces the signs �1, . . . ,�n 2 {±1} in combinatorial dis-
crepancy (1) with unit vectors u1, . . . , un 2 S

n�1. Formally,

Vdisc(A) := min
n
max
i2[m]

���
nX

j=1

Ai,juj

���
2
: u1, . . . , un 2 S

n�1
o
. (5)

This problem is recast as a semidefinite program over the elliptope by constructing the Gram matrix,
⌃i,j := hui, uji for i, j 2 [n], of the unit vectors u1, . . . , un; see Nikolov (2013) for more details.

Given a signing � 2 {±1}n and u 2 S
n�1, we can associate to it the unit vectors uj = �ju, j 2

[n]. From this we see that vector discrepancy is indeed a relaxation of discrepancy:

Vdisc(A)  disc(A) .

Vector discrepancy has been highly influential in discrepancy theory. It led to the initial algorithm
of Bansal (2010) for Spencer’s theorem, which uses a random walk guided by vector discrepancy
solutions (see also Bansal et al., 2016), as well as the recent constructive proof of Banaszczyk’s
theorem (Bansal et al., 2018).4 Vector discrepancy has also been studied in its own right in the work
of Nikolov (2013) which provides an in-depth analysis of this relaxation using SDP duality.

4. Bansal et al. (2018) remark that their Gram-Schmidt algorithm was “. . . inspired by the constructive proof of Dadush
et al. (2019) for the existence of solutions to the Komlós vector coloring program of Nikolov.”
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GAUSSIAN DISCREPANCY

Spherical discrepancy was more recently introduced by Jones and McPartlon (2020). It is obtained
by relaxing the space of solutions in (1) from {±1}n to the sphere of radius

p
n. Formally,

Sdisc(A) := min
x2

p
nSn�1

kAxk1 . (6)

Jones and McPartlon (2020) prove sharp bounds on spherical discrepancy in the setting of Spencer’s
theorem (|Ai,j |  1 for all i, j) and the Komlós conjecture (kA:,jk2  1 for all j 2 [n]) and apply
their results to derive lower bounds for certain sphere covering problems.

With these definitions in hand, it is natural to wonder about the relationships between the
various relaxations of discrepancy. For example, which relaxation gives the best approximation to
combinatorial discrepancy? Our first result, whose proof we defer to Section 2, provides a unifying
probabilistic perspective on the three relaxations of discrepancy and leads to a straightforward
comparison.

Theorem 4 For any matrix A, it holds that

Vdisc(A) ⇣ min
�
max
i2[m]

E|(Ag)i|
�� g ⇠ N (0,⌃) , ⌃ 2 Sn+ , diag⌃ = 1n

 
, (7)

Sdisc(A) ⇣ min
�
Emax

i2[m]
|(Ag)i|

�� g ⇠ N (0,⌃) , ⌃ 2 Sn+ , tr⌃ = n
 
. (8)

Here, Sn+ is the set of symmetric positive semidefinite n⇥ n matrices.

For comparison, we recall that

Gdisc(A) = min
�
Emax

i2[m]
|(Ag)i|

�� g ⇠ N (0,⌃) , ⌃ 2 Sn+ , diag⌃ = 1n
 
.

Hence, Vdisc relaxes the objective of Gaussian discrepancy by moving the maximum over rows
outside of the expectation, whereas Sdisc relaxes the constraint of Gaussian discrepancy from
diag⌃ = 1n to tr⌃ = n. In comparison, from Proposition 3, the usual definition of discrepancy
can be understood as adding a constraint to Gaussian discrepancy, namely that rank⌃ = 1. The
following relationship between the notions of discrepancy is an immediate consequence.

Corollary 5 For any matrix A,

Vdisc(A) _ Sdisc(A) . Gdisc(A) . disc(A) .

In words, Gaussian discrepancy is a tighter relaxation of discrepancy than vector discrepancy and
spherical discrepancy. Moreover, we show via a suite of examples in Section 2 that none of the
inequalities in Corollary 5 can be reversed up to constant factor and that spherical discrepancy and
vector discrepancy are incomparable in general.

Although Gaussian discrepancy is always larger than the vector discrepancy, the two relaxations
are in fact closely related. Indeed, their common feasible set is the elliptope, which consists of the
Gram matrices of collections of unit vectors or equivalently the covariance structures of feasible
Gaussian couplings. The connection between these two relaxations yields our main tools for bounding
Gaussian discrepancy as well as an O(

p
logm)-factor approximation algorithm for computing

Gaussian discrepancy.
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Our main inequality for controlling Gaussian discrepancy relies on a notion of rank-constrained
vector discrepancy, defined as follows. For every rank r 2 [n], let

Vdiscr(A) := min
n
max
i2[m]

���
nX

j=1

Ai,juj

���
2
: u1, . . . , un 2 S

r�1
o
. (9)

Equivalently we require the Gram matrix ⌃ := (hui, uji)i,j2[n] to have rank at most r. Since a rank-1
matrix ⌃ corresponds precisely to a signing, note that

Vdisc(A) = Vdiscn(A)  Vdiscn�1(A)  · · ·  Vdisc1(A) = disc(A) .

The next result compares Gaussian discrepancy with this rank-constrained problem and is a crucial
ingredient in our study of online Gaussian discrepancy.

Proposition 6 For any r 2 [n], it holds that Gdisc(A) 
p
rVdiscr(A).

Proof Let u1, . . . , un 2 S
r�1 be an optimal solution for Vdiscr(A). Then, if ⇠ denotes a standard

Gaussian vector in Rr, we can define gj := huj , ⇠i for j 2 [n], and it can be easily checked that this
is feasible for the definition of Gaussian discrepancy. Hence,

Gdisc(A)  Emax
i2[m]

���
D nX

j=1

Ai,juj , ⇠

E���  max
i2[m]

���
nX

j=1

Ai,juj

���
2
Ek⇠k2 

p
rVdiscr(A) . (10)

The last inequality uses the standard probabilistic fact that Ek⇠k2 
p
r. When r = 1, this can be

improved to E|⇠| =
p
2/⇡, which recovers Proposition 3.

Applying a similar strategy but using the union bound instead of Cauchy–Schwarz shows that
vector discrepancy upper bounds Gaussian discrepancy up to a logarithmic term.

Proposition 7 It holds that Gdisc(A) .
p
log(2m) Vdisc(A).

Proof Let u1, . . . , un 2 Rn be an optimal solution for Vdiscn(A), and let ⇠ ⇠ N (0, In). As in the
proof of Proposition 6,

Gdisc(A)  Emax
i2[m]

���
D nX

j=1

Ai,juj , ⇠

E��� .

The random variable h
Pn

j=1Ai,juj , ⇠i is sub-Gaussian with parameter k
Pn

j=1Ai,jujk22. Thus the
standard maximal inequality for sub-Gaussian random variables (see, e.g., Boucheron et al., 2013,
Theorem 2.5) yields

Gdisc(A) 
p
2 ln(2m) max

i2[m]

���
nX

j=1

Ai,juj

���
2
=
p
2 ln(2m)Vdiscn(A) . (11)

We record three useful consequences of Proposition 7. When combined with Theorem 4 it implies
that Gaussian discrepancy is approximated by vector discrepancy up to a logarithmic factor. Since

6



GAUSSIAN DISCREPANCY

vector discrepancy admits an SDP formulation, it can be computed in polynomial time using methods
from convex optimization (Nesterov, 2018), and in turn this yields our claimed O(

p
logm)-factor

approximation algorithm for Gaussian discrepancy.
Second, Proposition 7 allows us to draw a new connection between spherical discrepancy and

vector discrepancy. Combining this result with Corollary 5 and Proposition 6, we obtain the following.

Corollary 8 For any matrix A, it holds that Sdisc(A) . pn ^ logmVdisc(A).

As described in detail in Section 2, this inequality is tight and also may not be reversed — in fact it is
possible to have Sdisc(A) = 0 while Vdisc(A) > 0 (see Example 2). We remark that this sharp result
falls out naturally with Gaussian discrepancy as a mediator between spherical and vector discrepancy.

Finally, Proposition 7 leads to a simple algorithm that achieves Banaszczyk’s bound for Gaussian
discrepancy. The main result of Nikolov (2013) states that the Komlós conjecture holds for vector
discrepancy. Hence, a solution to the SDP formulation of vector discrepancy yields a feasible
covariance matrix for Gaussian discrepancy with objective value O(

p
logm).5 Note that since

Gaussian discrepancy is a relaxation, existing approaches for combinatorial discrepancy also achieve
Banaszczyk’s bound for Gaussian discrepancy with much more involved algorithms (Bansal et al.,
2016; Levy et al., 2017; Bansal et al., 2018).

This raises the questions of whether or not the Komlós conjecture (Conjecture 1) or online
Banaszczyk (Conjecture 2) can be proved for Gaussian discrepancy. More broadly, it is natural to ask
whether unresolved conjectures about combinatorial discrepancy can be solved for a given relaxation.
Indeed, Nikolov (2013) and Jones and McPartlon (2020) establish the Komlós conjecture for vector
and spherical discrepancy, respectively. While we are not able to establish a Gaussian version of the
Komlós conjecture, it serves as a tantalizing question for further study; see Section 1.4 for further
discussion. On the other hand, our main algorithmic result establishes a Gaussian discrepancy variant
of the online Banaszczyk bound, as discussed in the next section.

1.3.2. ONLINE BANASZCZYK BOUND FOR GAUSSIAN DISCREPANCY

We begin by recalling the setting of online discrepancy minimization with an oblivious adversary. First,
an adversary picks vectors v1, . . . , vT of `2 norm at most 1. Then, in each round t = 1, 2, . . . , T the
vector vt is revealed to the algorithm, which must output a sign �t 2 {±1}. The aim of the algorithm
is to minimize the maximum discrepancy incurred, i.e. maxt2[T ] k

Pt
s=1 �svsk1. Equivalently, in

each round the algorithm is required to choose a vector of signs �(t) 2 {±1}t that obeys the following
consistency condition:

�
(t)
[t�1] = �

(t�1)
, (12)

where x[t�1] denotes the restriction of x 2 Rt to the first t� 1 coordinates. That is, the new signing
�
(t) 2 {±1}t chosen in round t is forbidden from changing the signs specified in previous rounds.

The latter formulation motivates our Gaussian discrepancy variant of the online discrepancy
problem. At each round t, we require the algorithm to output a t-dimensional correlation matrix ⌃(t)

which satisfies a consistency condition analogous to (12), namely

⌃(t)
[t�1]⇥[t�1] = ⌃(t�1)

. (13)

5. This can be further refined to O(
p

log(m ^ n)) using standard reductions.

7
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Thus after round t, the correlations between the first t coordinates must remain fixed. The aim
is still to minimize the maximum discrepancy incurred, i.e. maxt2[T ] Ek

Pt
s=1 gsvsk1, where

g = (g1, . . . , gT ) ⇠ N (0,⌃(T )). A simple argument based on the Cholesky decomposition (see
Appendix A for details) shows that any such sequence ⌃(1)

, . . . ,⌃(T ) can be realized as a sequence
of Gram matrices of initial segments of a sequence of unit vectors u1, . . . , uT 2 `2. Hence, it is
equivalent to require that the algorithm output a unit vector ut 2 `2 at each round t, and then set
⌃(t)
i,j = hui, uji`2 . We arrive at the following formulation of online Gaussian discrepancy. As in

online combinatorial discrepancy, we allow the algorithm to be randomized.

Problem 1 (Online Gaussian discrepancy with oblivious adversary) An adversary selects vec-
tors v1, . . . , vT with `2 norm at most 1 in advance. At each round t 2 [T ], the algorithm observes vt
and outputs a random unit vector ut 2 `2. The algorithm aims to minimize

Gdisc(v1, . . . , vT ;⌃
(T )) = max

t2[T ]
E
���

tX

s=1

gsvs

���
1
, g ⇠ N (0,⌃(T ))

with high probability over the random correlation matrix ⌃(T )
i,j = hui, uji`2 .

We show in Appendix A that, without loss of generality, it suffices to consider ut whose support
is a subset of the first t coordinates.

One strategy for generating feasible couplings in each round is to first fix a rank parameter r � 1
in advance and output a unit vector ut 2 S

r�1 in each round. Our main result is an algorithm of this
form that solves the Gaussian discrepancy variant of the online Banaszczyk conjecture (Conjecture 2).

Theorem 9 (Online Banaszczyk bound for Gaussian discrepancy) Let v1, . . . , vT 2 Rm denote
vectors of `2 norm at most 1 selected in advance by an adversary. For all positive integers r � 2,
there is a randomized online algorithm that with probability at least 1� � outputs u1, . . . , uT 2 S

r�1

such that
Gdisc(v1, . . . , vT ;⌃

(T )) = O
�p

log(mT/�)
�
,

where ⌃(T )
i,j = hui, uji. The algorithm runs in time O(mr) per round.

The proof of Theorem 9 is the main content of Section 3. If we could prove this theorem
with r = 1, then the online Banaszczyk problem (Conjecture 2) would follow from the proof
of Proposition 3. Unfortunately, there is an obstruction preventing us from considering r = 1,
as described further below. Nevertheless, Theorem 9 shows that we are ‘one rank away’ from
establishing Conjecture 2.

Our algorithm is based on an intriguing idea in the recent paper Liu et al. (2022): namely, if
one can find a Markov chain on R whose increments take values in {±1} and whose stationary
distribution is a Gaussian, then it is possible to construct an algorithm, which they call the Gaussian
fixed-point walk, with the property that each partial sum

Pt
s=1 �svs is the difference of two Gaussian

vectors. The online Banaszczyk bound would then follow from a union bound. However, Liu et al.
(2022) exhibit a parity obstruction which implies no such Markov chain exists on R, and this leads
them to consider instead Markov chains whose increments lie in {0,±1} or {±1, 2} (and hence the
resulting algorithms output partial colorings or improper colorings). We show that an analogous
Markov chain does exist on Rr for any r � 2 whose increments lie in S

r�1 and whose stationary

8
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distribution is a Gaussian with independent and identically distributed coordinates (see Figure 1).
Working with higher ranks r � 2 avoids certain technical complications resulting in the partial
coloring version derived by Liu et al. (2022) and allows for a simple algorithm and analysis.

(a) (b)

Figure 1: (X(t))t�0 is the Markov chain on R2 with unit vector steps and Gaussian stationary
distribution. (a) Evolution of (X(t))t�0 over two runs of the Markov chain with 2000
steps. The orange and blue trajectories are initialized inside and outside the unit circle,
respectively. (b) Scatter plot of X(100) over 5000 independent runs of the Markov chain
started from the stationary distribution X

(0) ⇠ N (0,�2I2), where � = 0.5.

We note that the guarantee of Theorem 9 can be shown to be tight by using standard Gaussian
estimates. In particular, taking r > 2 in our algorithm provably does not improve the Gaussian
discrepancy.

Interestingly, our algorithm also has consequences for the previously unexplored problem of
online vector discrepancy, and for this problem, choosing r > 2 offers a substantial improvement.
Perhaps surprisingly, Theorem 10 below shows that the Komlós conjecture, with sharp constant, is
attainable for vector discrepancy even in the oblivious online setting. In contrast, Bansal et al. (2020)
exhibit an e⌦(

p
log T ) lower bound for online combinatorial discrepancy in the oblivious setting. The

next result is an immediate consequence of Theorem 15 proved in Section 3.

Theorem 10 (Online Komlós bound for vector discrepancy) Let v1, . . . , vT 2 Rm denote vec-
tors of `2 norm at most 1 selected in advance by an adversary. Fix �, " > 0. When run with rank
r = ⇥("�2 log(mT/�)), the algorithm outputs u1, . . . , uT 2 S

r�1 online with

max
t2[T ]

max
i2[m]

���
tX

s=1

(vs)i us
���
2
 1 + "

with probability at least 1� �. The algorithm runs in time O(m"�2 log(mT/�)) per round.

As a corollary of the above theorem, we obtain a new proof of the vector Komlós theorem
of Nikolov (2013), which states that Vdisc(A)  1 for all matrices A whose columns have `2 norm
at most 1. Since the vector discrepancy of the identity matrix IT is 1, our result is essentially sharp.

9
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Although we present our algorithm for the online setting, it yields new algorithmic implications for
the offline setting as well. In particular, our runtime is nearly linear in the input size mT for moderate
values of the approximation parameter ". This improves on the time complexity of previous algo-
rithms for vector Komlós such as off-the-shelf SDP solvers, which require eO((m _ T )3.5 log(1/"))
arithmetic operations (Nesterov, 2018), and an iterative approach of Dadush et al. (2019) that naı̈vely
runs in time O(T 3 (m _ T )) due to costly matrix inversion steps.6

Furthermore, setting " = 1 in Theorem 10 implies that the Komlós conjecture holds for rank-
constrained vector discrepancy with r = O(log(mT )). To the best of our knowledge this result was
previously unknown even in an offline setting.

1.4. Open problems

Our work leads to some natural open questions which we briefly describe below.

1. Komlós conjecture for Gaussian discrepancy. Does there exist a constant KG > 0 such that
Gdisc(A)  KG for any matrix A whose columns have `2 norm at most 1?

Since Gaussian discrepancy is a relaxation, solving this conjecture is a natural prerequisite for
establishing the original Komlós conjecture (Conjecture 1). It also leads to a related problem:
prove that the Komlós conjecture for Gaussian discrepancy implies the Komlós conjecture.

2. Rounding Gaussian discrepancy solutions. Does there exist an efficient rounding scheme
to convert Gaussian discrepancy solutions to low-discrepancy signings? For example, in the
Komlós setting, does there exist a polynomial-time computable function f from covariance
matrices to signings, such that

kAf(⌃)k1 . Eg⇠N (0,⌃)kAgk1 +O(1) ,

for all matrices A with maxj2[n] kA:,jk2  1?

In Appendix B, we show that two simple rounding schemes (Goemans–Williamson rounding
and a PCA-based rounding) are not effective in the setting of Spencer’s theorem and the Komlós
conjecture.

3. Computational tractability of Gaussian discrepancy. Given a matrix, can we compute its
Gaussian discrepancy exactly or approximately in polynomial time? In particular, is it NP-
hard to approximate Gaussian discrepancy up to a constant factor? We note that hardness of
approximation results are already known for combinatorial discrepancy (Charikar et al., 2011)
and spherical discrepancy (Jones and McPartlon, 2020).

4. Achieving Banaszczyk’s bound online. Finally, we mention that the question of achieving
Banaszczyk’s bound online for combinatorial discrepancy, as originally posed by Alweiss et al.
(2021), is still open.

6. We do not take into account fast matrix multiplication for these runtime estimates. We also note that an SDP solver
would in general yield the stronger guarantee k

PT
s=1 (vt)i utk22  Vdisc(A)2 + " for 1  i  m.

10
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1.5. Organization of the paper

In Section 2.1, we give the proof of our main comparison result between the relaxations of discrepancy
(Theorem 4). In Section 2.2, we provide a suite of examples showing that the inequalities given in
Section 1.3.1 are sharp. Finally, in Section 3, we present our algorithm and prove that it achieves the
online Banaszczyk bound for Gaussian discrepancy.

2. COMPARISONS BETWEEN RELAXATIONS OF DISCREPANCY

In this section we prove Theorem 4 and give a number of illustrative examples that highlight the
differences between the various relaxations of discrepancy. These examples show that none of the
inequalities in Corollary 5 can be reversed in general (at least with constants independent of m and
n). Moreover, our results in this section give evidence for the following assertion: vector discrepancy
and spherical discrepancy each capture distinct aspects of the original discrepancy problem, namely
SDP solutions are “aligned with the coordinate axes”, whereas spherical discrepancy solutions are
“low rank”. Gaussian discrepancy appears to capture both of these aspects simultaneously.

This assertion can already be partially justified by observing that the feasible covariance matrices
⌃ for vector discrepancy satisfy diag⌃ = 1n, i.e. the variance along each of the coordinate axes
is fixed to be 1. On the other hand, from the proof of Theorem 4 below, we see that a spherical
discrepancy solution x gives rise to the covariance matrix ⌃ := xx

T, which is indeed low rank but is
not guaranteed to have unit variance along each coordinate axis.

2.1. Proof of main comparison result

We repeatedly use the following useful facts about log-concave distributions. Note that any Gaussian
random variable has a log-concave distribution.

Lemma 11 (Alonso-Gutiérrez and Bastero (2015, Propositions A.5-A.6)) Let X be a random
vector in Rd with a log-concave distribution, and let k·k : Rd ! R+ be any seminorm.

1. For any p > 1, it holds that E[kXkp]1/p . pEkXk, where the implied constant is universal.

2. For any t > 0, it holds that P{kXk  tEkXk} . t, where the implied constant is universal.

Proof [Proof of Theorem 4] Vector discrepancy: Given ⌃ 2 En, let g⌃ denote a centered Gaussian
vector with covariance matrix ⌃, and write UU

T = ⌃ with uj denoting the rows of U . Observe that

max
i2[m]

���
nX

j=1

Ai,juj

���
2
=
r

max
i2[m]

hAi,:,⌃Ai,:i . (14)

Therefore

Vdisc(A) = min
⌃2En

r
max
i2[m]

hAi,:,⌃Ai,:i = min
⌃2En

vuutmax
i2[m]

E
h���

nX

j=1

Ai,jg
⌃
j

���
2i

(?)
⇣ min

⌃2En
max
i2[m]

E
���

nX

j=1

Ai,jg
⌃
j

��� = min
⌃2En

max
i2[m]

E|(Ag⌃)i| ,

11
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where (?) uses Lemma 11 and Cauchy–Schwarz.
Spherical discrepancy: Let us temporarily denote

gdiscs(A) := min{EkAgk1 : g ⇠ N (0,⌃) , ⌃ 2 Sn+ , tr⌃ = n} .

Let g be a Gaussian that achieves the minimum in the definition of gdiscs(A). Then, by Markov’s
inequality,

P{kAgk1 � 3 gdiscs(A)}  1

3
. (15)

From Lemma 11, we further have

P{kgk2  cEkgk2} 
1

3
and Ekgk2 &

q
Ekgk22 (16)

for some constant c > 0. From (16) and (15), there exists a realization g 2 Rn of g with

kAgk1  3 gdiscs(A) , and kgk2 � cEkgk2 &
q
Ekgk22 =

p
n .

It follows that

Sdisc(A) 
��A
p
n g

kgk2
��
1 =

p
n

kgk2
kAgk1 . gdiscs(A) .

Conversely, let x be an optimal solution for Sdisc(A) and let ⇠ be a standard Gaussian variable on R,
so ⇠x ⇠ N (0, xxT) and tr(xxT) = kxk22 = n. Then,

gdiscs(A)  EkA(⇠x)k1 = E|⇠| kAxk1 =

r
2

⇡
Sdisc(A) ,

which establishes the converse bound.

2.2. Tightness of the comparison results

Our first example demonstrates the sharpness of Corollary 8 with respect to both m and n.

Example 1 For this example we first consider an infinitely tall matrix A. Let the rows of A consist of
all unit vectors in Rn. By taking the vector discrepancy solution ⌃ = In and using (14), we see that

Vdisc(A) 
r

max
a2Sn�1

ha,⌃ai = 1 .

(In fact it is not hard to see that this is an equality.) However, for any x 2
p
nS

n�1 we have

max
a2Sn�1

|ha, xi| = kxk2 =
p
n ,

which shows that Sdisc(A) =
p
n. Thus, the spherical discrepancy can be much larger than vector

discrepancy.

12



GAUSSIAN DISCREPANCY

Although this example used an infinitely tall matrix A, we can modify it by taking the rows of A
to consist of a 1/2-net of Sn�1. Then, the number of rows of A can be taken to be m = exp(⇥(n)),
and a standard argument involving nets (see the proof of Vershynin, 2018, Lemma 4.4.1) shows that
we still have Vdisc(A)  1 and Sdisc(A) & pn. In particular, this shows that the bound

Sdisc(A) = O(
p
n ^ logm)Vdisc(A)

obtained in Corollary 8 is sharp with respect to both m and n.

The next example shows that Corollary 8 cannot be reversed, even with a constant depending on
m and n, so that vector discrepancy cannot in general be controlled by spherical discrepancy.

Example 2 Let v 2 S
n�1 be a unit vector and suppose that the rows of A consist of all vectors in

A := S
n�1 \ v

?
,

the set of unit vectors which are orthogonal to v (as in the preceding example, this example can also
be modified to a matrix with finitely many rows). Then, Sdisc(A) 

p
nmaxa2A |ha, vi| = 0. On the

other hand, we claim that Vdisc(A) > 0 for most choices of v. Suppose to the contrary that there
exist unit vectors u1, . . . , un 2 Rn witnessing the fact that Vdisc(A) = 0. Then, for each k 2 [n],

0 = max
a2A

���
nX

j=1

ajuj

���
2
� max

a2A

���
nX

j=1

ajuj [k]
��� = max

a2A
|ha, u•[k]i| = kprojv? u•[k]k2 ,

where u•[k] 2 Rn denotes the vector (uj [k])nj=1. The inequality implies that u•[k] is a multiple of v,
i.e., there exists a scalar ck 2 R such that uj [k] = ckvj for all j 2 [n]. Since uj is a unit vector,

1 = kujk22 = v
2
j

nX

k=1

c
2
k , for all j 2 [n] .

In order for this to hold, each coordinate of v must have the same magnitude, i.e. v must be a signing
(scaled by n

�1/2). Hence, for most directions v we have Sdisc(A) = 0 but Vdisc(A) > 0.
This shows in particular that there does not exist C > 0 such that Vdisc(A)  C Sdisc(A) for

all m⇥ n matrices A, even if the constant C is allowed to depend on m and n.

The two preceding examples show that the statements Vdisc  C1 Sdisc and Sdisc  C2 Vdisc
do not hold with universal constants C1, C2 > 0. In particular, since Vdisc_ Sdisc . Gdisc by
Corollary 5, it also implies that the statements Gdisc  C

0
1 Vdisc and Gdisc  C

0
2 Sdisc also do not

hold with universal constants C 0
1 and C

0
2.

We give another example to show that in general, Gaussian discrepancy can indeed be smaller
than combinatorial discrepancy.

Example 3 Consider the case when m = 1, so that A consists of a single row, and assume that
the entries of A are i.i.d. standard Gaussians. Then, the discrepancy of A = (a1, . . . , an) is usually
referred to as the number balancing problem.

13
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Let us suppose that n is a multiple of 3, and divide the n coordinates into 3 groups consisting of
n/3 coordinates each. Due to concentration of measure, the sums

`1 :=

n/3X

i=1

|ai| , `2 :=

2n/3X

i=n/3+1

|ai| , and `3 :=
nX

i=2n/3+1

|ai|

will concentrate around their expected value
p

2/⇡ n/3. In particular, with high probability we will
have 2maxi=1,2,3 `i 

P3
i=1 `i, which says that `1, `2, and `3 form the side lengths of a triangle in

R2. If we let u1, u2, u3 2 R2 denote unit vectors corresponding to the sides of these triangles, then

0 =

n/3X

i=1

|ai|u1 +
2n/3X

i=n/3+1

|ai|u2 +
nX

i=2n/3+1

|ai|u3

=

n/3X

i=1

ai (sgn ai)u1 +

2n/3X

i=n/3+1

ai (sgn ai)u2 +
nX

i=2n/3+1

ai (sgn ai)u3 .

This shows that with high probability, Vdisc2(A) = 0 and hence Gdisc(A) = 0 by Proposition 6.
On the other hand, it is well-known that disc(A) = ⇥(

p
n 2�n) > 0 (see, e.g., Karmarkar et al.,

1986; Costello, 2009; Turner et al., 2020). In particular, there does not exist a constant C > 0 (even
if the constant is allowed to depend on m and n) such that disc(A)  C Gdisc(A).

In summary, if we require the constants to be universal, then in general none of the inequalities
in Corollary 5 can be reversed, and furthermore vector discrepancy and spherical discrepancy are
incomparable.

In this section, we have argued that vector discrepancy and spherical discrepancy capture distinct
aspects of the original discrepancy problem, and can therefore be viewed as complementary. It is
then natural to ask, whether a combination of vector discrepancy and spherical discrepancy can
control Gaussian discrepancy. This is also motivated by the results of Nikolov (2013) and Jones and
McPartlon (2020) that prove the Komlós conjecture for vector discrepancy and spherical discrepancy
respectively; hence, a control on the Gaussian discrepancy in terms of these two notions would imply
the Komlós conjecture for Gaussian discrepancy as well. We however resolve this question negatively
via the following example.

Example 4 Let the rows of A consist of all unit vectors in Rn orthogonal to e1. Then, similarly to
the previous examples, we have Vdisc(A)  1 and Sdisc(A) = 0. On the other hand, for any feasible
Gaussian coupling g,

EkAgk1 = E max
a2Sn�1\e?1

|ha, gi| = Ekproje?1 gk2
(?)

&
q
E[k(0, g2, . . . , gn)k22] =

p
n� 1 ,

where the inequality (?) uses Lemma 11. Hence, Gdisc(A) &
p
n� 1. This in fact shows that there

is no non-trivial function f : R2
+ ! R+ which is independent of both m and n, such that

Gdisc(A)  f
�
Vdisc(A), Sdisc(A)

�

for all matrices A.
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3. GAUSSIAN FIXED-POINT WALK IN HIGHER DIMENSIONS

3.1. High-level overview

We begin by summarizing the Gaussian fixed-point walk as introduced in Liu et al. (2022). Recall
the setting of online discrepancy minimization with oblivious adversary: the adversary chooses in
advance vectors v1, . . . , vT 2 Rm and at each time step t 2 [T ], the vector vt is revealed to the
algorithm, upon which it must then choose a sign �t 2 {±1}. The loss incurred by the algorithm is
the maximum discrepancy maxt2[T ] k

Pt
s=1 �svsk1.

Let wt := w0+
Pt

s=1 �svs denote the partial sum vector with initialization w0 ⇠ N (0, Im). The
idea behind the Gaussian fixed-point walk is to choose the signs �t to ensure that wt ⇠ N (0, Im) for
all t 2 [T ] (observe that if this holds, then the loss maxt2[T ] kwt � w0k1 incurred by the algorithm
is easily controlled via a union bound). Towards this end, we may assume as an inductive hypothesis
that wt�1 ⇠ N (0, Im). Then, we may write

wt = projv?t wt�1
| {z }

⇠N (0,Im�vtv?t )

+ [projvt wt�1| {z }
⇠N (0,vtv?t )

+ �tvt] .

If we choose �t independently of projv?t wt�1, then the two terms in the above decomposition are
independent. Moreover, if we could choose �t such that projvt wt�1 + �tvt ⇠ N (0, vtv?t ), then
wt ⇠ N (0, Im). These considerations lead to the problem of finding a one-dimensional Markov chain
(on span vt) whose increments belong to {±vt}, and whose stationary distribution is N (0, vtv?t ).
However, a parity argument given in Liu et al. (2022) shows that such a Markov chain does not exist,
even if we allow for changing the variance of the Gaussian from 1.

To deal with this issue, Liu et al. (2022) show that such Markov chains exist if we allow the
increments to take values in {0,±vt} or {±vt, 2vt}, which leads to the algorithm outputting partial
or improper colorings. If the variance of the Gaussian is set to be sufficiently large, then they can
further argue that the algorithm outputs an actual signing with high probability, but the large variance
of the Gaussian prevents them from establishing an online Banaszczyk result.

Our contribution in this section lies in adapting the idea above to online Gaussian discrepancy, by
constructing a Markov chain in Rr

, r � 2 whose stationary distribution is a Gaussian, and whose
increments lie in on the unit sphere; this is given in Section 3.2. The algorithm and analysis are then
given in Section 3.3.

3.2. Construction of the Markov chain

Our goal in this section is to construct a Markov chain on Rr for r � 2 whose increments are unit
vectors and whose stationary distribution is N (0,�2Ir) for some �2. In this and subsequent sections,
� is used to denote the standard deviation (and in particular should not be confused with a signing).

The density of the �-distribution with r degrees of freedom is

�r(s) =
1

2r/2�1 �(r/2)
s
r�1

e
� s2

2 {s � 0} .

Hence, the density of kgk2 where g ⇠ N (0,�2Ir) is

�r,�2(s) =
1

2r/2�1 �(r/2)

s
r�1

�r
e
� s2

2�2 {s � 0} .
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Let x 2 Rr, and define the following sets:

Sx := {y 2 Rr : kx� yk2 = 1 and kyk2 = kxk2} ,
S
0
x := {y 2 Rr : kx� yk2 = 1 and kyk2 = 1� kxk2} .

Since kyk22 = kxk22 + kx � yk22 + 2 hy � x, xi, if ky � xk2 = 1 then from the Cauchy-Schwarz
inequality, we obtain

(kxk2 � 1)2  kyk22  (kxk2 + 1)2 .

Conversely, if s � 0 satisfies (kxk2 � 1)2  s
2  (kxk2 + 1)2, then there exists y 2 Rr such that

ky � xk2 = 1 and kyk2 = s. From this, we deduce that

⇥
Sx 6= ? if kxk2 �

1

2

⇤
and

⇥
S
0
x 6= ? if kxk2  1

⇤
.

Further note that if 0 < kxk2  1, then S
0
x consists of a single element given by y = (kxk2�1

kxk2 )x,
while S

0
0 = S

r�1 is the unit sphere.
The Markov chain transitions from x 2 Rr with norm kxk2 = s to the next point according to

the following rules.

1. If 0  s <
1
2 , move to a point chosen uniformly at random in S

0
x.

2. If 1
2  s < 1:

(a) with probability
�r,�2 (1�s)

�r,�2 (s)
, move to a point chosen uniformly at random in S

0
x.

(b) with probability 1� �r,�2 (1�s)

�r,�2 (s)
, move to a point chosen uniformly at random in Sx.

3. If s � 1, then move to a point chosen uniformly at random in Sx.

Symbolically, this defines a transition kernel q(x, ·) described explicitly as follows. Let Px (respec-
tively P0

x) denote the uniform distribution on Sx (respectively S
0
x). Then:

q(x, ·) =

8
>><

>>:

P0
x , if 0  s <

1
2

�r,�2 (1�s)

�r,�2 (s)
P0
x + (1� �r,�2 (1�s)

�r,�2 (s)
)Px , if 1

2  s < 1

Px , if s � 1.

(17)

This Markov chain is only well-defined if �r,�2(s) � �r,�2(1 � s) for all 0  s < 1/2. The
following lemma shows that this holds if and only if � � 1

2
p
r�1

.

Lemma 12 The inequality �r,�2(s) � �r,�2(1� s) holds for all s 2 [0, 12 ] if and only if � � 1
2
p
r�1

.

Proof Recall that �r,�2(s) / s
r�1 exp(�s2/(2�2)), so that the mode is at �

p
r � 1 (this can be

derived via elementary calculus, since the density is log-concave). In particular, if � < 1/(2
p
r � 1),

then the mode lies in (0, 1/2), so the desired property cannot hold.
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Conversely, suppose � � 1/(2
p
r � 1). We want to show, for all s 2 [0, 1/2],

1
!
�

�r,�2(s)

�r,�2(1� s)
=
� s

1� s

�r�1
exp

�
� s

�2
+

1

2�2
�
.

Taking logarithms and rearranging, we want

 (s) := (r � 1) log
s

1� s
� s

�2

!
 � 1

2�2
.

Differentiating, we obtain

 
0(s) � (r � 1)

� 1

s (1� s)
� 4

�
� 0 ,

so  is increasing. Hence,

sup
[0,1/2]

 =  
�1
2

�
= � 1

2�2

as desired.

With this result in hand, we verify that the Markov chain construction has the correct stationary
distribution.

Proposition 13 The Markov transition kernel q on Rr defines a Markov chain with unit length
increments and stationary distribution N (0,�2Ir) provided that � � 1

2
p
r�1

.

Proof We represent a point in Rr in spherical coordinates, i.e., as a pair (s, ✓) with s � 0 and
✓ 2 S

r�1. Let ⇡ := �r,�2⌦�, where � is the uniform distribution on S
r�1. Via a change of variables,

it suffices to check that for every bounded measurable function f : R+ ⇥ S
r�1 ! R, it holds that

ZZ
f(s0, ✓0)⇡(ds, d✓) q

�
(s, ✓), (ds0, d✓0)

�
=

Z
f d⇡ .

We rewrite the LHS of this equation as
ZZ

f(s0, ✓0)⇡(ds, d✓) q
�
(s, ✓), (ds0, d✓0)

�

=

Z 1

0

hZZ
f(s0, ✓0)�(d✓) q

�
(s, ✓), (ds0, d✓0)

�i
�r,�2(s) ds

=
⇣Z 1/2

0
+

Z 1

1/2
+

Z 1

1

⌘
· · ·�r,�2(s) ds = I + II + III ,

and examine each of the three terms separately.
For the first term,

I =

Z 1/2

0

hZZ
f(1� s, ✓

0)�(d✓)T#P
0
(s,✓)(d✓

0)
i
�r,�2(s) ds ,
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where T : Rr ! S
r�1 is the map x 7! x/kxk2. Due to the rotational symmetry we haveR

�(d✓)T#P0
(s,✓)(·) = �(·), so that evaluating the integral over ✓ yields:

=

Z 1/2

0

hZ
f(1� s, ✓

0)�(d✓0)
i
�r,�2(s) ds =

Z 1

1/2

hZ
f(s, ✓0)�(d✓0)

i
�r,�2(1� s) ds .

For the second term, a similar argument yields

II =

Z 1

1/2

h
�r,�2(1� s)

�r,�2(s)

ZZ
f(1� s, ✓

0)�(d✓)T#P
0
(s,✓)(d✓

0)

+
�
1�

�r,�2(1� s)

�r,�2(s)

� ZZ
f(s, ✓0)�(d✓)T#P(s,✓)(d✓

0)
i
�r,�2(s) ds

=

Z 1

1/2

h
�r,�2(1� s)

Z
f(1� s, ✓

0)�(d✓0) +
�
�r,�2(s)� �r,�2(1� s)

� Z
f(s, ✓0)�(d✓0)

i
ds

=

Z 1/2

0

hZ
f(s, ✓0)�(d✓0)

i
�r,�2(s) ds

+

Z 1

1/2

hZ
f(s, ✓0)�(d✓0)

i �
�r,�2(s)� �r,�2(1� s)

�
ds .

Finally, the third term is

III =

Z 1

1

hZZ
f(s, ✓0)�(d✓)T#P(s,✓)(d✓

0)
i
�r,�2(s) ds =

Z 1

1

hZ
f(s, ✓0)�(d✓0)

i
�r,�2(s) ds .

Putting it together, we obtain

I + II + III =

Z 1

0

hZ
f(s, ✓0)�(d✓0)

i
�r,�2(s) ds =

Z
f d⇡

which verifies the stationarity of ⇡.

For the details of how to sample from the Markov kernel (17) see Appendix C.

3.3. Algorithm and analysis

We develop some notation needed for our algorithm. Let �?,r = 1/(2
p
r � 1); recall that this is

the smallest standard deviation parameter so that for �2 � �2?,r, the transition probabilities (17) are
well-defined. For �2 � �

2
?,r, we let q�2 denote the corresponding Markov transition kernel with

stationary distribution N (0,�2Ir) as shown in Proposition 13. Also, we let N (0,�2Im⇥r) denote
the law of an m⇥ r matrix whose entries are i.i.d. N (0,�2).
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Algorithm 1: Rank-r Gaussian Fixed-Point Walk
Input v1, . . . , vT 2 Rm of `2-norm at most 1
Initialize W0 ⇠ N (0,�2?,r Im⇥r)

for t = 1, . . . , T do

Define V
(k)
t 2 Rm⇥r to be the matrix whose k-th column is vt and remaining entries are 0.

�t  �?,r/kvtk2
zt  1

kvtk22
W

T
t�1vt =

1
kvtk22

(hWt�1, V
(k)
t i)k2[r]

z
0
t  sample from q�2

t
(zt, ·)

ut  z
0
t � zt

Wt  Wt�1 + vtu
T
t = Wt�1 +

Pr
k=1 ut[k]V

(k)
t

Output u1, . . . , uT 2 Rr

Proposition 14 If max
t2[T ]
kvtk2  1, then for all t 2 [T ], the partial sum Wt 2 Rm⇥r of Algorithm 1

is distributed as N (0,�2?,r Im⇥r).

Proof We prove this by induction, so suppose that Wt�1 ⇠ N (0,�2?,r Im⇥r). Let St be the subspace
St = span{V (k)

t : k 2 [r]} and observe that

Wt�1 = projS?
t
Wt�1 + projSt

Wt�1 = projS?
t
Wt�1 +

rX

k=1

zt[k]V
(k)
t .

Using standard facts about Gaussian random variables, these two components are independent and
zt ⇠ N (0,�2t Ir) (recall the definition of �2t := �

2
?,r/kvtk22). Also, the sampling z

0
t ⇠ q�2

t
(zt, ·) is

well-defined because �t � �?,r by the assumption that kvtk2  1. Next,

Wt = Wt�1 +
rX

k=1

ut[k]V
(k)
t = projS?

t
Wt�1

| {z }
=:W

(1)
t

+
rX

k=1

(zt + ut)[k]V
(k)
t

| {z }
=:W

(2)
t

.

Note that z0t = zt + ut ⇠ N (0,�2t Ir) and kutk2 = 1 by Proposition 13. Hence, W (2)
t is distributed

as a centered Gaussian on St with variance �2?,r. Moreover, W (1)
t is independent of W (2)

t : by the
construction of our Markov chain, the distribution of z0t = zt + ut is a function only of zt, and zt is
independent of W (1)

t as noted above. Thus Wt ⇠ N (0,�2?,r Im⇥r).

The following guarantee for Algorithm 1 is an easy consequence. For a matrix M 2 Rm⇥r, note
that the 2!1 norm satisfies kMk2!1 = max1imkMi,:k2.

Theorem 15 If max
t2[T ]
kvtk2  1, then Algorithm 1 outputs u1, . . . , uT 2 Rr with the following

properties. In expectation,

Emax
t2[T ]

���
tX

s=1

vsu
T
s

���
2!1


r

2 log(mT )

r � 1
+

r
r

r � 1
.
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Also, with probability at least 1� �,

max
t2[T ]

���
tX

s=1

vsu
T
s

���
2!1


r

2 log(2mT/�)

r � 1
+

r
r

r � 1
.

Finally, the time complexity of Algorithm 1 is O(mrT ).

Proof Note that
Pt

s=1 vsu
T
s = Wt �W0, where W0,Wt ⇠ N (0,�2?,r Im⇥r) by Proposition 14, so

that k
Pt

s=1 vsu
T
s k2!1  kW0k2!1 + kWtk2!1. Since k·k2!1 is the maximum `2 norm of a

row, then maxt2[T ] kWtk2!1 can be written as a maximum over mT (not necessarily independent)
random variables Yi, where each Yi is a norm of a N (0,�2?,r Ir) random variable. On the other hand,
Gaussian concentration of Lipschitz functions (see Theorem 5.5 of Boucheron et al., 2013) implies
that each Yi 2 subG(�2?,r), whereas EYi  �?,r

p
r. A similar statement holds for W0.

For the expectation bound, a standard sub-Gaussian bound yields

Emax
t2[T ]

���
tX

s=1

vsu
T
s

���
2!1

 2E max
i2[mT ]

Yi  2E max
i2[mT ]

(Yi � EYi) + 2�?,r
p
r

 2�?,r {
p
2 log(mT ) +

p
r} ,

and the result follows from �?,r =
1

2
p
r�1

. The proof of the high-probability bound also uses standard
facts about sub-Gausssian random variables and is omitted.

As mentioned in Section 1.3, our online vector Komlós result (Theorem 10) is an immediate
consequence of Theorem 15. Interestingly, Theorem 15 also implies that scaling �2?,r ⇠ 1

4r of
our variance parameter is asymptotically optimal in that no sequence of Markov chains, defined
on Rr for r ! 1 with unit length increments and Gaussian stationary distribution, can achieve a
smaller asymptotic variance. Indeed, a smaller asymptotic variance would lead to an improvement
of Theorem 15, which would further yield an improvement of the bound Vdisc(A)  1 of Nikolov
(2013). However, the example of the identity matrix shows that this is not possible. We do not know
if our variance parameter �2?,r =

1
4 (r�1) can be improved for any finite r.

We are now ready to prove our main result, the online Banaszczyk bound for Gaussian discrepancy.

Proof [Proof of Theorem 9] Let u1, . . . , uT denote the output of Algorithm 1 with rank parameter
r � 2, and let ⌃(T )

i,j = hui, uji`2 denote the corresponding Gram matrix. As a consequence of
Theorem 15, we have

max
t2[T ]

���
tX

s=1

vsu
T
s

���
2!1

. 1 _
r

log(mT/�)

r
(18)

with probability at least 1� �. If r � log(mT/�), then combining (18) with (11) from the proof of
Proposition 7 implies that

Gdisc(v1, . . . , vT ;⌃
(T )) .

p
log(2m)

with probability at least 1� �. If r  log(mT/�), then combining (18) with (10) from the proof of
Proposition 6 implies that

Gdisc(v1, . . . , vT ;⌃
(T )) .

p
r ·

p
log(mT/�)/r =

p
log(mT/�)

with probability at least 1� �. Combining the two cases concludes the proof.
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Appendix A. EQUIVALENCE OF ONLINE DISCREPANCY FORMULATIONS

In Section 1.3.2 we introduced the online Gaussian discrepancy problem, and described two formula-
tions: one in terms of correlation matrices, and one in terms of unit vectors in `2. We now show that
the two approaches are equivalent, so that the description of Problem 1 is without loss of generality.

It will be useful to define the Cholesky decomposition of a PSD matrix ⌃ 2 Rn⇥n. We define
Ch(⌃) to be the unique matrix L 2 Rn⇥n that is lower triangular, has exactly r = rank(⌃) positive
diagonal elements, has n� r columns consisting entirely of zeros, and satisfies

⌃ = LL
T
.

We refer the reader to Gentle (2012, Chapter 3) for details regarding existence and uniqueness.

Proposition 16 The following hold.

1. Let (⌃(t))t�1 be a stream of consistent (in the sense of (13)) correlation matrices. Then one
can output unit vectors (ut)t�1 in `2 online, such that ⌃(t) is the Gram matrix of u1, . . . , ut
for each t � 1. Moreover, only the first t coordinates of ut need be non-zero.

2. Let (ut)t�1 be a stream of unit vectors in `2. Then one can output consistent (in the sense of
(13)) correlation matrices (⌃(t))t�1 online, such that ⌃(t) is the Gram matrix of u1, . . . , ut for
each t � 1.

Proof Note that the second assertion is immediate after defining ⌃(t)
i,j = hui, uji`2 for all i, j 2 [t]

and t � 1. Now, we turn to the proof of the first assertion. For convenience, we will write ◆n for the
inclusion map from Rk to Rn where k  n, with action ◆n(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0). Let
ũt = Ch(⌃(t))t,: 2 Rt be the last row of Ch(⌃(t)) for each t � 1, and let ut = ◆1(ũt). We claim that
the sequence (ut)t�1 satisfies the requirements of the assertion. Clearly only the first t coordinates of

ut can be nonzero. Thus, it remains to show that hui, uji`2 = ⌃(t)
i,j for all i, j 2 [t], t � 1.

Define L
(t) = Ch(⌃(t)) and rt = rank(⌃(t)). It is sufficient to show that for all t � 1, the rows

of L(t) are ◆t(ũ1), . . . , ◆t(ũt). This is true for t = 1 by construction. We proceed by induction and
suppose that the claim is true for round t� 1. Let L0 denote the principal minor of L(t) corresponding
to the first t� 1 indices. It suffices to show that L0 = L

(t�1) by the inductive assumption.
Both L

(t�1) and L
0 are lower triangular by construction. Next, by consistency and the definition

of the Cholesky decomposition, we have

L
(t�1) (L(t�1))T = ⌃(t�1) = ⌃(t)

[t�1]⇥[t�1] = L
0 (L0)T .

Therefore, rank(L(t�1)) = rank(L0) = rt�1. Since columns of L(t) with non-positive diagonal
elements contain all zeros, it follows that L0 has rt�1 positive elements on its diagonal. Consequently,
L
0 also has t�1�rt�1 columns consisting of all zeros. We conclude that L0 = Ch(⌃(t�1)) = L

(t�1),
as desired.
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Appendix B. FAILURE OF SOME ROUNDING SCHEMES

As a preliminary, we refer to a univariate function f : R! R as a sign function if

f(x) =

(
1 if x > 0

�1 if x < 0

and f(0) 2 {�1, 0, 1}. Given a vector ⇠ 2 Rn, we let sgn(⇠) denote a function given by the entrywise
application of sign functions to the coordinates of ⇠.

Let ⌃ 2 En be the correlation matrix achieving the optimal Gaussian discrepancy. In this section,
we consider two ways of rounding ⌃ to a signing. The Goemans–Williamson rounding (Goemans
and Williamson, 1995) is defined by drawing a random vector ⇠ ⇠ N (0,⌃) and setting

�GW(⌃) := sgn(⇠) .

The PCA rounding is defined by taking a top eigenvector v1(⌃) of ⌃ and setting

�PCA(⌃) := sgn v1(⌃) .

Note that when ⌃ = ��
T has rank 1, then � 2 {±1}n and both of these rounding schemes recover �

(up to a global sign flip).
In this section, we show that in the setting of both Spencer’s theorem and the Komlós conjecture,

these rounding schemes are not very effective. Concretely, for both of these settings, we construct a
random matrix that has a planted Gaussian discrepancy solution with objective value zero. However,
rounding this solution with either Goemans–Williamson or PCA rounding results in a value of the
combinatorial discrepancy that is much larger than the guarantees obtained by direct application of
Spencer’s theorem or Banaszczyk’s theorem.

First let us construct our planted Gaussian discrepancy solution. For n ⌘ 2 (mod 4) let U denote
the n⇥ 2 matrix whose j-th row is uj = (cos(2⇡jn ), sin(2⇡jn )), and let ⌃ = UU

T. Then,

⌃ = ccT + ssT , (19)

where cj := cos(2⇡jn ) and sj := sin(2⇡jn ). Given a vector v 2 Rn, define the shift operator
s : Rn ! Rn by s(v) = (v2, . . . , vn, v1) and let w = (1n/2,�1n/2). The lemma below verifies that
the Goemans–Williamson and PCA roundings of ⌃ are close to a vector in {w, s(w), . . . , sn�1(w)}.

Lemma 17 For ⌃ defined as in (19) and � 2 {�GW(⌃),�PCA(⌃)}, the following event holds with
probability 1: there exists k 2 {0, . . . , n� 1}, i 6= j 2 [n], and a, b 2 {�2,�1, 0, 1, 2} such that

s
k(w)� � = aei + bej .

Proof For the Goemans–Williamson rounding, in fact it holds that

P
⇥
�GW(⌃) 2 {w, s(w), . . . , sn�1(w)}

⇤
= 1.

To see this, observe that ⇠ = Ug where g 2 R2 is distributed as standard normal. Thus �GW(⌃)j = 1
iff hg, uji > 0. Since the points uj are equidistributed on the circle S1, the claim follows by rotational
invariance of the standard normal.
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Let us now turn to the PCA-rounding scheme. Since c ? s, the top eigenspace (corresponding to
eigenvalue n/2) of ⌃ is span{c, s}. Without loss of generality suppose that our rounding scheme
chooses

v1(⌃) =
ap

a2 + b2
c+

bp
a2 + b2

s

as the top eigenvector of ⌃ for some (a, b) 6= (0, 0). Let ✓ be such that

(cos ✓, sin ✓) =
1p

a2 + b2
(a, b) .

Then we have
v1(⌃) =

⇣
cos

�
✓ � 2⇡j

n

�⌘

j2[n]
.

Let � = �PCA(⌃) = sgn(v1(⌃)). We consider two cases. First suppose that v1(⌃)j = 0 for
some j 2 [n]. Then it holds that ✓ 2 ⇡

2 + 2⇡
n Z. Let j⇤ 2 [n] denote the smallest positive integer such

that ✓ + 2⇡j⇤

n 2 ⇡
2 + ⇡Z. Recalling that n is even, we have

�j =

(
±1 if j 2 (j⇤, j⇤ + n/2)

⌥1 if j 2 [n]\[j⇤, j⇤ + n/2],

and �j 2 {�1, 0, 1} if j 2 {j⇤, j⇤ + n/2}. Here we use the properties of the cosine and sign
functions. By inspection, the conclusion of the lemma holds in this case.

If on the other hand, v1(⌃)j 6= 0 for all j 2 [n], then in fact we have

� 2 {w, s(w), . . . , sn�1(w)},

by the fact that n is even and the properties of the cosine and sign functions. The lemma follows.

Next, we construct a family of distributions pm,n on m⇥n matrices such that the feasible Gaussian
coupling g ⇠ N (0,⌃) attains zero Gaussian discrepancy. Let ⌃? = In � 1

kck22
ccT � 1

ksk22
ssT and

write A ⇠ pm,n for the random m⇥ n matrix with rows

g1, . . . , gm
i.i.d.⇠ N (0,⌃?) .

The rows of A are isotropic Gaussians on the orthogonal complement of span{c, s}. Thus in
particular AU = 0 almost surely so that Vdisc2(A) = 0 and Gdisc(A) = 0 almost surely.

We prove an intermediate lemma that lower bounds the combinatorial discrepancy incurred by
� 2 {w, s(w), . . . , sn�1(w)}.

Lemma 18 If A ⇠ pm,n, then there exists a constant c > 0 such that for n sufficiently large and for
all ⌧ � 2,

P
⇥

min
0kn�1

kAsk(w)k1  ⌧
⇤
 n exp

h
�m exp

�
�c⌧

2

n

�i
.
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Proof We record some elementary calculations that will be useful later:

nX

j=1

cos2
�2⇡j

n

�
=

nX

j=1

sin2
�2⇡j

n

�
=

n

2
(20)

lim
n!1

1

n

n/2X

j=1

cos
�2⇡j

n

�
= 0 (21)

lim
n!1

1

n

n/2X

j=1

sin
�2⇡j

n

�
=

1

⇡
(22)

The identity in the first line is an elementary fact from complex variables, and the limits above are a
consequence of Riemann integration.

Observe that for all 1  k  n� 1,

���
nX

i=1

wiu
T
i

���
2
=
���

nX

i=1

s
k(w)iu

T
i

���
2

by the unitary invariance of the `2-norm. Therefore, for all 1  i  m and 1  k  n� 1,

hgi, sk(w)i ⇠ N (0, wT⌃?
w) .

Next,

1

kck22
hc, wi2 = 1

n/2

n
2

n/2X

k=1

cos
�2⇡k

n

�o2
= o(n) , (23)

1

ksk22
hs, wi2 = 1

n/2

n
2

n/2X

k=1

sin
�2⇡k

n

�o2
=

8n

⇡2
+ o(n) , (24)

by (20), (21), and (22). We have that

w
T⌃?

w =
�
1� 8

⇡2

�

| {z }
=:c0>0

n+ o(n) .

Thus the inner product of a row gi of A with an output of either Goemans–Williamson or PCA
rounding of ⌃ is a centered Gaussian with variance roughly c0n.

Next we lower bound kA�k1 for � 2 {w, s(w), . . . , sn�1(w)} using the first moment method.
Define the random variable

S =
n�1X

k=0

{kAsk(w)k1  ⌧}

that counts the number of shifts of w attaining discrepancy ⌧ . The Markov inequality implies that

P[9k : kAsk(w)k1  ⌧ ] = P[S � 1]  ES. (25)
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By our work above, all of the vectors As
k(w) have the same distribution and have independent

coordinates. Using this fact and standard Gaussian estimates, for ⌧ � 2,

ES = nP[kAwk1  ⌧ ] = nPg⇠N (0,wT⌃?w)[|g|  ⌧ ]
m

 n

n
1� exp

⇣
� ⌧

2

2 hw,⌃?wi

⌘om

 n exp
h
�m exp

⇣
� ⌧

2

2 (c0 + o(1))n

⌘i
. (26)

The lemma statement follows from (25) and the previous display.

Lemma 18 allows us to demonstrate the poor performance of the rounding schemes considered in
this section in two well-studied settings.

Proposition 19 Let A ⇠ pm,n and define A
0 = 1

c
p
logn

A for a sufficiently large absolute constant
c > 0. Let ⌃ be defined as in (19), and let � 2 {�GW,�PCA}. Then

Gdisc(A0) = 0 = EkA0
gk1 if g ⇠ N (0,⌃) ,

and the following hold with high probability as n!1:

• (Spencer setting) If m = n
logn , then maxi2[m], j2[n] |A0

i,j |  1, and

disc(A0) .
r

n

log n
⌧
p
n . kA0

�k1 .

• (Komlós setting) If m = 10 log n, then maxj2[n] kA0
:,jk2  1, and

disc(A0) .
p

log log n⌧
r

n

log n
. kA0

�k1 .

Proof Recall that EkA0
gk1 = 0 holds for g ⇠ N (0,⌃) by construction.

Next we verify the high probability bounds on the size of the entries of A0. The bound on the
size of the largest entry of A0 in the Spencer setting follows from the union bound and tail bounds
for the standard Gaussian distribution. Now, for the Komlós setting, since ⌃? � In, it follows
that var(Ai,j)  1 for all i, j. Let ⌧j  1 denote the common variance of the entries in column
j. We have that kA:,jk2 �

p
⌧jm is sub-Gaussian with variance proxy 1 (see e.g. Vershynin, 2018,

Chapter 3). Applying the sub-Gaussian tail bound and the union bound over 1  j  n implies that
maxj2[n] kA:,jk2 .

p
log n, as desired.

Given the previous bounds on the entries of A0, the upper bounds on disc(A0) follow immediately
from Spencer’s theorem and Banaszczyk’s bound, respectively. To finish, we verify the lower
bounds on kA0

�k1 when � 2 {�GW,�PCA}. By Lemma 17, it holds with probability 1 that for
� 2 {�GW,�PCA},

s
k(w)� � = aei + bej

for some k 2 {0, . . . , n� 1}, i 6= j 2 [n], and |a|, |b|  2. By the union bound over this event and
the event that maxi,j |A0

i,j |  1, it holds with high probability that

kA0(� � s
k(w))k1  4, (27)
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for some k 2 {0, . . . , n � 1}, by the triangle inequality. By the union bound again over the event
(27) and the event of Lemma 18, it holds that

kA0
�k1 � min

0kn�1
kA0

s
k(w)k1 � 4 &

8
<

:

p
n if m = n

lognq
n

logn if m = 10 log n
.

Precisely, for m = n
logn , we set ⌧ = c

0p
n log n in Lemma 18, and for m = 10 log n, we set

⌧ = c
00p

n, for sufficiently small absolute constants c0, c00 > 0.

Furthermore, when m = n
logn , a signing chosen uniformly at random already achieves discrepancy

O(
p
n) for the matrix A

0 with high probability. This indicates that in the Spencer setting our rounding
schemes �GW and �PCA fail to ‘beat the union bound’. We justify this below for completeness.

Lemma 20 With high probability over the random matrix A ⇠ pm,n, a uniformly random sign
� ⇠ unif({±1}n) satisfies

E[kA0
�k1 | A0] .

p
n ,

where A
0 = 1

c
p
logn

A as before.

Proof By standard concentration results (see, e.g., Boucheron et al., 2013, Theorem 5.5) and using
the fact that var(Ai,j)  1 for all i, j, it holds for fixed i that

P[kAi,:k2 �
p
n � t]  exp(�t2/2) .

Thus the union bound implies that the event E = {max1im kAi,:k2  2
p
n} holds with probability

at least 1�me
�n/2. Conditionally on the matrix A, the random variable

Pn
j=1Ai,j�j is sub-Gaussian

with parameter kAi,:k22, so the maximal inequality for sub-Gaussian random variables (see, e.g.,
Boucheron et al., 2013, Theorem 2.5) yields

E[kA�k1 | A] 
�
max
1im

kAi,:k2
�p

2 log(2m)  2

r
2n log

2n

log n
= O(

p
n log n)

with probability at least 1�me
�n/2, as desired.

Appendix C. SAMPLING FROM THE MARKOV CHAIN

To implement the Gaussian fixed point walk in dimension r > 1, we need to be able to sample from
the Markov kernel (17). Clearly, to this end it is sufficient to solve the following problem.

Problem 2 Given a point x 2 Rr and a target radius s � 0, output a uniformly random point from

S := {y 2 Rr : kx� yk2 = 1, kyk2 = s} , (28)

provided S 6= ?.
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Let � = y � x. Equivalently, we need to sample from the set of � 2 Rr with k�k2 = 1 and
kx+ �k2 = s. Expanding and rearranging the latter, we obtain

⌦ x

kxk2
, �
↵
=

s
2 � kxk22 � 1

2 kxk2
.

The set of such � can be parametrized as � = �x/kxk2 +
p
1� �2w where w is a unit vector

orthogonal to x, and � = (s2 � kxk22 � 1)/(2kxk2). Uniformly sampling such a w is easy: given a
standard Gaussian g ⇠ N (0, Ir), project it onto x

? and normalize:

w =
(Ir � xx

T
/kxk2) g

k(Ir � xxT/kxk2) gk2
. (29)

Putting it all together, we obtain the following algorithm.

Algorithm 2: Sampling from the Markov kernel (17)
Input: x 2 Rr, s � 0.
Set � = (s2 � kxk22 � 1)/(2kxk2).
if � /2 [0, 1] then

Output: S is empty.
else

Draw w according to (29).
Set � = �x/kxk2 +

p
1� �2w.

Output: x+ �.
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