

Bioinspired stability enhancement in deuterium-substituted organic-inorganic hybrid perovskite solar cells

Jinhui Tong,^{1†} Xun Li,^{2†} Jianxin Wang,² Haiying He,^{3*} Tao Xu,^{2*} Kai Zhu^{1*}

¹Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA

²Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, USA

³Department of Physics and Astronomy, Valparaiso University, Valparaiso, Indiana 46383, USA

*Corresponding authors: Kai.Zhu@nrel.gov (K.Z.); txu@niu.edu (T.X.); haiying.he@valpo.edu (H.H.)

[†]These authors contributed equally to this work.

Abstract

In hybrid perovskite solar cells (PSCs), the reaction of hydrogens (H) located in the amino group of the organic A-site cations with their neighboring halides plays a central role in degradation. Inspired by the retarded biological activities of cells in heavy water, we replaced the light H atom with its abundant, twice-as-heavy, nonradioactive isotope, deuterium (D) to hamper the motion of H. This D substitution retarded the formation kinetics of the detrimental H halides in Pb-based PSCs, as well as the hydrogen-bond mediated oxidation of Sn^{2+} in Sn-Pb-based narrow bandgap PSCs, evidenced by accelerated stability studies. A computational study indicated that the zero point energy of D-based formamidinium (FA) is lower than that of pristine FA. In addition, the smaller increase in entropy in D-based FA than in pristine FA accounts for the increased formation free energy of the Sn^{2+} vacancies, which leads to the retarded oxidation kinetics of Sn^{2+} . In this study, we show that substituting active H with D in organic cations is an effective way to enhance the stability of PSCs without sacrificing photovoltaic (PV) performance. This approach is also adaptable to other stabilizing methods.

30 **Significance statement**

31 The slow motion of deuterium (D) in amino group of A-site cations of hybrid perovskite impedes
32 the detrimental formation of hydrogen halides, thus retards the degradation kinetics of hybrid
33 perovskite. D substitution also improve the stability of narrow bandgap perovskites by impeding
34 the hydrogen-bond mediated Sn^{2+} oxidation to Sn^{4+} , rendering a retrofit adaptable to all other
35 existing stabilizing methods for hybrid perovskites and inspiring an alternative way to slow down
36 a variety of materials degradation kinetics relevant to hydrogen mobility.

37

38 **Keywords:** deuterium, hybrid perovskite, stability, solar cells, degradation, kinetics

39

40

41

42

43 **Introduction**

44 The certified champion power conversion efficiency (PCE) of perovskite solar cells (PSCs)
45 is currently on par with or greater than that of silicon (Si)- and copper indium gallium selenide
46 (CIGS)-based solar cells. In addition, solution processing makes PSCs a low-cost photovoltaic
47 (PV) technology. However, there are still major challenges in achieving future widespread market
48 adoption of PSCs, particularly their limited long-term stability. PSCs suffer from ~5%–10% PCE
49 degradation over a few thousand hours under continuous operation.^{1–3} In contrast, Si-based solar
50 cells exhibit a >20-year lifetime warranty with an average PCE degradation rate of only 0.5% per
51 year.

52 The general chemical formula of metal halide perovskites is ABX_3 , where A is a
53 monovalent mono, double, or triple cation—including organic $CH_3NH_3^+$ (MA^+) and $CH(NH_2)_2^+$
54 (FA^+) and/or inorganic Cs^+ , Rb^+ , and K^+ . The A-site cations of state-of-the-art Pb-based PSCs
55 typically use organic cations with N-H and C-N bonds. The rotating and stretching modes of these
56 bonds have essential contributions to the high dielectric response and the high stability of excitons
57 that retard the recombination rate through reorientation of organic cations.^{4–7} Explicitly, the
58 rotating and stretching modes of the polar C-N and N-H bonds of the organic cations inside the
59 inorganic PbX_6^- cages deform and agitate, stabilizing the photoexcited inorganic framework
60 through their electrostatic interactions with the inorganic lattice.^{4,7} However, the polar N-H bond
61 is the most vulnerable bond in hybrid perovskites under stress factors (e.g., potential, moisture,
62 radiation, heat, and oxygen).^{8–15} Polar N-H bonds split easily because the H atom is the lightest
63 atom and can readily migrate to trigger a series of unwanted degradation reactions that lead to
64 instability of PSCs, including the formation of HO_2 with O_2 ^{16–18} and/or H-I.^{19–21} The former
65 proceeds to form $Pb(OH)_2$ and PbO with Pb , and the latter disintegrates to H_2 and I_2 , which can

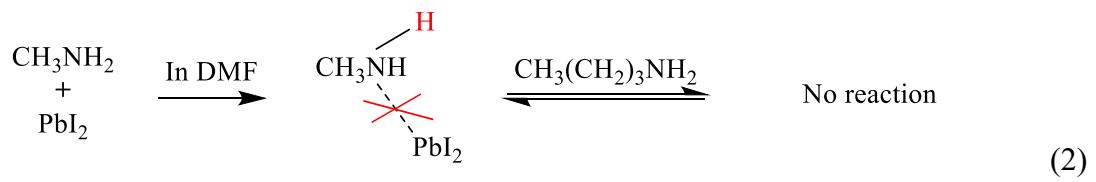
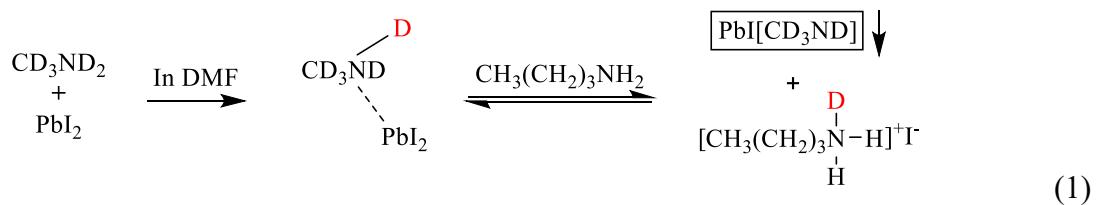
66 readily escape from the reaction center via defects in the film, further pushing the equilibrium
67 toward degradation.

68 The stability issue becomes even more prominent in high-efficiency all-perovskite tandem
69 solar cells because of the use of Sn-Pb mixed perovskite materials. Sn-Pb narrow-bandgap PSCs
70 has achieved PCEs exceeding 20%.²² However, due to the strong inert pair effect in Sn^{2+} relative
71 to Pb^{2+} , the oxidation potential of $\text{Sn}^{2+} \rightarrow \text{Sn}^{4+} + 2e^-$ (+0.15 V) is much lower than that of $\text{Pb}^{2+} \rightarrow \text{Pb}^{4+}$
72 $+ 2e^-$ (+1.67 V). The unavoidable oxidation of Sn^{2+} to Sn^{4+} is a primary cause of the poor long-
73 term stability of Sn-containing PSCs.²³⁻²⁵ The oxidation of Sn^{2+} to Sn^{4+} is relevant to the formation
74 of hydrogen bonds between organic A-site cations and ingress H_2O molecules and to the impact
75 of A-site cation-induced polarization on the defect formation energy that regulates the emergence
76 of Sn^{2+} from bulk to surface. Specifically, the organic cation in perovskites can adsorb H_2O via
77 the hydrogen bonds between the N (or H) from organic cations and the H (or O) from H_2O .²⁶ The
78 stronger hydrogen bond of $\text{N} \cdots \text{H}$ can more tightly lock H_2O with the A-site cation so as to slow
79 down H_2O -mediated oxidation of Sn^{2+} to Sn^{4+} ; the weaker hydrogen bond of $\text{H} \cdots \text{O}$, however,
80 allows relatively faster H_2O -mediated migration of O_2 to the deep lattice, thus faster oxidation of
81 Sn^{2+} to Sn^{4+} .²⁶⁻²⁸ In parallel, the oxidation of a surface Sn^{2+} by O_2 generates a Sn^{2+} vacancy due to
82 the migration of the resulting SnO_2 .^{29,30} As a result, the inward polarization (due to vibration and/or
83 rotation of polar bonds such as N-H) of A-site cations leads to a downhill slope of defect formation
84 energy for Sn^{2+} vacancies from surface to subsurface layers, causing Sn^{2+} to emerge from
85 subsurface layers to the surface.²⁹⁻³⁴ It is thus evident that the unwanted motion of H is a notable
86 root cause of the instability in PSCs containing organic A-site cations and Sn^{2+} .

87 Inspired by the emerging longevity aging study in biological science, particularly the slow
88 growth of yeast cells in heavy water,³⁵ we herein report a nuclear approach to retard any H-

dependent degradation reactions in both Pb-based and Sn-Pb-based PSCs by replacing H with its heavier but nonradioactive and resourceful isotope deuterium (D). Because D is twice as heavy as H, the kinetics of all the degradation mechanisms related to the motion of H can be substantively slowed down, leading to a marked enhancement in device stability in accelerated aging tests. In particular, the replacement of H by D can notably attenuate the frequency of the hydrogen bonds by a factor of $(2)^{1/2}$ and lower the zero point vibrational energy in the hydrogen bonds.²⁷ The smaller dipole moment and slightly shorter bond length of D-N compared to H-N^{32,33} retards the polarization of the neighboring inorganic framework—namely the emergence of Sn^{2+} from the subsurface to the surface by A-site organic cations—so as to reduce the oxidation of Sn-containing perovskites. Note that the replacement of N-H with N-D can be conveniently achieved by soaking and recrystallizing the organic precursors (e.g., methylammonium iodide [MAI] and formamidinium iodide [FAI]) in D_2O). Ocean water provides a source of D that is more than sufficient to supply the needs of any future PSC-based PV applications (see technoecono analysis of D-based perovskite in supplementary materials, **Note S1**).

103



104 **Results and Discussion**

105

106 We first study the inertness of D-substituted FA and MA using the Tyndall effect, which
107 is a direct, visual method for distinguishing the stabilities of H-based organic cations from those
108 of D-based organic cations. We prepared two perovskite precursory solutions for comparison,
109 including an H-based solution containing methylammonium iodide (MAI or $\text{CH}_3\text{NH}_3\text{I}$),
110 butylamine (BA or $\text{CH}_3(\text{CH}_2)_3\text{NH}_2$), and PbI_2 ; and a D-based precursory solution containing
111 deuterated methylammonium iodide (D-MAI or $\text{CD}_3\text{ND}_3\text{I}$), BA, and PbI_2 . Both solutions have a
112 molar ratio of 1:1:1 for the three ingredients at a concentration of 200 mg/mL with reference to

113 PbI₂. **Figure S1** shows that initially, both solutions appeared homogeneous and no Tyndall effect
 114 was observed. However, after the solutions were aged on a hot plate at 55°C for 8 days, precipitates
 115 formed in the D-MAPbI₃ precursor solution, clearly visualized by the Tyndall effect. The Tyndall
 116 effect was observed only in the precursor solution containing CD₃ND₃PbI₃. The reaction
 117 mechanism is outlined below, with the downward arrow used to indicate the precipitation.

118

121

122 In reaction (1), due to the low acidity of the D-based MA (owing to the retarded motion of
 123 D), the D-based MA behaves as a base and forms a complex with PbI₂ through a Lewis acid-base
 124 reaction (the Pb²⁺ cation is the Lewis acid, and the lone pair of electrons on the N of the D-based
 125 MA is the Lewis base). This reaction outpaces the reaction between the Lewis acid Pb²⁺ and the
 126 Lewis base dimethylformamide (DMF) molecules. The resulting complex (CD₃ND₂···PbI₂) is
 127 acidic enough (N-D is activated) to be deprotonated by a strong base of butylamine (donor number
 128 = 42 kcal/mol). However, it cannot be deprotonated by DMF, because DMF (donor number = 26
 129 kcal/mol) is a weaker base than butylamine. Finally, a precipitate of D-PbI-methylamide iodide
 130 (the conjugated base of the CD₃ND₂···PbI₂ complex) and a salt of D-butylammonium iodide (the
 131 conjugate acid of butylamine) is generated.³⁶ In the case of reaction (2), due to the faster motion

132 of H than D, and possibly the lower dissociation energy of N-H than N-D,³⁷ the H-based MA
133 exhibits higher acidity than D-based MA or DMF molecules—in other words, H-based MA is a
134 weaker base than D-based MA or DMF. Thus, the Lewis acid Pb²⁺ preferentially reacts with the
135 lone pair of electrons on O of the DMF molecules (a Lewis base), instead of reacting with the
136 weaker Lewis base of the H-based MA. As a result, there is no subsequent intermediate complex
137 formed because of the complete solvation of Pb²⁺ by DMF molecules.

138 We further assessed the antioxidation property between H-based perovskite and D-based
139 perovskite films by exposing the perovskite films to highly energetic oxygen plasma for
140 accelerated oxidation. Two different perovskite compositions were used:
141 (CH(NH₂)₂SnI₃)_{0.6}(CH₃NH₃PbI₃)_{0.4} (denoted as “H-based”), and
142 (CH(ND₂)₂SnI₃)_{0.6}(CD₃ND₃PbI₃)_{0.4} (denoted as “D-based”). Fourier transform infrared
143 spectroscopy (FTIR) was used to characterize the change of functional groups in the perovskite
144 thin films before and after oxygen plasma treatment. With increasing oxygen plasma treatment
145 time, FTIR of the H-based perovskite film (**Figure 1(a)**) showed attenuated intensities for peaks
146 at $\nu \approx 3402 \text{ cm}^{-1}$ (N-H stretching), $\nu \approx 3271 \text{ cm}^{-1}$ (C-H stretching), $\nu \approx 1712 \text{ cm}^{-1}$ (C=N stretching,
147 characteristic to FA), $\nu \approx 1612 \text{ cm}^{-1}$ (N-H bending), and $\nu \approx 1470/1350 \text{ cm}^{-1}$ (C-H bending). These
148 results indicate the oxidation of these functional groups, namely, the insertion of oxygen atoms,
149 which is further evidenced by the corresponding growth of two new peaks at $\nu \approx 3749 \text{ cm}^{-1}$ (free
150 O-H stretching) and $\nu \approx 1519 \text{ cm}^{-1}$ (N-O stretching) with increasing oxygen plasma treatment
151 time. After 100 s of oxygen plasma treatment, only the O-H stretching, N-O stretching, and part
152 of C=N stretching bonds could be detected. In a remarkable contrast, almost no changes were
153 observed in the FTIR of the D-based samples, as shown in **Figure 1(b)**, even after 100 s of oxygen
154 plasma treatment. This comparison indicates that the N-D or C-D bonds are more inert than N-H

155 or C-H bonds, due to the comparative heaviness of D, which impedes its motion and therefore its
156 ability to accommodate the oxygen insertion.

157 To experimentally evaluate the effect of D-substituted organic A-site cations on the PV
158 performance of PSCs, we first studied pure Pb-based perovskites with the composition of
159 $\text{Cs}_{0.05}\text{MA}_{0.15}\text{FA}_{0.8}\text{PbI}_{2.55}\text{Br}_{0.45}$ using a standard p-i-n configuration (indium tin oxide (ITO)/
160 poly(triaryl amine) (PTAA)/perovskite/ C_{60} /bathocuproine (BCP)/Ag). **Figure 2(a)** shows the
161 comparable current density-voltage (J-V) curves from the H-based devices (both MA and FA are
162 pristine H-based) and the D-based devices (both MA and FA are D-based). Note that neither type
163 of device was encapsulated. Both H-based and D-based devices exhibited nearly the same J-V
164 behaviors, with no observable hysteresis, indicating that deuteration does not affect the PV
165 performance of the devices. **Figure 2(b)** shows the device stability after thermal aging at 85°C for
166 150 h in dry air. Strikingly, the D-based devices retain most of their initial PCE, whereas the
167 pristine H-based devices exhibit less than 40% of their initial PCE.

168 To gain mechanistic insight into the enhanced thermal stability of D-based devices, we
169 further calculated the vibrational frequencies of the N-H and N-D bonds in the H-based and D-
170 based FA (see **Table S1** and **Fig. S2**). The calculated N-H frequencies are in the range 3415–
171 3537 cm^{-1} , in good agreement with the experiment. In contrast, the N-D frequencies are a factor
172 of just 0.723–0.742 of the N-H ones, indicating that N-D vibration is drastically retarded.
173 Therefore, the reaction kinetics involving the motion of H can be largely slowed down by replacing
174 H with D, in good agreement with our experimental study. The calculated zero point energy (ZPE)
175 of D-based FA is lowered by 0.36 eV (i.e., 4123 K) relative to that of H-based FA. Because the
176 electronic properties do not change with the substitution of H by D, the enhanced thermal stability

177 of D-based PSCs can be logically attributed to the slow motion of D, which retards the kinetics of
178 the degradation reactions.

179 Sn doping of perovskites enables promising narrow-bandgap PSCs (denoted Sn-Pb PSCs) for
180 enhanced current density. To study the impact of D-substituted organic A-site cations on Sn-doped
181 perovskites, we chose the MA-free perovskite composition of $\text{Cs}_{0.25}\text{FA}_{0.75}\text{Sn}_{0.5}\text{Pb}_{0.5}\text{I}_3$ to avoid
182 complications from the deleterious effect of MA^+ volatility. **Fig. S3** shows the X-ray diffraction
183 (XRD) patterns of $\text{Cs}_{0.25}\text{FA}_{0.75}\text{Sn}_{0.5}\text{Pb}_{0.5}\text{I}_3$ using H-FAI (H-based) and D-FAI (D-based) as the
184 organic A-site cation, respectively. The XRD patterns of both the H-based film and the D-based
185 film show identical features in terms of peak position, peak intensity, and peak width, indicating
186 that deuterium substitution does not change film lattice structure and crystallinity. We also
187 conducted scanning electron microscopy (SEM) to compare the film morphology, as shown in **Fig.**
188 **S4**. This figure shows that both films exhibit similar representative grain size and film morphology.
189 Thus, deuterium substitution does not affect film morphology either.

190 **Figure 3(a)** compares the J-V curves of the narrow-bandgap PSCs based on
191 $\text{Cs}_{0.25}\text{FA}_{0.75}\text{Sn}_{0.5}\text{Pb}_{0.5}\text{I}_3$ with H-FAI and D-FAI as the organic A-site cations. Note that these
192 narrow-bandgap PSCs were made under the same conditions and were not encapsulated. When
193 measured under a reverse voltage scan, the narrow-bandgap PSC made with H-FAI exhibited a
194 PCE of 20.845% with a short-circuit current density (J_{sc}) of $31.271 \text{ mA cm}^{-2}$, an open-circuit
195 voltage (V_{oc}) of 0.825 V, and a fill factor (FF) of 0.808. When measured under a forward voltage
196 scan, the H-FAI-based narrow-bandgap PSC showed a PCE of 20.682% with a J_{sc} of 31.218 mA
197 cm^{-2} , a V_{oc} of 0.823 V, and an FF of 0.805. D-based devices show similar J-V performance to that
198 of H-based devices, exhibiting a PCE of 20.371% for reverse scan and 20.335% for forward scan.
199 **Figure 3(b)** compares the stabilized power output (SPO) efficiencies. H-based devices have an

200 SPO efficiency of 20.750%, very close to the SPO efficiency of 20.158% for D-based devices. It
201 is clear that both H-based and D-based narrow-bandgap PSCs show similar PV performance,
202 indicating that the substitution of D for H does not affect the normal PV performance.

203 We further conducted an accelerated evaluation on the operational stability of the
204 encapsulated narrow-bandgap PSCs in air with a relative humidity (RH) of ~50% and a
205 temperature of ~50°C under continuous light illumination in air. Both H-based and D-based
206 narrow-bandgap PSCs were biased near the maximum power point during illumination. As can be
207 seen in **Figure 3(c)**, the H-based Sn-Pb PSC showed about 29.3% efficiency loss after 550 h of
208 illumination, whereas the D-based Sn-Pb PSC showed markedly enhanced stability, with only
209 11.4% degradation. We further tested the stability of unencapsulated H-based and D-based Sn-Pb
210 narrow-bandgap PSCs in air (~80% RH). As shown in **Figure 3(d)**, the D-based Sn-Pb PSC
211 showed notably better atmospheric stability than the H-based Sn-Pb PSC. The D-based Sn-Pb PSC
212 retained 82% of its initial efficiency after 8 h of storage in humid air, whereas the H-FAI based
213 device retained only of 71% of its initial efficiency during the same period.

214 We also conducted computational modeling and simulation based on density functional
215 theory (DFT) to provide a fundamental understanding of the remarkably enhanced antioxidation
216 of Sn^{2+} to Sn^{4+} found in the D-based narrow-bandgap PSCs under humid conditions in open air.
217 First, we constructed an FA… H_2O complex model in order to investigate the impact of deuteration
218 of the N-H bond in FA on the diffusion of H_2O molecules into the bulk. In the equilibrium state,
219 an H bond is formed as N-H…O (**Fig. S5**), which results in an H_2O binding energy of 0.65 eV and
220 an elongation of the N-H bond from 1.01 to 1.03 Å. Consequently, the vibrational frequency of
221 the N-H stretching mode is reduced by a factor of ~0.9 (**Table S2** and **Fig. S6**). Substituting D for

222 H further reduced the vibrational frequencies by a factor of ~0.7, which in turn, slowed down the
223 diffusion of water molecules.

224 The oxidation of Sn^{2+} into Sn^{4+} (i.e., SnO_2) is most likely to start from the surface of the
225 perovskite as it is exposed to water and oxygen in humid air. Earlier studies have shown that,
226 regardless of the A-site cation in a hybrid ASnX_3 perovskite, the reaction between Sn^{2+} and
227 adsorbed O_2 is energetically favorable, which leads to the formation of SnO_2 and Sn^{2+} vacancies
228 ($\text{V}_{\text{Sn}}^{2-}$) at the outermost surface.³⁰ The Sn^{2+} ions underneath may migrate to fill in the Sn^{2+} vacancies
229 and form vacancies below. As this process continues, more Sn^{2+} ions propagate to the surface and
230 get oxidized to Sn^{4+} , while the Sn^{2+} vacancies move down into the bulk. Consequently, ASnX_3
231 degrades to A_2SnX_6 , destroying the PSC performance. Additionally, the study of MASnBr_3 has
232 demonstrated that the polarization induced by MA ions at the A-site with a specific orientation can
233 significantly expedite the migration of $\text{V}_{\text{Sn}}^{2-}$ from the surface to the bulk region compared to the
234 nonpolar Cs ions.³⁰ We employed a model system of the $\text{FASn}_{0.5}\text{Pb}_{0.5}\text{I}_3$ (001) surface to investigate
235 the dependence of the defect formation energy of $\text{V}_{\text{Sn}}^{2-}$ on its location, the Sn chemical potential
236 $\mu(\text{Sn})$, and the deuteration effect. To study the dependence of the vacancy formation energy on the
237 location of the vacancy underneath the surface, we generated the Sn vacancy in the first, second,
238 and third layers of the (001) surface. It is interesting to note that the orientation of FA cations tilted
239 near the Sn vacancy (**Fig. S7**). To reveal the deuteration effect by substituting D for H in the FA
240 molecule, we calculated the vibrational frequencies of the system, thereby obtaining the free
241 energy corrections (at $T = 298.15$ K) to the formation energy of $\text{V}_{\text{Sn}}^{2-}$ (see **Table S3**). The calculated
242 formation free energies (ΔG_f) of $\text{V}_{\text{Sn}}^{2-}$ at different depths (layers) beneath the top surface layer are
243 plotted as a function of $\mu(\text{Sn})$ in **Figure 4**. The canted lines indicate the change of formation
244 energies as $\mu(\text{Sn})$ increases from the equivalent chemical potential of Sn in the SnO_2 bulk (O_2 -rich)

245 to that of a Sn-rich environment. Note that the positive formation energy indicates that the
246 formation of a vacancy requires energy, whereas the negative formation energy at lower $\mu(\text{Sn})$
247 suggests a spontaneous process.

248 These results show a similar trend as the previous study,³⁰ where at a certain $\mu(\text{Sn})$, ΔG_f
249 decreases with the increase in depth of the Sn vacancy location, along the same direction as the
250 polarization caused by the FA cations. However, the difference in the value of ΔG_f is smaller than
251 in the case of MASnBr_3 . This is likely due to the fact that the FA cation has a much smaller intrinsic
252 dipole moment (0.081 Debye) than the MA cation (0.845 Debye), in agreement with the observed
253 better stability of FA. In addition, the deuteration of FA increases the formation free energy of $\text{V}_{\text{Sn}}^{2-}$
254 by 0.76 eV, largely due to the smaller increase in entropy in the defective system with $\text{V}_{\text{Sn}}^{2-}$ than in
255 the pristine surface without vacancies (see **Table S3**). These results reveal that the adoption of a
256 deuterium-substituted organic component reduces the degree of oxidation of the Sn^{2+} cations.

257 In summary, the replacement of H—particularly the active H in the amino group—with D is
258 an effective approach to reducing the vibration frequency of the N-D bond that is accountable for
259 the degradation kinetics of perovskites under stress factors such as heat and light. The deuteration
260 of organic cations also reduced the entropy change in D-FA. This helped increase the formation
261 free energy of the Sn^{2+} vacancies, impeding the emergence of Sn^{2+} to the surface layer where
262 oxidation occurs. Thus, it is evident that substitution of active H with D in organic cations is a
263 standalone kinetic method to enhance the stability of PSCs, as well as a conveniently adaptable
264 retrofit to any other stabilizing methods that does not require changing procedures or
265 compositional formula.

266

267

268 **Materials and Methods**

269

270 1. Synthesis of deuterium-replaced FAI and MAI

271 *Synthesis of deuterated CH(ND₂)₂I (D-FAI).* CH(NH₂)₂I (FAI, Greatcell Solar Materials Pty
272 Ltd.) was dissolved in excessive deuterium oxide (Sigma-Aldrich, 99.9 atom %) at a molar ratio
273 of 1:40 under stirring, followed by heating the solution to 90°C for 2 hours under argon (Ar). The
274 liquid was then evaporated at 70°C under a flow of Ar to dry off. This process was repeated three
275 times to ensure complete substitution of ammonium hydrogen by deuterium to yield the high purity
276 of D-FAI. Finally, the white solid was collected and moved to the vacuum oven at 60°C overnight
277 for further drying. In principle, most of the D₂O can be recollected by reflux for future scaled-up
278 synthesis.

279 *Synthesis of deuterated CD₃ND₃I (D-MAI).* First, CD₃NH₂ gas (Sigma-Aldrich, 99.9 atom %)
280 was slowly reacted with an equimolar amount of hydroiodic acid (HI) solution (Sigma-Aldrich, 57
281 wt% in water) in a round-bottom flask soaked in an ice bath. Then, the solvent of this solution was
282 dried off by rotary evaporation at 60°C. The collected solid of CD₃NH₃I with HI residual was
283 further washed by anhydrous ethyl ether (Fisher Chemical) under vacuum filtration, followed by
284 drying the white solid in the vacuum oven at 60°C overnight. Next, the collected CD₃NH₃I was
285 dissolved in excessive deuterium oxide at a molar ratio of 1:40 with stirring, followed by heating
286 the solution to 90°C for 2 hours under Ar and then evaporating the solution at 70°C under flowing
287 Ar to dry off the solvent. This process was repeated three times to ensure complete substitution of
288 N-H by N-D to yield the high purity of D-MAI. Finally, the white solid was collected and
289 transferred to the vacuum oven at 60°C overnight for further drying. All samples were
290 characterized by nuclear magnetic resonance (NMR) spectroscopy, performed using a Bruker
291 Spectrospin 500-MHz NMR spectrometer. **Figs. S8, S9, and S10** show the NMR results of

292 CH(NH₂)₂I, CH(ND₂)₂I, and the solvent (deuterated dimethyl sulfoxide [DMSO]) used in the
293 NMR study, respectively. NMR results for CH₃NH₃I and CD₃ND₃I were reported in our previous
294 work.³⁸

295

296 2. Oxygen-plasma oxidation of perovskite films

297 The accelerated oxidation of different perovskite films was conducted using a plasma cleaner
298 (PDC-32G, Harrick Plasma). This plasma cleaner includes three gears: low energy, medium
299 energy, and high energy.

300

301 3. Preparation of perovskite solar cell precursor

302 All the perovskite solution and film depositions were conducted in a N₂ glovebox with O₂
303 level < 1 ppm and H₂O < 1 ppm. For the H-based Pb-Sn mixed narrow bandgap
304 Cs_{0.25}FA_{0.75}Sn_{0.5}Pb_{0.5}I₃ perovskite solar cell precursor, the solution consisted of 258 mg H-FAI
305 (pure hydrogenated FAI, Greatcell, Australia), 461 mg PbI₂ (anhydrous, Sigma-Aldrich, USA),
306 130 mg CsI (anhydrous, Sigma-Aldrich, USA), 16 mg SnF₂ (Sigma-Aldrich, USA), and 338.7 mg
307 SnI₂ (anhydrous, bead, Sigma-Aldrich, USA) in 800 mL DMF (anhydrous, Sigma-Aldrich, USA)
308 and 200 mL DMSO (anhydrous, Sigma-Aldrich). To prepare the corresponding D-based Pb-Sn
309 mixed narrow-bandgap Cs_{0.25}FA_{0.75}Sn_{0.5}Pb_{0.5}I₃ perovskites, we used 264 mg D-FAI instead of 258
310 mg H-FAI, and 264 mg D-MA instead of 258 mg H-MA. Similar method was used to prepare the
311 D-based Cs_{0.05}FA_{0.8}MA_{0.15}PbI_{2.55}Br_{0.45}. In the case of D-based Cs_{0.05}FA_{0.8}MA_{0.15}PbI_{2.55}Br_{0.45},
312 equal moles of D-FAI and D-MA were used instead of H-FAI or H-MAI.

313

314 4. PSC device fabrication

315 For Pb-Sn mixed narrow-bandgap perovskite solar cells, the prepatterned ITO substrates were
316 sequentially cleaned by ultrasonication in acetone and isopropanol three times. The ITO/glass
317 substrates were then dried with an N₂ gun and were UV-ozone treated for 15 min. The Poly(3,4-
318 ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) (Clevios P VP Al 4083, filtered
319 through a 0.45-mm nylon filter) were spin-coated onto ITO substrates at 3,000 rpm for 30 s and
320 annealed on a hot plate at 150°C for 30 min in air. After that, the substrates were transferred to a
321 nitrogen glovebox (O₂ level < 1 ppm, H₂O < 1 ppm) to prepare the narrow-bandgap perovskite
322 layer. The Cs_{0.25}FA_{0.75}Sn_{0.5}Pb_{0.5}I₃ perovskite films were deposited by spin-coating the solution as
323 described above at 5,000 rpm for 40 s. An N₂ stream was blown over the spinning substrate for 20
324 s during the spinning procedure to assist with the formation of the perovskite film. Films were then
325 annealed at 120°C for 10 min. Finally, C60 (30 nm)/BCP (6 nm)/Ag (100 nm) were sequentially
326 deposited by a thermal evaporator to complete the perovskite solar cells.

327 For Cs_{0.05}FA_{0.8}MA_{0.15}PbI_{2.55}Br_{0.45} perovskite solar cells, the prepatterned ITO substrates (15
328 Ω sq-1) were sequentially ultrasonic cleaned using acetone and 2-propanol. The ITO substrates
329 were then transferred into the nitrogen-filled glovebox. Then, 2 mg/ml poly (triaryl amine) (PTAA)
330 solution was spin-coated onto the ITO substrates at 5,000 rpm for 30 s and annealed at 100°C for
331 10 min. The Cs_{0.05}FA_{0.8}MA_{0.15}PbI_{2.55}Br_{0.45} perovskite precursor was spin-coated onto the
332 PTAA/ITO substrate at 5,000 rpm for 30 s. After 10 s of spin-coating, 350 μL diethyl ether (DEE)
333 was dropped onto the substrate. The resulting perovskite films were then annealed at 100°C for 10
334 min. After the deposition of the perovskite film, C60 (30 nm)/BCP (6 nm)/Ag (100 nm) were
335 sequentially deposited by thermal evaporation.

336

337 5. Characterization

338 Devices were tested using a Newport Oriel Sol 3A solar simulator with a xenon lamp in a
339 nitrogen-filled glovebox. The intensity of the solar simulator was calibrated to 100 mW/cm² AM
340 1.5G. The light current density-voltage (J-V) characteristic was taken with a step size of 10–30
341 mV and a step delay of 10 ms, unless otherwise stated. The device area was 0.1 cm², and the device
342 was masked with a metal aperture to define an active area of 0.058 cm².

343

344 6. Computational Method

345 *(1) Cluster calculations*

346 Electronic structure calculations based on density functional theory (DFT) were performed
347 with the B3LYP functional form^{39,40} together with the 6-311+G(3df,2p) basis sets using the
348 program package Gaussian 09.⁴¹ Contributions from vdW dispersion forces were included in the
349 form of the Grimme-D2 terms in the calculations.⁴² The geometry optimization was done without
350 applying any constraints. The convergence criteria for maximum force, RMS force, maximum
351 displacement, and RMS displacement were set as 0.023 eV/Å, 0.015 eV/Å, 9.5×10⁻⁴ Å, and
352 6.4×10⁻⁴ Å, respectively. Vibrational frequencies were scaled by a factor of 0.9670.⁴³

353 The electronic binding energy, E_b , of the H₂O molecule with an FA ionic compound is
354 computed as:

355

$$356 E_b = (E_{FA} + E_{H2O}) - E_{FA-H2O} \quad (1)$$

357

358 where E_{FA-H2O} , E_{FA} , and E_{H2O} are the total energies of the FA…H₂O complex, the FA ionic
359 compound, and the H₂O molecule, respectively. The more positive the value of E_b , the stronger
360 the interaction.

361

362 *(2) Periodic (bulk and surface) calculations*

363 We also carried out FASn_{0.5}Pb_{0.5}I₃ bulk and surface calculations in the framework of DFT by
364 applying periodic boundary conditions using the electronic structure code VASP.⁴⁴⁻⁴⁷ The PBE

365 exchange-correlation functional⁴⁸ was adopted together with the van der Waals (vdW) interactions
366 described via a pairwise force field using the DFT-D3 method of Grimme⁴⁹ with Becke-Johnson
367 damping,⁵⁰ where the improved dispersion coefficients C_{6ij} are local geometry dependent. The
368 projector augmented wave (PAW) method and plane wave basis sets were used with energy cutoffs
369 of 520 eV for full-cell geometry optimization and 400 eV for geometry optimization with fixed
370 cell parameters. The total energy was converged to 10^{-5} eV for each electronic step, and the force
371 on each atom was converged below 0.03 eV/Å.

372 The FASn_{0.5}Pb_{0.5}I₃ (001) surface was adopted to investigate the defect formation energies of
373 Sn²⁺ vacancies V_{Sn}²⁻. A six-bilayer 2×2 slab was constructed with a thickness of ~35 Å and a
374 vacuum of 15 Å to ensure negligible interaction of the slab with its neighboring images. The
375 internal coordinates of atoms were optimized while keeping the bottom two layers fixed to the
376 bulk positions. The Brillouin zone was sampled using a 3×3×1 Monkhorst-Pack grid for
377 integration in the reciprocal space for the pristine and defective systems. Note that for the system
378 with V_{Sn}²⁻, two excess electrons were introduced into the supercell and charge was balanced by an
379 uniform positive background.

380 The formation free energy of V_{Sn}²⁻ can be calculated as

381

382
$$\Delta G_f = \mu(\text{defect}) + \mu(\text{Sn}) - \mu(\text{pristine}) - 2\mu(e^-) \quad (2)$$

383

384 where $\mu(\text{defect})$ and $\mu(\text{pristine})$ are the Gibbs free energies of defective and pristine FASn_{0.5}Pb_{0.5}I₃
385 (001) surfaces, respectively. These values are obtained by the computed electronic total energy E
386 and the free energy correction ΔG_{corr} , based on the frequency calculations.

387

388
$$\mu(\text{defect}) = E(\text{defect}) + \Delta G_{\text{corr}}(\text{defect}) \quad (3)$$

389

390
$$\mu(\text{pristine}) = E(\text{pristine}) + \Delta G_{\text{corr}}(\text{pristine}) \quad (4)$$

391

392 Here, $\mu(\text{Sn})$ is the chemical potential of Sn, which is chosen to vary from the cohesive energy per
393 atom of the Sn bulk to the chemical potential of Sn in the SnO₂ bulk, and $\mu(e^-)$ is the energy of an
394 electron, which is set to the Fermi energy of the pristine surface.

395

396 (3) Additional computational details and results

397 For better comparison with the experimental results (H-based and D-based
398 $\text{Cs}_{0.25}\text{FA}_{0.75}\text{Sn}_{0.5}\text{Pb}_{0.5}\text{I}_3$), we chose a model system, $\text{FASn}_{0.5}\text{Pb}_{0.5}\text{I}_3$, that captures the major
399 characteristics of composition and structure and also makes the computational task affordable. The
400 $\text{FASn}_{0.5}\text{Pb}_{0.5}\text{I}_3$ crystal is based on the crystalline structures of FAPbI_3 ,⁵¹ with half of the Pb ions
401 replaced by Sn. The trigonal planar FA cations $[\text{HC}(\text{NH}_2)_2]^+$ are set to lie in the central mirror
402 plane of the unit cell with the C-H bond pointing into a cube face, whereas the $-\text{NH}_2$ groups form
403 a hydrogen bond with the I atoms. The preference of Sn ordering at the B-site is investigated by
404 constructing a $2\times 2\times 2$ supercell and sampling three different Sn ordering orientations along the
405 three principal vectors in the perovskite conventional cell (**Fig. S11**). The total electronic energy
406 only differs on the order of 0.0002 eV per formula unit ($\text{FASn}_{0.5}\text{Pb}_{0.5}\text{I}_3$), suggesting that it is not
407 sensitive to the ordering of substitution of Sn in the bulk. We chose the lowest energy configuration
408 for the surface calculations.

409 Energetics were considered for four surface terminations: (001) surface with FAI termination,
410 (001) surface with PbI_2 termination, (00 $\bar{1}$) surface with FAI termination, and (00 $\bar{1}$) surface with
411 PbI_2 termination (see **Fig. S12**). The (001) surface has the $-\text{NH}_2$ group (negatively charged)
412 pointing toward the surface, whereas the $-\text{CH}$ group (positively charged) points away from the
413 surface. Thus, the intrinsic dipole moment of the FA ion points from the surface to the bulk region
414 for the (001) surface, and in the opposite direction for the (00 $\bar{1}$) surface. The calculated total energy
415 shows that the (001) surface with FAI termination has the lowest energy. Therefore, we chose it
416 for the calculation of formation energies of Sn vacancies.

417 The Sn vacancy is formed by removing an Sn atom from the pristine surface. The Sn vacancy
418 can carry different charge states—0, -1, and -2—with the -2 charge state ($\text{V}_{\text{Sn}}^{2-}$) being the lowest in
419 formation energy (30). To study the dependence of the vacancy formation energy on the location
420 of the vacancy underneath the surface, we generated the Sn vacancy in the first, second, and third
421 layers of the (001) surface. It is interesting to note that the orientation of FA cations tilted near the
422 Sn vacancy. To reveal the deuteration effect by substituting D for H in the FA molecule, we
423 calculated the vibrational frequencies of the system, thereby obtaining the free energy corrections
424 (at $T=298.15$ K) to the formation energy of $\text{V}_{\text{Sn}}^{2-}$ (see **Table S3**). The positions of the Pb, Sn, and
425 I atoms are constrained in these frequency calculations.

426

427 **References**

428 1. L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun, B. Dong, G. Zheng, Y. Huang, Y. Chen, L.
429 Li, Z. Xu, N. Li, Z. Liu, Q. Chen, L.-D. Sun, C.-H. Yan, A Eu³⁺-Eu²⁺ ion redox shuttle
430 imparts operational durability to Pb-I perovskite solar cells. *Science* **363**, 265-270 (2019).

431

432 2. R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A. S. Subbiah, J. Liu, G. T. Harrison, M. I.
433 Nugraha, M. K. Eswaran, M. Babics, Y. Chen, F. Xu, T. G. Allen, A. u. Rehman, C.-L.
434 Wang, T. D. Anthopoulos, U. Schwingenschlögl, M. D. Bastiani, E. Aydin, S. D. Wolf,
435 Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D
436 heterojunctions. *Science* **376**, 73-77 (2022).

437

438 3. M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry, C. Brabec, F. Brunetti, V.
439 Bulović, Q. Burlingame, A. Di Carlo, R. Cheacharoen, Y.-B. Cheng, A. Colsmann, S. Cros,
440 K. Domanski, M. Dusza, C. J. Fell, S. R. Forrest, Y. Galagan, D. Di Girolamo, M. Grätzel,
441 A. Hagfeldt, E. von Hauff, H. Hoppe, J. Kettle, H. Köbler, M. S. Leite, S. Liu, Y.-L. Loo,
442 J. M. Luther, C.-Q. Ma, M. Madsen, M. Manceau, M. Matheron, M. McGehee, R.
443 Meitzner, M. K. Nazeeruddin, A. F. Nogueira, Ç. Odabaşı, A. Osherov, N.-G. Park, M. O.
444 Reese, F. De Rossi, M. Saliba, U. S. Schubert, H. J. Snaith, S. D. Stranks, W. Tress, P. A.
445 Troshin, V. Turkovic, S. Veenstra, I. Visoly-Fisher, A. Walsh, T. Watson, H. Xie, R.
446 Yıldırım, S. M. Zakeeruddin, K. Zhu, M. Lira-Cantu, Consensus statement for stability
447 assessment and reporting for perovskite photovoltaics based on ISOS procedures. *Nature
448 Energy* **5**, 35-49 (2020).

449

450 4. V. C. A. Taylor, D. Tiwari, M. Duchi, P. M. Donaldson, I. P. Clark, D. J. Fermin, T. A. A.
451 Oliver, Investigating the Role of the Organic Cation in Formamidinium Lead Iodide
452 Perovskite Using Ultrafast Spectroscopy. *The journal of physical chemistry letters* **9**, 895-
453 901 (2018).

454

455 5. A. A. Bakulin, O. Selig, H. J. Bakker, Y. L. A. Rezus, C. Müller, T. Glaser, R. Lovrincic,
456 Z. Sun, Z. Chen, A. Walsh, J. M. Frost, T. L. C. Jansen, Real-Time Observation of Organic
457 Cation Reorientation in Methylammonium Lead Iodide Perovskites. *The journal of
458 physical chemistry letters* **6**, 3663-3669 (2015).

459

460 6. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, A. Walsh,
461 Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. *Nano
462 Letters* **14**, 2584-2590 (2014).

463

464 7. Y. Fu, M. P. Hautzinger, Z. Luo, F. Wang, D. Pan, M. M. Aristov, I. A. Guzei, A. Pan, X.
465 Zhu, S. Jin, Incorporating Large A Cations into Lead Iodide Perovskite Cages: Relaxed
466 Goldschmidt Tolerance Factor and Impact on Exciton-Phonon Interaction. *ACS Central
467 Science* **5**, 1377-1386 (2019).

468

469 8. G. Abdelmageed, C. Mackeen, K. Hellier, L. Jewell, L. Seymour, M. Tingwald, F. Bridges,
470 J. Z. Zhang, S. Carter, Effect of temperature on light induced degradation in

471 methylammonium lead iodide perovskite thin films and solar cells. *Solar Energy Materials*
472 and *Solar Cells* **174**, 566-571 (2018).

473

474 9. X. Dong, X. Fang, M. Lv, B. Lin, S. Zhang, J. Ding, N. Yuan, Improvement of the humidity
475 stability of organic-inorganic perovskite solar cells using ultrathin Al₂O₃ layers prepared
476 by atomic layer deposition. *Journal of Materials Chemistry A* **3**, 5360-5367 (2015).

477

478 10. N. H. Nickel, F. Lang, V. V. Brus, O. Shargaieva, J. Rappich, Unraveling the Light-
479 Induced Degradation Mechanisms of CH₃NH₃PbI₃ Perovskite Films. *Advanced*
480 *Electronic Materials* **3**, 1700158 (2017).

481

482 11. R. Wang, M. Mujahid, Y. Duan, Z.-K. Wang, J. Xue, Y. Yang, A Review of Perovskites
483 Solar Cell Stability. *Advanced Functional Materials* **29**, 1808843 (2019).

484

485 12. C. C. Boyd, R. Cheacharoen, T. Leijtens, M. D. McGehee, Understanding Degradation
486 Mechanisms and Improving Stability of Perovskite Photovoltaics. *Chemical Reviews* **119**,
487 3418-3451 (2019).

488

489 13. K. L. Svane, A. C. Forse, C. P. Grey, G. Kieslich, A. K. Cheetham, A. Walsh, K. T. Butler,
490 How Strong Is the Hydrogen Bond in Hybrid Perovskites? *The journal of physical*
491 *chemistry letters* **8**, 6154-6159 (2017).

492

493 14. Z. Fan, H. Xiao, Y. Wang, Z. Zhao, Z. Lin, H.-C. Cheng, S.-J. Lee, G. Wang, Z. Feng, W.
494 A. Goddard, Y. Huang, X. Duan, Layer-by-Layer Degradation of Methylammonium Lead
495 Tri-iodide Perovskite Microplates. *Joule* **1**, 548-562 (2017).

496

497 15. T. D. Siegler, W. A. Dunlap-Shohl, Y. Meng, Y. Yang, W. F. Kau, P. P. Sunkari, C. E.
498 Tsai, Z. J. Armstrong, Y.-C. Chen, D. A. C. Beck, M. Meilă, H. W. Hillhouse, Water-
499 Accelerated Photooxidation of CH₃NH₃PbI₃ Perovskite. *Journal of the American*
500 *Chemical Society* **144**, 5552-5561 (2022).

501

502 16. Y. Ouyang, Y. Li, P. Zhu, Q. Li, Y. Gao, J. Tong, L. Shi, Q. Zhou, C. Ling, Q. Chen, Z.
503 Deng, H. Tan, W. Deng, J. Wang, Photo-oxidative degradation of methylammonium lead
504 iodide perovskite: mechanism and protection. *Journal of Materials Chemistry A* **7**, 2275-
505 2282 (2019).

506

507 17. J. Wei, Q. Wang, J. Huo, F. Gao, Z. Gan, Q. Zhao, H. Li, Mechanisms and Suppression of
508 Photoinduced Degradation in Perovskite Solar Cells. *Advanced Energy Materials* **11**,
509 2002326 (2021).

510

511 18. N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. S. Islam, S. A. Haque,
512 Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of
513 perovskite solar cells. *Nature Communications* **8**, 15218 (2017).

514

515 19. S. Wang, Y. Jiang, Emilio J. Juarez-Perez, Luis K. Ono, Y. Qi, Accelerated degradation of
516 methylammonium lead iodide perovskites induced by exposure to iodine vapour. *Nature*
517 *Energy* **2**, 16195 (2016).

518

519 20. G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, Study on the stability of CH₃NH₃PbI₃
520 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar
521 cells. *Journal of Materials Chemistry A* **2**, 705-710 (2014).

522

523 21. P. Chen, W.-J. Ong, Z. Shi, X. Zhao, N. Li, Pb-Based Halide Perovskites: Recent Advances
524 in Photo(electro)catalytic Applications and Looking Beyond. *Adv. Funct. Mater.* **30**,
525 1909667 (2020).

526

527 22. Tong, J.; Song, Z.; Kim, D. H.; Chen, X.; Chen, C.; Palmstrom, A. F.; Ndione, P.
528 F.; Reese, M. O.; Dunfield, S. P.; Reid, O. G.; Liu, J.; Zhang, F.; Harvey, S. P.; Li,
529 Z.; Christensen, S. T.; Teeter, G.; Zhao, D.; Al-Jassim, M. M.; van Hest, M. F. A.
530 M.; Beard, M. C.; Shaheen, S. E.; Berry, J. J.; Yan, Y.; Zhu, K. Carrier Lifetimes of >1 μ s
531 in Sn-Pb perovskites Enable Efficient all-Perovskite Tandem Solar
532 Cells. *Science* **364**, 475– 479 (2019).

533

534 23. M. Zhang, Z. Zhang, H. Cao, T. Zhang, H. Yu, J. Du, Y. Shen, X.-L. Zhang, J. Zhu, P.
535 Chen, M. Wang, Recent progress in inorganic tin perovskite solar cells. *Materials Today*
536 *Energy* **23**, 100891 (2022).

537

538 24. T. Leijtens, R. Prasanna, A. Gold-Parker, M. F. Toney, M. D. McGehee, Mechanism of
539 Tin Oxidation and Stabilization by Lead Substitution in Tin Halide Perovskites. *ACS*
540 *Energy Letters* **2**, 2159-2165 (2017).

541

542 25. L. Lanzetta, T. Webb, N. Zibouche, X. Liang, D. Ding, G. Min, R. J. E. Westbrook, B.
543 Gaggio, T. J. Macdonald, M. S. Islam, S. A. Haque, Degradation mechanism of hybrid tin-
544 based perovskite solar cells and the critical role of tin (IV) iodide. *Nature Communications*
545 **12**, 2853 (2021).

546

547 26. F. Wang, J. Ma, F. Xie, L. Li, J. Chen, J. Fan, N. Zhao, Organic Cation-Dependent
548 Degradation Mechanism of Organotin Halide Perovskites. *Adv. Funct. Mater.* **26**, 3417-
549 3423 (2016).

550

551 27. J. J. Katz, Chemical and biological studies with deuterium. *American Scientist* **48**, 544-580
552 (1960).

553

554 28. S. Scheiner, M. Čuma, Relative Stability of Hydrogen and Deuterium Bonds. *Journal of*
555 *the American Chemical Society* **118**, 1511-1521 (1996).

556

557 29. Z. Li, J. Ji, C. Zhang, Q. Hou, P. Jin, First-Principles Study on the Oxygen–Light-Induced
558 Iodide Vacancy Formation in FASnI₃ Perovskite. *The Journal of Physical Chemistry C*
559 **124**, 14147-14157 (2020).

560

561 30. E. H. Kim, J. H. Lee, S. H. Kim, J. H. Gu, D. Lee, A-Site Effect on the Oxidation Process
562 of Sn-Halide Perovskite: First-Principles Calculations. *The Journal of Physical Chemistry*
563 *Letters* **12**, 9691-9696 (2021).

564

565 31. J. W. Heinecke, F. F. Hsu, J. R. Crowley, S. L. Hazen, C. Leeuwenburgh, D. M. Mueller,
566 J. E. Rasmussen, J. Turk, in *Methods in Enzymology*. (Academic Press, 1999), vol. 300,
567 pp. 124-144.

568

569 32. S. S. Iyer, Z.-P. Zhang, G. E. Kellogg, H. T. Karnes, Evaluation of Deuterium Isotope
570 Effects in Normal-Phase LC-MS-MS Separations Using a Molecular Modeling Approach.
571 *Journal of Chromatographic Science* **42**, 383-387 (2004).

572

573 33. E. A. Halevi, Polarity differences between deuterated and normal molecules. *Transactions*
574 *of the Faraday Society* **54**, 1441-1446 (1958).

575

576 34. E. A. Halevi, E. N. Haran, B. Ravid, Dipole moment and polarizability differences between
577 NH₃ and ND₃. *Chemical Physics Letters* **1**, 475-476 (1967).

578

579 35. C. Kampmeyer, J.V. Johansen, C. Holmberg, M. Karlson, S. K. Gersing, H. N. Bordallo,
580 B. B. Kragelund, M. H. Lerche, I. Jourdain, J. R. Winther, R. Hartmann-Petersen,
581 Mutations in a Single Signaling Pathway Allow Cell Growth in Heavy Water. *ACS*
582 *Synthetic Biology* **9**, 733-748 (2020).

583

584 36. R. A. Kerner, T. H. Schloemer, P. Schulz, J. J. Berry, J. Schwartz, A. Sellinger, B. P. Rand,
585 Amine additive reactions induced by the soft Lewis acidity of Pb²⁺ in halide perovskites.
586 Part I: evidence for Pb–alkylamide formation. *Journal of Materials Chemistry C* **7**, 5251-
587 5259 (2019).

588

589 37. J. P. Reid, R. A. Loomis, S. R. Leone, Competition between N–H and N–D Bond Cleavage
590 in the Photodissociation of NH₂D and ND₂H. *The Journal of Physical Chemistry A* **104**,
591 10139-10149 (2000).

592

593 38. Gong, J.; Yang, M.; Ma, X.; Schaller, R. D.; Liu, G.; Kong, L.; Yang, Y.; Beard, M. C.;
594 Lesslie, M.; Dai, Y.; Huang, B.; Zhu, K.; Xu, T. Electron–Rotor Interaction in Organic–
595 Inorganic Lead Iodide Perovskites Discovered by Isotope Effect, *J. Phys. Chem. Lett.* **7**,
596 2879–2887(2016).

597

598 39. C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula
599 into a functional of the electron density. *Physical Review B* **37**, 785-789 (1988).

600

601 40. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. *The*
602 *Journal of Chemical Physics* **98**, 5648-5652 (1993).

603

604 41. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
605 G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich,
606 J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F.

607 Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings,
608 B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G.
609 Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
610 Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J.
611 E. P. Jr., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,
612 T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S.
613 Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W.
614 Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian09,
615 revision D.01; Gaussian, Inc.: Wallingford, CT. (2009).

616

617 42. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range
618 dispersion correction. *Journal of Computational Chemistry* **27**, 1787-1799 (2006).

619

620 43. K. K. Irikura, R. D. Johnson, R. N. Kacker, Uncertainties in Scaling Factors for ab Initio
621 Vibrational Frequencies. *The Journal of Physical Chemistry A* **109**, 8430-8437 (2005).

622

623 44. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. *Physical Review B*
624 **47**, 558-561 (1993).

625

626 45. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal--
627 amorphous-semiconductor transition in germanium. *Physical Review B* **49**, 14251-14269
628 (1994).

629

630 46. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and
631 semiconductors using a plane-wave basis set. *Computational Materials Science* **6**, 15-50
632 (1996).

633

634 47. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations
635 using a plane-wave basis set. *Physical Review B* **54**, 11169-11186 (1996).

636

637 48. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple.
638 *Physical Review Letters* **77**, 3865-3868 (1996).

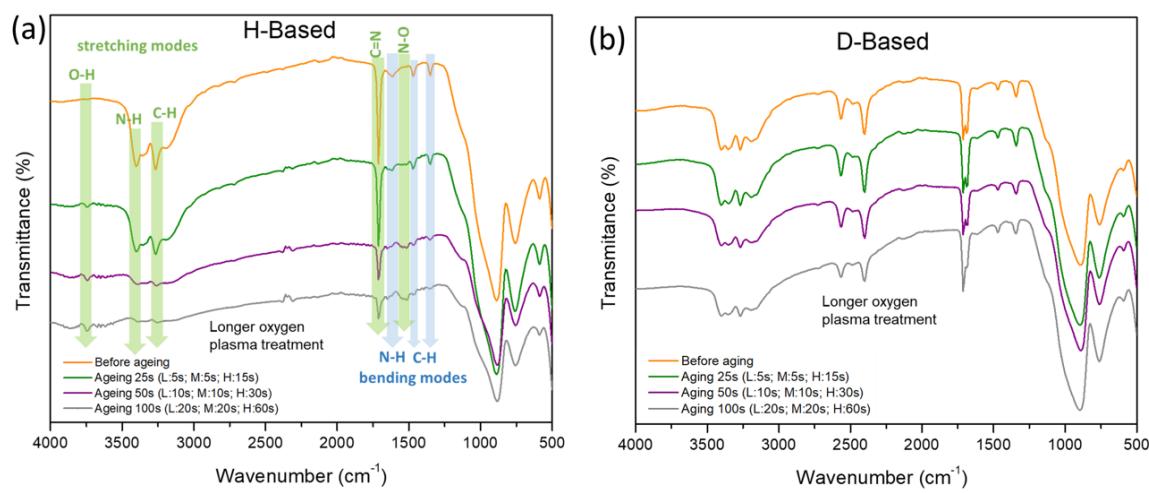
639

640 49. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio
641 parametrization of density functional dispersion correction (DFT-D) for the 94 elements
642 H-Pu. *The Journal of Chemical Physics* **132**, 154104 (2010).

643

644 50. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected
645 density functional theory. *Journal of Computational Chemistry* **32**, 1456-1465 (2011).

646


647 51. M. T. Weller, O. J. Weber, J. M. Frost, A. Walsh, Cubic Perovskite Structure of Black
648 Formamidinium Lead Iodide, α -[HC(NH₂)₂]PbI₃, at 298 K. *The Journal of Physical*
649 *Chemistry Letters* **6**, 3209-3212 (2015).

650

651

652

653

654

655 **Figure 1.** (a) FTIR of H-based perovskite films (composition: $(\text{H-FASnI}_3)_{0.6}(\text{H-MAPbI}_3)_{0.4}$)
 656 before and after oxygen plasma treatment for different aging durations. Three levels of oxygen
 657 plasma intensity were used (L = low energy; M = medium energy; H = high energy). (b) FTIR of
 658 D-based perovskite films (composition: $(\text{D-FASnI}_3)_{0.6}(\text{D-MAPbI}_3)_{0.4}$) before and after oxygen
 659 plasma treatment using the same aging conditions as in the H-based perovskite film.

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

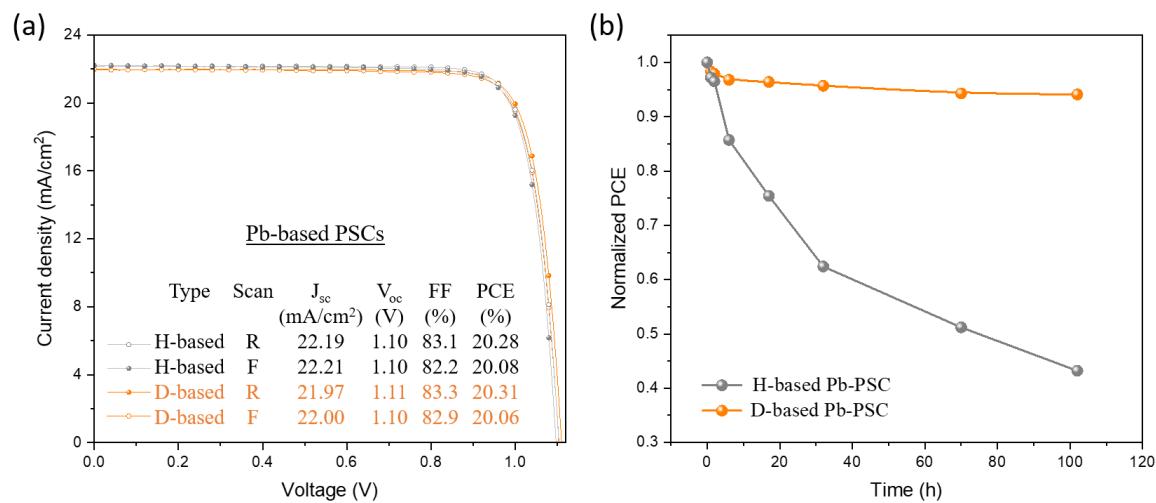
677

678

679

680

681


682

683

684

685

686

687

688 **Figure 2. (a)** J-V characteristics with reverse (R) and forward (F) scans for H-based and D-based
 689 Cs_{0.05}MA_{0.15}FA_{0.8}PbI_{2.55}Br_{0.45} PSCs; **(b)** thermal stability evaluation of the corresponding
 690 unencapsulated devices at 85°C in dry air.

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

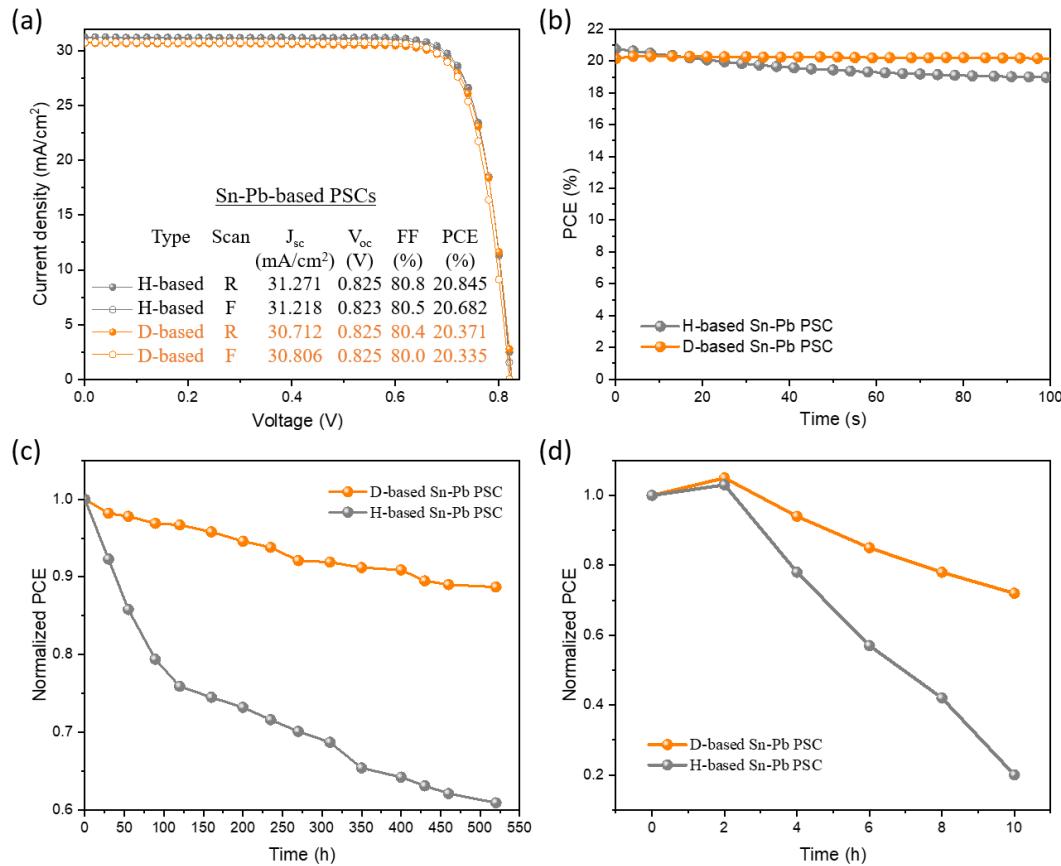
706

707

708

709

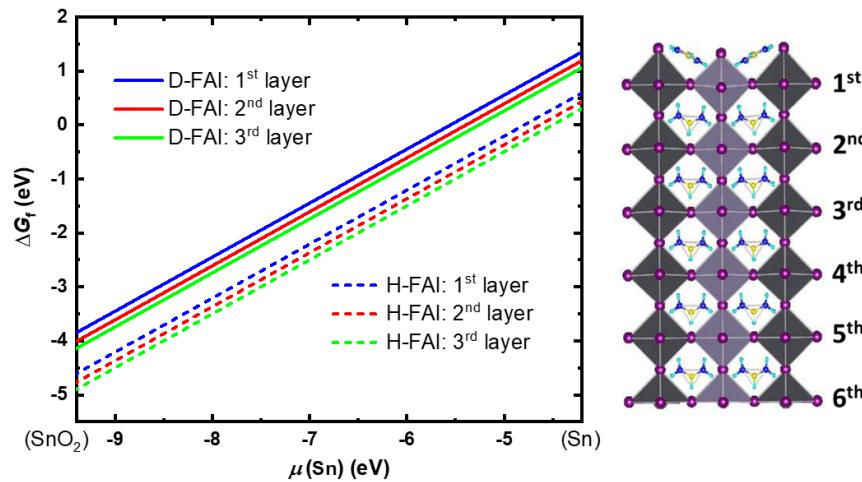
710


711

712

713

714


715

716 **Figure 3.** PV performance comparison of H-FAI- and D-FAI-based $\text{Cs}_{0.25}\text{FA}_{0.75}\text{Sn}_{0.5}\text{Pb}_{0.5}\text{I}_3$
717 narrow-bandgap PSCs (all unencapsulated). **(a)** Comparison of J-V curves. **(b)** Comparison of
718 stabilized power output. **(c)** Comparison of operational stability at RH = ~50% and temperature of
719 ~50°C under continuous light illumination in air. **(d)** Comparison of ambient stability of the Pd-
720 Sn narrow bandgaps PSCs under 82% RH. Devices were not encapsulated.

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

739
740

741
742
743
744
745

Figure 4. Sn^{2+} vacancy ($\text{V}_{\text{Sn}}^{2-}$) formation free energies as a function of the Sn chemical potential $\mu(\text{Sn})$ for vacancies located at different layers beneath the top surface layer of a model system of the $\text{FASn}_{0.5}\text{Pb}_{0.5}\text{I}_3$ (001) surface. Symbols for atoms: C in yellow, N in navy blue, H in light blue, I in purple, Pb in gray, and Sn in light pink.

746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

771

772

773 **Acknowledgments**

774 T.X. acknowledges the support from the National Science Foundation (DMR 1806152). The work
775 at the National Renewable Energy Laboratory was supported by the U.S. Department of Energy
776 under Contract No. DE-AC36-08GO28308 with Alliance for Sustainable Energy, Limited
777 Liability Company (LLC), the Manager and Operator of the National Renewable Energy
778 Laboratory. K.Z. and J.T. acknowledge the support on perovskite synthesis and device fabrication
779 and characterization from the De-Risking Halide Perovskite Solar Cells program of the National
780 Center for Photovoltaics, funded by the U.S. Department of Energy, Office of Energy Efficiency
781 and Renewable Energy, Solar Energy Technologies Office. The views expressed in the article do
782 not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government
783 retains and the publisher, by accepting the article for publication, acknowledges that the U.S.
784 Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or
785 reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.
786 T.X. also thanks Prof. Peijun Guo at Yale University for help with the initial optic study.

787

788

789 **Author Contributions**

790 T.X. and K.Z. designed and supervised the research. J.T. fabricated and characterized perovskite
791 thin films and devices. X.L. and J.W. prepared the deuterium-based precursory materials and
792 evaluated the antioxidation properties of the perovskite thin films. H.H. conducted the theoretical
793 calculation and simulation. All authors discussed the results and contributed to manuscript
794 preparation.

795

796 **Competing Interests**

797 The authors declare no competing interests.

798

799 **Data and Materials Availability**

800 The data, codes, associated protols and materials etc. that support the findings of this study are
801 available from the corresponding authors upon reasonable request.

