

Challenges in Numerical Weather Prediction of the 10 August 2020 Midwestern Derecho: Examples from the FV3-LAM

by

William A. Gallus, Jr¹. and Michell A. Harrold²

¹*Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA*

²Developmental Testbed Center, National Center for Atmospheric Research/Research

Applications Laboratory and Developmental Testbed Center, Boulder, CO

8 Revision submitted to *Weather and Forecasting* on 25 May 2023

9

10

11

12

13

14 *Corresponding Author Address:* William A. Gallus, Jr., 3025 Agronomy Building, 716 Farm
15 House Lane, Ames, IA, 50011, wgallus@iastate.edu

16

17

18

19 ABSTRACT

20

21 A severe derecho impacted the Midwestern United States on 10 August 2020, causing over
22 12 billion dollars in damage, and producing peak winds estimated at 63 m s^{-1} , with the worst
23 impacts in Iowa. The event was not forecast well by operational forecasters, nor even by
24 operational and quasi-operational convection-allowing models.25 In the present study, nine simulations are performed using the Limited Area Model version
26 of the Finite-Volume-Cubed-Sphere model (FV3-LAM) with three horizontal grid spacings and
27 two physics suites. In addition, when a prototype of the Rapid Refresh Forecast System (RRFS)
28 physics is used, sensitivity tests are performed to examine the impact of using the Grell-Freitas
29 (GF) convective scheme.30 Several unusual results are obtained. With both the RRFS (not using GF) and Global
31 Forecast System (GFS) physics suites, simulations using relatively coarse 13 and 25 km horizontal
32 grid spacing do a much better job of showing an organized convective system in Iowa during the
33 daylight hours of 10 August than the 3-km grid spacing runs. In addition, the RRFS run with 25-
34 km grid spacing becomes much worse when the GF convective scheme is used. The 3-km RRFS
35 run that does not use the GF scheme develops spurious nocturnal convection the night before the
36 derecho, removing instability and preventing the derecho from being simulated at all. When GF
37 is used, the spurious storms are removed and an excellent forecast is obtained with an intense
38 bowing echo, exceptionally strong cold pool, and roughly 50 m s^{-1} surface wind gusts.

39

40

41 **1. Introduction**

42

43 Derechos, thunderstorm systems that produce an extensive swath of wind damage (Hinrichs
44 1888; Johns and Hirt 1987), often with at least some reports of significantly severe wind (65 knots
45 or greater, 33.4 m s^{-1}), occur roughly 15 times per year in the United States (Bentley and Mote
46 1998; Bentley and Sparks 2003). There is disagreement over the specific size criteria needed for
47 these thunderstorm systems to be classified as a derecho (Johns and Hirt 1987; Bentley and Mote
48 1998; Evans and Doswell 2002; Bentley and Sparks 2003; Coniglio and Stensrud 2004; Coniglio
49 et al. 2014; Corfidi et al. 2016), but all definitions imply potentially damaging winds over a large
50 area (e.g., major axis of 400 km or more) so that large monetary losses, and many injuries and
51 fatalities, are possible (Ashley and Mote 2005). Often, they are produced from one or more bow
52 echoes (Weisman 1993).

53 At least three mechanisms are believed to contribute to the strong winds in derechos: a
54 descending rear inflow jet, downbursts, and mesovortices. Descending rear inflow jets (e.g.,
55 Rutledge et al. 1988; Weisman 1992) were shown in Mahoney and Lackmann (2011) to be more
56 likely to cause severe surface winds when the environment was drier at midlevels, favoring more
57 evaporative cooling and downward motion. Downbursts (Fujita 1978) likewise may be formed by
58 dry air and evaporative cooling but can also be present in moister environments where latent
59 cooling from melting of frozen hydrometeors may be strong. Mesovortices, which develop from
60 tilting of horizontal vorticity into the vertical and stretching of vorticity, can produce narrow
61 swaths of enhanced winds (e.g., Weisman and Trapp 2003; Trapp and Weisman 2003; Atkins and
62 Laurent 2009).

63 Because these mechanisms can explain the strong winds observed in derechos, derechos can
64 happen in a range of synoptic environments (e.g., Cohen et al. 2007). Johns and Hirt (1987)
65 originally classified derechos as being serial or progressive. Progressive derechos often occur near
66 or just north of a warm or stationary front or other boundary and tend to move more quickly than
67 the serial ones, and often faster than the mean flow. Serial derechos are more likely ahead of cold
68 fronts. Doswell and Evans (2003) classified derechos as existing with strong forcing, weak forcing,
69 and a hybrid mixture. They found strong forcing derechos existed in environments with relatively
70 strong low-level winds and wind shear, whereas weak forcing events happened with relatively
71 weak vertical wind shear but large CAPE. Strongly forced events generally had cooler, less

72 unstable conditions present. Strong forcing would likely be present for most serial derechos, with
73 weak forcing more common for progressive ones. Doswell and Evans (2003) found that it was
74 difficult to predict when derechos would occur as compared to supercells, because the
75 environments often share similar characteristics. Cohen et al. (2007) examined differences in MCS
76 environments not associated with severe wind, those that were, and those associated with derechos.
77 They found deep layer shear had greater predictive skill than shear present in layers closer to the
78 ground to distinguish derecho-producing MCSs, but CAPE did not differentiate well.

79 Although the environments that favor derechos are well known, prediction of individual events
80 remains difficult (e.g., Gallus et al. 2005; Grunzke and Evans 2017; Ribeiro et al. 2022). The
81 evolution of thunderstorms that organize into a derecho can be complex. It is likely the intensity
82 and upscale evolution of a cold pool plays a substantial role, and these are sensitive to both small-
83 scale dry layers that may not be well-resolved by the rawinsonde network, and how the convective
84 updrafts themselves evolve and grow upscale. The convective updraft organization influences the
85 development of potentially strong mesoscale convective vortices that facilitate production of
86 severe winds over large spatial regions and long time periods. The 4 June 1999 derecho studied in
87 Gallus et al. (2005) is a good example of a poorly predicted event where deficiencies in the ability
88 of the observing network to resolve small scale weather features likely prevented models from
89 simulating the convective system that produced the derecho. On the other hand, the 8 May 2009
90 derecho, which produced many gusts of greater than 35 m s^{-1} with isolated 45 m s^{-1} gusts as it
91 traveled from western Kansas to eastern Kentucky (Coniglio et al. 2011), was reasonably simulated
92 by some models (Weisman et al. 2013), despite occurring in an environment that was not
93 “synoptically-evident”, as the thunderstorms were not forced by a synoptic-scale weather system
94 with easily identifiable fronts or boundaries (Coniglio et al. 2011).

95 An even more intense progressive derecho that was not well-predicted by numerical models
96 and operational forecasters occurred in the Midwestern United States on 10 August 2020. Because
97 winds over 45 m s^{-1} affected numerous agricultural counties in this region, flattening millions of
98 acres of corn, total damages exceeded 12 billion dollars (NCEI 2022). The present study examines
99 nine simulations of the Limited Area Model (LAM) version of the Finite-Volume-Cubed-Sphere
100 atmospheric dynamical core (FV3-LAM; Black et al. 2021) of this progressive derecho to gain
101 insight into why the event may have been so poorly predicted. The FV3 dynamical core has already
102 been implemented into the operational Global Forecast System (GFS) model at the National

103 Centers for Environmental Prediction (NCEP) and has been chosen to be the dynamical core used
104 within NOAA's Unified Forecasting System (UFS)-based operational modeling suite. The UFS
105 includes model applications from global down to regional domains, including seasonal to sub-
106 hourly timescales, and as such, it is imperative that it can provide accurate forecasts for a wide
107 spectrum of meteorological phenomena as well as routine and high impact weather events.
108 Therefore, as the LAM version of the UFS prepares to become operational, it is important to
109 investigate how the UFS Short-Range Weather (SRW) application handles extreme events such as
110 this one. The simulations are performed with three horizontal grid spacings and two physics suites,
111 and sensitivity tests are performed to explore the role of the convective parameterization in one of
112 the suites. A key question being addressed by this study is: Can the different physics suites
113 represent the high-impact derecho at varying grid spacings? Traditionally, the GFS has been
114 developed, run, and tested at ~25-km and ~13-km horizontal grid spacings (i.e., global scales),
115 while the RRFS (Rapid Refresh Forecast System) has focused on convective-allowing scales (~3-
116 km horizontal grid spacing). As the UFS moves toward model unification, it is important to
117 understand the abilities of different physics suites to perform at different grid lengths.
118

119 **2. Data and Methodology**

120

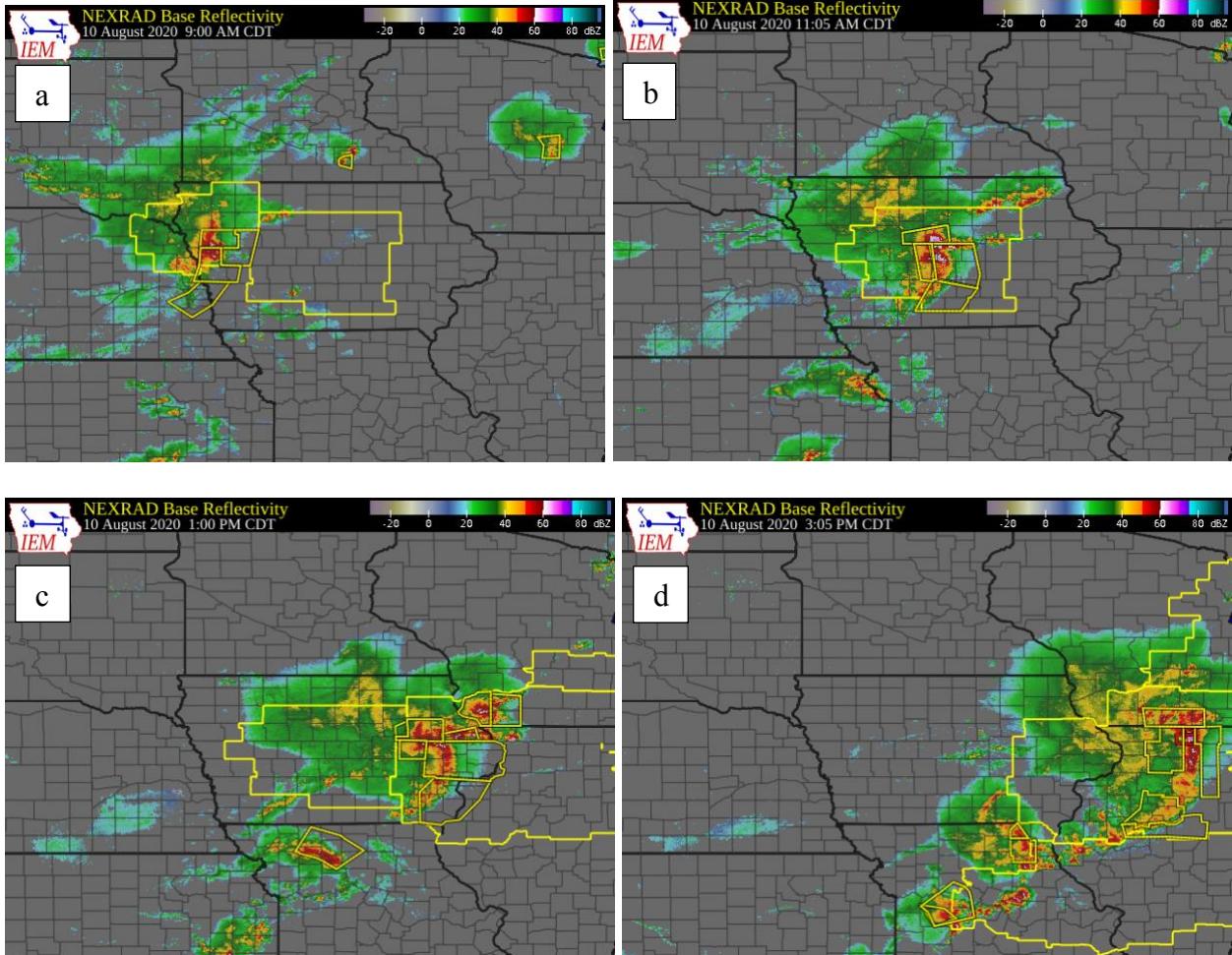
121 FV3-LAM runs were initialized using 0000 UTC 10 August 2020 hourly output from the
122 experimental version of the High-Resolution Rapid Refresh (HRRRx) model (Benjamin et al.
123 2009; 2011; 2013; Dowell et al. 2022; James et al. 2022) running during summer 2020, later known
124 as HRRRv4. This limited area version of the FV3 model (Harris and Lin 2013, 2014; Lin 2004;
125 Putman and Lin 2007) was developed from the same FV3 model version that began running
126 operationally in the NCEP GFS model in June 2019 (see Black et al. 2021 for details of the FV3-
127 LAM) and is being rapidly developed. The experimental HRRR model was used to provide the
128 initial conditions (ICs) and lateral boundary conditions (LBCs) since it was one of the few quasi-
129 operational or operational convection-allowing models (CAMs) initialized at 0000 UTC 10 August
130 to show an organized convective system with a hint of a bow echo structure in its simulated
131 reflectivity across Iowa during the daylight hours of 10 August when the derecho was moving
132 across that region.

133 The FV3-LAM was run over a continental United States domain with three horizontal grid
134 spacings (25, 13, and 3 km), as the 2020 derecho event was one of several cases being used to test
135 the scale-awareness of two physics suites available in the Common Community Physics Package
136 (CCPP) (Heinzeller et al. 2023). All simulations used 66 vertical layers and were integrated for
137 24 hours. The two physics suites used in the model represented roughly what was used in two
138 operational models, the GFS and HRRR, during 2020. The GFSv16 beta physics suite (GFS
139 hereafter) that was used consisted of the following parameterizations: the Geophysical Fluid
140 Dynamics Laboratory microphysics (Zhou et al. 2019), the hybrid eddy-diffusivity mass-flux
141 planetary boundary layer scheme (Han et al. 2016), the GFS surface layer scheme (Long 1986,
142 1989), the Rapid Radiative Transfer Model (Iacono et al. 2008; Mlawer et al. 1997) for both
143 shortwave and longwave radiation, the scale-aware Simplified Arakawa-Schubert (SAS)
144 convection scheme (Han et al. 2017), and the Noah land surface model (LSM; Ek et al. 2003). The
145 version of the physics suite similar to that used in the HRRR in 2020, the Rapid Refresh Forecast
146 System beta version 1 (hereafter RRFS), consisted of the Thompson-Eidhammer (2014)
147 microphysics, MYNN-EDMF (Mellor-Yamada-Nakanishi-Niino Eddy Diffusivity/Mass Flux)
148 planetary boundary layer (Nakanishi and Niino 2009, Olson et al. 2019) and MYNN (Mellor-
149 Yamada-Nakanishi-Niino) surface (Olson et al. 2021) schemes, the Grell-Freitas (2014) (GF)
150 convective scheme, and the GFS NoahMP LSM (Niu et al. 2011). The GF scheme consists of
151 separate parameterizations for deep convection and for shallow convection, but the two are
152 typically run together as in the present study. For the RRFS runs, an additional set of simulations
153 was performed where the GF convective scheme was turned off, since NOAA plans to replace the
154 HRRR and RAP (Rapid Refresh) models with the FV3-LAM using the RRFS physics suite in the
155 future, and questions remain about any need for the GF scheme to be used with CAM grid spacings.
156 There are no plans to run the SAS scheme from the GFS suite with CAM grid spacings, and thus
157 no tests were performed in the present study where SAS was not used with that suite. The nine
158 configurations used are summarized in Table 1.

159
160
161
162
163

Physics Suite	Horizontal Grid Spacing (km)	Convective Scheme
RRFS	25	GF
RRFS	25	none
RRFS	13	GF
RRFS	13	none
RRFS	3	GF
RRFS	3	none
GFS	25	SAS
GFS	13	SAS
GFS	3	SAS

164


165 Table 1: Summary of the nine simulations performed in the present study.

166

167 **3. Overview of the 10 August 2020 Derecho**

168

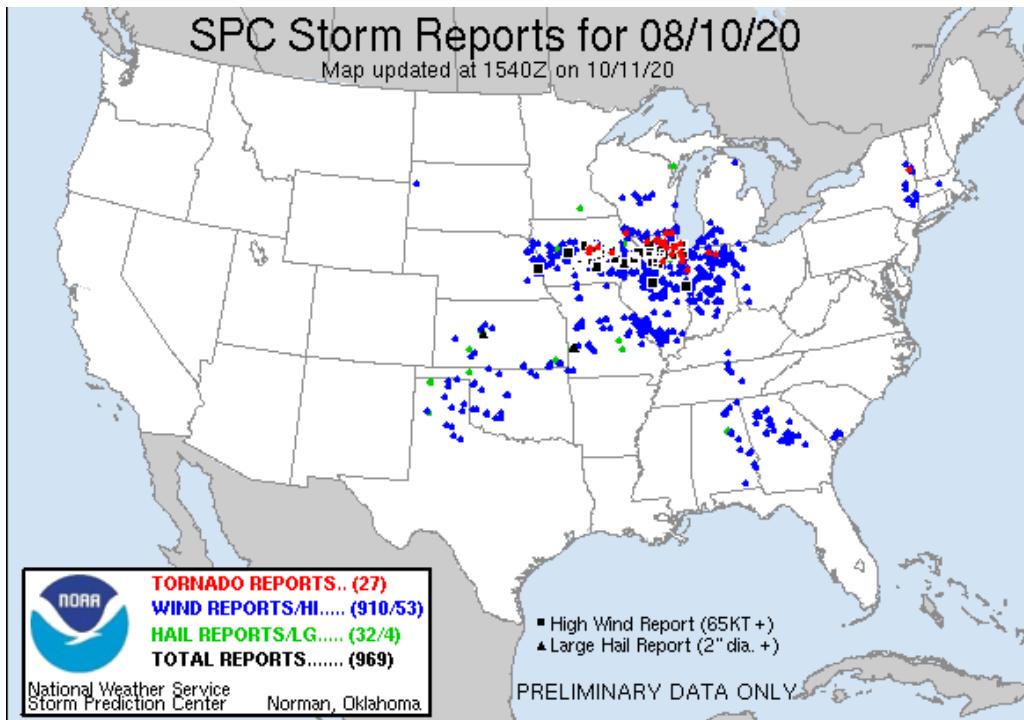
169 The convective system that produced the Midwestern derecho of 10 August 2020 initiated
 170 between 0700 - 0900 UTC as elevated thunderstorms over south-central South Dakota that grew
 171 upscale as the system moved southeastward. Significant severe wind gusts (over 33 m s^{-1}) began
 172 just before 1400 UTC (Fig. 1a). The initial convection formed behind a cold front that was located
 173 over northeast Nebraska and the far northwest tip of Iowa at 0900 UTC, and then crossed the front
 174 and moved into much more unstable air, becoming surface based by 1600 UTC (Fig. 1b).
 175 Convection then intensified as it moved primarily eastward, reaching the Cedar Rapids, IA area
 176 around 1800 UTC (Fig. 1c). This is the where the peak estimated wind gust occurred, along with
 177 measured winds as strong as 56 m s^{-1} . The system remained intense as it moved eastward into
 178 Illinois, although the peak straight-line winds decreased while the number of tornadoes increased
 179 as it neared Lake Michigan after 2000 UTC (Fig. 1d). Around this time, the line of thunderstorms
 180 was developing much more rapidly to the south, extending well into Missouri. The distribution of
 181 storm reports for the main portion of the event can be seen in Fig. 2 (a few reports occurred before
 182 1200 UTC with the first as early as 1016 UTC in southern South Dakota). The system continued
 183 to produce severe winds and wind damage until around 0200 UTC 11 August 2020 when it was in
 184 western Ohio, having traveled over 1200 km in about 14 hours.

185
186

187

188

189


190 Figure 1: Composite NEXRAD reflectivity at a) 1400, b) 1600, c) 1800, and d) 2000 UTC on 10
191 August 2020. Severe thunderstorm warnings are overlaid with thin yellow lines. Severe
192 thunderstorm watches are indicated with thicker yellow lines. The images are from the Iowa
193 Environmental Mesonet.

194

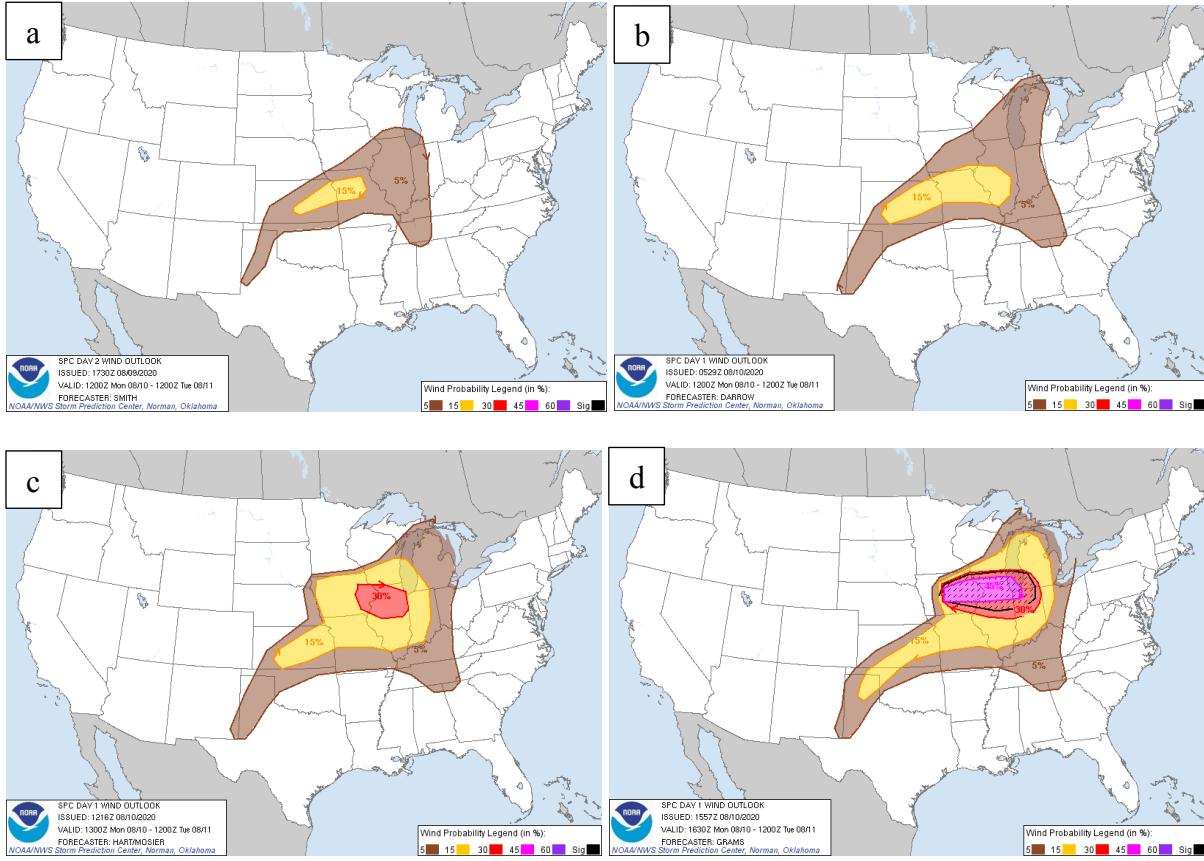
195 Despite the convective system being very well-organized, it was not well-predicted, at least
196 more than a few hours before it occurred. Storm Prediction Center Day 2 severe weather outlooks
197 issued less than 24 hours before the extensive wind damage began (Fig. 3a) indicated only a 5-
198 15% probability of severe thunderstorm winds in the region impacted by the derecho in far eastern
199 and southern Iowa, with no risk indicated in central Iowa where significant damage also occurred.
200 Issued even less than 12 hours before the event began, the 0600 UTC Day 1 update still only

201 indicated a 5-15% probability for severe thunderstorm winds (Fig 3b) over a slightly larger portion
202 of the part of Iowa later impacted by the derecho.

203

204

205

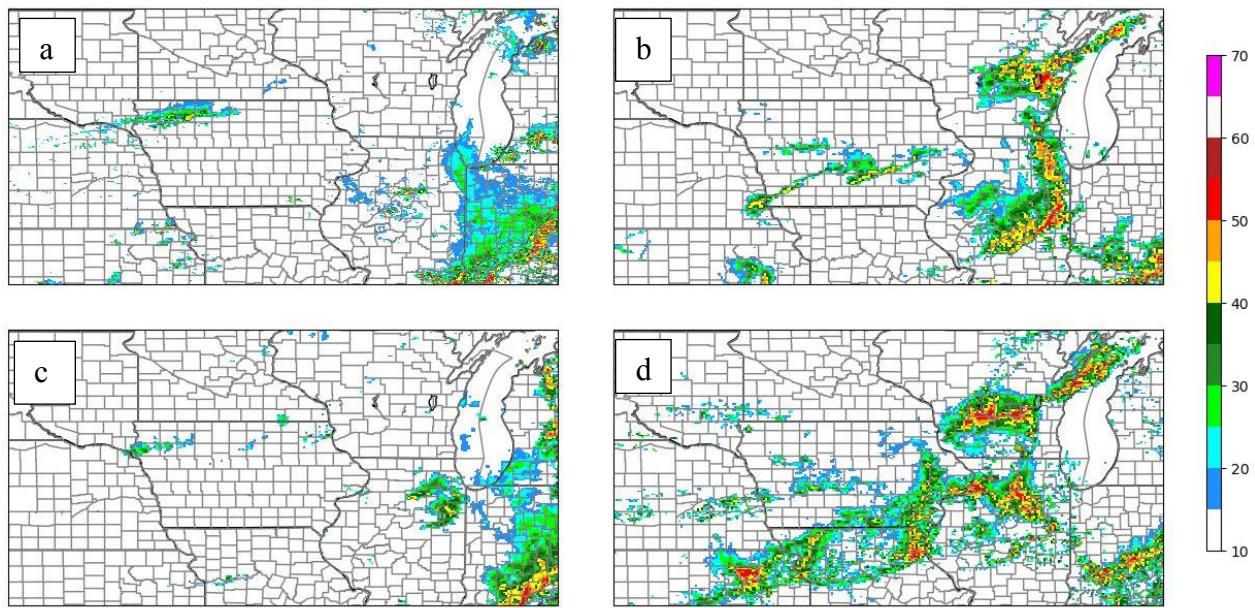

206 Figure 2: Storm reports received at the SPC as of 11 October 2020 for the period 1200 UTC 10
207 August – 1200 UTC 11 August 2020. Blue dots represent severe thunderstorm wind reports (winds
208 of 50 kts or more), with black squares identifying significant severe reports (> 65 kts).

209

210 The SPC forecasts reflected the operational numerical model guidance at the time which
211 showed a cold front to have moved across much of Iowa by the morning of 10 August, with
212 convection in the state during the daylight hours of 10 August being elevated and displaced across
213 northern Iowa in runs parameterizing convection, or having already moved out of the state due to
214 spurious initiation the previous night in most CAMs. An example of the poor CAM forecasts can
215 be seen in Fig. 4, which depicts the simulated reflectivity valid at 1800 UTC from four High
216 Resolution Ensemble Forecast (HREF) members initialized at 0000 UTC 10 August 2020. None
217 of these simulations had an organized convective system in Iowa during the mid-day to afternoon
218 hours, as they all had triggered spurious convection the night before over the state, which had

219

220
221


222
223
224

225 Figure 3: Probabilistic damaging wind forecasts from SPC convective outlooks issued at a) 1730
226 UTC 9 August 2020 (Day 2 update), and b) 0600 UTC, c) 1300 UTC, and d) 1630 UTC 10
227 August 2020, valid for the period 1200 UTC 10 August – 1200 UTC 11 August 2020.

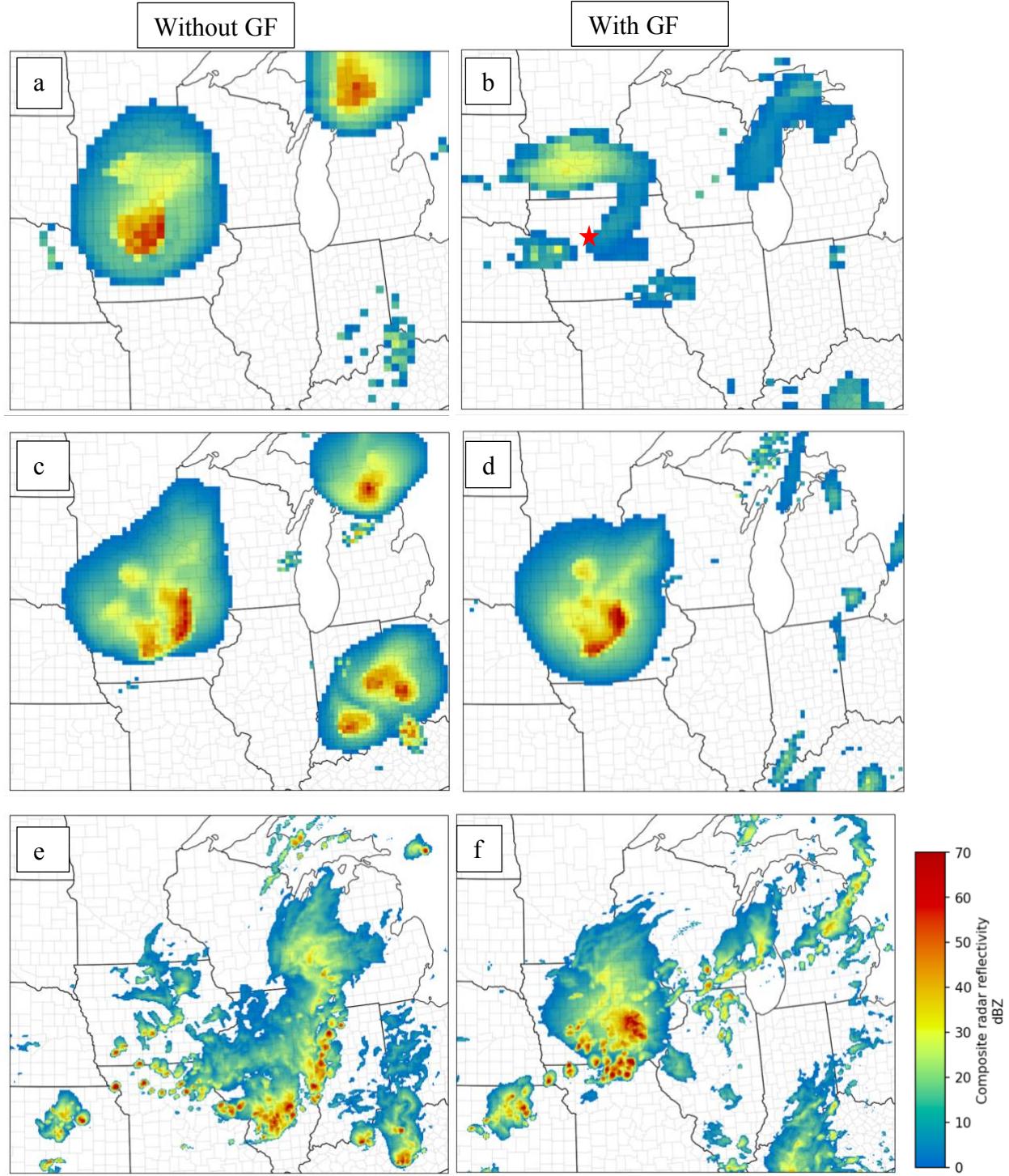
228
229
230
231
232
233
234
235
236
237
238
239

already moved east or southeast of Iowa by the time the derecho was observed. In all but the Nonhydrostatic Mesoscale Model on B-grid (NMMB), the displacement errors were hundreds of kilometers (compare to Fig. 1c). As might be expected with such poor numerical model guidance, it was not until the 1300 UTC outlook on 10 August 2020 when SPC updated the forecast to indicate a Slight risk over most of the state of Iowa with at least a 15% probability of severe wind over Iowa and over 30% probability in eastern and northern Illinois (Fig. 3c). The 1630 UTC update increased the severe risk once again, with a Moderate risk introduced for all areas east of the current position of the convective system, as far east as northwestern Indiana, with wind probabilities exceeding 45% (Fig. 3d) and a forecast of 10% or greater probabilities for significantly severe wind. Numerous significant severe wind reports had already been received from western and central Iowa by this time.

240

241

242 Figure 4: Simulated composite reflectivity valid at 1800 UTC 10 August 2020 from four HREF
 243 members initialized at 0000 UTC 10 August 2020, with a) 3-km North American Model Nest
 244 (Rogers et al. 2017), b) High Resolution Window Advanced Research Weather Research and
 245 Forecasting (WRF) model (Skamarock et al. 2008), c) CONUS Member 2 (formerly known as the
 246 National Severe Storms Laboratory WRF; Kain et al. 2010), and d) High Resolution Window
 247 NMMB (Janjic and Gall 2012).


248

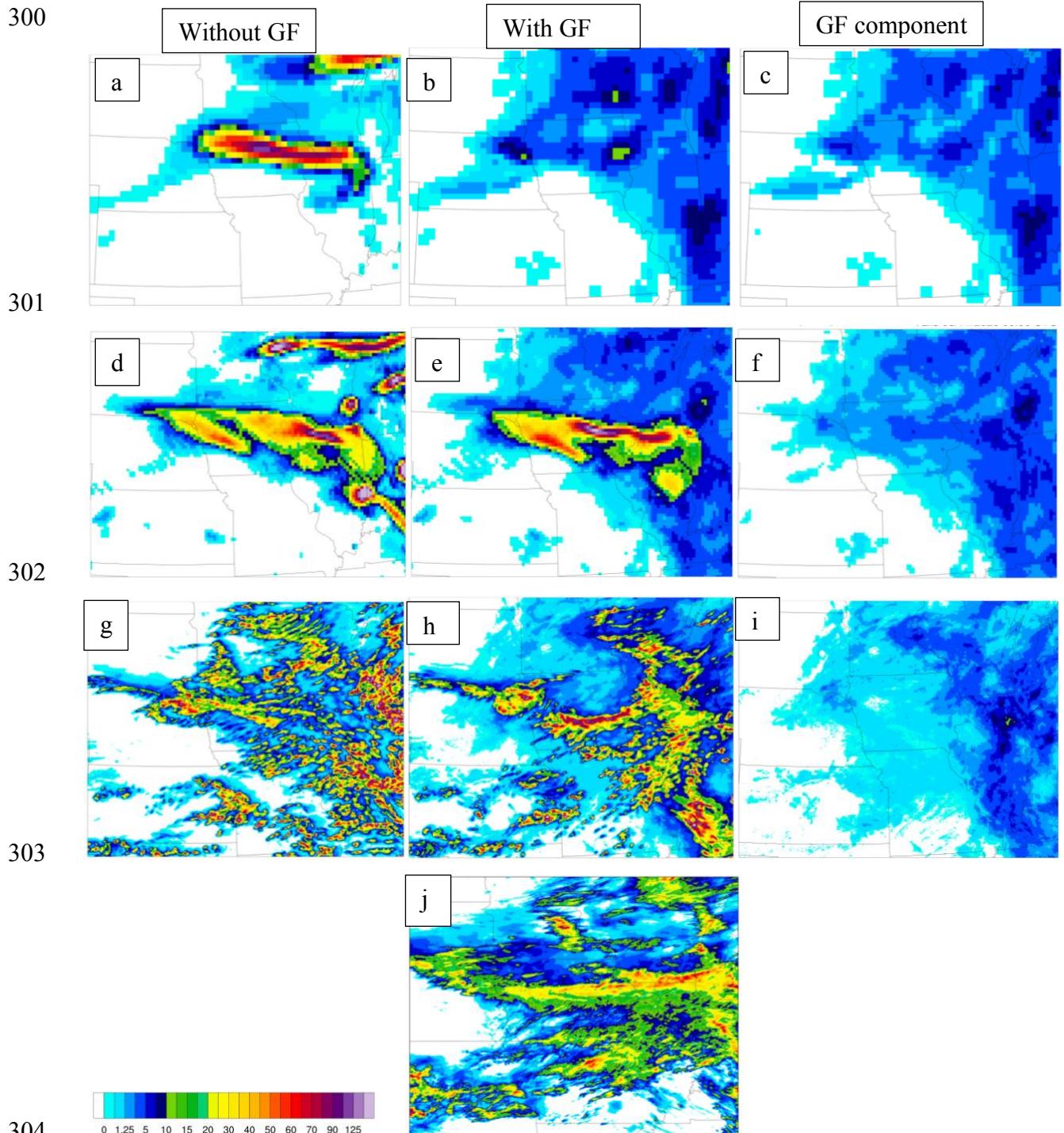
249 **4. Results**

250

251 The FV3-LAM simulations of the 10 August 2020 derecho performed here with different
 252 physics suites and grid spacings exhibited some behaviors counter to what is normally expected
 253 when grid spacing is refined or a convective scheme is used. The simulated reflectivity at 1800
 254 UTC when the strongest winds were observed in the derecho showed large variations in the runs
 255 using RRFS physics, depending on whether the GF scheme was being used (Fig. 5). Reflectivity
 256 in the FV3-LAM with RRFS physics is computed not only using hydrometeors from the
 257 microphysics scheme, but also using the GF rainfall component, if there are no hydrometeors (G.
 258 Grell, NOAA, 2023, personal communication). As an example of the large variations, in the 25-
 259 km runs, the run without GF correctly showed intense echo in central Iowa (Fig. 5a), although the
 260 coarseness of the grid prevented realistic bowing structure from being simulated. The 25-km run

261

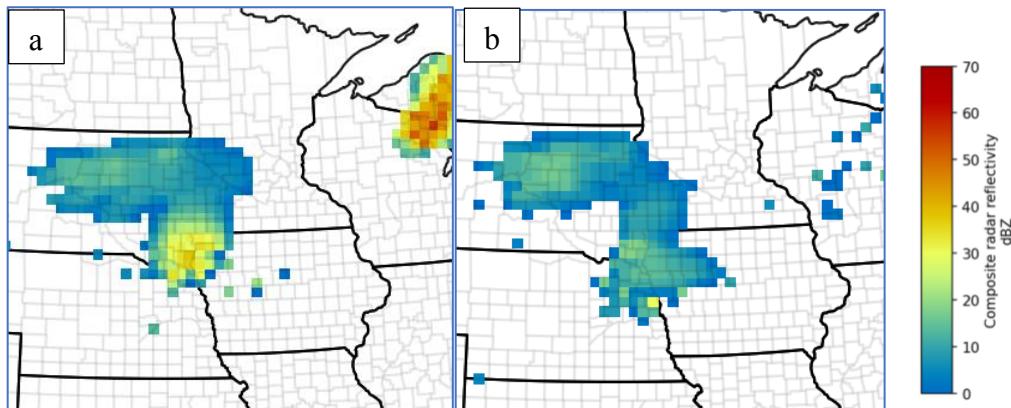
262


263

264

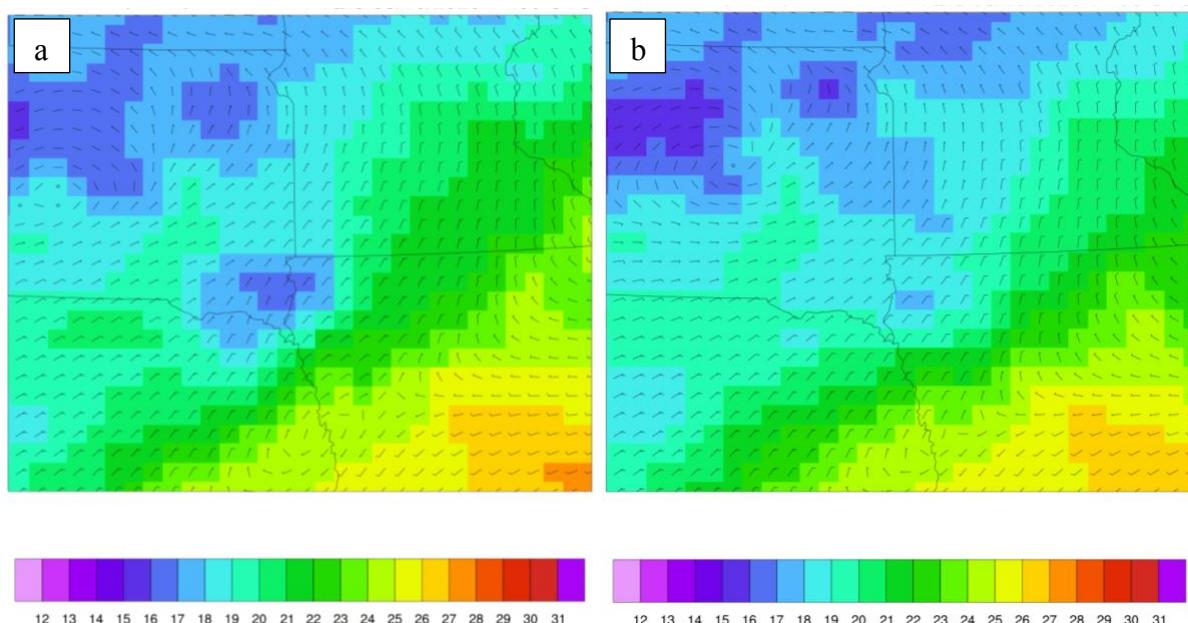
265 Figure 5: Simulated reflectivity (see color bar at right) at 1800 UTC for the RRFS runs initialized
 266 at 0000 UTC 10 August 2020 for a) 25 km without GF, b) 25 km with GF, c) 13 km without GF,
 267 d) 13 km with GF, e) 3 km without GF, and f) 3 km with GF. The observed radar valid at this time
 268 can be found in Fig. 1b. Red star in panel b shows where sounding is taken from in Fig. 9.

269
270 with GF, however, was not nearly as good (Fig. 5b), with the echo over Iowa being greatly
271 diminished and the main area of reflectivity being weaker and pushed north into southern
272 Minnesota.


273 The negative impact of the use of the GF scheme in the 25-km run can also be seen in the
274 total precipitation during the 24 hours ending at 0000 UTC 11 August 2023 (Fig. 6). The 25-km
275 simulation with GF (Fig. 6b) lacked the intense system in Iowa that had been simulated in four
276 other runs: the 25-km run that did not use GF (Fig. 6a), both 13-km runs (Fig. 6d, e), and the 3-km
277 run that used GF (Fig. 6h). In fact, an analysis of total hourly precipitation (including both grid-
278 resolved and that from the GF scheme) during the period from 1500-1800 UTC (not shown)
279 indicated no precipitation in the part of northern Iowa that does not have reflectivity (Fig. 5b) in
280 the 25-km run with GF, so this much worse simulated radar depiction was not due to GF-produced
281 precipitation reducing simulated reflectivity. Instead, the reasons for the substantial difference
282 appear to be related to (i) the formation of light precipitation from the GF scheme that extended
283 eastward roughly 100 km more into the warm sector (Fig. 7b) from where precipitation occurred
284 in the run without GF (Fig. 7a), which kept the lower troposphere cooler than in the run without
285 GF by mid-morning through midday (see Fig. 8 for 1400 UTC), and (ii) the formation of a stronger
286 cold pool (Fig. 8) under the much stronger convection near the northwest tip of Iowa in the run
287 without GF by 1400 UTC (Fig. 7a), which did not exist in the run with GF (Fig. 7b). The more
288 intense convection in the run without GF, which came from upscale growth of convection moving
289 generally eastward into Iowa from southeastern SD and northeastern NE, similar to that observed
290 and that present in the 13 km horizontal grid spacing runs and the 3 km run that did use GF, allowed
291 the formation of a strong enough cold pool to encourage lift ahead of it as it moved into the more
292 capped airmass over central Iowa. This lift created a moist absolutely unstable layer (Bryan and
293 Fritsch 2000) by 1700 UTC (Fig. 9) in the 650-400 hPa layer associated with the intense elevated
294 convection seen at 1800 UTC in Fig. 5a. In addition, the most unstable CAPE was much greater
295 in the run without GF, 4423 J kg^{-1} compared to 3215 J kg^{-1} in the run with GF. The most unstable
296 CIN, however, did not change much, with -31.6 J kg^{-1} when GF was not used, and -39.4 J kg^{-1}
297 when GF was used. The intense convection that formed in the run without GF resulted in the
298 formation of a strong midlevel mesolow which caused the winds in this sounding to have a much
299 stronger southerly component in the 850-400 hPa layer than in the sounding from the run using

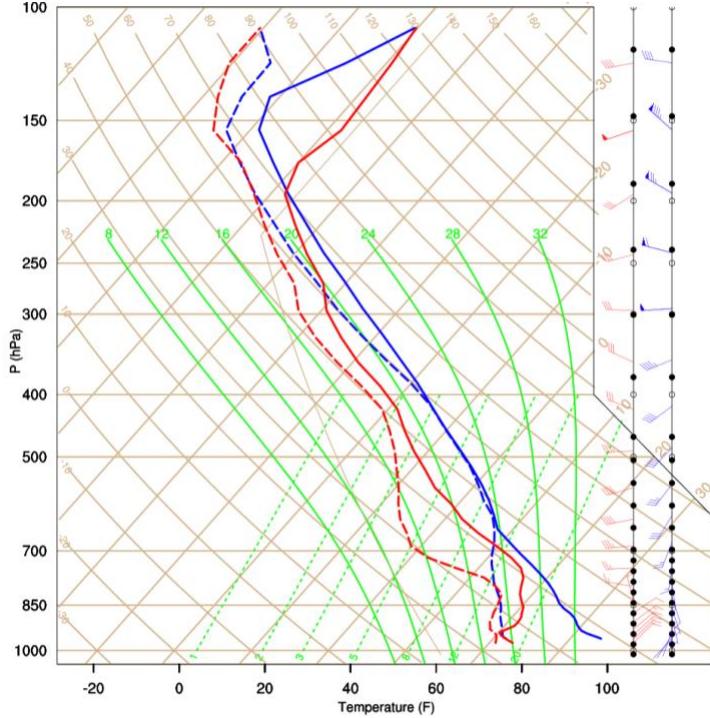
305 Figure 6: Total simulated rainfall (mm, see color bar at lower left) during the 0000 UTC 10 August
 306 – 0000 UTC 11 August period for the 25-km RRFS run a) without GF, b) with GF, and c) the
 307 convective component from GF, the 13-km RFFS run d) without GF, e) with GF, and f) the
 308 convective component from GF, and the 3-km RRFS run g) without GF, h) with GF, and i) the

309 convective component from GF. Observed precipitation from the Multi-Radar Multi-Sensor
310 (MRMS) analysis is shown in j).


311

312

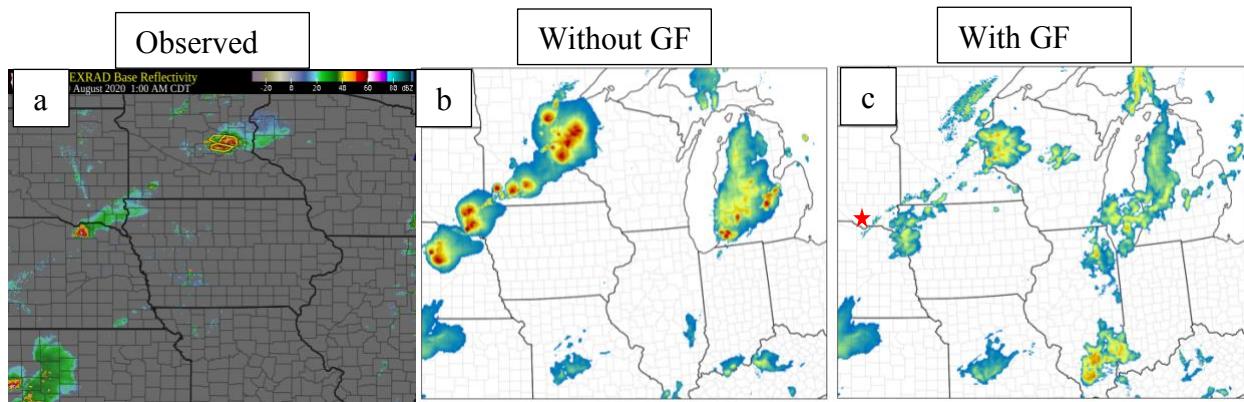
313 Figure 7: Simulated reflectivity at 1400 UTC 10 August 2020 for the simulations using RRFS
314 physics a) without GF, and b) with GF.


315

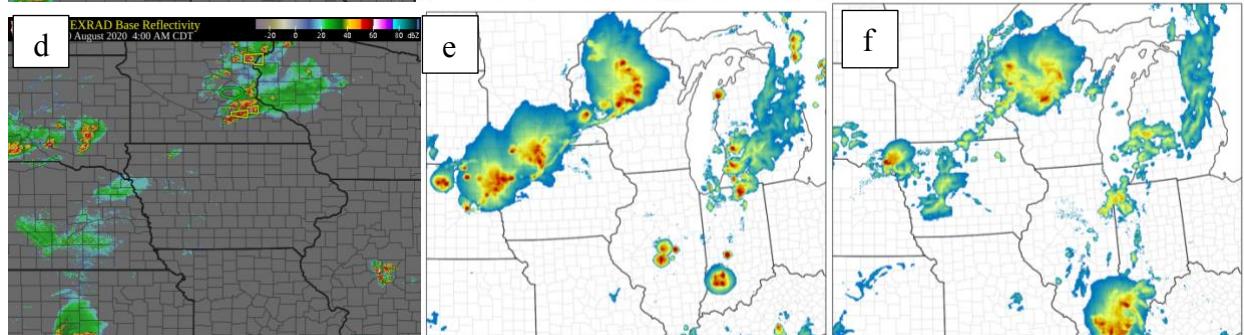
316

317 Figure 8: 2-m temperatures (°C) at 1400 UTC 10 August 2020 for the 25 km runs using the RRFS
318 physics a) without GF, and b) with GF.

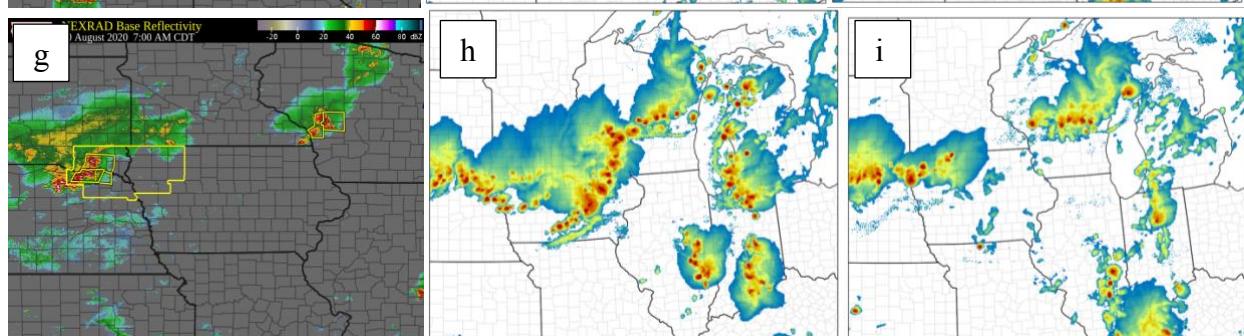
319

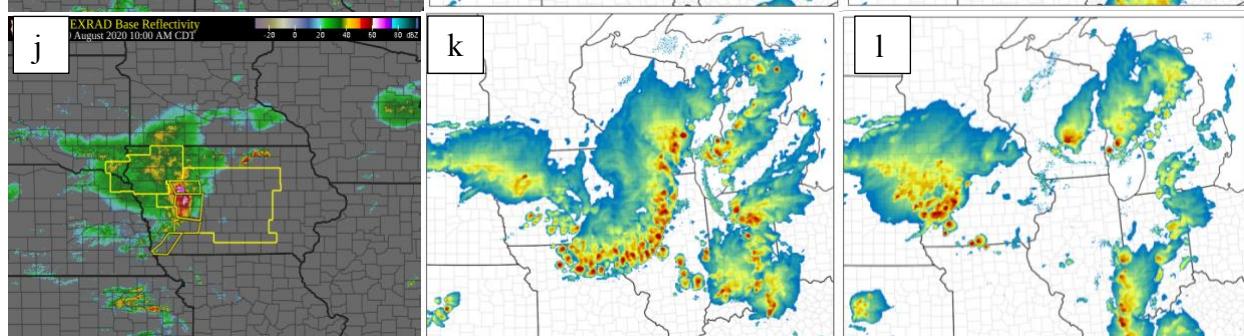

320
 321 Figure 9: Comparison of soundings for a point at 42.5 N and 94.17 W in central Iowa (see Fig. 5b)
 322 at 1700 UTC in the 25-km runs using RRFS physics without the GF scheme (blue) and with the
 323 GF scheme (red).

324
 325 GF. The use of the GF scheme greatly reduced the cold pool strength, so that there was insufficient
 326 lift to initiate grid-resolved precipitation, and thus only the weak reflectivity values associated with
 327 lighter precipitation due to the scheme were present.

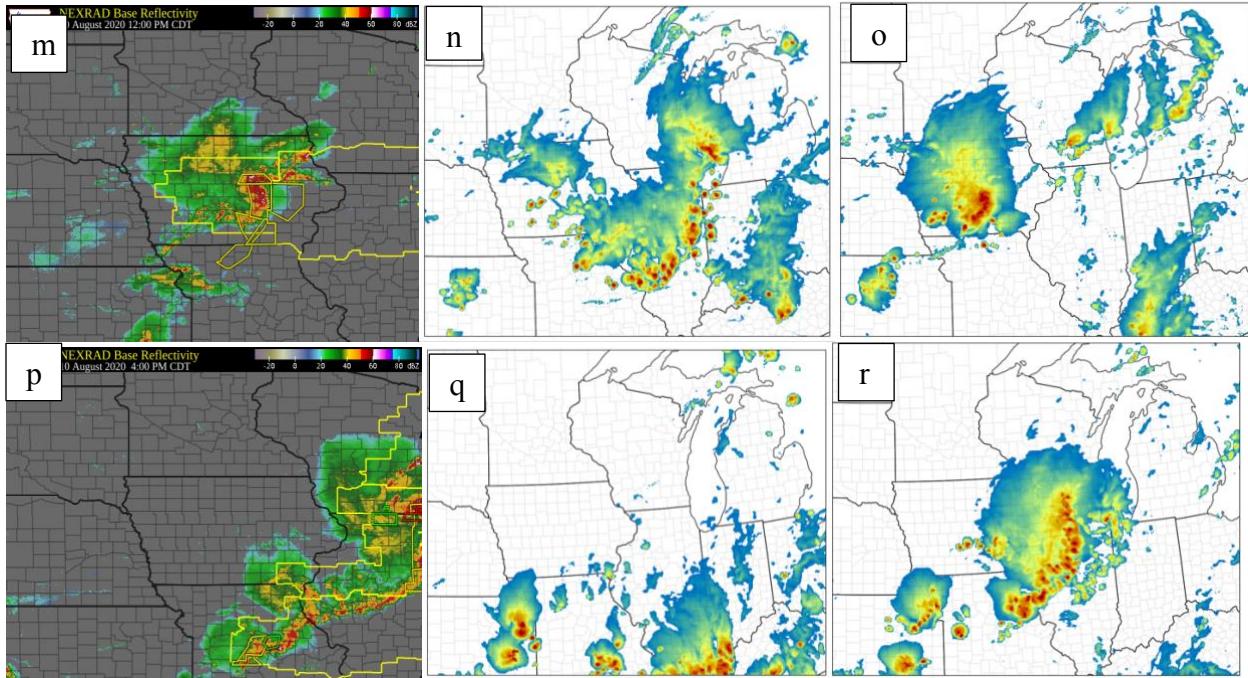

328 For the 13-km runs, differences were much smaller between the runs without GF (Fig. 5c)
 329 and with GF (Fig. 5d), as would be expected with a scale-aware convective scheme. Both runs
 330 resembled observations well (Fig. 1b), showing a bowing echo in Iowa, although the run using GF
 331 had slightly more intense echo along the bowing segment. The amounts of precipitation produced
 332 by the GF scheme were similar in the 25-km (Fig. 6c) and 13-km (Fig. 6f) runs. However, whereas
 333 the activation of the GF scheme on the 25-km grid prevented the formation of substantial grid-
 334 resolved precipitation, the activation on the 13-km grid did not.

335 In the 3-km simulations, the differences were pronounced. The run not using GF (Fig. 5e)
 336 had its most organized convection in eastern IL arcing toward St. Louis, several hundred
 337 kilometers downstream of where the observed system was. This poor forecast was due to storms
 338 initiating during the prior evening and moving through Iowa during the night and early morning


339


340

341



342

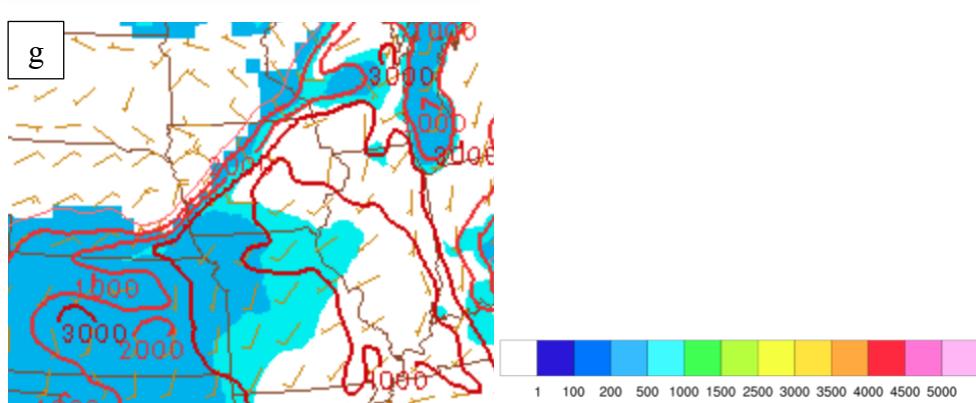
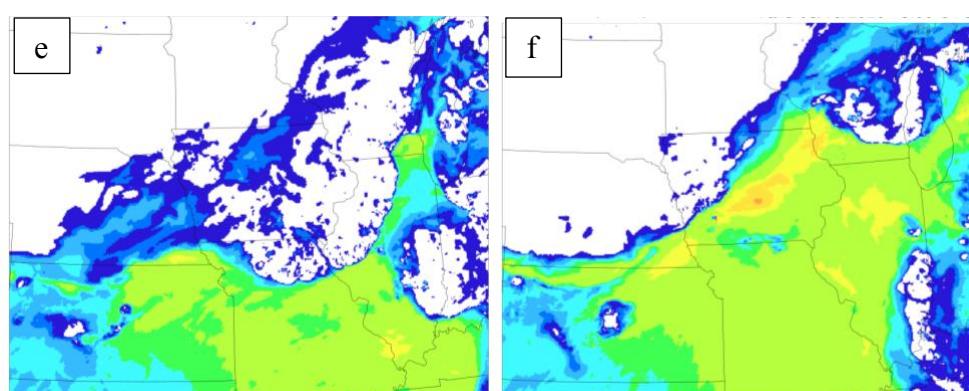
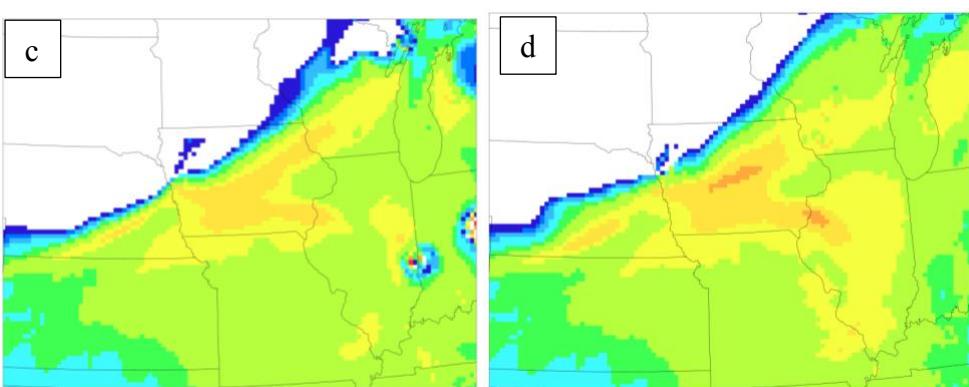
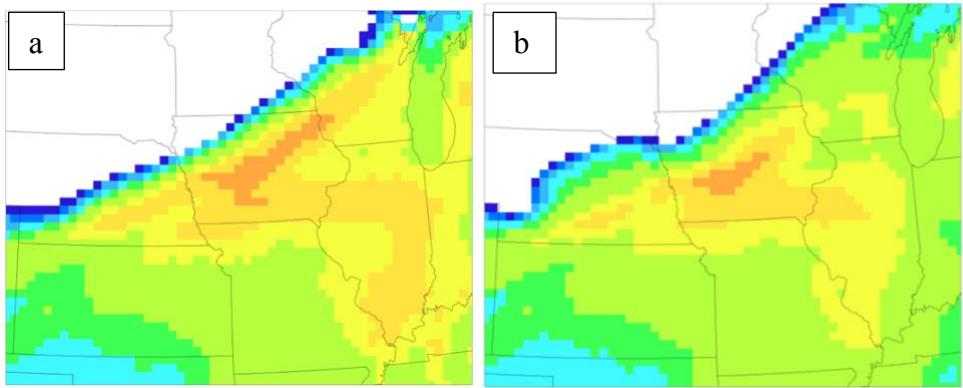
343

344

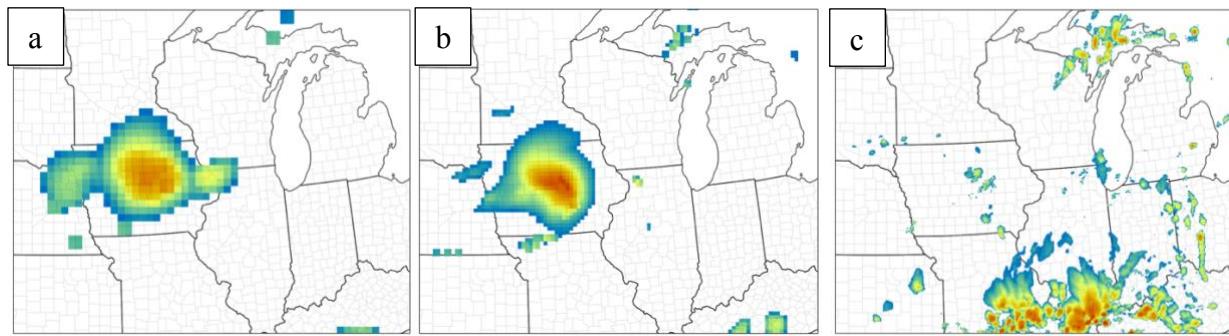
345
346

347 Figure 10: Observed reflectivity (left), and simulated reflectivity from the 3-km RRFS run without
 348 the GF scheme (middle column) and the RRFS run with the GF scheme (right column) at 0600
 349 UTC (a-c), 0900 UTC (d-f), 1200 UTC (g-i), 1500 UTC (j-l), 1700 UTC (m-o), and 2100 UTC (p-
 350 r). Red star in panel c indicates where sounding used in Fig. 13 is taken.

351





352 (Fig. 10b, e, h). The development of spurious convection contrasts with the 3 km HRRRx run
 353 whose output provided the IC/LBCs for the FV3-LAM run (not shown). The HRRRx output was
 354 specifically used because it was one of the few operational or quasi-operational models to not
 355 develop much spurious convection during the night prior to the derecho (not shown). In the run
 356 with GF, the spurious nocturnal storms were replaced with some patches of light rain (Fig. 10c, f),
 357 and a stronger convective system was able to organize in roughly the correct parts of southeastern
 358 SD and eastern NE and move into western IA during the 1200-1500 UTC period (Fig. 10i, l).
 359 When the derecho was most intense, around 1700 UTC, the 3-km run with the GF scheme did
 360 show intense convection in southeastern Iowa (Fig. 10o), with just a small displacement error to
 361 the south (compare to Fig. 10m). The simulated system exhibited bowing at this time and grew
 362 upscale into a long arc by 2100 UTC (Fig. 10r), similar to what was observed (Fig. 10p) with just
 363 a small delay - less than an hour - in the simulated speed. Almost no simulated convection was

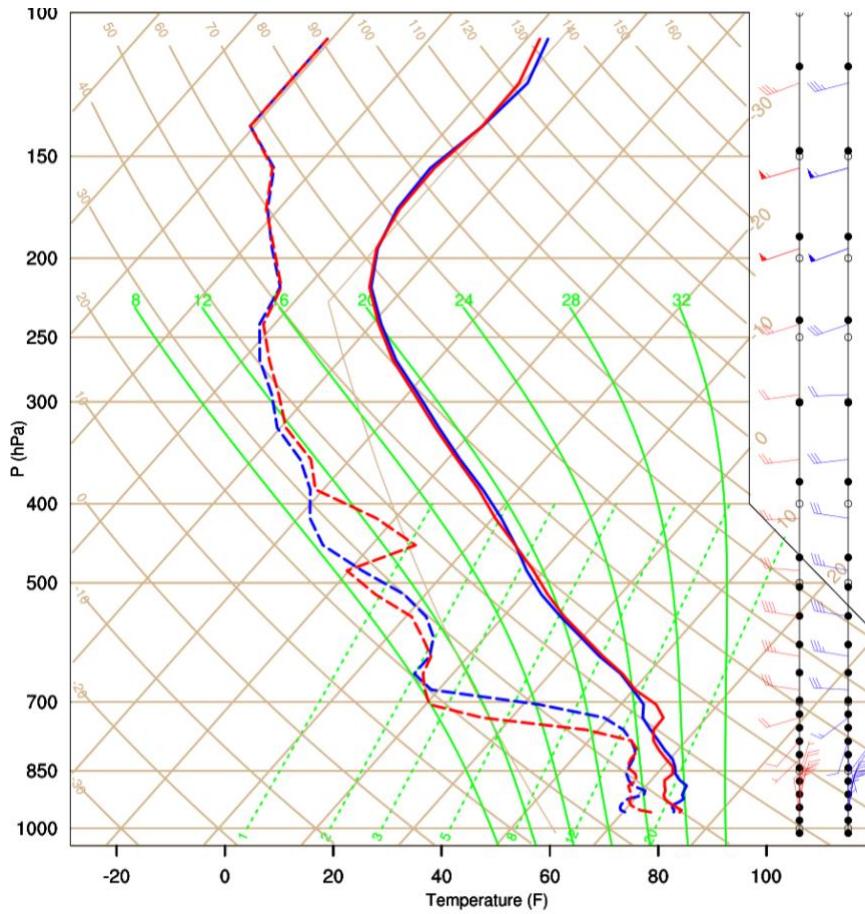
364 present in the areas where it was observed from 1700-2100 UTC in the 3-km run that did not use
365 GF (Fig. 10m and p compared to n and q).


366 The fact that the RRFS run with GF did not produce spurious strong storms during the
367 previous night resulted in a very different forecast of precipitation in Iowa (compare Fig. 6g to
368 Fig. 6h) with the run using GF (Fig. 6h) more correctly showing the concentrated swath of heavy
369 rain in the path of the derecho. In that run, the convective scheme resulted in small areas of light
370 rainfall (Fig. 6i) in the same general regions where spurious intense convection had happened in
371 the run without GF. The role of spurious convection in preventing simulation of the derecho in
372 many CAM simulations has been attributed to the removal of CAPE in these runs (personal
373 communication, P. Skinner, CIMMS, E. Szkopek, NOAA/GSL, J. Duda, NOAA/GSL). This is
374 verified in the FV3-LAM runs by a comparison of the CAPE fields during the morning in Iowa
375 when the derecho was organizing and intensifying (Fig. 11). The 3 km-run without GF had almost
376 no CAPE in Iowa, whereas the 3-km run with GF had very high values at 1500 UTC, exceeding
377 $3,000 \text{ J kg}^{-1}$ in some areas. Differences in CAPE were much less among the runs with 13 and 25
378 km grid spacing, both with and without GF, and the fields were generally similar to the 3 km run
379 that did use GF, although that run had a slightly smaller region of values over 3000 J kg^{-1} . Except
380 for the 3 km run without GF, the simulated CAPE (Fig. 11f) agreed well with observations from
381 the SPC mesanalyses from the morning of the event (Fig. 11g), although there was a negative bias
382 of roughly 500 J kg^{-1} in the simulated values. The negative bias was due to simulated low-level
383 temperatures and dew points generally being around 1°C too cool compared to observations in the
384 pre-storm environment in Iowa (not shown).

385 Although the present study has focused on the runs using the RRFS physics suite, since
386 this suite is currently planned for implementation into the version of the FV3-LAM that will be
387 used operationally for high-resolution forecasting guidance, it was not just these RRFS runs that
388 showed unusual behavior. In the runs using the GFS physics suite (with SAS convective
389 parameterization), again the coarser 25- and 13-km grid spacing simulations performed much
390 better than the one using 3 km horizontal grid spacing (Fig. 12). The same issue with spurious
391 convection the previous night was present in the 3-km GFS run (not shown).

392 The results from the runs using the RRFS physics suite are unusual in that it is normally
393 believed a convective parameterization is most needed for coarser resolutions and can be neglected
394 for convection-allowing grid spacings. For this case, the coarsest runs (25 km grid spacing) had

400 Figure 11: Simulated surface-based CAPE at 1500 UTC for the RRFS runs initialized at 0000 UTC
401 10 August 2020 for a) 25 km without GF, b) 25 km with GF, c) 13 km without GF, d) 13 km with
402 GF, e) 3 km without GF, and f) 3 km with GF. Values in J kg^{-1} indicated in a-f by color bar in
403 lower right. The observed surface-based CAPE valid at this time (from SPC mesoanalysis archive)
404 is shown in f with red contour intervals of 1000 J kg^{-1} with convective inhibition shaded (light blue
405 25 J kg^{-1} and darker blue 100 J kg^{-1}), and surface winds overlaid.
406

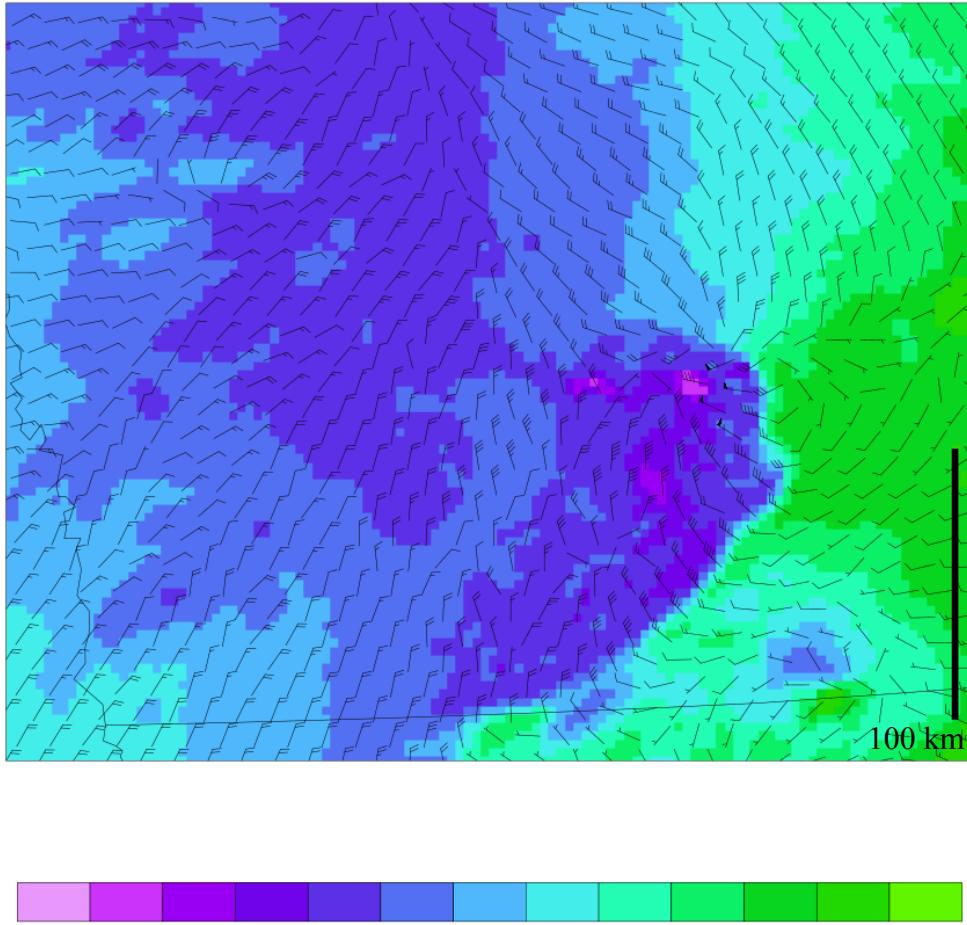

407
408 Figure 12: Simulated reflectivity at 1800 UTC for the GFS runs initialized at 0000 UTC with a)
409 25 km, b) 13 km, and c) 3 km horizontal grid spacing. The observed radar valid at this time can
410 be found in Fig. 1b
411

412 worse forecasts when the GF scheme was used (Fig. 5b compared to Fig. 5a), while the finest run
413 (3 km grid spacing) benefitted greatly from the use of the GF scheme. However, the benefit was
414 not because the scheme was needed to trigger the event of interest but, instead, because the GF
415 scheme prevented spurious convection from forming during the prior night (Fig. 10), which had
416 resulted in poor depictions of the environment present during the morning when the derecho
417 formed. The GF scheme only produced light rainfall amounts during the first few hours of the
418 simulation, typically under 1 mm in most areas (as suggested in Fig. 6i), and although these rather
419 broad regions were not supported by observations, the activation of the scheme led to a much better
420 simulation of the later derecho.

421 An examination of surface-based CAPE and CIN during the hours around the time when the
422 spurious convection formed (0400 and 0500 UTC) showed no noticeable differences between the
423 runs with and without the GF scheme (not shown). However, a closer look at a sounding near
424 where spurious convection formed in the run without GF showed that activation of the GF scheme
425 warmed and dried a narrow layer just below 700 hPa in the general area where the spurious storms

426 formed (Fig. 13). Such warming and drying with the GF scheme is due to compensating
 427 subsidence, and is often maximized at around 700 hPa (G. Grell, NOAA, 2023, personal
 428 communication). Although the impact may seem small at first glance, these changes have a large
 429 impact on the amount of lift needed to allow the elevated parcels that were experiencing the least
 430 CIN, such as at around 800 hPa, to rise to their level of free convection. The amount of lift needed
 431 to reach the level of free convection increased from around 50 hPa in the run that did not use GF
 432 to around 110 hPa in the run that did use GF.

433

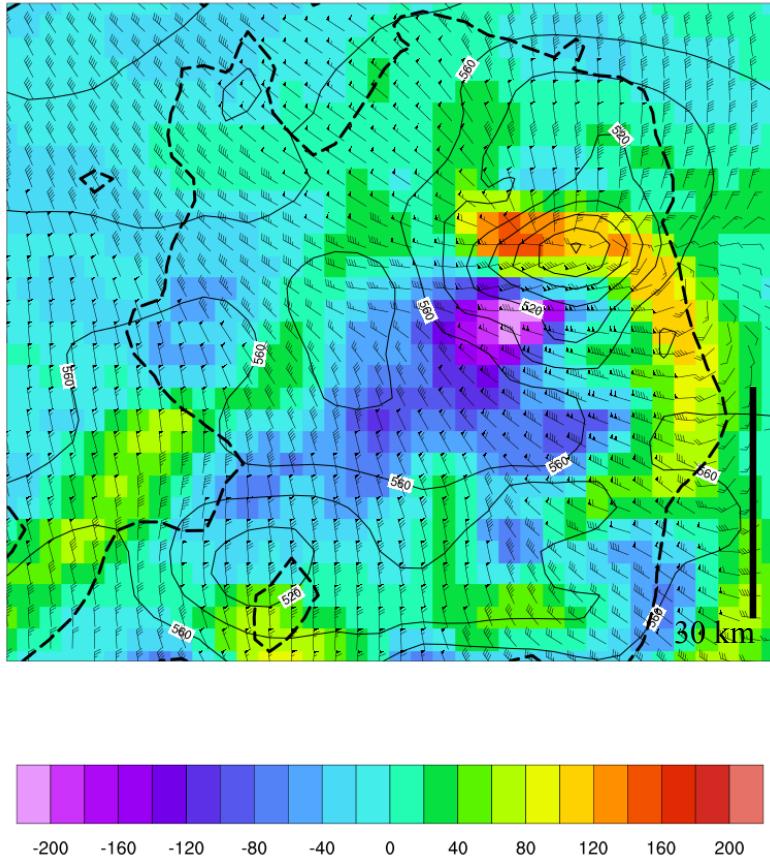

434

435 Figure 13: Soundings valid from a point in southeastern South Dakota (see Fig. 10c) near where
 436 spurious convection forms in the 3-km RRFS run not using the GF scheme, at 0400 UTC 10 August
 437 2020 from the two 3-km runs with blue indicating the run without the GF scheme, and red the run
 438 with the GF scheme.

439

440 The simulated bow echo became extremely intense in this 3-km FV3-LAM run that used
441 the GF scheme, producing an exceptionally strong cold pool and severe winds. At 1700 UTC, for
442 instance, 2-m temperatures in the heart of the cold pool fell as low as 11° C, whereas the ambient
443 temperatures ahead of the cold pool were around 28° C, so that a gradient of 17° C existed over
444 about 50 km (Fig. 14). Observed temperatures reached 31° C in Cedar Rapids by 1600 UTC prior
445 to the arrival of the derecho and fell as low as 14° C in Ames during the thunderstorms (surface
446 data is limited during the event in Iowa as extensive power outages resulted in much data loss),
447 implying the simulated intense cold pool was not an exaggeration. Sustained 10-m winds were
448 simulated as high as 36 m s⁻¹ at this time in and just northeast of the most northeastern cold pool
449 temperature minimum in Fig. 14, and the gusts in the model (determined by mixing down
450 momentum from the level of the top of the planetary boundary layer) approached 51 m s⁻¹ (not
451 shown). Sustained severe winds (25.7 m s⁻¹ or more) covered an area over 20 km in length from
452 west to east. An exceptional aspect of the observed derecho was the length of time over which
453 severe winds occurred, reaching an hour or more in some locations near Cedar Rapids (Fowle et
454 al. 2021). Thus, it is likely the coverage of strong winds is underestimated in this run.

455 Winds at 950 and 925 hPa at 1700 UTC, only about 250-500 m AGL, were as high as 60
456 m s⁻¹ (see Fig. 15 for 950 hPa) with strong downward motion indicated in the region just behind
457 and into the strongest winds. Fig. 15 shows a region corresponding to roughly the north half of
458 the intense echo shown in Fig. 10o over south-central Iowa. Analysis of flow throughout the lowest
459 few kilometers (not shown) revealed that a descending rear-inflow jet extended over 100 km in an
460 arc moving counter-clockwise from a northerly direction becoming oriented primarily west to east
461 where the strongest winds were located at 950 hPa, just behind the back of an arc of very strong
462 upward motion associated with the bowing echo at this time (Fig. 15). Just to the northeast of the
463 strongest winds, a circulation existed, associated with a strong mesolow where geopotential
464 heights were over 100 m lower than just ahead of the storm. In the region with the peak height
465 gradient associated with the mesolow, the change of 100 m occurred over a distance of only 15
466 km. The strongest winds in the simulation were confined to this region just southwest of the
467 mesolow. The closed circulation was deep, extending upward to around 400 hPa (not shown), and
468 winds of 40 m s⁻¹ extended as far upward as 550 hPa. Radar did suggest a strong mesolow in the
469 event, particularly around 1800 UTC just to the north of the strongest winds (at the north end of
470 the bow echo shown in Fig. 1b). Rainfall of 75-100 mm occurred in a very narrow swath (Fig. 6h),



471
472 Figure 14: 2m temperatures ($^{\circ}\text{C}$, see color bar below figure) and 10 m winds (barbs in knots) valid
473 at 1700 UTC in the 3 km RRFS run using the GF scheme. Distance scale shown in lower right.
474

475 with much of the rain occurring in only an hour or less. The rainfall amounts were overestimated
476 compared to observations (Fig. 6j) which showed peak values of 50-60 mm, but sustained winds
477 of over 36 m s^{-1} were measured in many areas, with estimates based on damage as high as 63 m s^{-1} .
478 Thus, the values being simulated by this FV3 run with 3 km horizontal grid spacing were in good
479 agreement with what happened in this extreme event.

480 It is of some interest to compare the peak winds within the simulated strong convective
481 system in Iowa when different horizontal grid spacings are used to understand how sensitive the
482 winds are to changes in resolution, although it is likely operational forecasters would only be
483 examining CAM output for guidance on severe convective hazards. The peak 10-m and 950-hPa
484 winds simulated in the best-performing run using RRFS physics at each of the three horizontal

485 grid spacings, while the convective system was most intense over Iowa during the period 1700 –
 486 2000 UTC, is shown in Table 2. A pronounced increase in peak winds occurs as the grid spacing

487
 488 Figure 15: Vertical motion (cm s^{-1} , see color bar below figure), geopotential heights (black
 489 contours in m) and winds at 950 hPa (plotted every 3 km) over a portion of central Iowa at 1700
 490 UTC in the 3-km RRFS run using the GF scheme. The 40-dBZ contour of simulated reflectivity
 491 is shown with a thick dashed black line. Distance scale shown in lower right.
 492

Horizontal Grid Spacing (km)	Peak 10-m wind (m s^{-1})	Peak 950-hPa wind (m s^{-1})
25	23.5	29.4
13	31.6	59.7
3	41.8	64.6

493 Table 2: Peak sustained wind speed (based on instantaneous hourly values) during the period 1700
 494 – 2000 UTC at 10 m and 950 hPa from the best-performing simulations using RRFS physics at 25,
 495 13, and 3-km horizontal grid spacing. For the 25 km run, this was without GF, and for the 13 and
 496 3 km runs, it was with GF.

497

498 is refined, although even with 13 km and 25 km grid spacing, the winds associated with the
499 convective system were strong, with severe intensity at 10 m in the 13 km run, and at 950 hPa in
500 the 25 km run, with 10-m winds just below the severe threshold.

501

502 **5. Summary and Discussion**

503

504 A very intense but poorly predicted derecho moved across portions of the United States
505 Midwest on 10-11 August 2022. Damage exceeded 12 billion dollars. To gain understanding into
506 why so many operational and quasi-operational runs, even with CAM horizontal grid spacings,
507 failed to forecast the event when initialized less than 18 hours prior to its formation, a set of
508 simulations was run using the FV3-LAM model with two different beta version physics suites
509 (RRFS and GFS) and three different horizontal grid spacings. Simulations using the RRFS physics
510 suite were also performed neglecting the use of the GF convective scheme at all three grid
511 spacings.

512 Three unusual behaviors were discovered in the FV3-LAM runs. First, it was found that
513 runs using the RRFS physics suite without the GF scheme correctly simulated an intense
514 convective event in Iowa on 10 August in the coarse runs that used 13 and 25 km horizontal grid
515 spacing, with relatively small spatial and temporal position errors around the time the derecho was
516 most intense (1800 UTC). However, the finest grid spacing run, 3-km, failed to produce the
517 derecho at all. Similar results were obtained when the GFS physics suite was used. This unusual
518 behavior, with the finest grid performing by far the worst, was due to the development of spurious
519 nocturnal convection in the 3-km runs, about 12 hours prior to the formation of the observed
520 derecho. The late evening spurious storms grew upscale into a large MCS that rapidly removed
521 nearly all instability across Iowa and parts of Illinois by the morning of 10 August, preventing
522 more than some patches of light rain and isolated storms from being simulated on 10 August when
523 the observed derecho was occurring. Observations showed no more than a few isolated storms
524 happening the night before the 10 August derecho.

525 The second unusual finding with FV3-LAM is that when the GF convective scheme was
526 turned on in the RRFS physics runs, the 25-km horizontal grid spacing results worsened
527 substantially. The intense convective storms that had been produced in Iowa without the GF

528 scheme were removed when GF was used, so that the only precipitation simulated during the time
529 of the derecho was a steady rain area with moderate simulated reflectivity over southern
530 Minnesota. In the 13-km simulation, use of the GF scheme had little impact on the simulation,
531 which remained relatively accurate, with an even more pronounced bowing arc of intense
532 reflectivity in central Iowa than in the run without GF around the time the observed derecho was
533 in east-central Iowa.

534 The third unusual behavior was that the use of the GF scheme in the 3-km horizontal grid
535 spacing run, a grid spacing where convective schemes are usually ignored, greatly improved the
536 forecast. Instead of no organized convection in Iowa, the case when GF was not used, an unusually
537 intense bowing line of convection was simulated with GF, with very small spatial and temporal
538 displacement errors, significantly severe wind sustained at over 40 m s^{-1} with gusts over 51 m s^{-1} ,
539 and a very intense cold pool similar to that observed with a -17°C temperature perturbation. The
540 reason for the vast improvement in the forecast was not that the GF scheme played any role with
541 the daytime derecho-producing convection but that it stopped the spurious storms that had
542 happened the night before in the model run that did not use the GF scheme. The GF scheme
543 activated in the first few hours of the forecast to produce some patches of light rainfall, and resulted
544 in $1-2^\circ\text{C}$ of warming in a roughly 30-hPa-deep layer just below 700 hPa which effectively capped
545 the atmosphere to the development of the spurious elevated nocturnal storms. Without the spurious
546 convection, the run correctly showed a very unstable atmosphere across Iowa during the daytime
547 of 10 August 2022, allowing a remarkably intense convective system to develop, similar in
548 strength to what was observed.

549 These unusual behaviors raise some questions related to forecasting. Because so many
550 operational models were unable to simulate the derecho, one might conclude that the event had
551 poor predictability. However, the fact that both 13 and 25 km horizontal grid spacing runs were
552 able to correctly show intense echo with small space and time errors, including the RRFS run that
553 did not even use a convective scheme, suggests the event may have had high predictability, as long
554 as the development of early spurious convection was suppressed. In a broader sense, problems
555 with this spurious development likely involved errors in initial conditions, as evidenced by the fact
556 that among operational and quasi-operational model runs initialized at 0000 UTC 10 August, only
557 the HRRR run avoided the problem. In the present study, the use of the 0000 UTC HRRR output
558 for initialization and lateral boundary conditions for the FV3-LAM avoided the problem in most

559 runs, likely due to a more accurate depiction of the mesoscale environment at 0000 UTC, but the
560 fact the 3-km run without GF still triggered spurious nocturnal storms shows how volatile the
561 atmosphere was, with abundant elevated CAPE and minimal CIN, so that errors in depiction of
562 vertical motion could still trigger the spurious convection.

563 The observation that the 25-km RRFS run worsened when the GF convective scheme was
564 turned on is troubling. Further research should look at a broader sample of significant events to
565 see how common this situation is, especially as the LAM version of the UFS prepares to become
566 operational in 2024. For this case, it appears the environment supported development of an
567 unusually strong cold pool, allowing the 25-km run without GF to trigger intense convection in a
568 region where the scheme itself would only produce light rain. Finally, the success of the 3-km run
569 that used GF raises several questions of its own, especially as CAM grid spacings are more
570 commonly used for operational guidance. Does this result suggest that the GF scheme should
571 always be used in the RRFS physics suite, even with a 3 km grid? In a larger sample of cases,
572 would its primary role be in preventing spurious convection more so than helping with depiction
573 of other storms? It must be noted, however, that even if a configuration like this (using a
574 convective scheme) were used in a high-resolution ensemble, forecasters would still face the
575 challenge that the probabilities for such an intense system would be low since most of the
576 members, if not using a convective scheme, may fail to show a significant event. Perhaps the
577 primary insight from the present study is that operational forecasters should pay close attention to
578 model depictions of convection in the early periods of simulations and be aware that spurious
579 convection early in a forecast may impact negatively the depiction of later convection. In the
580 central United States, where nocturnal convection is common, close attention should be paid to the
581 model forecasts in the first 12 hours for all 0000 UTC-initialized guidance.

582

583 *Acknowledgments*

584

585 This research was supported in part by National Science Foundation grant AGS2022888,
586 and the Developmental Testbed Center. The DTC Visitor Program is funded by the National
587 Oceanic and Atmospheric Administration, the National Center for Atmospheric Research and the
588 National Science Foundation. The authors would like to thank Jeff Beck and Gerard Ketefian for
589 their assistance with setting up the FV3-LAM experiments. The research benefitted from

590 discussions with Edward Szoke, Jeff Duda, and Patrick Skinner from NOAA and Kathryn
591 Newman at NCAR and DTC. Eric Aligo from NOAA kindly provided the 0000 UTC 10 August
592 2020 HREF member simulated reflectivity data, and Samuel Ritter at Iowa State created the plot
593 of that data. Jonathan Thielen at Colorado State University provided the python codes for creation
594 of the simulated reflectivity plots. We acknowledge the importance of open source Python code
595 and packages (Matplotlib, NumPy, MetPy), which were used for some of the analysis in this study.
596 The constructive comments of two reviewers are also acknowledged.

597

598 *Data Availability Statement*

599

600 The data that supports the findings of this work, including the HRRRx output used for
601 initial and lateral boundary conditions, and the input files used to configure the nine FV3-LAM
602 simulations, are stored on NCAR’s campaign storage, and are available from the corresponding
603 author upon request.

605 Ashley, W. S., and T. L. Mote, 2005: Derecho hazards in the United States. *Bull. Amer. Meteor. Soc.*, 86, 1577-1592.

606

607 Atkins, N. T., and M. St. Laurent, 2009: Bow echo mesovortices. Part I: Processes that influence
608 their damaging potential. *Mon. Wea. Rev.*, 137, 1497–1513.

609 Benjamin, S. G., Weygandt S. , Smirnova T. G. , Hu M. , Peckham S. E. , Brown J. M. ,
610 Brundage K. , and Manikin G. S. , 2009: Assimilation of radar reflectivity data using a
611 diabatic digital filter: Applications to the Rapid Update Cycle and Rapid Refresh and
612 initialization of High Resolution Rapid Refresh forecasts with RUC/RR grids. *Preprints*,
613 13th Conf. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans,
614 and Land Surface (IOAS-AOLS), Phoenix, AZ, Amer. Meteor. Soc., 7B.3. [Available
615 online at <https://ams.confex.com/ams/pdffiles/150469.pdf>.]

616 Benjamin, S. G., Weygandt S. , Alexander C. , Brown J. M. , Smirnova T. G. , Hofmann P. ,
617 James E. , and Dimego G. , 2011: NOAA's hourly-updated 3km HRRR and RUC/Rapid
618 Refresh—Recent (2010) and upcoming changes toward improving weather guidance for
619 air-traffic management. *Proc. Second Aviation, Range, and Aerospace Meteorology*
620 *Special Symp. on Weather–Air Traffic Management Integration*, Seattle, WA, Amer.
621 Meteor. Soc., 3.2. [Available online at
622 <https://ams.confex.com/ams/91Annual/webprogram/Paper185659.html>.]

623 Benjamin, S. G., and Coauthors, 2013: Data assimilation and model updates in the 2013 Rapid
624 Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) analysis and forecast
625 systems. *NCEP/EMC Meeting*, Washington, DC, NCEP/EMC/Model Evaluation Group.
626 [Available online at http://ruc.noaa.gov/pdf/NCEP_HRRR_RAPv2_6jun2013-Benj-noglob.pdf.]

627

628 Bentley, M. L., and T. L. Mote, 1998: A climatology of derecho-producing mesoscale convective
629 systems in the central and eastern United States, 1986-95. Part I: Temporal and spatial
630 distribution. *Bull. Amer. Meteor. Soc.*, 79, 2527-2540.

631 _____, and J. A. Sparks, 2003: A 15 yr climatology of derecho-producing mesoscale
632 convective systems over the central and eastern United States. *Climate Res.*, 24, 129-139

633 Black, T. L., J. A. Abeles, B. T. Blake, D. Jovic, E. Rogers, and X. Zhang, 2021: A limited area
634 modeling capability for the Finite-Volume Cubed-Sphere (FV3) dynamical core and
635 comparison with a global two-way nest. *Journal of Advances in Modeling Earth Systems*,
636 13, e2021MS002483. <https://doi.org/10.1029/2021MS002483>.

637 Bryan, G. H., and J. M. Fritsch, 2000: Moist Absolute Instability: The Sixth Static Stability
638 State. *Bulletin of the American Meteorological Society* 81, 6, 1207-1230,
639 [https://doi.org/10.1175/1520-0477\(2000\)081<1287:MAITSS>2.3.CO;2](https://doi.org/10.1175/1520-0477(2000)081<1287:MAITSS>2.3.CO;2).

640 Cohen, A. E., M. C. Coniglio, S. F. Corfidi, and S. J. Corfidi, 2007: Discrimination of mesoscale
641 convective system environments using sounding observations. *Wea. Forecasting*, 22,
642 1045–1062, <https://doi.org/10.1175/WAF1040.1>.

643 Coniglio, M. C., and D. J. Stensrud, 2004: Interpreting the climatology of derechos. *Wea.*
644 *Forecasting*, 19, 595-605.

645 _____, and M. B. Richman, 2004: An observational study of derecho-producing convective
646 systems. *Wea. Forecasting*, 19, 320-337.

647 _____, S. F. Corfidi, and J. S. Kain, 2011: Environment and early evolution of the 8 May 2009
648 derecho-producing convective system. *Mon. Wea. Rev.*, 139, 1083-1102.

649 Corfidi, S. F. M. C. Coniglio, A. E. Cohen, and C. M. Mead, 2016: A proposed revision to the
650 definition of “derecho”. *Bull. Amer. Meteor. Soc.*, 97(6), 935-950.
651 <https://www.jstor.org/stable/26243449>.

652 Doswell, C. A., and J. S. Evans, 2003: Proximity sounding analysis for derechos and supercells:
653 An assessment of similarities and differences. *Atmos. Res.*, 67, 117-133.

654 Dowell, D. C., C. R. Alexander, E. P. James, S. S. Weygandt, S. G. Benjamin, G. S. Manikin, B.
655 T. Blake, J. M. Brown, J. B. Olson, M. Hu, T. G. Smirnova, T. Ladwig, J. S. Kenyon, R.
656 Ahmadov, D. D. Turner, J. D. Duda, and T. I. Alcott, 2022: The High-Resolution Rapid
657 Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast Model. Part I:
658 Motivation and System Description, *Weather and Forecasting*, 37(8), 1371-1395.
659 <https://doi.org/10.1175/WAF-D-21-0151.1>.

660 Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, and V. Koren, 2003: Implementation
661 of Noah land surface model advances in the National Centers for Environmental Prediction
662 operational mesoscale Eta model. *Journal of Geophysical Research*, 108(D22), 8851.
663 <https://doi.org/10.1029/2002JD003296>.

664 Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity
665 soundings. *Wea. Forecasting*, 16, 329-342.

666 Fowle, M., R. Wolf, B. Barjenbruch, and L. Carlaw, 2021: Major Weather Events and Impacts of
667 2020, Amer. Meteor. Soc., Boston, MA, 2021, 13.6.

668 Fujita, T. T., 1978: Manual of downburst identification for Project NIMROD. Satellite and
669 Mesometeorology Research Paper 156, Dept. of Geophysical Sciences, University of
670 Chicago, 104 pp.

671 Gallus, W. A., Jr., J. Correia, Jr., and I. Jankov, 2005: The 4 June 1999 derecho event: A
672 particularly difficult challenge for numerical weather prediction. *Wea. Forecasting*, 20,
673 705-728.

674 Grell, G. A. and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective
675 parameterization for weather and air quality modeling. *Atmospheric Chemistry and
676 Physics*, 14, 5233–5250. <https://doi.org/10.5194/acp-14-5233-2014>.

677 Grunzke, C. T. and C. Evans, 2017: Predictability and Dynamics of Warm-Core Mesoscale
678 Vortex Formation with the 8 May 2009 “Super Derecho” Event. *Mon. Wea. Rev.*, 145,
679 811-832. DOI:10.1175/MWR-D-16-0217.1

680 Han, J., W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F. Yang, 2017: Updates in the
681 NCEP GFS cumulus convection schemes with scale and aerosol awareness. *Weather and*
682 *Forecasting*, 32(5), 2005– 2017. <https://doi.org/10.1175/waf-d-17-0046.1>

683 _____, M. L. Witek, J. Teixeira, R. Sun, H.-L. Pan, J. K. Fletcher, and C. S. Bretherton, 2016:
684 Implementation in the NCEP GFS of a Hybrid Eddy-Diffusivity Mass-Flux (EDMF)
685 boundary layer parameterization with dissipative heating and modified stable boundary
686 layer mixing. *Weather and Forecasting*, 31(1), 341– 352. <https://doi.org/10.1175/waf-d-15-0053.1>.

688 Harris, L. M., and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the cubed-
689 sphere grid. *Monthly Weather Review*, 141(1), 283– 306. <https://doi.org/10.1175/MWR-D-11-00201.1>.

691 _____ and _____, 2014: Global-to-regional nested grid climate simulations in the GFDL high
692 resolution atmospheric model. *Journal of Climate*, 27(13), 4890– 4910.
693 <https://doi.org/10.1175/Jcli-D-13-00596.1>.

694 Heinzeller, D., Bernardet, L., Firl, G., Zhang, M., Sun, X., and Ek, M.: The Common Community
695 Physics Package (CCPP) Framework v6, *Geosci. Model Dev.*, 16, 2235–2259,
696 <https://doi.org/10.5194/gmd-16-2235-2023>, 2023.

697 Hinrichs, G., 1888: Tornadoes and derechos. *Amer. Meteor. J.*, 5, 341-349.

698 Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins,
699 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER
700 radiative transfer models. *Journal of Geophysical Research*, 113(D13), D13103.
701 <https://doi.org/10.1029/2008JD009944>.

702 James, E. P., Alexander, C. R., Dowell, D. C., Weygandt, S. S., Benjamin, S. G., Manikin, G. S.,
703 Brown, J. M., Olson, J. B., Hu, M., Smirnova, T. G., Ladwig, T., Kenyon, J. S., and Turner,
704 D. D., 2022: The High-Resolution Rapid Refresh (HRRR): An Hourly Updating
705 Convection-Allowing Forecast Model. Part II: Forecast Performance. *Weather and*
706 *Forecasting* 37, 8, 1397-1417, <https://doi.org/10.1175/WAF-D-21-0130.1>.

707 Janjic, Z. I., and R. L. Gall, 2012: Scientific documentation of the NCEP nonhydrostatic
708 multiscale model on the B grid (NMMB). Part 1: Dynamics. NCAR Tech. Note
709 NCAR/TN4891STR, 75 pp., <https://doi.org/10.5065/D6WH2MZXX>.

710 Johns, R. H. and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. *Wea.*
711 *Forecasting*, 2, 32-49.

712 Kain, J. S., S. R. Dembek, S. J. Weiss, J. L. Case, J. J. Levit, and R. A. Sobash, 2010: Extracting
713 unique information from high resolution forecast models: Monitoring selected fields and
714 phenomena every time step. *Wea. Forecasting*, 25, 1536–1542,
715 <https://doi.org/10.1175/2010WAF2222430.1>.

716 Lin, S.-J., 2004: A “Vertically Lagrangian” finite-volume dynamical core for global models.
717 *Monthly Weather Review*, 132(10), 2293– 2307.

718 Long, P. J., 1986: An economical and compatible scheme for parameterizing the stable surface
719 layer in the medium range forecast model (NCEP office note 321). Retrieved from
720 <https://www.ncep.noaa.gov/officialnotes/NOAA-NPM-NCEPON-0004/01408602.pdf>

721 _____, 1989: Derivation and suggested method of the application of simplified relations for
722 surface fluxes in the medium-range forecast model: Unstable case (NCEP office note 356).
723 Retrieved from <https://www.ncep.noaa.gov/officialnotes/NOAA-NPM-NCEPON-0005/0140893E.pdf>

725 Mahoney, K. M., and G. M. Lackmann, 2011: The sensitivity of momentum transport and severe
726 surface winds to environmental moisture in idealized simulations of a mesoscale
727 convective system. *Mon. Wea. Rev.*, 139, 1352–1369.
728 <https://doi.org/10.1175/2010MWR3468.1>.

729 Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative
730 transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the
731 longwave. *Journal of Geophysical Research*, 102(D14), 16663– 16682.
732 <https://doi.org/10.1029/97JD00237>.

733 Nakanishi, M. and H. Niino, 2009: Development of an improved turbulence closure model for the
734 atmospheric boundary layer. *J. Meteor. Soc. Japan*, 87, 895–912,
735 doi:<http://dx.doi.org/10.2151/jmsj.87.895>.

736 Niu, G.-Y., et al. (2011), The community Noah land surface model with multiparameterization
737 options (Noah-MP): 1. Model description and evaluation with local-scale measurements, *J.*
738 *Geophys. Res.*, 116, D12109, doi:[10.1029/2010JD015139](https://doi.org/10.1029/2010JD015139).

739 NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and
740 Climate Disasters (2022). <https://www.ncei.noaa.gov/access/billions/>, DOI:
741 10.25921/stkw-7w73

742 Olson, J. B., J. S. Kenyon, W. M. Angevine, J. M. Brown, M. Pagowski, and K. Sušelj, 2019: A
743 description of the MYNN-EDMF scheme and coupling to other components in WRF-
744 ARW. NOAA Tech. Memo. OAR GSD, 61, 37 pp., <https://doi.org/10.25923/n9wm-be49>.

745 _____, T. Smirnova, J. S. Kenyon, D. D. Turner, J. M. Brown, W. Zheng, and B. W. Green,
746 2021: A description of the MYNN surface-layer scheme. NOAA Tech. Memo. OAR
747 GSL-67, 26 pp., <https://doi.org/10.25923/f6a8-bc75>.

748 Putman, W. M. and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. *Journal*
749 *of Computational Physics*, 227(1), 55– 78. <https://doi.org/10.1016/j.jcp.2007.07.022>.

750 Ribeiro, B. Z., S. J. Weiss, and L. F. Bosart, 2022: An Analysis of the 3 May 2020 Low-
751 Predictability Derecho Using a Convection-Allowing MPAS Ensemble. *Wea. Forecasting*,
752 37, 219–239, <https://doi.org/10.1175/WAF-D-21-0092.1>.

753 Rogers, E., and Coauthors, 2017: Upgrades to the NCEP North American Mesoscale (NAM)
754 system. *Bluebook Rep.*, 2 pp.,
755 http://wmc.meteoinfo.ru/bluebook/uploads/2017/docs/05_Rogers_Eric_mesoscale_model
756 ing.pdf.

757 Rutledge, S. A., R. A. Houze, M. I. Biggerstaff, and T. Matejka, 1988: The Oklahoma–Kansas
758 mesoscale convective system of 10–11 June 1985: Precipitation structure and single-
759 Doppler radar analysis. *Mon. Wea. Rev.*, 116, 1409–1430.

760 Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version
761 3. NCAR Tech. Note NCAR/TN-4751STR, 113 pp., <https://doi.org/10.5065/D68S4MVH>.

762 Thompson, G. and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation
763 development in a large winter cyclone. *Journal of the Atmospheric Sciences*, 71(10), 3636-
764 -3658. <https://doi.org/10.1175/JAS-D-13-0305.1>.

765 Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow
766 echoes. Part II: Their genesis and implications. *Mon. Wea. Rev.*, 131, 2804–2823.

767 Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of
768 long-lived mesoconvective systems. *J. Atmos. Sci.*, 49, 1826–1847.

769 _____, 1993: The genesis of severe, long-lived bow echoes. *J. Atmos. Sci.*, 50, 645-670.

770 _____, and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I:
771 Overview and dependence on environmental shear. *Mon. Wea. Rev.*, 131, 2779–2803.

772 _____, C. Evans, and L. Bosart, 2013: The 8 May 2009 Superderecho: Analysis of a Real-Time
773 Explicit Convective Forecast. *Wea. Forecasting*, 28, 863–892,
774 <https://doi.org/10.1175/WAF-D-12-00023.1>.

775 Zhou, L., S.-J. Lin, J.-H. Chen, L. M. Harris, X. Chen, and S. L. Rees, 2019: Toward convective-
776 scale prediction within the next generation global prediction system. *Bulletin of the*
777 *American Meteorological Society*, 100(7), 1225– 1243. <https://doi.org/10.1175/BAMS-D->
778 17-0246.1