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Abstract

Outer membrane proteins (OMPs) must exist as an unfolded ensemble while interacting with a chaperone network in the peri-
plasm of Gram-negative bacteria. Here, we developed a method to model unfolded OMP (uUOMP) conformational ensembles
using the experimental properties of two well-studied OMPs. The overall sizes and shapes of the unfolded ensembles in the
absence of a denaturant were experimentally defined by measuring the sedimentation coefficient as a function of urea con-
centration. We used these data to model a full range of unfolded conformations by parameterizing a targeted coarse-grained
simulation protocol. The ensemble members were further refined by short molecular dynamics simulations to reflect proper
torsion angles. The final conformational ensembles have polymer properties different from unfolded soluble and intrinsi-
cally disordered proteins and reveal inherent differences in the unfolded states that necessitate further investigation. Building
these uOMP ensembles advances the understanding of OMP biogenesis and provides essential information for interpreting
structures of uUOMP-chaperone complexes.

Keywords Outer membrane protein - Sedimentation velocity - Coarse-grained molecular dynamics - Conformational
ensembles

Abbreviations {520} Sedimentation coefficient from fit-
AUC Analytical ultracentrifugation ting to a gaussian function in dc/
BAM p-Barrel assembly machine dz+ (units = Svedbergs)

Dyiax Maximum distance (A) 50,0 M urea) s, ,, extrapolated to 0 M urea
IDP Intrinsically disordered protein (units = Svedbergs)
MD Molecular dynamics S Svedbergs
NMR Nuclear magnetic resonance SV Sedimentation velocity
OMP Outer membrane protein uOMP Unfolded outer membrane protein
Rg Radius of gyration (A) VDW van der Waals
Ry Translational hydrodynamic radius (/OX) vHW van Holde—Weischet
PPII Polyproline IT
s* Apparent sedimentation coefficient in
Svedbergs (10712 s) Introduction
520, Sedimentation coefficient corrected to
20 °C in water (units = Svedbergs) Outer membrane proteins (OMPs) in Gram-negative bacte-
<S040 > Weight average sedimentation coefficient ~ ria encounter several physical challenges to folding. After
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cytoplasmic translation and translocation across the inner
membrane, these unfolded and hydrophobic proteins must
cross the periplasm without misfolding or aggregating.
The unfolded polypeptides encounter a large kinetic bar-
rier to folding into the outer membrane (Barral et al. 2004;
Gessmann et al. 2014), and the time scale for this process
is minutes (Ureta et al. 2007; Costello et al. 2016). To
overcome these cellular obstacles, periplasmic chaperones
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suppress unfolded OMP (uOMP) aggregation and promote
folding competent conformations before uOMPs interact
with the B-barrel assembly machine (BAM), which cata-
lyzes their folding into the outer membrane (Hagan et al.
2010; Gessmann et al. 2014; Ulrich and Rapaport 2015;
Plummer and Fleming 2016; Chaturvedi and Mahalak-
shmi 2017; Konovalova et al. 2017; Tomasek and Kahne
2021). Unfolded OMP tendencies to misfold and aggregate
as well as the overall organization of the cell envelope
mean that uOMPs must exist in the periplasm in either a
free or chaperone-bound state without forming toxic pro-
tein aggregates. Insight into the conformations of u"OMP
ensembles (Krainer et al. 2017) is of great importance
for understanding OMP biogenesis in the cell envelope
and for obtaining structural models of chaperone-uOMP
complexes.

Several methods have been developed to generate and
analyze chemically denatured states of classically folded sol-
uble proteins (Fitzkee and Rose 2004; Jha et al. 2005; Curcé
et al. 2012) or conformational ensembles of intrinsically
disordered proteins (IDPs) (Pelikan et al. 2009; Langridge
et al. 2014; Allison 2017; Bonomi et al. 2017; Shrestha
et al. 2019; Ahmed et al. 2020; Larsen et al. 2020; Tesei
et al. 2021). Coarse-grained and all-atom simulations uti-
lizing various force fields, simulation conditions, and intra-
molecular restraints have been the computational foundation
of such methods. The primary goal is to create a structural
ensemble described by calculated properties in agreement
with experimental properties (Bernad¢ et al. 2007; Réycki
et al. 2011; Antonov et al. 2016; Shevchuk and Hub 2017;
Potrzebowski et al. 2018; Shrestha et al. 2019; Bottaro et al.
2020; Ahmed et al. 2021; Tesei et al. 2021). Experimental
properties indicative of the overall size and shape of a col-
lection of unfolded, denatured, or disordered polypeptides
include the radius of gyration (R) and maximum dimension
(Dpmax) determined by scattering methods; rotational dif-
fusion determined by nuclear magnetic resonance (NMR)
or fluorescence methods; translational diffusion determined
by NMR or single-molecule fluorescence methods; and the
sedimentation coefficient determined by analytical ultracen-
trifugation (AUC). To match computational and experimen-
tal values, simulation conditions are configured to bias the
resulting ensemble toward the experimental value directly,
or alternately, the initial unbiased ensemble is trimmed or
weighted to obtain agreement with experimental data.

We capitalized upon the overall process described above
to develop a simulation procedure that creates uOMP ensem-
bles consistent with experimentally determined hydro-
dynamic properties. The procedure described here uses a
two-step protocol with a coarse-grained molecular dynam-
ics (MD) first step to create a well-sampled conformational
ensemble followed by an all-atom MD second step to relax
the stereochemistry of the polypeptide.
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Unlike typical soluble proteins or IDPs, OMPs contain
several hydrophobic segments corresponding to trans-
membrane strands. Therefore, we reason that hydrophobic
interactions play a significant role in dictating the structural
properties of the uOMP ensemble in aqueous solutions. To
control the degree of hydrophobic collapse during simula-
tions, we used the coarse-grained molecular dynamics simu-
lation software application CafeMol (Kenzaki et al. 2011)
for our initial simulations of the unfolded state. CafeMol has
an easily configured force field with a tunable hydrophobic
potential term and does not require solvent atoms. To experi-
mentally capture the average size and shape of an uOMP,
we used sedimentation velocity analytical ultracentrifuga-
tion (SV-AUC) to determine sedimentation coefficients
as a function of chemical denaturant. Although scattering
methods are most frequently employed for defining ensem-
bles of soluble proteins (Riback et al. 2017; Bowman et al.
2020; Ahmed et al. 2021), the high concentrations required
for those experiments are not accessible to unfolded mem-
brane proteins. In contrast, sedimentation velocity can be
conducted at much lower protein concentrations below the
threshold for aggregation. Subsequent comparison of experi-
mental and calculated sedimentation coefficients for the
thousands of models generated during a simulation requires
a rapid method to calculate hydrodynamic properties. For
this purpose, we used HullRad, a fast and accurate program
that works with both folded and unfolded protein structural
models (Fleming and Fleming 2018). The final ensembles
of the two uOMPs described here are more compact than
unfolded soluble protein ensembles and reveal variations
in the unfolded state properties attributable to either amino
acid composition or sequence differences that warrant fur-
ther investigation. The simplicity of this method allows for
a more extensive survey of uOMPs to more deeply under-
stand unanswered questions in the field of OMP biogenesis
such as how chaperones recognize and bind their u"OMP
clients, whether OMP sequences are optimized to prevent
aggregation in the unfolded state, the possibility of intrinsic
structure in the unfolded state, and the importance of solvent
quality in the periplasm.

Materials and methods

Sedimentation velocity as a function of urea
concentration

Both unfolded OmpA ;; (uOmpA ,;,, the p-barrel domain
of OmpA only) and unfolded OmpX (uUOmpX) were diluted
to2pMin 1, 2, 4, 6, or 8 M urea with either a 20 mM Tris
or 20 mM sodium phosphate, pH 8 background buffer for
SV-AUC. Samples were prepared and centrifuged in trip-
licate. All SV-AUC experiments were performed using a
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Beckman XL-A ultracentrifuge (Beckman Coulter) and cells
with 1.2 cm double-sector epoxy centerpieces and sapphire
windows. Each sample was centrifuged at 25 °C using a
4-hole, An-60Ti rotor at a rotor speed of 50,000 rpm. Radial
scans at 230 nm were acquired with 0.003 cm radial steps
in continuous mode with no delay between scans. Prior to
starting each run, the rotor was temperature equilibrated in
the instrument for at least 60 min. A protein concentration
of 2 pM was chosen for these two uOMPs because this con-
centration is below the threshold aggregation concentration
at 1 M urea (Tan et al. 2010; Danoff and Fleming 2011)
and in the linear absorbance range at 230 nm for both. The
extinction coefficients at 280 nm of uOmpA ,; and uOmpX
are 45,090 M~ em~! and 31,860 M~! cm™!, respectively.

All SV-AUC data sets were analyzed using dc/dz+ (Philo
2006). Sedimentation coefficient distributions (g(s*) distri-
butions) were corrected to 20 °C in water using the appropri-
ate densities (p), viscosities (#7), and partial specific volumes
(v) for each buffer and protein calculated using SEDNTERP
(Laue et al. 1992). These values are presented in Table S1,
which also shows the buffer-corrected experimental weight
average sedimentation coefficient (< s,,,,>), buffer-cor-
rected sedimentation coefficient determined by fitting to a
gaussian function in dc/df +({s,,,}), and the experimen-
tally determined molar masses. Plots of {s,,,} versus urea
concentration were fit to a line (y=mx+y,) to extrapolate
the sedimentation coefficient of the uOMP in 0 M urea
(520.,(0 M urea)) from the y-intercept. Errors reported on
the y-intercept represent the 95% confidence intervals from
globally fitting all sedimentation coefficients collected in
triplicate for each protein at each urea concentration.

To ensure that the SV-AUC datasets represent the
sedimentation of a single, monomeric species, data of
uOmpA 7, and uOmpX sedimenting in 1 M urea was also
analyzed in SEDANAL (Stafford and Sherwood 2004), by
the c(s) method in sedfit (Schuck 2000), and using the van
Holde—Weischet (vHW) method in UltraScan III (Demeler
and Van Holde 2004; Demeler 2005). All four analysis meth-
ods indicate that the uOMP ensembles of both uOmpA ;;;
and uOmpX behave as a single species whose molar masses
match those expected for monomeric protein (molar masses
are 18.9 kDa and 16.5 kDa for OmpA and OmpX, respec-
tively) and whose sedimentation coefficients are consistent
across analysis methods (Figure S1).

Generation of structural ensembles

For each protein, a heavy atom model was built from the
UNIPROT sequence of the protein using PyYMOL (DeLano
2015). An extended conformation was obtained using back-
bone torsion angles ¢ =—75° and yw=145°. We performed
coarse-grained MD simulations on the extended protein
model using CafeMol (Kenzaki et al. 2011), which first

converts the protein chain into a random C,-only chain
conformation. Simulations were run at 298 K using Lan-
gevin dynamics with residue-specific mass, a flexible local
potential, excluded volume repulsive interaction, and a
hydrophobic interaction potential. Step size was 0.4, and
total simulation steps equaled 2.5 107 with a conformation
saved every 1000 steps resulting in 2500 frames. A series of
different simulations for each protein were run at different
coefficients of hydrophobic interaction (described below),
and a replicate simulation was run on each protein at the
optimal hydrophobic interaction coefficient to ensure the
consistency of results.

Every other frame from the last 2000 frames of the saved
coarse-grained trajectory was extracted using CATDCD
(Humphrey et al. 1996) to ensure non-correlated sampling
of the trajectory. VMD (Humphrey et al. 1996) was used to
write 1000 PDB files of C,-only structures, and PULCHRA
(Rotkiewicz and Skolnick 2008) was used to rebuild side
chains and back map the amino acid residue. All-atom MD
simulations in an implicit solvent were carried out on each
of the 1000 structures using NAMD (Phillips et al. 2005)
to relax van der Waals (VDW) clash and obtain Ramachan-
dran compatible backbone torsion angles. These simulations
were controlled with CHARMM 36 (Huang and Mackerell
2013) at 298 K with Langevin temperature control under
generalized Born implicit solvent conditions, ion concentra-
tion=0.3, and o cutoff=12.0. The system was minimized
with 1000 steps, and MD continued for 25,000 steps with a
1.0 fs time step. Hydrodynamic properties were calculated
using HullRad (Fleming and Fleming 2018) for the final
ensemble of structures.

All computer methods described here may be carried out
with Mac OS or LINUX machines; the software is freely
available.

Results

uOmpA,;, and uOmpX sedimentation coefficients
can be linearly extrapolated to obtain s,, , values
in the absence of urea

To simulate unfolded outer membrane protein ensembles,
experimentally derived structural properties are required.
We performed sedimentation velocity on uOmpA ;; and
uOmpX in several urea concentrations between 1 and 8 M.
At urea concentrations below 1 M, these uUOMPs begin to
aggregate (Tan et al. 2010; Danoff and Fleming 2011, 2015).
Both uOMPs were found to be monomeric and monodis-
perse at protein concentrations of 2 uM in urea concentra-
tions as low as 1 M (Figure S1). Figure 1A, B show the
raw g(s*) distributions of uOmpA |, and uOmpX, respec-
tively, at five different urea concentrations. The proteins both
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Fig. 1 The sedimentation of A B
uOmpA ;; and uOmpX depends
linearly on the urea concen- 0.81 8 M urea 0.81 8 Murea
tration. A and B Representa- 6 M urea 6 M urea
tive g(s*) distributions of A —— 4 M urea —— 4 M urea
uOmpA 7, and B uOmpX in 0.6 —— 2Murea 0.61 —— 2Murea
1,2,4, 6, and 8 M urea. C ~ —— 1 Murea ~ —— 1 M urea
and D Representative plots of \‘g.’/ 041 % 041
normalized g(s,,,) distributions
of A uOmpA ;; and B uOmpX
inl,2,4,6,and 8 M urea. E 0.2 0.2
uOmpA 5 {s,,,} versus urea
concentration fits a line with
the equation y=—0.04x+1.59. 0.0 0 1 2 3 0.0 0
F uOmpX {s,,,} versus s* (S)
concentration fits a line with
the equation y=—0.04x+ 1.53. C D
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distributions and {s,,,} values.
Each experiment was performed
in triplicate, and all three data 0'06 1 2 3 0.0 0 1 2 3
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sediment and diffuse more slowly at higher urea concen-
trations due partly to the increased density and viscosity
of the solvent. However, even after correcting to s, ,, the
sedimentation of the uOMP still linearly depends on the
urea concentration, indicating that urea influences the over-
all expansion or compaction of the uOMP conformational
ensemble (i.e. the shape factor of the ensemble) (Fig. 1C,
D). We used this linear urea dependence to obtain the sedi-
mentation coefficient in the absence of urea, the intercept,
termed sy ,,(0 M urea). Shown in Fig. 1E, F, the s5,,,(0 M
urea) values for utOmpA ;; and uOmpX equal 1.59 and 1.53
Svedberg, respectively, and these extrapolated sedimenta-
tion coefficients were used to guide the simulated uUOMP
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ensemble calculations. These experimental values agree
with previously published results and are independent on
the buffer employed (Figure S2) (Danoff and Fleming 2011).
All data, fit parameters, and errors for each dataset are listed
in Tables 1 and S1.

CafeMol hydrophobic interaction potentials differ
for uOmpA,,, and uOmpX

Unfolded ensembles of the two model OMPs were created as
described in the methods using coarse-grained MD simula-
tions targeted to the experimentally determined s,, (0 M
urea). The complete force field used during CafeMol
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Table 1 Parameters from linearly fitting plots of s,,, versus urea
concentration

Protein Buffer background  Slope Y-intercept (95% CI)

Svedberg/M  Svedberg

uOmpA ;; 20 mM sodium —0.040 1.59 (1.58-1.60)
phosphate

20 mM tris —0.036 1.61 (1.59-1.63)

uOmpX 20 mM sodium —0.038 1.53 (1.52-1.54)
phosphate

20 mM tris —0.034 1.53 (1.52-1.54)

Three replicates were performed at each urea concentration, and all
data were globally fit to a linear equation. Errors are reported as the
95% confidence interval

simulations consists of four pseudo-energy terms: (1) vol-
ume exclusion; (2) backbone angle; (3) backbone torsion;
and (4) hydrophobic potential. The backbone angles, back-
bone torsions, and hydrophobic factors are amino acid spe-
cific, and default values were used. The hydrophobic interac-
tion potential is defined as,

Vip = —Cup Z 5HP,A(i)SHP(Pi) 1))
i€HP

where cyp scales the overall strength of the hydrophobic
interactions, eyp 4 is a residue-specific hydrophobicity fac-
tor, and Sypp;, quantifies the degree of “buriedness” of the
residue (Kenzaki et al. 2011). As the targets are membrane
proteins, we tuned the strength of the hydrophobic interac-
tion potential, the cyp term, to bias the ensembles during
coarse-grained simulation (Fig. 2). We found that cyyp values
equal to 0.8 and 1.1 reproduce the experimentally-observed
data for uOmpA ;, and uOmpX, respectively.

We note that the short all-atom refinement step follow-
ing PULCHRA is required to obtain models with realistic
molecular properties. Elimination of this step results in some
atomic VDW clash as well as unfavorable backbone tor-
sion angles. Figure 3 (green dots) shows this unfavorable
backbone dihedral angles for alanine residues in the ini-
tial uOmpA ;;; 1000-member ensemble. These clashes are
relieved by the short all-atom MD step (Fig. 3, black dots).
Figure S3 shows that the Ramachandran plots of all resi-
due types also agree with backbone ¢ and y values from an
unbiased coil library following the short molecular dynamics
step (Beck et al. 2008). The simulations for both proteins
reached equilibrium (Figure S4).

Unfolded state ensembles include a wide range
of conformations

Figure 4 shows the distributions of calculated sedimentation
coefficients (s,,,) for uOmpA,;; and uOmpX. uOmpA |,

1.8-
17 ©
AT % O
1.6 oCQ@
@ 154 ©
N 144 ©
S
v 1.3- o
o
1.2
o
114 4
1_
T T T T T T T T
05 06 07 08 09 1 11 1.2
Hydrophobic Weight (c,,,)

Fig.2 The effect of the hydrophobic coefficient on the CafeMol
modeled sedimentation coefficient. The value of ¢y during coarse-
grained simulation with CafeMol varied between 0.5 and 1.2, and the
average sedimentation coefficients were calculated from each ensem-
ble of 1000 structures using HullRad and after back mapping with
PULCRA. Grey data points, uOmpA ,;;; orange data points, uOmpX

has a non-symmetrical distribution skewed toward more
expanded conformations with smaller sedimentation coef-
ficients, whereas uOmpX exhibits an approximately normal
distribution. Despite having the same number of f-strands
and similar molar masses, these two uOMPs present different

180
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-180

-180 -120 -60 0 60 120 180

¢

Fig.3 Non-favorable backbone dihedral angles in initial back-
mapped structures are relieved by all-atom simulation. Ramachandran
plot of ALA backbone angles in a 1000-member uOMP ensemble
before (green) and after (black) refinement using a short all-atom MD
simulation. The black data are consistent with the ALA ¢, y angle
distribution observed in an unbiased coil library (Beck et al. 2008)
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Fig.4 The sedimentation coefficients of unfolded outer membrane
protein ensembles reflect a wide range of conformations. Panels A
and B are uOmpA ;; and uOmpX, respectively. Three representative
atomic models from across the distribution are shown for each uOMP.
The average calculated sedimentation coefficient from the distribution

distributions, indicating that properties of the ensemble
derive from amino acid composition or sequence. Duplicate
simulations confirm this finding (data not shown). A more
extensive survey of several uUOMPs will be required to reveal
the basis of these observed sequence-specific differences.

All models of the same protein have the same molar mass,
which means that the spread of the calculated sedimentation
coefficients reflects a wide range of expansion or contraction
represented in the final ensembles. Figure 4 shows examples
of conformations across the full range of the distribution as
molecular surface models. Conformations include compact
globules, slightly expanded globules, and “tadpole-like”
shapes similar to those observed in IDP ensembles (Das and
Pappu 2013). Supplementary movies OmpA171.mp4 (Sup-
plementary File 2) and OmpX.mp4 (Supplementary File 3)
illustrate this wide range of conformational states, and Fig. 5
displays the histograms of R, Dyax, and N-terminal to
C-terminal distance for the ensembles. The standard devia-
tions found here are consistent with larger conformational
sampling afforded by the current procedure in comparison
to the sparse ensemble in Marx et al. (2020).

The computed and experimental s, ,, distribution widths
cannot be directly compared. The widths of the computed
distributions derive from the range of accessible uOMP con-
formations, whereas the widths of the experimental g(s, )
distributions result from diffusion effects. Any contribution
from conformational heterogeneity to the width of the exper-
imental distribution is not observable due to the rapid inter-
conversion between unfolded conformations, and the sedi-
mentation coefficient is a weighted average of the ensemble
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of uOmpA ;, is 1.59 S; a vertical dashed line marks the experimental
sedimentation coefficient of 1.59 S. The average calculated sedimen-
tation coefficient from the distribution of uOmpX is 1.50 S; a verti-
cal dashed line marks the experimental sedimentation coefficient of
1.53S

of isomeric conformations (Scott and Winzor 2015). Thus,
the computed distribution is much narrower than the experi-
mental g(sy ) distribution. Future development of methods
to model the diffusional broadening of molecular ensembles
would be an important advance in the field.

Discussion

During OMP biogenesis in Gram-negative bacteria, unfolded
OMPs traverse the aqueous periplasm before folding into the
outer membrane. Periplasmic chaperones bind uOMPs dur-
ing this process to prevent aggregation and further facilitate
folding. To fully understand the folding pathways of these
bacterial membrane proteins, we developed a method to
delineate the conformational states of free uUOMPs so that we
may determine how binding to periplasmic chaperones alters
these states. Knowledge about uOMP ensembles may even
explain how the nascent proteins are recognized by peri-
plasmic chaperones in the first place. Additionally, access to
uOMP ensembles is helpful for building structural models
of a chaperone-uOMP complex, as has recently been carried
out for SurA binding to uOmpA ;; (Marx et al. 2020) and
for Skp binding to full length uOmpA and uOmpW (Zaccai
et al. 2016). Indeed, the average R values of uOmpA 4,
and uOmpX from the ensembles in this study are consist-
ent with the R of similarly sized uOmpW when bound to
the chaperone Skp (Zaccai et al. 2016). This indicates that
Skp binds to highly populated conformations in the unfolded
state ensemble. In contrast, the unfolded conformation of
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OmpA ;, when bound to SurA was found to be much more
expanded than the average value of the current ensem-
ble (Marx et al. 2020). One interpretation of this result is
that SurA binding provides the energy to expand uOMPs.
However, a minor population of extended uOmpA ;; con-
formations exist in the computed ensembles, so an alterna-
tive explanation is that SurA selectively binds these lowly
populated, extended conformations. Thus, it is important to
accurately represent the distribution of the conformations in

0 20 ' 40 I 60
End-to-End Distance (A)

! I T I
80 100 120 140 O 20 40 60 80 100 120 140
End-to-End Distance (A)

the unfolded state ensemble as it may influence the thermo-
dynamics of binding.

The negative slope of the uUOMP sedimentation coeffi-
cient as a function of urea concentration indicates that the
unfolded ensembles are more expanded in higher urea con-
centrations and more collapsed in lower urea concentrations.
These results are consistent with the expansion of unfolded,
disordered, or denatured ensembles in high concentrations of
chemical denaturant reported in the literature (Sherman and

@ Springer
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Haran 2006; Tezuka-Kawakami et al. 2006; Hofmann et al.
2012; Aznauryan et al. 2016; Zheng et al. 2016; Peran et al.
2019). The urea-dependence of the uOMP global hydrody-
namic properties, like their sedimentation coefficient, serves
as a reminder that the presence of even low urea concentra-
tions may affect the properties of uUOMPs as well as their
binding affinities to chaperones.

The urea dependence also raises the question of solvent
quality for this class of proteins. The classic experiment to
determine a good solvent for a specific polymer is to apply
the polymer theory analysis of Flory (Flory 1951), who
showed that for a heteropolymer in solution the R follows
the scaling law R; =R N, where N is the number of resi-
dues, R, is a constant related to persistence length, and v is
a factor that depends on solvent quality. Values of v range
from 0.33 for a collapsed polymer in a poor solvent, through
0.5 for a theta (or neutral) solvent, to 0.6 in a good sol-
vent that completely “solvates” and expands the polymer.
It has been shown that water is a good solvent for unfolded
but foldable soluble proteins, resulting in expanded dena-
tured state ensembles (Riback et al. 2017). But this data
runs counter to widespread ideas that hydrophobic interac-
tions drive the collapse of unfolded ensembles in water. It is
not unexpected, however, that unfolded membrane proteins
may experience some degree of hydrophobic collapse, which
could explain their linear urea dependence. To compare the
state of collapse of the uUOMPs described here with other
unfolded state ensembles, we plotted the average Ry val-
ues for each uOMP as a function of residue number upon
the Flory scaling law functions (Fitzkee and Rose 2004). In
contrast to the results shown by Riback et al., the average
R values for both uOmpA 5, and uOmpX lie on the line
defined by the scaling factor equal to 0.5 (Fig. 6). This result
is consistent with uOMPs adopting conformations that are
more collapsed than unfolded soluble proteins (scaling fac-
tors > (.5) and indicates that water is a neutral solvent for
uOMPs.

The comparatively reduced Flory scaling factor for
uOMPs also explains a smaller-than-expected translational
hydrodynamic radius (Ry) given the proportion of residues
in polyproline II (PPII) conformations. The mean ¢ and y
values for uOmpA |;; and uOmpX ensembles are plotted in
Figure S5. Although the proline content for OmpA;; is only
4.7% (OmpX =2.7%), the fraction of residues with a PPII
conformation is 12.8% for OmpA ;; and 12.1% for OmpX.
This relatively large fraction of PPII in an unfolded ensemble
is not necessarily unexpected (Mezei et al. 2004; Fleming
et al. 2005). However, in an ensemble of IDPs, such a find-
ing would predict expanded conformations with an average
Ry of~37 A for a protein with the same number of residues
as OmpA ;; (English et al. 2020). In contrast, the average
HullRad-calculated Ry value for the uOmpA ,,;, ensem-
ble here equals 29.0 A reflecting a degree of compaction
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Fig.6 The calculated radius of gyration (R;) for uOMPs reflects
ideal random-coil behavior in a good solvent. The ensemble average
Rg (<Rg>) for uOmpA ;; (grey circle) and uOmpX (orange square)
are plotted versus number of amino acid residues, N. The lines reflect
the function R;=2.0N" where v equals 0.6 (solid line), 0.5 (dashed
line), 0.33 (dotted line)

greater than that found with typical IDPs. Thus, unfolded
outer membrane proteins appear to have solution properties
distinct from those of IDPs.

The two-part protocol described here, including both a
coarse-grained and all-atom simulation, was designed to
ensure quick and extensive sampling of available confor-
mational space of the proteins. Even within the confines of
allowed ¢ and y angles determined by the coarse-grained
force field, the refined models still exhibit a wide range of
backbone conformations with an average backbone dihedral
angle deviation of greater than 50° across the whole protein
(excepting prolines) (Fig. 7A, B). Accordingly, the ensemble
also displays wide ranges of compaction or expansion and
differences in R, Dy;ax. and end-to-end distances (Fig. 5).
Additional experimental data on intrinsic structure such as
specific amino acid residue distances or backbone dihedral
angles would be useful in further validating these types of
ensembles.

We acknowledge that the sample size presented in this
paper is small, but these initial observations are intriguing,
and it will be interesting to determine whether these obser-
vations will hold true for a range of uUOMPs with different
molar masses. The method we have developed will facili-
tate future investigations of uOMPs of varying sequence
and molar mass to more fully address questions concerning
uOMP conformations. A more extensive survey of uOMPs
would reveal any length-dependent trends in s, (0 M urea)
and may explore the sequence determinants of unfolded
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Fig.7 Refined all-atom simulation models exhibit a wide range of
backbone conformations. The average angular standard deviations of
backbone y and ¢ angles of 1000 refined structures for A uOmpA171
and B uOmpX are plotted as bar graphs. The very low ¢ angular
deviations are observed for proline residues

ensemble properties including the effects of global hydro-
phobic content, local clustering of hydrophobic residues, and
charged residues (Bowman et al. 2020).

The use of coarse-grained simulations for the initial
ensembles and HullRad to connect computational models
and experimental data makes for a simple, modifiable, and
time-efficient method to generate unfolded ensembles. Here
we use the sedimentation coefficient to direct ensemble gen-
eration, but other hydrodynamic properties such as radius
of gyration or translational diffusion coefficient may also
be easily implemented in this procedure because HullRad
calculates a full suite of hydrodynamic and physical proper-
ties. The procedure can also be extended to other unfolded
but foldable protein systems such as unfolded membrane
proteins in the mitochondrial inner membrane space due
to the tunable hydrophobic potential term in CafeMol. The
computationally-created ensembles of uOMPs allow for

the analysis of intrinsic properties of the unfolded state,
for exploring the mechanism of recognition by periplasmic
chaperones, and for building structural models of chaperone-
uOMP complexes.
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