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ASCEND: A Scalable and Energy-Efficient Deep
Neural Network Accelerator With
Photonic Interconnects

Yuan Li

Abstract—The complexity and size of recent deep neural
network (DNN) models have increased significantly in pursuit of
high inference accuracy. Chiplet-based accelerator is considered
a viable scaling approach to provide substantial computation
capability and on-chip memory for efficient process of such DNN
models. However, communication using metallic interconnects
in prior chiplet-based accelerators poses a major challenge to
system performance, energy efficiency, and scalability. Photonic
interconnects can adequately support communication across
chiplets due to features such as distance-independent latency,
high bandwidth density, and high energy efficiency. Further-
more, the salient ease of broadcast property makes photonic
interconnects suitable for DNN inference which often incurs
prevalent broadcast communication. In this paper, we pro-
pose a scalable chiplet-based DNN accelerator with photonic
interconnects named ASCEND. ASCEND introduces (1) a novel
photonic network that supports seamless intra- and inter-
chiplet broadcast communication, and flexible mapping of diverse
convolution layers, and (2) a tailored dataflow that exploits
the ease of broadcast property and maximizes parallelism by
simultaneously processing computations with shared input data.
Simulation results using multiple DNN models show that ASCEND
achieves 71% and 67% reduction in execution time and energy
consumption, respectively, as compared to other state-of-the-
art chiplet-based DNN accelerators with metallic or photonic
interconnects.

Index Terms—Deep neural network, photonic interconnect,
chiplet, accelerator, dataflow.

I. INTRODUCTION

ECENT deep neural network (DNN) models have sig-
nificantly increased in complexity and size with the
goal of improving inference accuracy [1]-[8]. As a result,
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the underlying computing systems must scale up in compu-
tation capability and on-chip memory for efficient process
of such DNN models [4]. Chiplet-based accelerator [9]-[12]
is considered a viable scaling approach as the scaling of
a monolithic chip slows down due to concerns related to
power density, yield, and fabrication cost [11], [13]. However,
communication across chiplets using metallic interconnects in
prior chiplet-based accelerators [12] poses a major challenge
to system performance, energy efficiency, and scalability. This
is because the long-distance communication across chiplets
accentuates latency and latency discrepancy, inevitably leading
to performance degradation and difficulty in data movement
orchestration. Besides, the energy consumption of commu-
nication across chiplets is higher than within a monolithic
chip [12], [14].

Disruptive technologies such as photonic interconnects
can potentially overcome the fundamental limitations of
metallic interconnects [15]-[18]. Data can propagate through
waveguide within one hop regardless of the distance between
source and destination, maintaining low and uniform commu-
nication latency in a chiplet-based accelerator. Communica-
tion bandwidth can be increased through techniques such as
wavelength-division multiplexing (WDM) and space-division
multiplexing (SDM) [19]. Photonic interconnects have also
shown advantage in energy efficiency for long-distance com-
munication as often seen in chiplet-based accelerators [15],
[17]. Despite the above superior features of photonic intercon-
nects, the salient ease of broadcast property [15], [16] makes
photonic interconnects especially suitable for DNN infer-
ence which often incurs prevalent broadcast communication
[20]-[23].

Prior photonic networks [24]-[35] often target inter-
processor communication typically observed in CPUs or
GPUs, and support uniform bandwidth provision at relatively
high cost. Besides, the ease of broadcast property of photonic
interconnects is not fully exploited. Some prior photonic
networks [27], [34] only employ broadcast to facilitate
cache coherence protocol. Other photonic networks [29],
[31], [33], though constructed by single-write-multiple-read
(SWMR) channels, disable the broadcast capability. As a
result, a novel photonic network which is tailored to DNN
inference and efficiently supports broadcast communication is
necessary.
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Employing photonic interconnects in chiplet-based
accelerators also alters the primary target of dataflow
optimization. Prior dataflow optimizations for accelerators
with metallic interconnects [12], [36]-[41] often prioritize
exploiting locality over broadcast communication. For
example, some dataflow optimizations [12], [42] exploit
locality of weights at the cost of only being able to broadcast
input features. By contrast, [40] exploits locality of input
features at the cost of only being able to broadcast weights.
Due to the distance-independent latency feature and ease
of broadcast property of photonic interconnects, a tailored
dataflow that enables broadcast of both types of input data
(weights and input features) is beneficial, when a photonic
network is implemented in a chiplet-based accelerator.

In this paper, we propose a chiplet-based DNN acceler-
ator with photonic interconnects named ASCEND. ASCEND
includes (1) a novel photonic network that facilitates massive
broadcast communication, and (2) a tailored dataflow that
exploits the ease of broadcast property to improve parallelism.
The contributions of this paper include:

A Novel Photonic Network: We construct a unit 2D process-
ing element (PE) array by selectively grouping local PEs
and corresponding PEs across different chiplets in columns
and rows, respectively. A waveguide facilitates the broadcast
communication from the global buffer (GLB) to this PE
array through WDM while a second waveguide reuses the
wavelengths for unicast communication from each individual
PE to the GLB. A chiplet-based accelerator is constructed
by aggregating multiple such PE arrays and connecting them
to the GLB through SDM. The resulting photonic network
supports (1) seamless one-hop intra- and inter- chiplet broad-
cast communication, and (2) flexible mapping of diverse
convolution layers at the granularity of a unit 2D PE array.

A Tailored Dataflow: We introduce a broadcast-based
output-stationary dataflow that exploits the broadcast
communication capability of the proposed photonic network
and facilitates high parallelism. Specifically, this dataflow
enforces intra-chiplet broadcast of input features and
inter-chiplet broadcast of weights by spatially mapping
computations with shared input features and weights to
columns and rows of PEs in the unit 2D PE arrays,
respectively. Furthermore, the output-stationary nature of this
dataflow minimizes the unicast communication of writing
back intermediate data from PEs to the GLB.

Evaluation and Design Space Exploration: We compare
ASCEND with other state-of-the-art chiplet-based accelerators
with metallic or photonic interconnects using multiple DNN
models. Simulation results show that ASCEND achieves up
to 71% and 67% reduction in execution time and energy
consumption, respectively. We further perform design space
exploration by varying multiple factors such as the size of the
unit 2D PE array and the capacity of the GLB.

II. BACKGROUND AND MOTIVATION
A. Communications in DNN

The computations involved in a typical convolution layer
can be presented as a 6-dimension nested loop over weight
kernels, input feature maps (ifmaps), and output feature maps
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Fig. 1. Computations in a convolution layer.
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Fig. 2.

Multiplications with shared weights or input features.

(ofmaps), assuming the batch size of ifmaps to be 1. As illus-
trated in Fig. 1 and Algorithm 1, the dimensions include the
number of weight kernels (k), the number of input channels
(c), the height (r) and width (s) of weight kernels, and the
height (h) and width (w) of ifmaps. The height (e) and width
(£) of ofmaps are not independent and can be derived from
the above 6 dimensions. In the single-batch case, e=h-r+1
and f=w-s+1 (assume stride of 1). As shown in Algo-
rithm 1, there are two types of read-only input data: weights
W[k, r,s,c] and input features I[h,w,c]. Meanwhile,
the read-and-write intermediate computation results, known
as partial sums (psums), are accumulated to obtain the final
output features O [k, h-r+1,w-s+1].

Unlike the dynamic communication patterns often observed
in generic applications in CPUs and GPUs, the communication
patterns incurred in DNN inference are predetermined by
factors such as the dimension values (C, K, H, W, R, S) in
the nested loop, the parameters of the underlying comput-
ing hardware, and the utilized dataflow. Since each psum
I[h,w,c]lxW[k,r,s,clis unique and only involved in
accumulation once, we focus on identifying the broadcast
communication incurred during the separate transmission of
two input data types: weights W[k, r, s, c] and input fea-
tures I[h,w,c]. Fig. 2 lists multiplications involved in a
convolution layer along k, h/w, and r/s dimensions. Please
note that the ¢ dimension is not shown in Fig. 2, as there
is no data sharing and broadcast communication along this
dimension. We utilize a symbol “x” to represent the value
in ¢ dimension. We observe that multiplications along the k
and r /s dimensions share the same input feature I [h,w, c],
while multiplications along the h/w dimension share the
same weight W[k, r, s, c], indicating the possible broadcast
communication for both types of input data. However, prior
dataflow optimizations [12], [40], [42] are not developed to
fully exploit the broadcast communication. For example, [42]
and [12] spatially distribute multiplications along the r/s and
k dimensions (@ and @ in Fig. 2), respectively, to exploit
the locality of weights at the cost of only being able to
broadcast input features. By contrast, [40] spatially distributes
multiplications along the h/w dimension (® in Fig. 2) to
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Fig. 3. A WDM photonic link connecting two transmitters and receivers.

Algorithm 1: Nested Loop Representation

1 for c < [0:C) do

2 for k < [0:K) do

3 forh <« [0:H) do

4 for w < [0:W) do

5 for r < [0:R) do

6 for s < [0:S) do

7 O[k,h-r+1,w-s+1]1+=I[h,w,c]xW[k,r,s,c]

exploit the locality of output features at the cost of only being
able to broadcast weights. Given that the transmission of both
weights and input features can incur broadcast communica-
tion, a tailored dataflow that spatially distributes multiplica-
tions along the k and h/w dimensions (® in Fig. 2) and
enables simultaneous broadcast of weights and input features
is beneficial when photonic interconnects are employed. Fully-
connected layers can also be mathematically framed using
the nested loop representation in Algorithm 1, by restricting
H=R and W=S. DNN models also include other layer types
such as pooling and normalization. Our work focuses on the
convolution and fully-connected layers as they dominate the
computation and memory communication [43], [44].

B. Photonic Interconnects

We present a photonic link that connects two sets of trans-
mitter and receiver by multiplexing two wavelengths in Fig. 3.
The light of wavelengths 10 and A1 is generated by an off-chip
laser source and coupled into a waveguide using an optical
coupler [45]. Two micro-ring resonators (MRRs) [46], MRRO
and MRR1, work as modulators to modulate the incoming
electrical signals on wavelengths 10 and A1, respectively.
Another two MRRs, MRR2 and MRR3, work as filters to select
modulated wavelengths and forward them to the corresponding
photodetectors [16]. Each set of modulator and filter MRRs
can only work on a specific wavelength (e.g., MRRO and
MRR2 work only on wavelength 10). The electrical signals
generated from photodetectors are then amplified through tran-
simpedance amplifiers (TTAs) and forwarded to comparators
to retrieve the initial data being transmitted. All MRRs that
function as either modulators or filters, are tuned by separate
resistive heaters with specific thermal tuning modules to miti-
gate thermal and process variations [16], [29]. The example in
Fig. 3 only shows the multiplexing of two wavelengths, prior
work has shown as many as 64 wavelengths multiplexed in

Input Port Through Port Input Port Through Port
(1-q)
Bias Voltage
MRR MRR
n+ n+
a
Drop Port Drop Port
(a) (b)

Fig. 4. Optical tunable splitter that works at (a) off-resonance state and (b) a
transient state with a split ratio of a /(1 — a).
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Fig. 5. Architecture and wavelength allocation of a 4 x 4 unit 2D PE array.

a waveguide with each wavelength operating at 10 Gbps data
rate [25], [47]-[49].

In addition to the common components shown in Fig. 3,
ASCEND includes a special component named tunable split-
ter [50] to facilitate broadcast communication. Different from
modulators and filters that work at either on- or off- reso-
nance, a tunable splitter works at a transient state between
the on- and off- resonance. As shown in Fig. 4, the regions
outside and inside a tunable splitter ring are with n-type and
p-type dope, respectively, to form a PIN diode structure. When
no bias voltage is applied to the PIN diode as shown in
Fig. 4 (a), the tunable splitter is at off-resonance and light
from the input port is directly forwarded to the through port.
When applying a proper bias voltage to the PIN diode as
shown in Fig. 4 (b), the tunable splitter works at the transient
state to guide a fraction of light to the drop port while
forwarding the remaining (1-a) fraction of light to the
through port. The split ratio is defined as a/ (1-a). [50]
reports that different split ratios in the range of [0.4,1.8]
can be obtained by tuning the bias voltage in the range of
[0,5V]. The applied bias voltage is tuned by a digital-to-
analog converter (DAC). In the case that a split ratio beyond
the range of [0.4,1.8] is needed, multiple tunable splitters
must be cascaded [51].

Many prior photonic networks [14], [24], [25], [30],
[31], [33] for chiplet-based architectures are developed for
inter-processor communication typically observed in CPUs
and GPUs. The resulting uniform bandwidth provision
approach leads to excessive energy and area overhead. For
example, the number of MRRs in photonic crossbars in [30],
[31], [33] scales quadratically with the number of chiplets.
Furthermore, though constructed by SWMR channels which
are naturally suitable for broadcast communication, the broad-
cast capability of the above photonic crossbars are disabled
due to power and other concerns. Unlike prior photonic
networks for chiplet-based architectures, ASCEND photonic
network is tailored for DNN inference and facilitates massive
broadcast communication and high parallelism.
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ITI. ASCEND ARCHITECTURE
A. Unit 2D Processing Element Array

Recall Fig. 2 where we spatially distribute multiplications
along both k and h/w dimensions to achieve simultaneous
broadcast of input features and weights, respectively. As a
result, PEs in a chiplet-based accelerator are grouped into a
unit 2D array to accommodate the above multiplications. The
purpose of constructing a unit 2D PE array is to (1) explore
the optimal organization of PEs with high energy-efficiency,
and (2) construct large-scale chiplet-based accelerators in a
scalable manner by aggregating one or multiple unit 2D PE
arrays.

1) Unit 2D PE Array Architecture: Fig. 5 illustrates the
architecture and wavelength allocation of a 4 x 4 unit 2D PE
array. The architectural details of PEOO in Fig. 5 are presented
in Fig. 6. Each PE includes a multiply-accumulate (MAC)
unit and register buffers to store weights, input features and
intermediate psums. There are one transmitter for PE-to-GLB
unicast communication and two receivers for GLB-to-PE
broadcast communication. Please note that one receiver is
connected to a tunable splitter for per-column broadcast com-
munication as the wavelength (14 in Fig. 6) is shared by all
PEs in the same column and only a fraction of light is guided
to the photodetector. By contrast, the other receiver is con-
nected to a filter for per-row broadcast communication as the
wavelength (40 in Fig. 6) is dedicated for communication to a
PE (PEOO in Fig. 6). Since PEs in a column utilize the same
wavelength for PE-to-GLB unicast communication, a token-
based approach is implemented for arbitration. As shown in
Fig. 5 and Fig. 6, a token is propagated among PEs in a
column through a token propagation ring. Interfaces attached
to different columns are very similar as shown in Fig. 7. A set
of tunable splitters are responsible for guiding an appropriate
fraction of light of wavelengths (10, A1, 22, A3 in Fig. 7)
to the corresponding column while forwarding the remaining
fraction of light to downstream columns. The split ratio shared
by a set of tunable splitters is determined according to the
position of the corresponding column. For example, the split
ratio values for the interfaces associated with ColumnO and
Columnl are 1/3 and 1/2, as there are three and two
downstream columns, respectively. Within each interface, there
are also two MRRs that keep working at on-resonance state
to filter and merge the wavelength (14 for ColumnO) for
per-column broadcast communication and PE-to-GLB unicast
communication.
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Fig. 7. The interfaces attached to ColumnO and Columnl in Fig. 5.

2) Wavelength Allocation: Four wavelengths A0, A1, A2,
A3 are utilized to broadcast weights from the GLB to each row
of PEs. For example, wavelength A0 is utilized to broadcast
weights from the GLB to PE0O, PE10, PE20, and PE30
in the first row of the unit 2D PE array. Additional four
wavelengths 14, 15, 16, A7 are utilized to broadcast input
features from the GLB to each column of PEs. For example,
wavelength A4 is utilized to broadcast input features from the
GLB to PE0O, PEO1, PE02, and PE03. The wavelengths
for per-column broadcast communication are also reused for
PE-to-GLB unicast communication (e.g., wavelength 14 is
reused for unicast communication from PEs in the first column
to the GLB). Please note that multiple independent waveguides
can be implemented using SDM to increase the bandwidth pro-
vision for PE-to-GLB communication. All eight wavelengths
involved in Fig. 4, 10, A1, A2, A3, 14, 15, A6, A7, are
multiplexed in a waveguide using WDM.

3) Network Power Consumption of Unit 2D PE Array: The
network power consumption of a unit 2D PE array is directly
affected by its size (number of PEs involved) and shape (ratio
of array height and width). As array size increases, the overall
power consumption of modulators and associated heaters
decreases as each transmitter can broadcast to an increasing
volume of receivers. However, the laser power consumption
increases drastically due to insertion loss increase when more
PEs are attached to each broadcast channel. We explore
the impact of array size on network power consumption
and observe that optimal power consumption is obtained at
16 x 16 array size. For simplicity, we continue using the
4 x 4 unit 2D PE array to explain the proposed ASCEND
architecture. Similarly, the network power consumption of
a unit 2D PE array is also affected by the shape of the
array, given a fixed number of PEs involved. Non-square array
shapes (e.g., 2 x 8 and 8 x 2) inevitably lead to insertion
loss imbalance between per-column and per-row broadcast
channels. As we assume that each wavelength is generated
with similar power from the off-chip laser source, a fraction
of power of wavelengths utilized in broadcast channels with
low insertion loss will be wasted.

B. ASCEND Network

1) Network Overview: Fig. 8 presents an ASCEND architec-
ture with eight accelerator chiplets and eight PEs per acceler-
ator chiplet. This chiplet-based accelerator is constructed by
aggregating four 4 x4 unit 2D PE arrays. Given the per-column
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Fig. 8. ASCEND architecture with eight accelerator chiplets and eight PEs per accelerator chiplet, constructed by four 4 x 4 unit 2D PE arrays. The four

unit 2D PE arrays are connected to the GLB through four separate waveguides (WaveguideO, Waveguidel, Waveguide2, and Waveguide3) using
SDM. Another waveguide (Waveguided4) is utilized to support simultaneous GLB-to-PE broadcast and PE-to-GLB unicast communication.

broadcast communication support of a unit 2D PE array
discussed before, we allocate a column of PEs in a unit 2D PE
array to a single accelerator chiplet (e.g., PEO, PE1, PE2, and
PE3 in Chiplet0 are from the same column of a unit 2D PE
array). Therefore, the per-column broadcast communication in
a unit 2D PE array is equivalent to intra-chiplet broadcast
communication in the constructed chiplet-based accelerator.
Similarly, we allocate a row of PEs in a unit 2D PE array
to the same position of different accelerator chiplets (e.g.,
PEO in ChipletO, PEO in Chipletl, PEO in Chiplet?2,
and PEO in Chiplet3 are from the same row of a unit
2D PE array), making the per-row broadcast communication
equivalent to inter-chiplet broadcast communication. In Fig. 8,
each row of sixteen PEs across four accelerator chiplets belong
to a unit 2D PE array. PEs within the same accelerator chiplet
but in different unit 2D PE arrays are separately connected
by waveguides presented by solid and dashed lines. The four
involved unit 2D PE arrays in Fig. 8 are connected to the GLB
die with four separate waveguides using SDM. For example,
the unit 2D PE array including PEO, PE1l, PE2, and PE3
in ChipletO to Chiplet3 is connected to the GLB with
WaveguideO. We observe wavelength reuse between unit 2D
PE arrays as separate waveguides are utilized. In the ASCEND
architecture shown in Fig. 8, wavelengths 10, A1, A2, and
A3 are reused for inter-chiplet broadcast communication while
wavelengths A4, 15, A6, and 17 are reused for intra-chiplet
broadcast communication. Waveguide4 is used to deliver
light to each PE for PE-to-GLB unicast communication.

2) Inter-Chiplet Broadcast Communication: The inter-
chiplet broadcast function in ASCEND broadcasts the same
weight to PEs in the same position of different accelerator
chiplets. The broadcast communication from the GLB to
PEO in all eight accelerator chiplets is done by modulating
wavelength A0 on both Waveguide(O and Waveguide3.
Similarly, the broadcast communication from the GLB to
PE1 in all accelerator chiplets is done by modulating

Algorithm 2: ASCEND Dataflow

1 // Package level

2 for el < [0:E1) do

3 for £1 < [0:F1) do
parallel_for e2 < [0:E2) do
parallel_for f2 < [0:F2) do

parallel_for k1 < [0:K1) do

// Chiplet level

for k2 < [0:K2) do

parallel_for k3 < [0:K3) do
parallel_for e3 < [0:E3) do
parallel_for £3 < [0:F3) do

/I PE level

for ¢ < [0:C) do

for r < [0:R) do
for s < [0:S) do
k=k3+K3x (k2+K2xkl)
e=e3+E3x (e2+E2xel)
f=f3+F3x (£2+F2xf1l)
O[lk,e,fl+=I[r+e-1,s+f-1,c]lxW[k,r,s,c]

N-JECCREEN I 7 N

wavelength A1 on both Waveguide(O and Waveguide3,
while the broadcast communication from the GLB to
PE4 in all accelerator chiplets is done by modulating
wavelength A0 on both Waveguidel and Waveguide?2.
During inter-chiplet broadcast communication, the tunable
splitters in the interfaces along a waveguide are tuned to
appropriate split ratios to guide a fraction of laser power in
20 to A3 to the local accelerator chiplet while forwarding the
remaining fraction of laser power to downstream accelerator
chiplets. For example, the tunable splitters in the interfaces
attached to ChipletO are all tuned to have a split ratio of
1/3 because there are in total 3 downstream chiplets along
either Waveguide0 or Waveguidel. The laser power at the
drop port of a tunable splitter is collected and forwarded to the
PE with a filter working on the same wavelength, which means
this particular PE is a destination of inter-chiplet broadcast
communication.
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Fig. 9. Processing a convolution layer [r,s,e, f,c,k]=[2,2,4,4,3,8] on the ASCEND architecture as shown in Fig. 8 that supports intra- and inter-
chiplet broadcast communication. ASCEND dataflow processes output features on the same e/f dimension on different accelerator chiplets while processing
output features with different k dimension values on different PEs in the same accelerator chiplet.

3) Intra-Chiplet Broadcast Communication: The intra-
chiplet broadcast function in ASCEND broadcasts the same
input feature to PEs in the same accelerator chiplet. The broad-
cast communication from the GLB to all PEs in Chiplet0
is done by modulating wavelength A4 on both WaveguideO
and Waveguidel. Similarly, the broadcast communication
from the GLB to all PEs in Chiplet1 is done by modulating
wavelength A5 on both Waveguide0O and Waveguidel,
while the broadcast communication from the GLB to all PEs
in Chiplet4 is done by modulating wavelength A4 on
both Waveguide2 and Waveguide3. During intra-chiplet
broadcast communication, the MRR filters in the interfaces
along a waveguide work at on-resonance state and completely
guide wavelengths for intra-chiplet broadcast communication
to the drop port. The laser power is then collected and
propagated through local PEs. The tunable splitter attached to
the receiver of a specific PE is utilized to guide an appropriate
fraction of laser power to the corresponding photodetector
while forwarding the remaining fraction of laser power to
downstream PEs. For example, the tunable splitter attached
to PEO of ChipletO is tuned to a split ratio of 1/3 as
there are three downstream PEs (PE1, PE2, and PE3).

4) PE-to-GLB Unicast Communication: The intra- and
inter- chiplet broadcast functions in ASCEND only address the
transmission of input data: weights and input features. The
intermediate psums and final output features are transmitted to
the GLB through PE-to-GLB unicast function. This function
reuses the wavelengths originally allocated for intra-chiplet
broadcast communication. For example, wavelength A4 is
allocated for both intra-chiplet broadcast communication and
PE-to-GLB unicast communication in Chiplet0. The wave-
length conflict of these two functions is resolved by imple-
menting separate waveguides. As local PEs share the same
wavelength for PE-to-GLB unicast communication, a token-
based approach is employed. PE that possesses the single-bit
token can transmit its intermediate psums or output features

back to the GLB. Once the transmission is complete, the
single-bit token is released and propagated to the next local
PE through an electrical token propagation ring. The token is
originally possessed by the first local PE after reset (active
low reset signal in Fig. 6). Because of the uniform compu-
tation operations across all PEs, a single-bit electrical token
propagation ring is sufficient compared to more sophisticated
token arbitration waveguide approach [34]. The bandwidth
for PE-to-GLB unicast communication is smaller than the
bandwidth for GLB-to-PE broadcast communication. This
bottleneck is alleviated by adopting an output-stationary-based
dataflow as discussed in the following section. The bandwidth
for PE-to-GLB unicast communication can also be expanded
by implementing multiple waveguides using SDM.

C. ASCEND Dataflow

ASCEND dataflow, as shown in Algorithm 2 and Fig. 9,
is optimized based on three unique features of the proposed
photonic network. First, ASCEND supports intra- and inter-
chiplet broadcast communication by leveraging the ease of
broadcast property of photonic interconnects. Second, by using
an output-stationary dataflow, we minimize data exchange
between PEs. Third, output-stationary dataflow prioritizes
reducing psum movement, which significantly reduces the
bandwidth demand for PE-to-GLB unicast communication.
Moreover, by multiplexing different wavelengths, we can
increase the number of psums sent simultaneously back to
GLB from different chiplets.

Consider the convolution layer shown in Fig. 9 (a) as
an example. We represent different weight kernels (output
channel k dimension) with different colors, and label a weight
in a specific kernel using X:Y terminology where X and Y
represent the input channel in the ¢ dimension and the position
of this weight, respectively. Input features are represented
using the same terminology as for weights. For output features,
X in the X : Y terminology represents the output channel in the
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TABLE I TABLE II
NETWORK PARAMETERS STANDARD PHOTONIC PARAMETERS
Chiplet level Electrical mesh Component Value Component Value
Simba 20 Gbps / PE read / write bandwidth Laser source 5 dB [47] Ring drop 1 dB [54]
Pack level Electrical mesh Coupler 1 dB [47] Ring through 0.02 dB [55]
ackage Ievel 350 Gbps / chiplet read / write bandwidth Splitter 0.2 dB [49]  Photodetector 0.1 dB [47]
- Waveguide 1 dB/em [47]  Waveguide-to-receiver 0.5 dB [56]
; Electrical mesh Waveguide bend 1 dB [56] Receiver sensitivity -20 dBm [47]
Chiplet level . . 1 ¢ S

20 Gbps / PE read / write bandwidth Waveguide crossover  0.05 dB [56]  Ring heating 2 mW [57]

POPSTAR Photonic crossbar
310 Gbps / chiplet read bandwidth architecture shown in Fig. 8, we observe that only four

Package level . . .
100 Gbps / chiplet write bandwidth lerat hiplet tilized. M hile. th tati
10 wavelengths, 10 Gbps / wavelength a;:ce erator chiplets are utilized. Meanwhile, f;fcompzll al 1I(l)ns
along k dimension have to be iteratively performed while
Chiolet lovel 20 Gbps / PE read bandwidth g xC , : yp

P 10 Gbps / PE write bandwidth (shared) there are idle accelerator chiplets in the system. To resolve
ASCEND this issue, we virtually construct a 16 x4 PE array instead of a

340 Gbps / chiplet read bandwidth
20 Gbps / chiplet write bandwidth
32 wavelengths, 10 Gbps / wavelength

Package level

k dimension. Fig. 9 (b) describes how the example convolution
layer is mapped to the ASCEND architecture shown in Fig. 8
to fully exploit the broadcast capability of the ASCEND
photonic network. We map two rows of output features in
an ofmap to different chiplets(E2=2, F2=3 in the dataflow
shown in Algorithm 2) while filling the rest PEs in each chiplet
with corresponding output features in other ofmaps (K3=8 in
the dataflow shown in Algorithm 2). As we allocate output
features at the same ofmap to different accelerator chiplets,
the inter-chiplet broadcast capability of ASCEND photonic
network can be leveraged to transmit weights from the GLB to
PEs. Meanwhile, as we allocate output features from different
ofmaps to PEs within a chiplet, the intra-chiplet broadcast
capability of ASCEND photonic network can be leveraged to
transmit input features. By doing so, both types of input data
are transmitted to PEs through broadcast communication.

Fig. 9 (c) describes the detailed computation and commu-
nication operations involved in one iteration of the ¢ loop in
Algorithm 2. Since R=S=2, the operations are done in four
steps. We focus on computation and communication operations
related to two PEs responsible for operations related to output
features 1.2 and 1.F. Operations related to other PEs can be
easily inferred. In Stepl, weight labeled 1.1 and in green
color is transmitted to 1 . A and 1. F using inter-chiplet broad-
cast wavelength 10. Meanwhile, input features labeled 1.a
and 1.g are transmitted to 1.2 and 1.F using intra-chiplet
broadcast wavelengths 14 and A5, respectively. 1.2 and
1.F perform MAC operations when corresponding weights
and input features are delivered, and generate 1.1x1.a and
1.1x1.g, respectively. There are similar operations in the
following steps. The psums generated at Step4 are stored
in the local accumulation buffers for the next iteration of
the ¢ loop (Linel3 in Algorithm 2). Once the entire c
loop is completed, the final output features are obtained and
transmitted to the GLB.

D. Flexible Mapping of Convolution Layers

Consider a layer [r,s,e,f,c,k]=[2,2,2,2,3,16],
the number of output features on an ofmap is exf=2x2=4
while the number of output channels is k=16. When
mapping this convolution layer to the ASCEND

8 x 8 PE array in the k and e/ £ dimensions by simultaneously
broadcasting the same input feature in WaveguideO to
Waveguide3 in Fig. 8. This approach exploits Line6 of
the ASCEND dataflow shown in Algorithm 2.

Consider another convolution layer with parameters
[r,s,e,f,c,kl=[2,2,4,4,3,4],the number of output
features on an ofmap is ex£f=4x4=16 while the number of
output channels k=4. This represents an opposite situation
as compared to the above example. When mapping this
convolution layer to the ASCEND architecture shown in Fig. 8§,
we observe that only 4 PEs in each accelerator chiplet are
utilized. Meanwhile, the computations along e/f dimension
have to be iteratively performed while there are idle PEs in
all accelerator chiplets in the system. To resolve this issue,
we virtually construct a 4 x 16 PE array in the k and e/f
dimensions by simultaneously broadcasting the same weight
in WaveguideO to Waveguide3 in Fig. 8. This approach
exploits Linel0 and Linell of the ASCEND dataflow
shown in Algorithm 2.

1V. EVALUATION METHODOLOGY
A. Simulation Platform

In order to evaluate ASCEND and other chiplet-based DNN
accelerators [12], [33], we extend the open-source MAESTRO
simulator [52] to support the non-uniform distribution of
latency and bandwidth between PEs. The execution time
includes both computation time and communication time. The
extended simulator tracks the number of arithmetic operations
and the number of accesses to each in-package memory
hierarchy (e.g. GLB, local register buffer, etc.) to calculate
the computation time and in-package communication time,
respectively. The calculation takes the hierarchical network
architecture into account and ensures that communication
does not exceed the bandwidth limit of the corresponding
link. The delay for tuning the optical tunable splitters is
set to 500 ps [50]. The off-package communication time is
obtained from the DRAMSim2 simulator [53]. We assume
that the communication time is maximally overlapped by the
computation time.

B. Power Model

We evaluate the power consumption of computations using
Synopsys Design Compiler. The power consumption values
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TABLE III
AGGRESSIVE PHOTONIC PARAMETERS

Component Value = Component Value
Laser source 5 dB [47] Ring drop 0.7 dB [55]
Coupler 1 dB [47] Ring through 0.01 dB [58]
Splitter 0.2 dB [49]  Photodetector 0.1 dB [47]
Waveguide 1 dB/cm [47]  Waveguide-to-receiver 0.5 dB [56]
Waveguide bend 0.01 dB [59]  Receiver sensitivity -26 dBm [60]
Waveguide crossover  0.05 dB [56]  Ring heating 320 pW [61]

of accessing in-package memory hierarchies and off-package
DRAM are obtained using CACTI 6.0 [62] and DRAM-
Sim2, respectively. The power consumption of the in-package
metallic-based interconnects is obtained using DSENT [55],
while the power consumption of photonic interconnects is
derived from Equation (1):

Protai = Plaser + Prx + Prx + Pthermal (1)

The overall power consumption P51 includes three parts:
laser power Pisser, power consumption of transmitting cir-
cuitry Pry, and power consumption of receiving circuitry Pryx.
We calculate Pry and Pgrx using the same parameters as
in [61], [63]. Please note that the power consumption for ring
heating is not included in both Pryx and Prx. The values for
Prx and Prx are 0.9 mW and 0.6 mWw, respectively.

The laser power Pjsger includes four parts: photodetector
sensitivity Prg, insertion loss Cioss, €xtinction ratio power
penalty Pextinction, and system margin Mgystem, aS shown
in Equation (2):

Praser = Prs + Cioss + Pextinction + Msystem (2)

Table II and Table III list standard and aggressive pho-
tonic parameters, respectively, from which the photodetector
sensitivity Prg and insertion loss Cioss can be obtained
or derived. We adopt the standard photonic parameters in
Table II for energy consumption estimation, unless otherwise
stated. Pextinction represents the power penalty caused by
extinction ratio which is assumed to be 2 dB [64]. System
margin Mgysten 1S assumed to be 4 dB [65]. The purpose of
the system margin is to allocate a certain amount of power to
additional sources of power penalty that may develop during
the system lifetime.

C. Chiplet-Based DNN Accelerators for Comparison

ASCEND is compared with Simba [12] and POPSTAR [33].
Simba is the state-of-the-art chiplet-based DNN accelerator
with only metallic interconnects. To the best of our knowledge,
there are no chiplet-based DNN accelerators with photonic
interconnects. Hence, we select a chiplet-based architecture
POPSTAR originally designed for general applications, and
replace the general CPU chiplets with accelerator chiplets
in Simba to create another baseline for fair comparison.
We assume the system includes 32 chiplets and 32 PEs per
chiplet for ASCEND. PE clock frequency is set to 1 GHz
similar to [12]. ASCEND adopts 16x16 unit 2D PE array
unless otherwise stated. To maintain the same computation
capability, the MAC vector width of each PE is 32 in ASCEND.
The local buffer size of a PE in ASCEND is 4 kB (128 B
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per unit MAC vector width) while the local buffer size of a
PE in Simba and POPSTAR is 43 kB [12]. The GLB size in
ASCEND is 2 MB (64 B per unit MAC vector width), which
is the same as in Simba and POPSTAR [12]. The network
parameters of ASCEND and two other baselines are listed in
Table I. We attempt to keep the bandwidth values at both
chiplet and package levels comparable across ASCEND and
two baselines. For example, we keep the bandwidth values
at chiplet level the same in ASCEND and two baselines by
adjusting the clock frequency of the electrical mesh networks
in Simba and POPSTAR. However, some bandwidth values
cannot be tuned to be exactly the same due to specific features
of different network architectures.

D. Benchmarks

We choose four DNN models, VGG-16 [5], ResNet-50 [1],
DenseNet-201 [2], and EfficientNet-B7 [8] as the evalu-
ation benchmarks. ResNet-50 includes more variations of
weight kernel size and computation intensity, while VGG-16
includes more communication-intensive fully-connected lay-
ers that can test network performance in extreme scenarios.
There are 21 and 12 different convolution or fully-connected
layers in ResNet-50 and VGG-16, respectively. We will test
all 33 layers in a layer-by-layer manner, as each layer
exhibits different parameters which have implications on
performance and energy consumption of our design and
the other two baselines. Please note that we have removed
redundant layers with the same configuration parameters.
For example, res2a_branchl in ResNet-50 has been
removed because it has the same configuration parameters as
res2[a-c]_branch2c. Additionally, we accumulate the
execution time and energy consumption values of all layers to
obtain an implication of the overall execution time and energy
consumption in a complete inference pass. Please note that
only the convolution and fully-connected layers are taken into
account during the accumulation process.

V. EXPERIMENT RESULTS
A. Execution Time and Energy Consumption

Fig. 10 shows the execution time comparison of ASCEND,
Simba and POPSTAR in 33 different ResNet-50 and VGG-16
layers. The execution time values are normalized to the
execution time of Simba. As compared to Simba, ASCEND
achieves execution time reduction in the range of 21% (L1:
convl) to 75% (L21: £c-1000). The difference in reduc-
tion of execution time comes from (1) the average num-
ber of hops of inter-chiplet communication in Simba, (2)
the ofmap e/f dimension and output channel k dimension
that determine the utilization rate of PEs in ASCEND, and
(3) the input feature reuse distance that largely determines the
intra-chiplet broadcast efficiency in ASCEND. As compared
to POPSTAR, ASCEND achieves execution time reduction in
the range of 7% (L8: res3[a-d]_branch2b) to 55%
(L6: res3a_branchl). This indicates the effectiveness of
the architecture and dataflow co-design. ASCEND performs
better than POPSTAR because (1) ASCEND exploits the ease of
broadcast feature better than POPSTAR through package-level
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Fig. 11.

data partition, and (2) ASCEND allocates higher bandwidth
for communication between the GLB and accelerator chiplets.
On average, ASCEND performs 52% and 29% faster than
Simba and POPSTAR, respectively.

Fig. 11 shows the energy consumption comparison of
ASCEND, Simba and POPSTAR in 33 different ResNet-50 and
VGG-16 layers using standard photonic parameters listed in
Table II. The energy consumption values are normalized to
the energy consumption of Simba. As compared to Simba,
ASCEND achieves energy consumption saving in the range of
25% (L1: convl) to 72% (L20: res5 [b-c]_branch2a).
This mainly comes from the low energy consumption of
inter-chiplet communication in ASCEND. As compared to
POPSTAR, ASCEND achieves energy consumption saving in
the range of 7% (L1: convl) to 56% (L33: £c-1000).
The energy savings observed in different layers are simi-
lar because ASCEND photonic inter-chiplet network requires
fewer MRRs than the photonic crossbar in POPSTAR. On aver-
age, we observe that ASCEND achieves 57% and 46% energy
saving as compared to Simba and POPSTAR, respectively.

In addition to the layer-by-layer estimation, we compare
the execution time of a complete inference in four different
DNN models in Simba, POPSTAR and ASCEND. The results
are shown in Fig. 12 (a). We observe that ASCEND achieves
execution time reduction in the range of 47% (DenseNet)
and 71% (ResNet-50) as compared to Simba. We adopt both
standard photonic parameters listed in Table II and aggressive
photonic parameters listed in Table III for energy consumption
estimation of POPSTAR and ASCEND and present the results
in Fig. 12 (b). When using the standard photonic parameters,
ASCEND achieves energy reduction in the range of 37%
(DenseNet) and 67% (ResNet-50) as compared to Simba.
When more aggressive photonic parameters are utilized, more
energy reduction in the range of 47% (DenseNet) and 74%
(ResNet-50) is achieved by ASCEND as compared to Simba.

B. Analysis on a ResNet-50 Inference Pass

We present the detailed analysis of execution time and
energy consumption (using standard photonic parameters listed
in Table II) of a complete ResNet-50 inference. Please note
that the values only include the convolution layers and

L22 123 L24 125 L26 L27 L28 L29 L30 L31 L32 L33 GM.

Per-layer energy consumption comparison of Simba, POPSTAR and ASCEND. All values are normalized to Simba.
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Fig. 13. (a) Execution time and (b) energy consumption breakdown of one
complete ResNet-50 inference when comparing ASCEND with Simba and
POPSTAR. (c) Network energy consumption breakdown of ASCEND in one
complete ResNet-50 inference.

fully-connected layers. We make several observations from the
execution time diagram in Fig. 13 (a). First, the numbers of
cycles for computation are the same in Simba and POPSTAR,
as these two baselines have the same chiplet architecture and
dataflow. Second, the numbers of cycles for communication in
Simba and POPSTAR are higher than the number of cycles for
computation, taking 73% and 66% of overall execution time.
Third, the number of cycles for communication in ASCEND
is very small due to direct connection between the GLB
and each PE, and fully leveraging the broadcast capability
of photonic interconnects. Fig. 13 (b) illustrates the energy
consumption breakdown of Simba, POPSTAR and ASCEND
when processing a complete ResNet-50 inference. The energy
reduction as compared to Simba and POPSTAR mainly comes
from (1) lower energy consumption of communication network
and (2) fewer accesses to the memory hierarchy. When break-
ing down the network energy consumption of ASCEND as
shown in Fig. 13 (c), we observe that the energy consumption
values for thermal heating, laser, transmitters and receivers
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when applying weight-stationary [12], output-stationary [40], and ASCEND
dataflows to the ASCEND architecture. All values are normalized to weight-
stationary dataflow.

are 1.3 mJ, 1.3 mJ, 0.5 mJ, and 5.5 mJ, respectively. The
significant difference of energy consumption values of Prx
and Pryx illustrates that our design successfully leverages the
broadcast capability of photonic interconnects. The ASCEND
throughput and energy consumption are 5649 frames per
second and 21.7 mJ when running ResNet-50 model and
assuming batch size of one.

C. Impact of ASCEND Dataflow

Fig. 14 (a) shows the execution time comparison of
weight-stationary dataflow in [12], output-stationary dataflow
in [40] with partition along k dimension at the package
level, and ASCEND dataflow. All three dataflows are imple-
mented on the ASCEND architecture for fair comparison. The
weight-stationary dataflow does not fully exploit the two-level
broadcast capability of ASCEND photonic network. Partitions
along k dimension at package level and along c dimension
at chiplet level prevent full utilization of inter-chiplet weight
broadcast and intra-chiplet input feature broadcast, respec-
tively. Further, the weight-stationary dataflow incurs inter-
PE communication which yields high latency overhead in
ASCEND photonic network. The average execution time reduc-
tion of ASCEND dataflow over weight-stationary dataflow
is 65%. The output-stationary dataflow [40] is originally
designed for single-chip DNN accelerators. We extend it by
partitioning along k dimension at the package level. The
output-stationary dataflow [40] maps output features to PEs
one ofmap at a time. Due to mismatch between ofmap size and
system scale, full broadcast capability of ASCEND photonic
network can not be often achieved. The average execution
time reduction of ASCEND dataflow over the output-stationary
dataflow is 23%.

Fig. 14 (b) shows the energy consumption comparison of
all three dataflows implemented on the ASCEND architecture
using the standard photonic parameters listed in Table II.
The average energy saving of ASCEND dataflow over the
weight-stationary dataflow [12] is 84%. The excessive energy
consumed by the weight-stationary dataflow mainly comes
from (1) excessive GLB access due to prevalent inter-PE
communication, and (2) high fraction of unicast communi-
cation that leads to high modulation energy. The average
energy saving of ASCEND dataflow over the output-stationary
dataflow [40] is 39%.

D. Area Estimation

We estimate the area of ASCEND PE (excluding
the transmitter and receivers) using Synopsys Design
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Compiler and a 28 nm technology library. The area of PE
excluding the transmitter and receivers is 0.72 mm?. We assume
that the area for a transmitter or a receiver is 0.0096 mm? per
wavelength [66]. Hence, the area overhead of the peripheral
circuity (E/O and O/E) of an ASCEND PE is about 3.9%. The
area of an accelerator chiplet in ASCEND is 24.07 mm?. When
assuming 5 um MRR radius [67], the overall area of MRRs
is 0.01 mm?. When further assuming 4 electrical wires (for
data transmission and thermal tuning) per MRR and 36 um
micro-bump pitch size [68], the overall area of micro-bumps
is 0.68 mm?. As most MRRs and micro-bumps can be imple-
mented underneath the accelerator chiplet, we assume that they
do not incur extra area overhead.

VI. CONCLUSION

In this paper, we propose a chiplet-based DNN accelerator
with photonic interconnects named ASCEND. The salient
features of ASCEND include (1) a novel photonic network
that supports seamless intra- and inter- chiplet broadcast
communication and flexible mapping of diverse convolution
layers, and (2) a tailored dataflow that exploits the ease of
broadcast property of photonic interconnects to maximize
parallelism in DNN inference. The combined benefits of the
above two features provide high-performance and energy-
efficient communication support for scalable chiplet-based
DNN accelerators. Simulation studies using multiple DNN
models show that ASCEND achieves significant reduction in
execution time and energy consumption, and exhibits better
scalability, as compared to other state-of-the-art chiplet-based
accelerators.
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