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Abstract—As model size and the number of layers increase,
Deep Neural Networks (DNNs) demand enormous computational
power and throughput to meet exceedingly high prediction
accuracy’s of today’s machine learning (ML) applications. Spatial
hardware accelerators have been proposed that optimize the
dataflow and exploit sparsity to provide a significant decrease in
power consumption. As spatial architectures are traditionally de-
signed with metallic interconnects, significant power is expended
for data movement for different dataflows. In this paper, we
exploit extended wireless technology to design a power-efficient
and high-throughput DNN accelerator, e-WiNN, that can be con-
figured for all representative dataflows and arithmetic precisions.
We leverage novel circuit design by utilizing Dadda-algorithm
based Multiply-and-Accumulate (MAC) circuits for 4-bit, 8-bit
and 16-bit inputs to reduce area, power and delay constraints
in 14 nm predictive technology. Our novel wireless transmitter
integrates on-off keying (OOK) modulator with power amplifier
that results in significant energy savings. To reduce the area
overhead, we cluster wireless transceivers into groups of four such
that both weights and input features can be effectively multicast
to reduce the data movement. The energy efficient transceiver
circuit is implemented in state-of-the-art BSIM 32 nm FinFET
technology model and our link budget considers required RF
power for different frequencies and inter-PE distance at three
different antenna directivities including isotropic. Our detailed
RTL modeling and cycle-accurate simulation results show that e-
WiNN achieves 36.3% latency reduction and 76.1% energy saving
when compared to state-of-art wire interconnected accelerators;
70.3% area reduction and 41.6% energy saving at the cost of 11%
latency increase when compared to prior wireless accelerators on
various neural networks (AlexNet, VGG16, and ResNet-9/50).

Index Terms—Wireless
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technology, transceiver design,

I. INTRODUCTION

ITH the ever increasing computational demands of

emerging applications, the use of Deep Neural Net-
work (DNN) based hardware accelerators [1], [2], [3] has
significantly increased in recent years. Hardware accelerators
are specialized computational units that are tailored to a partic-
ular application; they trade off plasticity, programmability and
configurability for improved energy efficiency and through-
put. Examples of hardware platforms used for acceleration
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include graphics processing units (GPUs), field programmable
gate arrays (FPGAs) and application specific integrated chips
(ASICs) [4], [5]. In this article, we focus on designing ASIC-
based hardware accelerator due to improved energy-efficiency
and configurability.

DNNs have demonstrated superhuman accuracy for a myr-
iad of applications such as image processing, speech recog-
nition, autonomous systems and edge computing. They have
become larger and deeper, imposing stringent requirements to
efficiently move vast amounts of data for parallel computation.
ASIC-based spatial accelerators have been proposed to achieve
high parallelism with arrays of Processing Elements (PEs) and
energy efficient data movement using Network-on-Chip (NoC)
architectures. However, the increasingly large DNN models
impose high bandwidth and low latency communication de-
mands between PEs, which is a fundamental challenge for
metallic NoC architectures.

Researchers have proposed other emerging technologies
such as wireless and photonics for replacing or augmenting
metallic interconnects due to improved performance/Watt,
bandwidth-density and reconfigurablity advantages over tradi-
tional electrical links. Wireless technology can significantly
alleviate the cost as wireless technology offers several de-
grees of freedom compared to electrical - broadcast/multicast
data, single hop communication across longer distances and
frequency division multiplexing (FDM) where multiple fre-
quencies/channels can be used to send data simultaneously.
Wireless technology could improve energy-efficient and pro-
vide higher performance for hardware accelerators designed
for DNN applications where the same data has to be broadcast
to multiple PEs simultaneously (weights or input maps). But,
it is an open question whether wireless technology can scale
to large PE arrays, given the cost of fabricating a wireless
transceiver at every PE. Prior work have proposed wireless
hubs or clusters to reduce the cost of wireless transceivers
and optimize the performance and energy-efficiency [6], [7],
[8].

Recent research has enabled DNN layers and models which
trade off prediction accuracy for computational complexity [9].
This is achieved through the use of lower arithmetic precision
as well as quantization of the inputs and weights in the DNN.
It has been shown that 4 bits quantization from original 8 bits
fixed bitwidth can reduce the latency and energy consumption
by 2x while the accuracy drops by only 4.7% [10]. Depending
on the application where resources are constrained (such as
autonomous vehicles, wearable devices, and predictive main-
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tenance), it could be acceptable to operate the DNN at slightly
lower accuracy while achieving significant reduction in energy
consumption and has been done so in many practical scenarios.
Analyzing the precision-quantization for hardware accelerators
with wireless interconnects has not been unexplored.

In prior work, wireless interconnect based neural network
(WiNN) has been proposed to reduce the latency by 3x and
the energy consumption by 1.5x [11]. However, there are
several shortcomings of the prior work. WiNN was designed
with a fixed dataflow called Wireless-for-Multicast (MW) that
enabled multicast using wireless technology. However, such a
fixed dataflow could be sub-optimal for different DNN layer
types. For example, certain convolutional layers show better
performance for different dataflows such as row-stationary or
weight stationary which was not explored with WiNN architec-
ture. WiNN was designed with wireless transceiver assigned to
each PE. While this allowed highest flexibility for transmitting
and receiving wireless data, wireless transceivers consumed
substantial power (15.5%) and area overhead (43.5%). Finally,
WiNN assumed fixed precision (32 bits) and did not consider
the accuracy-performance design trade-off with varying preci-
sion.

In this article, we propose e-WiNN (extended WiNN) by
exploiting wireless technology to design a power-efficient
and high-throughput DNN accelerator that can be configured
for different dataflows and different arithmetic precisions at
runtime. We leverage novel circuit design by utilizing Dadda-
algorithm based Multiply-and-Accumulate (MAC) circuits for
4-bit, 8-bit and 16-bit inputs to reduce area, power and delay
constraints in 14 nm predictive technology. Our novel wireless
transmitter integrates on-off keying (OOK) modulator with
power amplifier that results in significant energy savings. To
reduce the area overhead, we cluster wireless transceivers into
groups of four such that both weights and input features can
be effectively multicast to reduce the data movement. The
energy efficient transceiver circuit is implemented in state-of-
the-art BSIM 32 nm FinFET technology model and our link
budget considers required RF power for different frequencies
and inter-PE distance at three different antenna directivities
including isotropic. The transceiver power dissipation is 25
mW. The main contributions of this article are as follows:

e Clustered PEs and Multiple Dataflows: We propose

a wireless interconnected neural network accelerator by
clustering PEs. By employing clustering and wireless
transceiver sharing, we reduce the overhead of the wire-
less interconnection by 2.1x compared with the prior
work (WiNN) with the same throughput and power
constraints.

o Precision and Transceiver Circuits: To reduce area,
power and delay overhead, Dadda-algorithm based MAC
circuits with 4-bit, 8-bit and 16-bit inputs are designed
and simulated with 14 nm technology libraries. Com-
bining with power-efficient OOK modulator, we further
improve energy-efficiency.

o Performance Evaluation: Our detailed RTL modeling
and cycle-accurate simulation results show that e-WiNN
achieves 36.3% latency reduction and 76.1% energy
saving when compared to state-of-art wire interconnected
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Figure 1: Convolutional operation in DNN. Input feature maps
are convolved with distinct filters in each channel (top). The
results of the convolution at each point are accumulated across
all channels to obtain the output feature maps. Complete
convolution operation in CNN consists of a 7D nested for
loop (bottom).

accelerators; 70.3% area reduction and 41.6% energy
saving at the cost of 11% latency increase when compared
to prior wireless accelerators on various neural networks
(AlexNet, VGG16, and ResNet-9/50).

II. BACKGROUND & MOTIVATION

In this section, we briefly explain the background on DNN
computation for different applications. We also discuss various
dataflows used in hardware accelerators.

A. DNN primer

Deep Neural network (DNN) is an artificial neural network
(ANN) with multiple hidden layers between the input and
output layers that can be trained to model the behavior of
complex non-linear functions. Convolutional Neural Networks
(CNNs) are a class of DNNs that are widely used for image
processing. Although our approach can be applied to various
DNN architectures such as fully-connected (FC), recurrent
neural network (RNN), and long short-term memory (LSTM),
we focus on 2D convolution in this paper because the com-
putation of the convolutional layer dominates the complexity
and energy consumption [12]. Convolutional layers convolve
the input in the form of a raw image or an input activation
map (the output of a previous convolution layer) with a filter
to produce an output feature map as shown in Fig. 1. S and
R are the width and height of the filter volume; W and H are
the width and height of the input map volume; F and E are
the width and height of output map volume respectively. C is
the channel for both weight and input map, M is the number
of filter volumes, and U is a the given stride size. Complete
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convolution operation in CNN consists of a 7D nested for loop
as shown at the bottom of Fig. 1.

Tensors in DNNs consist of seven dimensions arranged
in a complex manner. For example, the row/column indices
of output can be inferred by input and filter indices (i.e.,
E=H—-R+1,F =W —S5+41). The input channel index c
appears in both filter and input activation. The output channel
m corresponds to the indices of filter volumes. The output
volume n indicates the batch index of the input. Because
of these specific data access patterns, various transformations
while executing the computation can be performed by keeping
one of the data structure stationary (i.e. unchanged in a
PE), which can significantly reduce data movement between
global/local buffers in DNN accelerators.

B. Accelerators and Network-on-Chips

DNN accelerators are specialized architectures for running
DNN workloads in a highly parallel and energy-efficient
manner. A sea of PEs are tightly interconnected to achieve
the inherent parallelism in DNN applications. Each PE consists
of light-weight multiply-and-accumulate (MAC) units, register
files, and controllers, as opposed to conventional monolithic
arithmetic logic unit (ALU) with deep pipeline stages. Most
DNN accelerators include a shared SRAM global buffer (L2)
to store data for the large PE array to avoid frequently
accessing off-chip memories. Data delivery is elaborately
orchestrated in DNN accelerators, because the PE operation
is dependant on data arrival, and the PE stalls if any one of
two operands is unavailable due to memory or network delays.

It is ubiquitous in DNN accelerators to use Network on
Chip (Chip) to efficiently orchestrate data movement within
the large PE array. Spatial accelerators operate in a dataflow
manner, making the NoC a critical component to establish
sufficient communication throughput [13]. Prior works rely on
specialized buses [14], 2D mesh NoCs [15], and hierarchical
meshes [16]. Furthermore, light-weight switches are developed
to achieve energy efficiency [17]. Tree-based configurable
interconnection fabrics are proposed to enable flexible map-
ping of multiple dataflows [18]. However, as modern DNN
models is getting larger and deeper, it imposes a fundamental
challenge for metallic NoC architecture to adapt to the high
bandwidth and low latency communication demands between
PEs. Emerging technology, for instance wireless interconnec-
tions, has been applied to meet the challenge. The inherent
multicast capability, single hop, and distance independent on-
chip communication is revealed to be superior in realizing
efficient dataflows in DNN workloads [7], [8]. The drawback
of integrating wireless interconnections in accelerators is the
significant power and area overhead of transceiver circuits and
antennas.

C. Data Reuse and Dataflow

Despite the various execution order of the DNN nested loop
and partition algorithms, prior work has summarized four be-
haviors of DNN accelerators reusing data over time and space
- spatial/temporal multicasting (input/filter tensors) and spa-
tial/temporal reduction (output tensors) [19]. Spatial/temporal

multicasting fetches a data pixel from global buffer (GB) once,
reuses the data element by either spatially multicasting to
several PEs or uses the data element multiple times within the
same PE to reduce remote buffer access which saves energy
and reduces latency. Spatial/temporal reduction reduces the
accumulated partial sums (Psums) over either multiple PEs or
multiple time windows. For example, an adder tree could be
used for spatial reduction. Most DNN accelerators endeavor to
maximize the opportunities of data reuse in these four patterns
to achieve energy efficiency. We further extend the observation
by identifying another data reuse pattern (inter-PE propaga-
tion), which contributes significantly to energy consumption.
Inter-PE Propagation transmits a data pixel (input/filter) to
the neighboring PE multiple times until exhausted. The data
pixel is subsequently reused among the PE array both spatially
and temporally to reduce the expensive remote global buffer
accesses (energy cost of memory access between GB and PE is
6 x more than that of inter-PE communication [14]. These data
reuse opportunities make the on-chip communication design
critical for data movement to achieve high throughput and
energy efficiency.

Conventional dataflow taxonomy is built on how the ac-
celerator takes advantage of the temporal data reuse [1]. For
instance, a weight being reused in the same PE for multiple
time window instances is called weight stationary (WS), which
takes advantage of temporal multicasting. Weights can be
multicast to multiple PEs to further exploit spatial multicas-
ting. Output stationary (OS) dataflow is a typical case of
exploiting temporal reduction of Psums. Row stationary (RS)
dataflow exploits both temporal and spatial multicasting of
input and filter tensors along horizontal and diagonal PEs
respectively. Spatial and temporal reduction of Psums is also
explored in RS. However, RS supports all the four data
reuse behaviours at the cost of reduced number of spatial
multicast receivers. Multicast-for-wireless (MW) dataflow has
been proposed to maximize the spatial multicast opportunities
in the data reuse patterns such that the multicast capabilities
of wireless interconnections are efficiently explored to reduce
the communication overhead [11].

In this paper, we specifically address the data reuse be-
haviour associated with various dataflows by using energy-
efficient wireless transceivers and new NoC topologies to
achieve high throughput and energy efficiency with reduced
area overhead for DNN applications.

III. PROPOSED E-WINN ARCHITECTURE
A. Micro-architecture

The proposed e-WiNN architecture is depicted in Fig. 2,
consisting of the on-chip global SRAM buffer (GB), data dis-
patcher (DP), spatial 2D PE array and centralized accelerator
controller (AC). The PE array is constructed by clustering with
a concentration factor of N (N = n? = 4). The goal with
clustering PEs is to limit the number of wireless transceivers
per cluster and to scale the system effectively. Increasing the
number of PEs beyond 4 will increase the energy and latency
for intra-cluster data movement. Clusters are interconnected
by wired links in a m x m mesh topology. The total number
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Figure 2: An overview of proposed e-WiNN accelerator. The two-dimensional clustered PE array is interconnected by wires
in a mesh topology and by global X-Y dimension order wireless interconnects through wireless routers (yellow box).
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Figure 3: The pedagogical example with a 3 x 3 filter, 6 x 6
input, and 4 X 4 output.

of PEs can be computed as m?n?. Each cluster connects
to neighboring cluster routers using full duplex wired links
in each direction (N/S/W/E). In addition, each cluster has
a wireless receiver, that is used to unidirectionally receive
data from the global X and Y wireless transmitters in the
data dispatcher. The cluster microarchitecture is shown in Fig.
4. The two front-end filters work at band-pass frequencies
(circuits in green receives at 70GHz and circuits in red
receives at 60GHz) to separately demodulate weights and input
activations. The centralized wireless router connects all the
local PEs through wired links. Weights and input activations
can be multicast/ unicast from data dispatcher to all the PE
clusters in one hop and to PEs inside the cluster with one
additional hop. Controlled DeMUX switches between unicast
and multicast modes to further take advantage of multicast
inside the cluster. Therefore, Each PE can either receive the
input data from the global data dispatcher or from neighboring
PEs in the cluster.

The data dispatcher is the key component that orchestrates

Table I: Data reuse and distribution for various dataflows

Dataflows MW | WS | OS | RS

Spatial reduction of outputs

Temopral reduction of outputs

Spatial multicast of weights
Data

reuse

Temopral multicast of weights

Spatial multicast of inputs

Temopral multicast of inputs

SIX X SN X XS
YR RN RN RN ENEN

NIX XN XN X
X|IX|IX[SN]N]| XX

Inter-PE propagate of inputs

the data delivery and implements the dataflow by selecting the
appropriate weights/input activations that needs to be sent to
the corresponding PE clusters. We support the flexibility of
various dataflows at compilation time. That is, the accelerator
controller would search for the most suitable dataflow based on
the current neural network workload parameters through the
preloaded look-up-table and reconfigure the data dispatcher.
Inside the data dispatcher, multiple wireless transceivers and
antennas are integrated to build up directional wireless chan-
nels in X and Y dimensions to minimize the interference
between neighboring rows/columns. Data dispatcher assigns
one transmitter and antenna for each row and column of the
PE clusters, which comprises a X-Y dimension-order wireless
network.

B. Dataflow Implementation

We briefly explain the dataflows implemented on e-WiNN
using a pedagogical example in Fig. 3, then we elaborate
the detail of how the workload is partitioned, mapped, and
processed on e-WiNN with varying dataflows in Fig. 5.

Generally, DNN workloads involve with three types of data,
i.e., weight filters, input and output activations. These data
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Figure 4: The microachitecture of the wireless router. 9-radix
switch supports the data transmission from 4 PEs in the cluster,
4 neighboring switches to the north, south, west, and east, and
the wireless transceiver.

are further associated with three traffic patterns, i.e., weights
and input activation distribution, and output collection. Output
activations may be cached back into global buffer as a form
of partial sum (Psum) before exhaustive accumulation due to
limited storage in the PE, which result in Psum collection
and distribution. We explore these data movement patterns
of four representative dataflows, multicast-for-wireless (MW)
[11], weight stationary (WS), output stationary (OS), and
row stationary (RS) [14]. Each dataflow style has myriad
variant forms. We instantiate each dataflow based on two
criteria. First, space multicasting can be maximally explored so
that wireless interconnection plays a role. Second, the Psum
reduction is prioritized inside each PE in scheduling (outer
loops). We trade-off the area overheads of storing Psums
to allocate more hardware resources for weights and inputs
delivery to achieve overall high throughput.

We demonstrate the data delivery in Fig. 5 with an example
e-WiNN configuration of 2 x 2 cluster array using the 2D
convolution example in Fig. 3. We start by visualizing the
interconnections and data mapping onto e-WiNN in the second
row. For example in MW dataflow, horizontal wireless chan-
nels (Fr1 and Fro) multicast weight data to all the clusters
in the row, while vertical wireless channels (Fo; and Fo)
multicast input maps to all the clusters in the column. The
data dispatcher schedules the data delivery based on the char-
acteristics of the selected MW dataflow. At t0, we initialize the
PE array by multicasting Wy to all PE clusters, while unicast
the first 4 x 4 patch (sliding window) of input map. At the
next cycle, a new weight pixel is fetched and multicast, and a
row/column of input map sliding window is multicast to the
row/ column of clusters. The remaining input feature data of
the sliding window propagates to the neighbouring PE cluster
by the inter-cluster wired links. Detailed indices of weights
and input maps for each cycle are listed in the table at the last
row, as well as the corresponding interconnections.

The second and third rows in Fig. 5 provide an insight of the
data reuse for all the three data structures. X axis denotes the

indices of output data. Four horizontal black dots are spatially
mapped to four clusters respectively. At t1, another partial
sum is computed for the same output data in the cluster.
Therefore, Psum data movement is avoided and no local
register file is required. Y axis denotes the indices of weights.
Weights are multicast to all clusters in the row at each time
window, following the spatial multicast pattern. Input feature
maps are multicast to clusters in the column, except for 0,
because there is no data reuse opportunities at the initialization
stage. After the initialization, most of the input feature maps
are reused by the neighboring clusters through inter-cluster
wired links to reduce global buffer accesses. As concluded in
Table I, the data reuse in MW dataflow consists of temporal
reduction of outputs, spatial multicast of weights, and inter-
cluster propagation of input maps.

In weight stationary dataflow, weights are reused both spa-
tially and temporally. Only one global transmitter is required
to broadcast the weights. We constraint the wireless beam
width within the 5 dBi antenna directivity as discussed in the
transceiver design section. As weights are maximally reused
in WS, no input and output maps data reuse can be explored.
The wireless interconnection topology in output stationary
dataflow is identical to that in MW, as well as the input
feature map delivery. However, partial sums of a output data
are spatially mapped to the cluster array in OS. Inter-cluster
Psum reduction is involved to obtain the output. The advantage
of OS compared to MW is the temporal reuse of weights.

The angle of antennas in the column data dispatcher is
adjusted for row stationary dataflow. Input feature maps are
distributed diagonally and reused by the PE clusters along
the direction. Row wireless channels multicast the weights
to the clusters in the row, while Psums accumulate vertically
through wired links. RS is proved to be superior to other
wired link based dataflows [14] due to intensive utilization
of data reuse for all the three data structures. Nevertheless,
it comes at the cost of reduced multicast opportunities in
weights and input feature maps (For instance, in Fig. 5, input
feature maps can not be multicast to corner clusters), which
downgrades the superiority when evaluated on e-WiNN. We
will further analyze characteristics of these dataflows and
the impact on overall latency and energy performance in the
simulation section.

C. Reconfigurable MAC Circuits

A major computational bottleneck in neural network accel-
erators is MAC operation, especially when building matrix and
vector elements [20]. Since MAC circuits are also an important
part of DNN architecture, their performance plays a crucial
role on the system level assessment of the e-WiNN accelerator
proposed here.

1) N-Bit MAC Design Based on Dadda Multiplier: To
reduce area, power and delay overhead, MAC circuits with 4-
bit, 8-bit and 16-bit inputs are designed using standard Dadda-
algorithm and simulated with 14 nm technology libraries. Each
MAC is designed with unsigned bit representation to reduce
hardware complexity. For an n-bit input MAC, there is a 2n
bit result array at the end of Dadda multiplier (see Fig.6). It
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Figure 5: Data delivery, mapping, and partitioning presented over 2D convolution presented in Fig. 3. The first row shows four
representative dataflows evaluated on e-WiNN. The second row shows the physical mapping and execution timing of partial
sum. Each black circle represents four partial sums, evenly assigned to each PE inside the cluster. The third row shows the
mapping for weight and input feature data. The last row tabulates the timing of each wireless channel and wired link for
transmitting all data structures over the first three time window instances.

is based on the simplification of each partial product column
as much as possible to a given column height at each stage
and use the number of half and full adders wisely to keep
power consumption and delay minimal. As compared to the
Wallace-tree approach, Dadda multipliers require fewer gates
to achieve the final summation products, so that the resulting
partial product reduction circuitry (PPRC) needs less area and
power while operating faster. [21]

Two N-bit wide inputs to the MAC circuit are first fed into
the partial product generation circuit (PPGC) at which the N2
partial product terms are created as a result of partial product
generation process. In the next step, all partial product terms
are used as inputs for PPRC. When partial product reduction
finishes, two partial product reduction sum (PPRS) arrays
become available at the output of PPRC. Then, the 2-bit final
addition is performed in the adder circuit, as shown in Fig.6.
Afterwards, the sum is directed to accumulator. Here, there are
three different options designed to control the accumulation
operation: synchronous load flag to clear all input registers,
the data flag bit to check the availability of PPRM register’s
output and a reset bit (asynchronous clear) to clear the inputs.
The PPRS array controlled with separate flags: whenever a
CLK signal is enabled or the data flag bit is “Logic 1”.

The result is sent to an adder block where the 2-bit sum is
calculated. If synchronous load flag bit is true, the data in the
accumulator is deleted. Otherwise, at each clock rising edge
input data are written to registers, synchronous load control
bit is updated and the final addition operation is performed. If
an asynchronous clear signal is applied the module is reset
and all the input registers except the data in the memory
register/accumulator gets deleted. Separating, the synchronous
load and asynchronous clear flags to control different parts
of registers provide system designer to flexibility for input
and output data flow control. This design serves as a baseline
for comparison with the novel precision-controlled MAC unit
below. figure/

2) 16-Bit Variable Precision MAC Unit: Next, we introduce
a novel variable-precision MAC circuit with 16-bit wide inputs
which is capable of giving an output of 2N+1, where N is 4,
8 or 16 bits, depending on the input control signal. A similar
approach has been recently suggested [22] that also considers
floating-point representation of weights. In our new design,
the redundancy associated with having multiple (parallel) 4,
8 or 16-bit blocks dedicated for different precision levels is
eliminated. Considering all of the input bits are fully utilized
(i.e., both inputs are 16 bits), first, they are applied to the
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Figure 6: a) The block diagram of standard N-Bit Dadda-
Multiplier based MAC circuit b) 4-Bit Dadda reduction per-
formed in PPRC block

PPRC which gives a 16x 16 bits wide output, containing all
the generated partial product terms. This part is common to
all precision levels. Next, depending of the resolution needed,
the generated partial product terms are routed into PPRC
blocks, selectively. This decreases the number of PPGC units
that would have been repeated in parallel implementations
for different resolutions. Following the PPRC process, the
precision control bit determines which 2N-bit multiplication
data is sent to the adder block for the final accumulation. The
adder block in the re-designed VP-MAC block is replaced
with a 32-bit Carry Lookahead adder (CLA) which is selected
to minimize delays regarding the carry calculation [23]. This
helps to avoid a bottleneck caused by rising-edge-enabled
clock during accumulation operation. As a result, VP-MAC
circuit should perform the same 4/8/16-bit operations with
lesser area, power dissipation, delay, while also accounting
for the overflow condition.
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Figure 7: The block diagram of variable-precision (VP) MAC
circuit with re-utilized partial products and carry-look-ahead
accumulator.

The encoding and decoding of TRX are both changed
to be consistent with the varying precisions. The bitwidth
of each data is a preloaded hyperparameter to the TRX to

correctly match the precision of the MAC. As the flexibility
of varying precision is only implemented offline, no extra
reconfiguring hardware is consumed in the TRX. The serializer
and modulator of TRX remains intact for varying precisions.

D. Wireless TRx

In MW, the transmission along the rows and columns takes
place simultaneously using two adjacent but different fre-
quency channels. The use of the directional antennas alleviates
the design of multiple transceiver in different frequency bands,
thus avoiding design complexity and migration to power
hungry BiCMOS or III-V technology if we were to scale
up in frequency. Thanks to recent advances [24], [25], [26]
especially in additive manufacturing and 3D chip integration,
such highly directive antennas are easier to pursue either by
in-plane dielectric engineering, structural guiding via etching,
bonding or packaging elements. While certainly non trivial
to build and test, use of directive antennas can ensure higher
flexibility for dataflow in the proposed WiNN accelerator, as
evident in the link budget analysis (Fig. 8).

As an illustration of the concept and indicative of the po-
tential of e-WiNN, the current design proposes to use 60 GHz
and 70 GHz as the two frequency bands for transmission for
the weights and inputs, respectively. A quarter wave monopole
antenna with a very high directivity (around 5 dBi) has been
considered for the MW. Such high-directivity requires either
the use of metasurfaces or superstructures over the chip surface
[25], [26] or loaded dielectrics [24] along with a quarter-wave
monopole antenna. The spacing of the adjacent antennas is
more than % to ensure the antennas do not lie in the near
field region of each other. The maximum linear dimension (D)
of the antenna is assumed to be 2 mm. With A = 5 mm for
60 GHz, the spacing between adjacent antennas is kept at a
minimum distance of ~ 4 mm to avoid any near field effect
of each other as depicted in Fig. 9.

1) Link Budget: A link budget is evaluated for the wire-
less communication of the transmitter data following OOK
modulation considering multiple design environments at a
BER of 107'2. As can be seen from Fig. 8, the required
transmit power decreases significantly with increasing antenna
directivity for both the inter-PE distance and frequency. We
assume the maximum number of PEs in e-WiNN is 4096
to meet the stringent area and power requirements in most
edge applications. Based on a fabricated and tested prototype
of the 4096-core multi-chip-module architecture, we estimate
the maximum inter-PE distance as 48 mm [27]. A floorplan
estimation is depicted in Fig. 9. The simulated transmit power
of the power amplifier (PA) in our work is -1.5 dBm. As can
be observed from Fig. 8 that data even at 16 Gbps can be
transmitted to a distance of 48 mm at 60 & 70 GHz frequencies
even for an isotropic antenna to support 4096 core architecture
as we scale up in the future. This is because the required
transmit power is -2.83 dBm and -1.5 dBm at 60 GHz and
70 GHz respectively as can be observed from Fig. 8. It is
important to note that the data rate used in this work is 8 Gbps
as listed in Table I'V. To accomplish the same task at the current
8 Gbps, the required transmit power for 60 GHz and 70 GHz
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center frequencies are much less at -5.84 dBm and -4.5 dBm
respectively. As can be seen from the link budget analysis
once we migrate to higher frequencies directive antennas can
replace isotropic to achieve this. As earlier mentioned, this
design takes into account directive antennas to work with
two frequency channels without time multiplexing with an
assumed directivity of maximum 5 dBi. The work on link
budget in our study is validated as we compare it to a recent
work on intra-chip communication [28] that is supported by
simulation results from channel modelling. The current study
approximates the medium to be air/vacuum while making the
loss computations. This approximation is based on the fact that
the actual channel will be three-dimensional with the quarter
wave monopole antenna.

2) OOK Transceiver: The wireless communication is
achieved using the incoherent Amplitude Shift Keying (ASK)
based On-Off Keying (OOK) modulation. The modulation
scheme uses an integrated modulator and power amplifier

in the transmitter and an envelope detector at the receiver
for the demodulation as depicted in Fig. 10a and lla in
32 nm FinFET technology model. This is an upgradation in
technology model for power efficiency form our earlier design
An earlier design in 45 nm technology of the transceiver
[11]. The proposed CGM-FinFET transmitter consists of a
differential LC oscillator and a two-stage cascade common-
source PA, stage one of which also acts as the OOK modulator.
The data is fed into the driver transistor M4 when there is logic
‘1’ that enables the switch M5. The single transistor switch
thus acts as the modulator of such an OOK transmitter. The
OOK receiver uses an energy efficient Low Noise Amplifier
(LNA) and an envelope detector to demodulate the OOK
modulated signal. An energy and area efficient active Dickson
Rectifier [29] has been used for the envelope detection of the
OOK modulated signal.

3) Transceiver Performance: The OOK modulation ensures
the power efficiency of the transceiver by avoiding the design
of phase shift keying (PSK) modulators and phase locked loops
(PLL). As explained earlier in the Link Budget, the output
power of the PA is -1.5 dBm ensures the signal to transmit
to a maximum distance of 48 mm at 60 GHz to support a
migration to a 4096 core architecture supporting scalability of
the design. Since the separation between the transmitter and
the receiver are in the range of few millimeters, the gain of
the amplifier is intentionally kept low at a peak gain of around
5 dB to minimize the power dissipation. As depicted in Fig.
10b, the bandwidth is ~20 GHz ranging from 60 GHz to 80
GHz at 1.5 dB. The LNA in the receiver achieves a peak gain
of 8 dB (Fig. 11b). The observed noise figure and the 1-dB
compression point is 6.5 dB and -5.4 dBm respectively. The
bandwidth is ~25 GHz ranging from 60 GHz to 85 GHz at
a gain of 2 dB. The Dickson Rectifier demodulates the OOK
modulated signal to retrieve the digital data at the receiver
(Fig. 12). Both the transmitter and receiver has been designed
with the UC Berkeley CGM technology model at 32 nm [30].

IV. PERFORMANCE EVALUATION

To evaluate the performance of e-WiNN, we simulate
the proposed architecture e-WiNN over representative DNNs
workloads, i.e., ResNet-9/50, VGG16, and AlexNet [31], [32],
[33]. ResNet-9 and ResNet-50 enables us to evaluate the
impact when there is a difference in the number of layers.
VGG16 relies on deep depth-wise convolutional layers, ex-
hibiting a wide range of the number of filter/input channels.
AlexNet uses large filter size but shallow depth. We selectively
construct the benchmarks by these DNNs to provide a com-
prehensive examination of e-WiNN on various applications.

The propagation delay, power consumption and area over-
head of each electrical component are obtained through
SAED14nm EDK and PDK from synpopsys solvnet educa-
tional PDK. The transceiver circuit is implemented in the
CGM 45 nm FinFET technology model from UC Berkeley
[30]. We use a cycle accurate network simulator to obtain the
latency and throughput of implementing the DNN benchmarks.
By multiplying the active clock cycles of each component
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data.

with the synthesized power, we obtain the implementation
energy cost. Wireless transceiver support both unicast and
multicast transmission. In multicast/broadcast, energy cost of
a single transmitter and a number of receivers are computed.
To compute the energy of an wired traffic inside the cluster,

we compute the hops multiplied by the per-hop energy.

We compare the performance of e-WiNN, WiNN, and a
conventional 2D mesh PE array on ResNet-9 in Fig. 13.
The 2D mesh PE array is constructed in a systolic fashion
and interconnected by a light-weight router architecture as
proposed in [13] with a X-Y dimension routing algorithm.
The latency, energy cost, and the energy-delay-product (EDP)
are shown in the top, middle, and bottom plot respectively. We
implement ResNet-9 on these architectures with all dataflow
types as explained in Section IIL.B, i.e., output stationary
(-OS), weight stationary (-WS), row stationary (-RS), and
multicast-for-wireless (-MW). Wireless based architectures
achieve at least 59.7% latency reduction and 37.7% energy
saving when compared to wired 2D mesh architecture on all
dataflows. Both WiNN and e-WiNN demonstrate performance
improvement (nearly 2x) for latency and energy consumption
on MW dataflow. The results validate the efficiency of MW
dataflow that maximizes the multicast opportunities in DNN
workloads on wireless interconnection based accelerators. In
e-WiNN, one additional wired interconnection hop is required
when the sliding window moves across clusters in OS dataflow.
That is the reason why we observe higher latency on e-WiNN
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architecture. We further demonstrate the flexible dataflow
implementation for each layer type (-mixed)

when OS is compared to WiNN. However, MW dataflow
shows identical latency on e-WiNN and WiNN, because most
data distribution is via wireless channels. We further show
the energy delay product (EDP) plot in the bottom, in which
e-WiNN performs the best.

Fig. 14 shows the execution latency of ResNet-50 on
the 2D Mesh and e-WiNN architecture. Four representative
dataflows (OS, WS, RS, and MW) are all examined. Mesh
architecture achieves the best latency performance with row
stationary dataflow, approximately half of the latency with
weight stationary, while e-WiNN performs best with multicast
for wireless dataflow, which is specifically developed for
wireless interconnections. As argued in Section III.B, although
row stationary dataflow achieves the most data reuse, the
reduced opportunities to multicast data would deteriorate the
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Figure 15: Energy cost of ResNet-50 with dataflows output
stationary (-OS), weight stationary (-WS), row stationary (-
RS), multicast for wireless (-MW), and mixed dataflows (-
mixed) on the 2D Mesh and e-WiNN architectures.

Table II: Performance of the proposed MAC circuits with
14nm Technology (f; = 1GHz).

4-Bit 8-Bit 16-Bit 16-Bit
Constraint | MAC MAC MAC | VP-MAC
Power (uW) | 14.909 | 45.621 | 384.26 171.608
Area (um?) 38.01 112.91 | 732.29 487.067
tdmaa (NS) 0.03 0.04 0.04 0.04

performance. Another observation is that the parameters of
the convolutional layer, for instance, number of channels and
filter and input activation ratio, have a significant impact on the
efficiency of dataflow. As shown in Fig. 14, MW is the optimal
dataflow for the e-WiNN over the entire ResNet-50 workload.
However, CONV?2 layer type has the lowest execution latency
with RS dataflow. Therefore, we re-implement the simulation
on a layer-wise basis, where most suitable dataflow for each
layer type is pre-configured. The mixed dataflow implementa-
tion further reduces 11.3% of the overall latency compared to
MW dataflow on e-WiNN.

Fig. 15 shows the energy cost of ResNet-50 with various
dataflows (OS,WS,RS, and MW) on the 2D Mesh and e-WiNN
architectures. The 2D Mesh architecture achieves the highest
energy efficiency with RS dataflow, while e-WiNN prefers
MW dataflow. We can infer from Fig. 14 and Fig. 15, the
impact of dataflow on latency and energy cost have a positive
correlation. The layer-wise flexible dataflow implementation
further reduces the energy cost by 13.8% and 19.7% respec-
tively on the Mesh and e-WiNN architectures compared to
its globally optimal dataflow. This is static dataflow flexibility
only to explore the benefits of dataflow reconfigurability for
multi-tenant applications. The runtime reconfiguration con-
troller and the corresponding area and energy overheads are
not considered in the simulation.

In order to improve the hardware efficiency, we explore
the quantization of both weights and input activations to low
precision circuits as shown in Table III. We start with the
impact of precision on the accuracy of the DNN models.
ResNet-50 achieves 79.26% topl classification accuracy on
ImageNet dataset [31]. Then a simple floating-point-to-integer
conversion and retraining generates the 32-bit integer weights
with negligible loss in accuracy. We implement ResNet-50 on
ImageNet dataset using Pytorch 1.4. Various quantized models
are derived from TorchVision domain library.

As for hardware performance, we simulated Dadda-
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Table III: Comparison of hardware performance between e-WiNN and WiNN on ResNet-50 over varying precisions.

.. WiIiNN e-WINN
Precision Inference Accuracy T
atency | energy Area latency | energy Area
q(bits) (top1) (top5) (ms) (m)) | (mm?) (ms) ml)) | (mm?)
32 floating point | 79.26 94.75 / / / / / /

32 79.24 94.69 92.2 30.1 16.5 162.5.5 30.1 4.9

16 77.13 91.37 83.3 15.9 4.1 115.6 18.6 1.15

16 (VP-MAC) 77.13 91.37 83.3 12.2 2.6 115.6 12.7 0.61
8 75.85 86.24 78.8 9.6 1.7 85.1 8.26 0.46

4 63.96 76.08 76.2 5.0 1.5 79.4 4.1 0.39

algorithm based MAC circuits (Fig. 7) with 4-bit, 8-bit and
16-bit inputs using 14 nm technology libraries as shown in
Table II. The simulated power & area figures of the standard
MAC units scale non-linearly up to 184uW and 732um?,
respectively, as would be expected from increasing complexity.
The vimporved VP-MAC unit, which can perform all 4/8/16-
bit operations, however, would save substantial (45%) power
using only 55% of the area without compromising the speed.
The interconnections, on-chip memory, and computation units
are all designed to accommodate 32-bit integer operations
in the baseline version. We apply the same design to lower
precision with reduced duty cycle. Both WiNN and e-WiNN
benefit from reduced precision in terms of area overhead,
latency, and energy consumption at the cost of accuracy loss.
In Table III we observe a convergence of latency reduction
at 4bit precision as the bit width scales down. Memory
accesses and data movement no longer cause extra delays.
Computation operations are on the critical path. The table
gives a quantitative insight of the trade-off between neural
network accuracy and underlying hardware cost over various
quantizations.

We compare the performance of e-WiNN with various state-
of-art DNN accelerators in Table IV. Due to the difference
of the verification simulators for MAC design and the wire-
less transceiver, separate semiconductor technology nodes are
considered and listed in the second row of Table IV. All
the performance metrics are evaluated under the designated
semiconductor process. Eyeriss [14] makes a comprehensive
study of dataflow in DNNs and implements the proposed
the row stationary dataflow in the hardware architecture.
It has been widely compared to by follow-up accelerator
designs, as hardware architects pay more attention to the
data movement. Eyeriss V2 [16] is the second generation of
Eyeriss, incorporating a hierarchical mesh NoC to meet the
upgrading requirement of throughput and energy efficiency.
These two architectures are selected as the representative wired
interconnected accelerator with optimized data movement and
NoC design. Unlike WiNN, we do not scale these design
parameters in the comparison. The original configurations and
silicon technology are listed in the table to demonstrate the
design choices and the performance of various architectures.
e-WiNN achieves 36.3% latency reduction and 76.1% energy
saving on the three DNN models compared to Eyeriss V2.
Other wireless interconnection based accelerators also demon-
strate distinct advantages against Eyeriss series on latency
and energy consumption. However, for example WiNN, has a
lower performance-per-watt than Eyeriss. It means, although

WiNN can beat Eyeriss in absolute value of latency and energy
consumption, the relative energy cost of computation operation
is still higher. e-WiNN solves this problem by further reducing
the energy consumption with clustering at the cost of increased
latency. Therefore, e-WiNN performs the best in performance-
per-watt except for WIENNA. WiNoC [7] and WIENNA [8]
are two accelerators with the wireless hybrid interconnection.
WiNoC employs one wireless channel for low latency weight
broadcast, following the WS dataflow as shown in Fig. 5.
WIENNA is a 2.5D chiplets-based architecture, using wireless
interconnections in the interposer. It has orders of magnitude
more number of PEs and therefore largest area overheads.
Although WIENNA achieves the highest performance-per-
watt, it incurs 43.5% more energy cost in average on the three
DNN models compared to e-WiNN. As shown in the last two
columns, e-WiNN reduces 70.3% area overheads and 41.6%
energy consumption, but increases 11% latency increase when
compared to WiNN. Furthermore, e-WiNN achieves 2.3x
more TOPS in average than WiNN.

V. RELATED WORK

DNN Accelerators and Dataflows. Shidiannao [34] is a
fixed dataflow accelerator, which employs output stationary
dataflow via mesh-based electrical interconnects. Dadiannao
[35] is a tile-based multi-chip accelerator, relying on a fat tree
for balanced data transfer between the global buffer and PE.
Cambricon-X [36] uses adder tree as the computation engine
and exploits sparsity in both weights and input activations.
Eyeriss [14] is a state-of-the-art low-energy DNN acceler-
ator that proposed row stationary dataflow and developed
the computation-centric dataflow taxonomy. Eyeriss V2 [16]
identifies the bottleneck of bus-based NoC as hindering the
accelerator performance and proposes a hierarchical mesh
to support high throughput and data reuse. Flexflow [37]
is a reconfigurable accelerator that supports three distinct
dataflows. TPU [38] is a systolic array-based DNN accelerator
designed for cloud workloads in data centers. MAERI [18]
proposes a chubby-tree for efficient multicast and constructed
the PE array with an adder tree to support flexible dataflows.
Maelstrom [39] identifies reconfigurable hardware to accom-
modate multiple DNN workloads with flexible dataflows. All
the prior accelerators utilize electrical links for data transfer
between the PE and global buffers. However, the inherent
high latency and energy consumption of multi-hop traversal by
metallic links hinder the performance improvements. Dataflow
optimizations allow reducing data movement leading to design
trade-offs in energy-efficiency and performance. WAX [40]
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Table IV: Hardware configuration and performance comparison of e-WiNN with Eyeriss V2, Eyeriss, WINOC, WIENNA,

AND WiNN on AlexNet, VGG16, and ResNet-50.

Eyeriss v2 | Eyeriss | WiNoC | WIENNA | WIiNN | e-WiNN
Technology 65nm 65nm 65nm 65nm 45nm 14nm
Core area (mm?) 28.1 12.25 14.2 1699 16.5 4.9
PEs 192 168 256 16384 256 256
Throughput (GMACs) 153.6 42 128 7680 113 121
Onchip SRAM (Kb) 246 181.5 64 13312 192 192
Core Frequency (MHz) 200 200 500 500 500 500
Local SRAM 400 512 256 512 128 128
Arithmetic Precision (bits) 8 16 32 \ 32 4-16
Wireless Bandwidth (Gbps) \ \ 16 8-16 8 8
Wireless Frequency \ \ 60 60 40-160 | 40-160
AlexNet: 666M MACs (Conv) + 2.3M (Conv) + 58.6M weights
Execution Latency (ms) 9.8 30.1 1.7 \ 1.5 1.6
Energy (ml]) 5.9 8.4 1.14 1.91-2.35 1.02 0.39
TOPS/W 0.92 1.99 0.83 2.37-3.15 0.82 2.28
VGG16: 15.3G MACs (Conv) + 14.7M (Conv) + 124M weights
Execution Latency (ms) 215.7 1316 149.3 \ 118.3 131.9
Energy (ml) 85.1 312.5 48.6 39.5-58.3 36.2 23.1
TOPS/W 7.60 12.63 9.22 12.9-16.3 9.80 17.13
ResNet-50: 3.86G MACs (Conv) + 23.5M (Conv) + 2M(FC) weights
Execution Latency (ms) 239.1 1592 132.4 \ 92.2 162.5
Energy (mlJ) 72.6 185.3 46.2 31.3-49.0 30.1 15.8
TOPS/W 3.29 8.59 2.87 5.72-6.61 3.06 10.25

is a wire-aware CNN accelerator and employs a deep and
distributed memory hierarchy to enable flexible dataflows
over short wires. dMazeRunner [41] is a DNN accelerator
design search framework, tailoring dataflows for a given DNN
model for efficient execution. However, eWiNN evaluates all
representative dataflows and explores efficient variants by
maximizing multicast capabilities of wireless interconnects.

Wireless interconnections and accelerators. Wireless NoC
architectures have been applied to many-core systems to
overcome the bandwidth, scalability and power limitations of
electrical networks [42], [43], [6], [44], [45], [46]. Several of
these prior work were hybrid designs that effectively combined
both electrical and wireless technology to improve energy-
efficiency and performance. Wireless channels are constructed
for long-distance communication as the second tier highway
to reduce the latency when traversing multiple hops. Few prior
work have incorporated wireless interconnections in DNN
accelerators. WiNoC [7] develops a hybrid wireless and wired
NoC for the accelerator to efficiently broadcast weights. WI-
ENNA [8] employs wireless interconnects for high bandwidth
inter-chiplet communication in the interposer. The inter-chiplet
wireless interconnects design is extended by using memory
footprint compression to reduce the memory and communi-
cation traffic in [47]. A comprehensive study of introducing
Wireless Networks-on-Chip as a novel interconnect paradigm
to accelerate multicast traffic is conducted in [48]. WiNN [11]
develops an X-Y dimension wireless interconnection and a
new dataflow to maximize the multicast traffic. This enables
simultaneous communication of weights and input activations
in x and y dimensions. None of these accelerators consider
multiple dataflows to efficiently accommodate various DNN
applications through wireless interconnects. e-WiNN further
explores PE clustering to reduce the wireless area overheads

and flexible precision MAC units to improve the energy
efficiency of edge applications.

VI. CONCLUSIONS

This work explores the energy-efficiency and performance
trade-offs by exploiting emerging wireless technology for
implementing scalable DNN accelerators. In conjunction with
accommodating various representative dataflows, we also ex-
plore the data reuse and data multicast with wireless tech-
nology on our proposed e-WiNN architecture. Furthermore,
we leverage novel circuit design by utilizing Dadda-algorithm
based Multiply-and-Accumulate and explored the impact of
multiple bit precisions (4-bit, 8bit and 16-bit) on hardware
performance. To reduce the area overhead, we cluster wireless
transceivers into groups of four such that both weights and
input features can be effectively multicast to reduce the data
movement. We considered the link budget and the required RF
power for the center frequency at maximum inter-PE distance.
Our detailed RTL modeling and cycle-accurate simulation
results show that e-WiNN achieves 36.3% latency reduction
and 76.1% energy saving when compared to state-of-art wire
interconnected accelerators; 70.3% area reduction and 41.6%
energy saving at the cost of 11% latency increase when
compared to prior wireless accelerators on various neural
networks (AlexNet, VGG16, and ResNet-9/50). In the future,
we will extend e-WiINN to adapt to emerging applications
and multi-DNN workloads which require flexible dataflows.
Further, we will evaluate flexible and reconfigurable wireless
connections to improve power and performance for various
DNN applications.
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