4606

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Vision-Only Robot Navigation in a Neural
Radiance World

Michal Adamkiewicz”, Timothy Chen

Jeannette Bohg

Abstract—Neural Radiance Fields (NeRFs) have recently
emerged as a powerful paradigm for the representation of natural,
complex 3D scenes. Neural Radiance Fields (NeRFs) represent
continuous volumetric density and RGB values in a neural network,
and generate photo-realistic images from unseen camera view-
points through ray tracing. We propose an algorithm for navigating
arobot through a 3D environment represented as a NeRF using only
an onboard RGB camera for localization. We assume the NeRF for
the scene has been pre-trained offline, and the robot’s objective
is to navigate through unoccupied space in the NeRF to reach a
goal pose. We introduce a trajectory optimization algorithm that
avoids collisions with high-density regions in the NeRF based on
a discrete time version of differential flatness that is amenable
to constraining the robot’s full pose and control inputs. We also
introduce an optimization based filtering method to estimate 6DoF
pose and velocities for the robot in the NeRF given only an onboard
RGB camera. We combine the trajectory planner with the pose
filter in an online replanning loop to give a vision-based robot
navigation pipeline. We present simulation results with a quadrotor
robot navigating through a jungle gym environment, the inside of
a church, and Stonehenge using only an RGB camera. We also
demonstrate an omnidirectional ground robot navigating through
the church, requiring it to reorient to fit through a narrow gap.

Index Terms—Collision avoidance, localization, motion and path
planning, vision-based navigation, neural radiance fields.

I. INTRODUCTION

LANNING and executing a trajectory with onboard sensors
is a fundamental building block of many robotic appli-
cations, from manipulation to autonomous driving or drone

Manuscript received September 9, 2021; accepted January 20, 2022. Date of
publication February 11, 2022; date of current version March 1, 2022. This letter
was recommended for publication by Associate Editor Youcef Mezouar and
Editor Eric Marchand upon evaluation of the reviewers’ comments. The work
of Preston Culbertson was supported by NASA Space Technology Research
Fellowship under Grant NSSC18K1180. This work was supported in part by NSF
NRI under Grant 1830402, and in part by ONR under Grant N00014-18-1-2830,
Siemens and the Stanford Data Science Initiative. (Michal Adamkiewicz and
Timothy Chen contributed equally to this work.) Corresponding author: Michal
Adamkiewicz.)

Michal Adamkiewicz, Rachel Gardner, and Jeannette Bohg are with the De-
partment of Computer Science, Stanford University, Stanford, CA 94305 USA
(e-mail: mikadam @ stanford.edu; rachel) @stanford.edu; bohg @stanford.edu).

Timothy Chen and Mac Schwager are with the Department of Aeronau-
tics and Astronautics, Stanford University, Stanford, CA 94305 USA (e-mail:
chengine @stanford.edu; schwager @stanford.edu).

Adam Caccavale and Preston Culbertson are with the Department of Me-
chanical Engineering, Stanford University, Stanford, CA 94305 USA (e-mail:
adam.w.caccavale @ gmail.com; pculbertson @stanford.edu).

Videos of this work can be found at https://mikh3x4.github.io/nerf-
navigation/.

Digital Object Identifier 10.1109/LRA.2022.3150497

, Adam Caccavale
, and Mac Schwager

, Rachel Gardner
, Member, IEEE

, Preston Culbertson ",

Fig. 1. A drone navigating through the interior space of a church using a
monocular camera. The environment is modeled as a Neural Radiance Field
(NeRF), a deep-learned geometry representation. The trajectory, which is opti-
mized to minimize a NeRF-based collision metric, can be continually replanned
as the drone updates its state estimate based on captured images.

flight. Robot navigation methods depend on properties of the
underlying environment representation, whether it is a voxel
grid, a point cloud, a mesh model, or a Signed Distance Field
(SDF). Recently there has been an explosion of interest in a
deep-learned geometric representation called NeRFs due to their
ability to compactly encode detailed 3D geometry and color [1].
NeRFs take a collection of camera images and train a neural
network to give a function relating each 3D point in space with
a density and a vector of RGB values (called a “radiance”).
This representation can then generate synthetic photo-realistic
images through a differentiable ray tracing algorithm. In this
paper, we propose a navigation pipeline for a robot given a
pre-trained NeRF of its environment. A block diagram is shown
in Fig. 2 We use the density of the NeRF to plan dynamically
feasible, collision-free trajectories for a differentially flat robot
model. We also build a filter to estimate the dynamic state of the
robot given an onboard RGB image, using the image synthesis
capabilities of the NeRF.

We combine the trajectory planner and the filter in a receding
horizon loop to provide a full navigation pipeline for a robot to
dynamically maneuver through an environment (an example is
shown in Fig. 1) using only an RGB camera for feedback. While
some existing vision-only navigation systems [2] have seen
recent success with end-to-end approaches, others such as [3]
have advocated for a modularization of learned perception and

2377-3766 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Stanford University. Downloaded on June 05,2023 at 19:45:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1645-2445
https://orcid.org/0000-0003-3948-8739
https://orcid.org/0000-0002-0142-8733
https://orcid.org/0000-0003-2047-8928
https://orcid.org/0000-0002-1403-8697
https://orcid.org/0000-0002-4921-7193
https://orcid.org/0000-0002-7871-3663
mailto:mikadam@stanford.edu
mailto:rachel0@stanford.edu
mailto:bohg@stanford.edu
mailto:chengine@stanford.edu
mailto:schwager@stanford.edu
mailto:adam.w.caccavale@gmail.com
mailto:pculbertson@stanford.edu
https://mikh3x4.github.io/nerf-navigation/
https://mikh3x4.github.io/nerf-navigation/

ADAMKIEWICZ et al.: VISION-ONLY ROBOT NAVIGATION IN A NEURAL RADIANCE WORLD

control and achieved impressive results. While their perception
system aims to generalize over variations of drone race tracks it
requires very specific training data and labels. We take a similar
approach, and focus on NeRFs as a geometric environment
representation that enables any robot, e.g. drones or ground
robots, to navigate through it.

NeRFs present a range of potential advantages as an
environment representation for robots. Unlike voxel models,
point clouds, or mesh models, they are trained directly on dense
photographic images without needing precise feature extraction,
matching, and alignment [4], [5]. They inherently represent
the geometry as a continuous density field, and so they are
well-suited to robot motion planning and trajectory optimization
using gradient methods, or used with differentiable simulators.
They can also produce photo-realistic synthetic images, giving
amechanism for a robot to “hallucinate” what it would expect to
see if it were to take different actions. Additionally, NeRFs are
able to store geometry efficiently in memory as neural network
weights rather than as dense point clouds or voxel grids, making
them ideal for use in memory-constrained systems like robots.

Extensions of NeRFs have been developed to handle transpar-
ent objects [6], segment and recompose objects in a scene [7]-
[9], and render moving and deformable objects [10], including
humans [10] and human faces [11]. Variants of NeRFs can also
incorporate a prior over objects or scenes, in order to quickly
adapt to new environments with a handful of images [12], [13].
While the standard NeRF training and image rendering pipeline
is slow, recent developments have accelerated image synthesis
from a NeRF to 200 frames per second on a GPU [14], fast
enough for use in a real-time robot control loop. We envision
a future where all these improvements could be leveraged to
create a fully NeRF based environment representation that com-
bines complex geometry, semantic understanding, and real-time
performance. However, for robots to harness the advantages of
the NeRF representation for navigation, a trajectory planner
and pose filter designed to work specifically with the NeRF
machinery are needed.

We address this need in this paper by proposing:

1) a new trajectory planning method, based on differential
flatness, that plans full, dynamically feasible trajectories
to avoid collisions with a NeRF environment,

2) an optimization-based filter to obtain a posterior estimate
of the full dynamic state, balancing a dynamics prediction
loss and a NeRF-based photometric loss, and

3) an online replanning controller that combines both of the
above algorithms in feedback to robustly navigate a robot
through its environment using a NeRF model.

We demonstrate results in a variety of high fidelity simulation
environments, and perform ablation studies to showcase the ad-
vantages provided by each part of our navigation framework. We
run our navigation pipeline with custom-trained NeRF models
of a playground, a church, and Stonehenge. We then evaluate
the performance of our trajectory planner and pose estimator on
the underlying ground truth mesh models, not the trained NeRF
models, thereby demonstrating robustness to model mismatch
between the real-world scene and the trained NeRF.

II. RELATED WORK

A. Neural Implicit Representations

Neural implicit representations use a neural network to rep-
resent the geometry (and sometimes the color and texture) of

4607

a complex 3D scene. Generally, neural implicit representations
take a labeled data set and learn a function of the form fy (p) = o,
where f is a neural network parameterized by the weights 6, p is
a low-dimensional query point such as an (z,y, z) coordinate,
and o is some (usually scalar) quantity of interest. Aside from
NeRFs, there are several other approaches to implicit repre-
sentations including learned SDFs [15]-[17] and Occupancy
Networks [18].

However, there currently exists little work studying how to
leverage NeRFs for applications beyond novel view synthesis.
Recent work [4] has treated the problem of mapping and online
NeRF construction from visual data; the authors demonstrate
competitive accuracy with traditional SLAM pipelines, and
realtime performance. This work’s state estimator builds on
[19], which presents a method for single-image camera pose
estimation using a pre-trained NeRF representation of the envi-
ronment. The method we present here for state estimation also
uses maximum likelihood estimation (MLE), but we instead treat
the problem as recursive Bayesian estimation, which incorpo-
rates system dynamics and must propagate uncertainty between
timesteps.

B. Trajectory Optimization

Optimal control remains a fundamental tool in robotic motion
planning. Of particular interest is the problem of trajectory
optimization [20], which seeks a system trajectory x(¢) and
open-loop inputs u(t) that optimize a control objective, subject
to state and input constraints. While there exists a vast literature
on trajectory optimization for robot motion planning [21], our
discussion here will focus specifically on collision avoidance in
trajectory optimization, which remains unstudied for environ-
ments represented as NeRFs.

One approach to model an environment is as an SDF, which
represents obstacles as the zero-level set of a nonlinear function
d(x), which takes negative values inside the obstacle, positive
values outside the obstacle, and has magnitude equal to the dis-
tance between x and the obstacle boundary. Collision avoidance
istypically imposed as a constraint in the trajectory optimization,
requiring the SDF for all obstacles to be non-negative at all
points on the robot body along the trajectory. This formalism has
received particular interest as a map representation following the
success of KinectFusion [22], which constructs truncated SDFs
using RGB-D data. Works such as [23] and [24] present methods
for incrementally constructing SDF-like map representations
and using them for online motion planning.

Perhaps closest to this work’s trajectory optimizer is CHOMP
[25], [26], a family of gradient-based methods which optimizes
a finite sequence of poses, with an objective which encourages
the trajectory to be smooth and to avoid collision. Specifically,
CHOMP represents obstacle geometry by pre-computing each
obstacle’s SDF on a finite grid, and approximates SDF gradi-
ents using finite differences or interpolation. In [27], the au-
thors present a similar gradient-based method which optimizes
quadrotor position trajectories to minimize a perception-aware
collision metric based on an SDF-like map. In contrast, the NeRF
geometry representation used here is continuous in itself, and
of arbitrary resolution, with continuous gradients that can be
efficiently computed using automatic differentiation. Further,
our method generates trajectories that are constrained to be
dynamically feasible rather than imposing the system dynamics
via a cost.

Authorized licensed use limited to: Stanford University. Downloaded on June 05,2023 at 19:45:06 UTC from IEEE Xplore. Restrictions apply.

4608

III. PROBLEM FORMULATION

This paper proposes a method for navigating a robot through
an environment represented by a NeRF. A NeRF (IV : R? x
R? — R? x R,) maps a 3D location p = (z,y, z) and view di-
rection (6, ¢) to an emitted color ¢ = (r, g, b) and scalar density
p. For notational convenience, we define p(p) as the density
output of the NeRF evaluated at position p (note p depends
only on position). Similarly, we define C; : SE(3) — R3 as the
expected color of pixel ¢ when rendering the NeRF from the
camerapose T' € SE(3), where SE denotes the special Euclidean
group.

In this paper, we consider the problem of a mobile robot,
equipped only with amonocular camera, which seeks to navigate
an environment. Specifically, the robot seeks to plan and track a
collision-free path from its initial state x¢ to a goal state X ¢. The
robot has access to a NeRF representation of the environment
which it can use for both planning (i.e., for evaluating the
probability of collision for a given trajectory) and localization.

We approximate the robot body using a finite collection of
points B at which collision is checked. Typically this will be
a 3 d grid of points representing the robot’s bounding box,
however it can also be an arbitrarily complex model. However,
it is not obvious how the NeRF density at a point relates to
its occupancy. Specifically, the NeRF density represents the
differential probability of a given spatial point stopping a ray
of light [1]. We assume the probability of terminating a light
ray is a strong proxy for the probability of terminating a mass
particle. Thus, the collision probability at time ¢ is given by

pgoll —p U b, € Xeon | < Z P(bt) S(bt); H

b.eB b:eB

where Xy denotes the collision set, s(b;) is the distance
traveled by a body-fixed point b in timestep ¢, and the bound
follows from Boole’s inequality. In this work, we include the
collision probability as a cost to be minimized during trajectory
optimization; an alternative approach would be to impose a
chance constraint on the optimization, which would require more
sophisticated optimization techniques.

Given a Gaussian estimate of its current state, N'(p¢, X¢),
the robot plans a series of waypoints that avoid regions of high
density in the NeRF. After taking a control action, the robot
receives an image of the environment, and updates its belief
about its current state. Finally, the robot replans the trajectory
using the latest estimate as the first state.

IV. TRAJECTORY PLANNING IN A NERF

This paper addresses the unique challenges that prevent com-
mon trajectory planning methods from working with NeRF
environment representations. Querying a NeRF at a point in
space gives a density, not an absolute occupancy, which prevents
the use of hard constraints and instead suggests a method that
seeks to minimize the integrated density over the volume of the
robot.

A. Differential Flatness

To speed up planning, our system leverages ‘“differential
flatness,” a particular property of some dynamical systems which
allows their inputs and states to be represented using a (smaller)

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Control Inputs

Real World or [
Simulator |

&

State Estimate

Camera Images

> > Trajectory
> Estimator »| Optimizer
Density
2 <
.,

Predicted Image NeRF

Predicted State

Fig. 2. Block diagram of the proposed pipeline. Our method consists of a
trajectory optimizer and state estimator which use a NeRF representation of
the environment for planning and localization. At each timestep, the planner
optimizes a trajectory from the current mean state estimate which minimizes a
NeRF-based collision metric. The robot then applies the first control action of
this trajectory, and receives a noisy image from its onboard camera. Finally, the
state estimator, using the NeRF as a nonlinear measurement model, uses this
image to generate a posterior belief over the new state.

set of “flat outputs,” and their derivatives. Notably, quadrotors
are known to be differentially flat, with their position and yaw
angle as flat outputs [28].

Traditional planning pipelines for differentially flat systems
[29], [30] seek polynomial trajectories for the flat outputs which
minimize an objective functional (such as snap or jerk) subject
to waypoint constraints. This problem can be expressed as a
quadratic program, which can be solved efficiently. Collision
avoidance can also be included in this formulation, but in order
for the problem to remain convex, the designer must hard-code
decisions about how obstacles will be passed.

Our approach differs from the traditional pipeline since we
do not describe the obstacles in closed form (e.g., as polytopes),
but instead represent them implicitly using the NeRF density.
Additionally, while prior methods only optimize the trajectory
between static, hand-designed waypoints, our method uses a
denser set of waypoints whose location can be optimized di-
rectly. Because our trajectory optimization is fundamentally
nonconvex, we instead perform our optimization using first-
order methods (in particular, the Adam optimizer) with gradi-
ents computed efficiently using automatic differentiation. Our
decision variables thus are a set of flat output waypoints that
we optimize to minimize a combined objective of collision
probability and control effort. One advantage of our approach
is that the cost can be an arbitrary differentiable functional of
the trajectory or robot state; further, our planned trajectory can
be naturally combined with differential flatness-based feedback
controllers for low-level tracking. Note that while this paper
uses quadrotors as an example, this property is known to hold
for numerous other vehicle types, such as omnidirectional or
differential drive ground robots.

B. Optimization Formulation

The trajectory optimizer seeks a set of flat output waypoints
W ={oy,...,o0} that minimizes multi-objective cost given

Authorized licensed use limited to: Stanford University. Downloaded on June 05,2023 at 19:45:06 UTC from IEEE Xplore. Restrictions apply.

ADAMKIEWICZ et al.: VISION-ONLY ROBOT NAVIGATION IN A NEURAL RADIANCE WORLD

Zpody = thrust |

V(t+1

(b)

Fig. 3. (a) Overhead view showing the planned trajectory as the optimization
progresses on a toy example. The initial trajectory (red) goes straight through
the high density regions of the NeRF (black area). The blue is an intermediate
trajectory which clips the corner. The final trajectory (green) avoids the obstacle.
(b) Visualization of how the force balance on the quadrotor leads to a differential
flatness formulation.

by
collision penalty control penalty
h ——
J=>> p(R;b;+p(o,)s(bi)+ ulTu, (2

7=0 b;eB

where p(o) is the position component of a differentially
flat state o, R, is the rotation matrix from the robot body
frame to the world frame, s(-) is a function that returns the
distance traveled by the point in the robot’s point cloud, and I"
is the positive definite matrix of of weights penalizing control
effort. The first objective seeks to minimize the upper bound
on collision probability defined in (1), and the second seeks to
minimize control effort. Note that R, s(-), and u, are derived
from the surrounding waypoints using the robot’s dynamics, and
therefore are functions of the decision variables {o1, ... 0o}, }.

C. Initialization

Our method is initialized by calculating a series of preliminary
waypoint poses between the current pose and goal pose via a
heuristic, such as a straight line or A* on a coarse grid overlaid on
the scene. We optimize these initial guesses via gradient decent
to balance multiple objectives such as avoiding collisions, and
minimizing control effort. Fig. 3(a) shows a trajectory moving
towards areas of low NeRF density as it its optimized from an
initial straight line.

V. VISION-ONLY POSE FILTERING IN A NERF

After executing an action from the planned trajectory, the
robot must close the loop and estimate its pose using its onboard
sensors (e.g. a monocular camera). In this section we address
the problem of how a robot can update its pose belief given a
measurement and its most recent control action.

Our method is most closely related to [19] where an initial
pose estimate is optimized by minimizing the photometric loss
between the pixels in the image and the predicted pixels via the
projected NeRF scene. However, this method is a single-shot
estimator and is highly dependent on the initialization. We
formulate a state estimation filter that adds a process loss to
the same photometric loss. This additional loss term provides
benefits beyond the prior work by estimating a pose and its

4609

Fig. 4.
(right).

Recursive SE(3) optimization (left) vs. Optimization in tangent plane

derivatives. Additionally, the state estimation should be more
robust when the robot travels through regions of low photometric
gradient information, relying more on the dynamics model.
Lastly, the filter produces a state covariance which can be
useful for other robotics algorithms running in parallel, such
as collision avoidance with dynamic agents [31].

A. Optimization Formulation

At each timestep, the estimator is provided a new image I,
the previous action taken u;, and a Gaussian belief over the
state x;_1 with mean p; ; and covariance 3; ;. Using this
information, we update the belief as follows:

Mye—1 = f(pe-1,u) 3)

A, =) (;"“” @)
X X=pt-1

Y1 = At712t71A£1 +Qi1 (5)

where the dynamics are modeled as x; = f(x;_1,u;) with
process noise covariance Q.

As in [19], a subset of pixels Z are selected for evaluation
using existing image feature detectors (e.g. ORB) to identify
points of interest and bias the sampling around these areas of
higher gradient information. The pose of the robot T; € SFE(3)
can be constructed from the position and rotation elements of
L. With this information, the cost function to be minimized is

photometric loss

J(pt) = ||Cz(Ty) — It(I)||§;1 A g1 — “tHQZZ‘L (6)

process loss

where S; is the measurement noise covariance and the notation
[x|I3; = x* Mx is the weighted ¢, norm. Minimizing this equa-
tion gives the updated mean ;. Outlier rejection is performed
on the per-pixel loss to reduce variance.

Finally, we leverage the known relationship between the
Hessian of a Gaussian loss function and the covariance [32]
to yield the posterior covariance,

-1
> .)
X=Ht

9%J
S
B. Performance Enhancing Optimization Details

0x2

The approach in [19] optimizes for the state by taking gra-
dient steps with respect to a reference pose and projecting
onto the SE(3) manifold after the optimization to recover the
state estimate. Instead, we project back onto the manifold after
every gradient step. This is illustrated in Fig. 4. These two
methods are mathematically distinct, as the multiplication of

Authorized licensed use limited to: Stanford University. Downloaded on June 05,2023 at 19:45:06 UTC from IEEE Xplore. Restrictions apply.

4610

Fig.5. Results for the proposed trajectory optimizer navigating through Stone-
henge. The blue trajectory is the initial plan returned by our optimizer. We then
roll out the dynamics noisily for a number of timesteps (white) and re-optimize
the trajectory (green). The planner responds to a vertical disturbance by opting
to fly above the arch, rather than below as initially planned. Changing homotopy
classes around obstacles is quite difficult for existing differential flatness-based
planners .

skew-symmetric matrices in the exponential map do not com-
mute. Explicitly,

exp(01) exp(dz2) -+ T #£exp(d1 + d2+---)T, (8)

where T is the reference homogeneous transformation matrix,
and exp(-) is the exponential map between the tangent space
and manifold. Qualitatively we observe that the recursive SE(3)
gradient descent converges quicker and more smoothly than the
method in [19], which we attribute to the noisy photometric loss
landscape over the SE(3) manifold. Please see [33] for further
Lie theory details. Optimization on the manifold is implemented
using the LieTorch library [34].

VI. ONLINE REPLANNING FOR VISION-ONLY NAVIGATION

We combine the trajectory planner from Section IV and the
state estimator from Section V in an online replanning formu-
lation. The robot begins with an initial prior of its state belief, a
final desired state, as well as the trained NeRF.

The robot first plans a trajectory as described in Section IV.
The robot then executes the first action (in this case inside a
simulator), and the state filter takes in a new image and updates
its belief. The mean of this posterior is used in the trajectory
planner as a new starting state and along with the rest of the
previous waypoints at a hot start, re-optimizes the trajectory
taking into account any disturbances. This continues until the
robot has reached the goal state. This process is described in
Algorithm 1. This allows the robot to create new updated plans
that take into account disturbances. Fig. 5 show an example of
a trajectory being reoptimised given new information.

VII. EXPERIMENTS

We demonstrate the performance of our method using a vari-
ety of high-fidelity simulated mesh environments (scene meshes
by Sketchfab users Ahmad Azizi, artfletch, & ruslans3d). Since
our method assumes a trained NeRF model, we first render a
sequence of images from the mesh. These images are used to
train a NeRF model using an off-the-shelf PyTorch implementa-
tion [35]. Rendering images from a mesh with [36] (rather then

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Algorithm 1: Receding Horizon Planner.

1: Inputs: (o, Xo) initial state prior, X4, desired final
state, IV trained NeRF model of environment.
2 W« A*(UO; Xgoal)
3: while not at x4, do
4: W « trajopt(W) [Sec. V]
5 X,u < getStatesActions(WW)
6 I + getCameraImage()
7 pe, 3 poseFilter(I, p—1, X 1,uy)
[Sec. V]
8: W« [pe, W [2:end]]

images taken with a camera in the real world) provides a ground
truth reference for the scene geometry with which to evaluate our
method. The robot’s sensor images are similarly rendered from
the ground truth environment, but the trajectories are different
so any query of the NeRF model differs from the training data.

The experiment section is divided into 3 parts: We first eval-
uate the performance of our trajectory planner on its own, then
the state estimator on it own, before demonstrating the complete
online replanning pipeline.

We first study the performance of our trajectory optimizer
alone on a number of benchmark scenes. We demonstrate that
our trajectory optimizer can generate aggressive, dynamically
feasible trajectories for a quadrotor and an omni-directional
robot which avoid collision.

A. Planner - Ground Truth Comparison

In order to use a NeRF to reason about collisions, we need
to show that the learned optical density is a good proxy for
real world collisions. We compare the NeRF predicted collisions
during various stages of trajectory optimization with the ground
truth mesh intersecting volume, during planning of a quadrotor
path through a playground environment. The trajectories are
shown in Fig. 6(a). Fig. 6(b) shows the relationship between
the collision loss term from (2) and overlap between the robot
volume and the ground truth mesh over time. In addition to plan-
ner finding a smooth, collision-free (i.e., zero mesh intersection
volume) trajectory, we can see that throughout training the NeRF
density and mesh overlap are closely matched.

B. Planner - Comparison to Prior Work

Since this method is, to our knowledge, the first method to
operate on NeRFs, direct comparisons are difficult. We compare
to two widely used techniques that we have adapted to work on
a NeRF environment representation: minimum-snap trajectory
planning and Rapidly-exploring Random Trees.

Minimum-snap trajectory planning [29], similarly to our
method, uses differential flatness to compute trajectories that
pass through a series of waypoints. However, this method
typically uses hand-placed waypoints, whereas our method is
capable of optimizing the locations of those waypoints based
on the NeRF. In this comparison, we generate the waypoints
for the minimum-snap planner using the same A* algorithm our
method uses for initialization.

Rapidly-exploring Random Trees (RRT) is a sampling based
method that generates a space-filling tree used to find a collision
free trajectory. Since it requires a binary collision metric, we

Authorized licensed use limited to: Stanford University. Downloaded on June 05,2023 at 19:45:06 UTC from IEEE Xplore. Restrictions apply.

ADAMKIEWICZ et al.: VISION-ONLY ROBOT NAVIGATION IN A NEURAL RADIANCE WORLD

- 50000

g R Mesh intersection volume : m jteration 0
‘0 —— NeRf collision loss n Bl iteration 5 -sc000
= I,': = iteration 49

\!
o . '| 7snon0
=] .0
= t 200000, Y1
= i =
—
frar} (o)
S o
o L1oso00 D
S 0 =
()]
-
e
0
(]
=

Trajénctory ti?ne
®)

Fig. 6. Results of our proposed trajectory optimizer planning a path through
a playground. (a) Visualization of the optimized trajectory generated by our
planner. The initialization provided is shown in red and a partially-optimized
trajectory in blue. We see the optimizer converge to a trajectory that both avoids
collision and is smooth by observation. (b) Plot of the NeRF collision loss (solid
lines), and the intersecting volume of the ground-truth meshes (dashed lines).
Lower is better. We see the NeRF collision loss is clearly correlated with the
intersection volume, showing that minimizing our proposed objective (2) indeed
minimizes collision. Note that by iteration 49 optimizer converges to a trajectory
that has zero intersections with the ground truth meshes.

first convert the NeRF into a mesh using marching cubes, as in.
When generating the RRT, we use a spherical collision model,
as we cannot know the robot’s orientation at the planning stage,
since the RRT only selects positions. Finally, in order to extract
the control actions required to follow the RRT trajectory, we use
a a differential flatness-based controller [29].

To evaluate performance we run all 3 methods on 10 trajec-
tories with a range of obstacles, speed and complexities inside
the Stonehenge environment. Fig. 7(c) shows the mean costs
associated with each planner, along with the failure rate (defined
as an collision with the ground truth mesh) in the trajecto-
ries. Additionally Fig. 7(a) shows the 3 planners’ qualitative
performance.

C. Planner — Omnidirectional Robot in Tight Space

Our method is not limited to quadrotors, but can handle any
robot with differently flat dynamics. Fig. 8 presents an om-
nidirectional, couch-shaped mobility robot navigating through
a narrow space. This scenario presents a difficult kinematic

4611

]

(a)

Collision
s Control
o Failure Rate

Failure Rate

Control and NeRF Collision Cost

RRT
(©)

Ours

Min Snap

Fig. 7. A comparison between our planner and the minimum-snap and RRT
baselines. (a) Example trajectories the planners take though the Stonehenge
environment. Our planner can move the waypoints to result in a smooth trajec-
tory compared to minimum-snap, which exactly follows the A* initialization.
Further, while our planner’s trajectory does not collide with the ground truth
mesh the minimum-snap trajectory clips the column on the right. While RRT
generates a collision-free trajectory, its erratic shape leads to a high control effort.
(b) Color-matched start and endpoints of the trajectories along with an indication
if they were successful for a given planner (crosses use the same coloring as in
(a)). (c) Each planner’s mean NeRF collision metric and control effort per time
step, averaged over the 20 initializations. We can see that our method yields
trajectories with low control effort, low NeRF collision cost, as well as a low
failure rate.

planning problem, commonly called the “piano movers’ prob-
lem” [37], which requires the robot to turn to fit its body through
the narrow gap. The trajectory optimizer, using the proposed
NeRF-based collision penalty, is able to generate the desired
behavior, which turns the robot to fit through the gap.

D. Estimator - Comparison to Prior Work

We evaluate two methods of estimating the robot state in the
NeRF Stonehenge environment. We anticipate that an iNeRF

Authorized licensed use limited to: Stanford University. Downloaded on June 05,2023 at 19:45:06 UTC from IEEE Xplore. Restrictions apply.

4612

Fig. 8. A planned trajectory for a couch-shaped mobility robot through a
narrow gap. The proposed NeRF-based collision penalty results in a trajectory
which turns the robot to fit through the gap and avoid collision.

[19] estimator initialized without a dynamics prior will very
quickly diverge. Therefore, we propose a dynamically-informed
iNeRF estimator as a baseline. The estimate is propagated
through the dynamics model to provide an initialization to the
estimator at the next time step. Only the photometric loss is
optimized. This estimator is identical to a recursive Bayesian
filter with infinite state covariance, hence the process loss is set
to 0. The second method is our full filter proposed in Section V.
We evaluate these methods on aidentical set of actions and initial
state. For our filter, we assume ¥g = 0.11, Q; = 0.11, S; = I,
and use Z = 256 pixels. Zero-mean Gaussian white noise is
added to the true dynamics with standard deviation 2cm for the
translation and 0.02 rd to the pose angles, while the standard
deviation for their rates are half those values. For comparison,
the scene area is scaled to be approximately 4m? and the drone
is 0.5¢m? in volume.

A comparison on the two methods over 100 trials conditioned
on the same initial state, set of actions, and noise characteristics
is shown in Fig. 9. Our method outperforms the dynamically-
informed iNeRF baseline on almost every metric and does not
under-perform. We again bring attention to the fact that our
filter provides a finite state covariance, which may be useful
in determining low-fidelity regions of the NeRF environment.

E. Online Replanning

We evaluate performance of the entire pipeline on planned
trajectories in the playground and Stonehenge scenes. The
ground truth dynamics are the finite difference drone equa-
tions in Section V with the same additive noise as in our
estimator experiment. Although the executed trajectories incur
a higher cost than the initial plan, the planner is still able to
generate collision-free trajectories (Fig. 10(a)) and reach the
goal, whereas an open-loop execution (Fig. 10(b)) of the initial
planned actions causes collisions and divergence.

F. Performance and Timing

Experiments were run on a computer with an AMD Ryzen 9
5900X @ 3.7 GHz CPU and Nvidia RTX 3090 GPU. Both the
trajectory planner and estimator computation time is dependent
on number of iterations. Typically, an initial trajectory requires
20 s over 2500 iterations to optimize. In the online replanning

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

—— Filter —— INeRF W/ Dynamics
0.20] =
6 e0.3
=
£0.15 i
w EO'Z
To.10 S
o Dol
prar ©
: M
‘6 <
@©
© (.00 ':OAO
01 2 3 4 5 6 7 8 9
L 0.6
o
=
s Wog
= >
w . “5
3 Qo2
(]
> _
0.0
0 1 2 8 9 0 1 2 8 9

3 4 5 6 7 3 4 5 6 7
Time Step Time Step
Fig.9. Error comparison averaged over 100 trials. Rotational errors are the {2
norm of the angles in axis-angle representation required to rotate the estimated
pose to the ground truth. Translational and rate errors are the £ norm of the
estimated and ground truth difference. Bounds indicate one standard deviation
above and below the mean error. Regions between time steps are the gradient
steps of the optimization, while spikes at the beginning of time steps indicate
the forward propagation of the simulation, a new image observation, and a new
optimization. Our method (red) outperforms the dynamically initialized iNeRF
(green) in rotational, translational, and velocity estimates while sporting lower

variance.

(b)

Fig. 10. (a) Quadrotor flight path execution with feedback. The originally
planned trajectory is in red. However, when the state estimate deviates signifi-
cantly from the planned trajectory, the robot re-plans and executes a collision-
free path to the goal, as shown by the re-planned trajectories in blue and green.
(b) Quadrotor flight path execution without feedback (open-loop). An external
disurbance causes the trajectory to deviate from the original plan (red) with
catastrophic results.

experiments (At = 0.1s), subsequent trajectory updates occur
in 2 s over 250 iterations. The state estimator typically runs
for 4 s over 300 gradient steps, 0.25 s of which is the Hessian
computation (7). However, NeRFs are a fast-evolving technique
and extensions have seen orders-of-magnitude improvements in
performance [14], [38], which we hope to leverage in the future.

Assuming those performance gains apply for our use case, we
could expect to be able to run this type of algorithm in real time
on a real robot, perhaps aided by off-board compute, in the near
future.

VIII. CONCLUSIONS

In this work, we proposed a trajectory planner and pose
filter that allow robots to harness the advantages of the NeRF
representation for collision-free navigation. We presented a new

Authorized licensed use limited to: Stanford University. Downloaded on June 05,2023 at 19:45:06 UTC from IEEE Xplore. Restrictions apply.

ADAMKIEWICZ et al.: VISION-ONLY ROBOT NAVIGATION IN A NEURAL RADIANCE WORLD

trajectory optimization method based on discrete time differen-
tial flatness dynamics, and combined this with a new vision-
based state filter to create a full online trajectory planning and
replanning pipeline.

Ongoing work seeks to further integrate perception and con-
trol in an active planning manner, both by encouraging the
trajectories to point the camera in directions with greater gradient
information as well as use the uncertainty metrics calculated by
the state estimator to reduce collision risk. Another direction for
future work includes harnessing improvements in the underlying
NeRF representation to improve execution speed [14], since this
is the limiting factor for the proposed method.

We also seek to extend this work to utilize multiple NeRFs
to represent scenes with movable objects, and explore how
various robots such as manipulators could interact with such
an environment. Lastly, further work could look to improve
the pixel sub-sampling heuristic employed by the state filter.
Finally, we would like to implement the proposed method on
quadrotors in real scenes to demonstrate the performance beyond
simulation.

REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” in Proc. Euro. Conf. Comput. Vis., 2020, pp. 405-421.

[2] A. Loquercio, E. Kaufmann, R. Ranftl, M. Miiller, V. Koltun, and
D. Scaramuzza, “Learning high-speed flight in the wild,” Sci. Robot., vol. 6,
no. 59, 2021, Art. no. eabg5810.

[3] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and
D. Scaramuzza, “Deep drone racing: From simulation to reality with
domain randomization,” IEEE Trans. Robot., vol. 36, no. 1, pp. 1-14,
Feb. 2020.

[4] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “iMAP: Implicit mapping
and positioning in Real-Time,” in Proc. Int. Conf. Comput. Vision, 2021.
[Online]. Available: https://edgarsucar.github.io/iMAP/

[5] Z. Wang, S. Wu, W. Xie, M. Chen, and V. A. Prisacariu, “NeRF—
: Neural radiance fields without known camera parameters,” 2021,
arXiv:2102.07064. [Online]. Available: https:/nerfmm.active.vision

[6] “NERF-GTO: Using a neural radiance field to grasp transparent objects,”
in Conf. Robot Learn. (CoRL), 2020. [Online]. Available: https:/sites.
google.com/view/dex-nerf

[71 W. Yuan, Z. Lv, T. Schmidt, and S. Lovegrove, “Star: Self-supervised
tracking and reconstruction of rigid objects in motion with neural ren-
dering,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021,
pp. 13144-13152.

[8] M. Niemeyer and A. Geiger, “GIRAFFE: Representing scenes as composi-
tional generative neural feature fields,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2021, pp. 11453-11464.

[9] J. Ost, E. Mannan, N. Thuerey, J. Knodt, and F. Heide, “Neural scene
graphs for dynamic scenes,” in Proc. IEEE/CVF Conf. Comput. Vision
Pattern Recognit. (CVPR), Jun. 2021, pp. 2856-2865.

[10] A.Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-NeRF:
Neural radiance fields for dynamic scenes,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2021, pp. 10318-10327.

[11] G. Gafni, J. Thies, M. Zollhofer, and M. NieBner, “Dynamic neural
radiance fields for monocular 4D facial avatar reconstruction,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 8649-8658.

[12] M. Tancik et al., “Learned initializations for optimizing coordinate-based
neural representations,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2021, pp. 2846-2855.

[13] A. Yu, V. Ye, M. Tancik, and A. Kanazawa, “Pixelnerf: Neural radiance
fields from one or few images,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2021, pp. 4578-4587.

[14] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin,
“Fastnerf: High-fidelity neural rendering at 200fps,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis., 2021, pp. 14346-14355.

[15] M. Michalkiewicz, J. K. Pontes, D. Jack, M. Baktashmotlagh, and A.
Eriksson, “Implicit surface representations as layers in neural networks,”
in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 4742-4751.

4613

[16] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“DeepSDF: Learning continuous signed distance functions for shape
representation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 165-174.

[17] V. Sitzmann, J. N. P. Martel, A. W. Bergman, D. B. Lindell, and G. Wet-
zstein, “Implicit neural representations with periodic activation functions,”
in Proc. Adv. Neural Inform. Process. Syst., vol. 33,2020, pp. 7462-7473.

[18] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger,
“Occupancy networks: Learning 3D reconstruction in function space,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 4460-4470.

[19] L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and T.-Y.
Lin, “iNeRF: Inverting neural radiance fields for pose estimation,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 1323-1330. [Online].
Available: https://github.com/salykovaa/inerf/

[20] M. Kelly, “An introduction to trajectory optimization: How to do your own
direct collocation,” SIAM Rev., vol. 59, no. 4, pp. 849-904, Jan. 2017.

[21] 1. T. Betts, Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming. 2nd ed., Philadelphia, PA: Society for Industrial
and Applied Mathematics, 2010.

[22] R. A. Newcombe et al., “KinectFusion: Real-time dense surface mapping
and tracking,” in Proc. 10th IEEE Int. Symp. Mixed Augmented Reality,
2011, pp. 127-136.

[23] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3D euclidean signed distance fields for on-board MAV plan-
ning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017, pp. 1366—
1373.

[24] L.Han,F. Gao,B.Zhou,andS. Shen, “FIESTA: Fast incremental euclidean
distance fields for online motion planning of aerial robots,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2019, pp. 4423-4430.

[25] N.Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP: Gradient
optimization techniques for efficient motion planning,” in Proc. IEEE Int.
Conf. Robot. Automat., 2009, pp. 489-494.

[26] J. Mainprice, N. Ratliff, and S. Schaal, “Warping the workspace geometry
with electric potentials for motion optimization of manipulation tasks,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 3156-3163.

[27] B.Zhou, J. Pan, F. Gao, and S. Shen, “RAPTOR: Robust and perception-
aware trajectory replanning for quadrotor fast flight,” IEEE Trans. Robot.,
vol. 37, no. 6, pp. 1992-2009, Dec. 2021.

[28] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Proc. IEEE Int. Conf. Robot. Automat., 2011,
pp- 2520-2525.

[29] D. Mellinger, “Trajectory generation and control for quadrotors,” Ph.D.
dissertation, Univ. Pennsylvania, Mech. Eng. Appl. Mech., 2012.

[30] M. J. V. Nieuwstadt and R. M. Murray, “Real-time trajectory generation
for differentially flat systems,” Int. J. Robust Nonlinear Control, vol. 8,
no. 11, pp. 995-1020, 1998.

[31] G. Angeris, K. Shah, and M. Schwager, “Fast reciprocal collision avoid-
ance under measurement uncertainty,” in Proc. Int. Symp. Robot. Res.,
2019. [Online]. Available: https://arxiv.org/pdf/1905.12875.pdf.

[32] K.-V. Yuen, Bayesian Methods for Structural Dynamics and Civil

Engineering. Hoboken, NJ, USA: Wiley, 2010, pp.257-262.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/
9780470824566.appl

[33] J.Sola,J. Deray, and D. Atchuthan, “A micro lie theory for state estimation
in robotics,” 2018. [Online]. Available: https://arxiv.org/pdf/1812.01537.
pdf

[34] Z. Teed and J. Deng, “Tangent space backpropagation for 3d transforma-
tion groups,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2021, pp. 10338-10347. [Online]. Available: http:github.com/princeton-
vl/lietorch

[35] L. Yen-Chen, “Nerf-pytorch,” 2020. [Online]. Available: https://github.
com/yenchenlin/nerf-pytorch/

[36] A. Szot et al., “Habitat 2.0: Training home assistants to rearrange their
habitat,” in Adv. Neural Inf. Process. Syst. (NeurIPS), 2021. [Online].
Available: https://arxiv.org/pdf/2106.14405.pdf

[37] J.T.Schwartz and M. Sharir, “On the ‘piano movers’ problem I the case of a
two-dimensional rigid polygonal body moving amidst polygonal barriers,”
Commun. Pure Appl. Math., vol. 36, no. 3, pp. 345-398, 1983.

[38] C. Sun, M. Sun, and H.-T. Chen, “Direct voxel grid optimization:
Super-fast convergence for radiance fields reconstruction,” CoRR, vol.
abs/2111.11215, 2021, [Online]. Available: https://arxiv.org/abs/2111.
11215

Authorized licensed use limited to: Stanford University. Downloaded on June 05,2023 at 19:45:06 UTC from IEEE Xplore. Restrictions apply.

https://edgarsucar.github.io/iMAP/
https://nerfmm.active.vision
https://sites.google.com/view/dex-nerf
https://sites.google.com/view/dex-nerf
https://github.com/salykovaa/inerf/
https://arxiv.org/pdf/1905.12875.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470824566.app1
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470824566.app1
https://arxiv.org/pdf/1812.01537.pdf
https://arxiv.org/pdf/1812.01537.pdf
http:github.com/princeton-vl/lietorch
http:github.com/princeton-vl/lietorch
https://github.com/yenchenlin/nerf-pytorch/
https://github.com/yenchenlin/nerf-pytorch/
https://arxiv.org/pdf/2106.14405.pdf
https://arxiv.org/abs/2111.11215
https://arxiv.org/abs/2111.11215

