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Abstract— This work proposes a radar-based physical activ-
ities monitoring solution capable of detecting, classifying, and
counting the number of repetitions of multiple human sub-
jects doing different exercises simultaneously in front of the
radar, using only one monostatic radar. Four exercises were
performed in the experiments: sit-ups, push-ups, squats, and
jump rope which are very common exercises performed in and
out of the gym without the need for expensive gym equipment.
A 60-GHz frequency-modulated continuous-wave (FMCW) radar
was used in the experiments. The extracted data from the
radar were processed using MATLAB R2021b, and the features
were extracted using range–Doppler frames and micro-Doppler
(mD) analysis generating a spectrogram. By combining these
two analyses, information about the range, time, Doppler, and
radar cross section (RCS) can be extracted for each individual.
To validate the feasibility and robustness of the work in realistic
scenarios, static and moving clutter were added to some of the
measurements.

Index Terms— Frequency-modulated continuous-wave
(FMCW) radar, machine learning, multiple target detection,
physical activities monitoring, range–Doppler, spectrogram,
time–Doppler.

I. INTRODUCTION

PHYSICAL activities may enhance health, reduce excess

body fat, prevent many chronic diseases such as

type 2 diabetes and some cancers, and can reduce symp-

toms of depression [1]. Exercise monitoring is crucial for

high-performance athletes or people who frequently exercise

to accomplish their goals. With the growing interest in achiev-

ing better performance in physical activities over the years,

technologies have been developed to help monitor the move-

ments aiming for fewer injuries and better gains. Examples of

technologies applied to physical activities are accelerometers,

gyroscopes, and camera-based systems [2], [3], [4], [5], [6].

In addition to the technologies cited, radars are one of the

emerging solutions for human motion recognition. Portable

microwave/millimeter-wave (mmWave) radars are noncontact

devices that offer a noninvasive approach to human movement
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recognition while preventing privacy concerns associated with

cameras and operate under any lighting conditions, includ-

ing scenarios with abrupt changes in the illumination, and

the required computational load during signal processing is

considerably lower than the required by camera-based tech-

nologies. Vital signs detection, structural health monitoring,

and nondestructive testing are examples of continuous-wave

(CW) radar applications. By modulating the frequency of the

radar wave, it is possible to also extract range information

and enable a diverse range of new applications such as face

recognition classification, shooter detection, human–vehicle

classification, hand gesture recognition, fall detection, inat-

tentive driving behavior detection, and vocal folds vibration

detection which are some of the examples that have been

widely studied [7], [8], [9], [10], [11], [12], [13], [14], [15].

Since frequency-modulated continuous-wave (FMCW)

radars can provide Doppler and range information, some

works with multiple targets have been proposed for vehicle

applications, where the radar is located inside the vehicle,

and several targets could be moving simultaneously. Efforts

were made to extract and identify the correct combination of

beat frequencies for multiple objects in the radar’s field of

view and distinguish ranges and velocities for each target with

wide relative velocity and range [16], [17], [18], [19]. On the

other hand, it is possible to extract 2-D position information

by taking the advantage of two receiving antennas. With this,

range and speed measurements of multiple targets moving in

a scenario can be retrieved [20]. More examples of multiple

target detection using beamforming are depicted in [15], where

vocal folds vibration detection in a multitarget scenario is

achieved using an FMCW with two TX and four RX antennas,

and in [21], where an FMCW with multiple receiving antennas

was used to detect the behavior of multiple patients in a hos-

pital scenario. The classification was performed using a deep

convolutional neural network (CNN), achieving an accuracy

of approximately 80%.

Another interesting and emerging application is to detect

human physical activities and classify the movements. For

instance, an accelerometer sensor can be attached to the

user’s body, and the signal extracted during the free weight

exercises can be utilized to collect classification features

using long short-term memory (LSTM) neural networks

from a single exercise [22]. Another example is to use the

channel state information (CSI) embedded in Wi-Fi signals

to retrieve information about exercises wirelessly, achieving
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a 93% classification accuracy using a deep neural network

(DNN) [23]. A similar approach to this work using an FMCW

radar is depicted using a multiple-channel system with two

transmit and four receiving antennas, where physical activities

were classified using CNNs [24]. However, for the past three

examples, only one exercise was analyzed at a time. To analyze

the robustness of physical activities data extraction using an

FMCW radar, an experiment is reproduced in a scenario where

one person was performing an exercise and was treated as the

target of interest, while another person was doing exercises

or moving behind the target, so interferences were added to

the baseband data. After processing, the signal of interest

was successfully recovered [25]. Another example of detecting

multiple targets is shown in [26], where two human subjects

performed exercises simultaneously in the radar’s field of

view. This time, two human subjects were treated as targets

of interest, and both micro-Doppler (mD) signatures were

recovered and analyzed. However, both studies were limited

to a scenario where only two exercises at fixed ranges were

performed in front of the radar, and the exercises carried out

were exclusively sit-ups and push-ups. Furthermore, a feature

extraction strategy for classifying the movements was not

proposed.

This work investigates four different types of exercises

performed in front of an mmWave radar in a scenario with

potential moving and/or stationary clutters. Moreover, up to

three exercises were carried out simultaneously as the targets

of interest. A total of 20 different experimental layouts were

recorded during data collection. In contrast to other works

that analyze multiple simultaneous targets using complex

multichannel systems [15], [20], [21], a strategy that uses only

one receiving and one transmitting antenna was employed to

reduce the signal complexity further. The exercises analyzed

are sit-ups, push-ups, squats, and jump rope. Furthermore,

a machine learning-based classification scheme is proposed

by extracting features from mD signatures and range–Doppler

frames.

For classification purposes, seven human subjects were

recorded by performing the proposed exercises since different

people perform exercises in different ways. The fixed-beam

radar illuminated all subjects and potentially moving, and

stationary clutters at all times. An approach to differentiate

between human subjects exercising from possible clutters

is presented. The features were fed into machine learning

algorithms using tenfold cross-validation, and classification

accuracy of 95% was achieved with the quadratic support

vector machine (SVM).

The remainder of this article is organized as follows.

Section II depicts the data processing and the theory behind

multiple target detection and feature extraction. Then, the

experiments performed are presented in Section III. Lastly,

this article is concluded in Section IV.

II. DATA PROCESSING AND THEORY

A. Overview

An example of a scenario for one of the experiments using

a 60-GHz FMCW radar is exhibited in Fig. 1. Multiple people

(targets of interest) doing physical activities are simultaneously

Fig. 1. Multitarget physical activities monitoring and classification scenario
using a 60-GHz FMCW radar.

illuminated by the electromagnetic waves (EMs) transmitted

by an mmWave FMCW radar. The human subjects performing

the exercises will send a limited amount of energy back to the

radar. The amount of energy reflected from the targets depends

on the radar cross section (RCS), which is influenced by the

size of the target relative to the wavelength of the signal, the

absolute size of the target, the angle of the subject relative to

the radar, the material of the target, and the polarization of the

transmitted and received signals relative to the orientation of

the target. Based on the received signal reflected from each

target, data containing information about the exercises can be

extracted and analyzed. On the other hand, Fig. 2 illustrates

the mD signatures in a single range bin and the range–time

profile extracted from all four exercises. Only one person

placed 2 m away in front of the radar did the exercises. The

radar system was positioned 0.5 m above the ground, and

no clutters were included in the analysis. Fig. 2(a) illustrates

the radar signatures associated with a person doing sit-ups.

In the experiments, the subjects performed the sit-ups with

their backs turned to the radar. The motion for this exercise

is similar to a sinusoid; since the back is moving back and

forth relative to the radar, the range with the maximum RCS

also changes. Fig. 2(b) depicts the radar signatures associated

with a person doing push-ups. The amplitude of the push-up

movement is small compared to other types of exercises

because it is made by bending half of the arm. Therefore,

if the human subject is familiar with the exercise, it can be

performed faster than sit-ups and squats; since the subject must

be laid down, signatures of the head and other body parts can

be seen in the range–time plot. Fig. 2(c) exhibits an example of

the range profile and the spectrogram recorded from a person

doing squats. This exercise has a similar signature compared to

push-ups because there is not much range migration associated

with them since the body moves mainly on the elevation angle.

However, the reflected signals from a person doing squats

also present strong mD signatures from the bending knee.

The point of maximum RCS changes its range minimally

for this exercise. Finally, Fig. 2(d) shows the signature of a

jump rope movement. Since the human subject must jump, the

range of maximum RCS might change over time depending

on the subject’s experience although it is supposed to be a

stationary movement. For this exercise, the frequency of the
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Fig. 2. Example of mD signatures and range–time analysis from one single exercise performed at 2 m away from the radar. Spectrogram and range–time of:
(a) six sit-ups performed with the back turned to the radar, where A is the lying down movement and B is the going up movement; (b) eight push-ups, where
A is the arm bending movement and B is the arm stretching movement; (c) six squats, where A is the sitting movement, B is the going up movement, and C
and D represent the knee signatures of the movement; and (d) 51 jump rope repetitions, where A is the jump movement and B is the landing after a jump.

Fig. 3. Block diagram of the feature extraction for multiple exercises using mD signatures and range–Doppler frames.

movement is much higher than in the other three exercises, and

the Doppler signatures are also high due to the jump motion

being much faster. Another important point is that depending

on the relative position between the radar and the illuminated

targets of interest, the corresponding range–Doppler signatures

and spectrograms will differ.

B. Data Processing

The block diagram of the feature extraction using a 60-GHz

FMCW radar is detailed in Fig. 3. First, the raw baseband

data extracted from the radar is divided into a matrix B(m, n),

where m = [1, 2, 3, . . . , M] corresponds to the number of

chirps and n = [1, 2, 3, . . . , N] is the number of samples
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per chirp. The total time duration is called slow time, and

the duration of each chirp is called fast time. To calculate

the range profile, a fast Fourier transform (FFT) is applied

to the fast-time dimension of the raw data matrix, generating

a new matrix R(m, r), where r contains the range bins. The

next step is to identify the range bins where each exercise

is being performed and separate them from each other and

from potentially stationary, and moving clutters since multiple

exercises are being analyzed simultaneously. To achieve that,

the standard deviation of the spectral power (SDSP) along the

slow-time dimension is extracted, as shown in the following

equation:

SDSP(σr) =

√

∑R
r=1(R(m, r) − µs(r))2

Nc

(1)

where r = [1, 2, 3, . . . , R] is the index corresponding to the

range bins, µs is a vector with the mean of R(m, r) extracted

along the slow time, and Nc is the number of chirps.

Since the movements of interest are being performed at a

stationary range or with a slight range variation in the case

of jump rope, the SDSP can easily differentiate the signatures

corresponding to exercises from static clutter. The reason for

that is because the exercises will have a high variation in

spectral power over time at the range of the movement, and

the static clutter will not have a considerable variation to be

selected as an exercise. Depending on how close and at which

angle relative to a static clutter the exercise is being performed,

a high SDSP value at the range of the clutter might appear

due to the movement of the exercise. However, the SDSP at

the range of the clutter is smaller than an actual exercise and

presents less range migration than the exercises. Given that the

movements will have a higher SDSP than static objects and

from moving clutters like a human subject walking behind the

experiment, since the range of the moving clutter will change

considerably over time, and the exercises are being performed

at the same group of range bins, the moving clutter will not

interfere in the SDSP enough to be considered as a new

exercise [26], [27].

Since each exercise motion occupies more than one range

bin, a group of range bins is selected for each target of

interest. The threshold used for selecting the correct range

bins for each exercise must be changed based on the distance

between the radar and the respective targets of interest. The

reason for that is because when an exercise is performed far

away from the radar, it has a smaller RCS compared to the

exercises performed close, as can be seen in the example in

Fig. 4. Threshold 1 select the ranges of the first two exercises

performed at 1 and 2 m away from the radar, respectively.

Threshold 2 determines the ranges for the third exercise

performed at 4 m away from the radar.

Finally, after choosing all range bins with a higher SDSP

than the calculated thresholds, the selected range bins are

divided into groups based on a range threshold. This range

threshold should be less than the minimum distance between

two exercises among all tests. If the distance between selected

range bins is higher than the range threshold, then both sets

of range bins are considered associated with different people

Fig. 4. Example of SDSP for three people doing exercises in front of an
mmWave radar. Different thresholds for range selection are calculated when
the exercises are performed from a longer distance.

doing exercises. The goal is to divide the group of ranges into

the number of exercises performed. Finally, a matrix E(m, rn)

is created for each exercise, where rn is the range bins for a

single physical activity. Depending on how close the exercises

are being performed to each other, the range resolution can be

decreased by increasing the transmitted signal’s bandwidth.

As demonstrated in the following equation:

Rres =
C

2 × B
(2)

where C is the speed of light and B is the bandwidth of the

transmitted signal.

Succeeding the selection of the range bins with higher

SDSP for each exercise, a short-time Fourier transform (STFT)

is applied to the range bin with the highest spectral power

among the ranges of each exercise. As shown in the following

equation:

STFT(t, ω) =

M−1
∑

m=0

E(m, Mrn)w(m − t)e−
j 2πmω

M (3)

where t = [1, 2, 3, . . . , T ] and ω = [1, 2, 3, . . . , W ] are the

spectrogram’s time and Doppler index, Mrn is the range bin

with maximum spectrum power for one exercise, and w(t) is

the chosen window function.

By doing that, it is possible to extract the mD signatures

among the selected ranges. With this, the spectrogram is

generated, thus producing essential features for classification.

C. Feature Extraction From mD Signatures

After the spectrogram generation, features for classification

are extracted as shown in Fig. 5 and depicted as follows.

1) Envelope: The envelope was divided into two parts,

the upper and lower envelope. The maximum power in

each range bin was extracted to obtain both envelopes.

In the analysis, frequencies extremely close to 0 Hz

were removed since it represents static objects, and

the analysis should focus on the movements. To avoid

situations where the RCS of the movement is close to
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Fig. 5. Features extracted from the spectrogram analysis. (In the example,
the mD signatures are from four sit-ups.)

zero and the maximum power point is outside the mD

signature of the movement, a threshold of minimum

power was established. If the value is smaller than the

threshold, it is considered zero. That way, the envelope

can be extracted.

2) Minimum and Maximum Frequency: It is the maxi-

mum and minimum frequency of the movements, which

depends on the speed of the exercise motion.

3) Repetitions Frequency: It is the frequency of repetitions

of the exercises. Since the exercises were recorded in

a predetermined time and more than one repetition

was performed in each data extraction, the repetition

frequency helps differentiate exercises that, although

they might have a high frequency in part of the motion,

require more or less time to complete.

4) Range: Based on the previous range selection, the dis-

tance from the movement to the radar is also used as a

feature. Since multiple experiments were performed, the

same exercise is carried out at different ranges.

Based on the spectrogram information, the number of rep-

etitions for each exercise can also be extracted. However, this

information is not used as a feature and is more relevant when

analyzing the user’s performance.

D. Feature Extraction From Range–Doppler Frames

To further improve the classification, range–Doppler frames

created by applying an FFT with a sliding window to the slow-

time direction of the matrix were also analyzed. To extract the

Doppler trajectory between frames for each separate move-

ment, the same range bins selected using the SDSP previously

are chosen. The matrix generated at each frame is sorted out

into those range bins, thus generating a new matrix according

to the number of exercises performed in the experiment. The

following equation shows how one range–Doppler frame is

created:

Fn( f, rn) =

L
∑

m=1

E(m, rn)e
−

j 2πmf

L (4)

where Fn corresponds to one frame, f corresponds to the

frequency index, and L is the length of the time window.

After dividing the range–Doppler matrices into smaller

matrices for each exercise, the range–Doppler trajectory can

be extracted for each individual movement. To do that, subma-

trices are generated inside the Fn( f , rn) matrix and summed.

The submatrix with the maximum power sum is selected in

each frame to create the trajectory points. The size of the

submatrices changes depending on how many range bins the

exercise occupies. The following equation shows the sum of

submatrices in one frame to extract the maximum power point:

e1,1 =

S
∑

j=1

S
∑

i=1

Fn(i, j )
, . . . , en,n =

S
∑

j=1

S
∑

i=1

Fn(F+i−S,Rn + j−S)
(5)

where S is the size of the square submatrix Sm(s, s) that

depends on the range occupied by the movement of the

exercise, if the movement occupies a large scope of range

bins, the submatrices are bigger. e1,1 and en,n represent the first

and last elements of the generated matrix containing the sum

of submatrices that will be compared to select the trajectory

point, and F and Rn are the sizes of the Fn( f , rn) range–

Doppler matrix. The center of the submatrix with the highest

power sum is chosen as the trajectory point.

This approach of selecting the submatrix with maximum

power is used because depending on how close the people

doing exercises are to each other, signatures associated with

different exercises might appear in some of the range–Doppler

frames, and this submatrix acts as a filter, selecting the correct

point instead of possible interferences from a different exercise

or other artifacts. By following the point with the maximum

RCS at each frame for all exercises, information about the

range, Doppler, spectral power, and time can be extracted for

the maximum points in each frame. Since the spectrogram

can only provide information about one range bin at a time,

by analyzing the range–Doppler frames, it is possible to

include time information in the analysis and generate new

features such as range movement variation, which is the

measure of how the point of maximum RCS changed range

over the frames. An example of range movement variation of

a sit-up is depicted in Fig. 6. The range movement variation is

an important feature for classification because movements like

sit-ups change their maximum power range constantly due to

the motion of the exercise, and movements like squats and sit-

ups, for example, change the maximum RCS range. However,

the amplitude of range variation is much smaller.

Since the exercises are being performed at different ranges

and illumination angles, the RCS will vary depending on that.

Therefore, power-related features were not used because the

same exercise performed at a different range and perspective

relative to the radar will present a different value of RCS.

Hence, they are not considered solid features for classification.

E. Classification

After feature extraction, the features were fed into machine

learning classifiers from the classification learner tool in

MATLAB R2021b, aiming to achieve the highest classification

accuracy possible. There are plenty of classification algorithms

that can be used to predict categories. However, five algorithms

were studied in this work: decision trees, SVMs, neural
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Fig. 6. Example of range movement variation of a sit-up at 3 m away from
the radar (experiment number 8).

networks, naive Bayes, and ensemble. A brief introduction to

the algorithms is depicted as follows.

1) Decision Trees: Decision tree learning is one of the

most used predictive tools for decision-making. It can

be used in different fields, such as statistical procedures,

data mining, and machine learning. The decision tree

structure is organized similar to a flowchart comparable

to a tree, dividing the input into regions, where the top

of the tree is called the root node, and the condition for

decision-making is divided into branches that indicate a

possible outcome or action. Finally, the tree’s end, called

the leaf node, provides the final predicted label [28].

2) Support Vector Machine: SVMs are one of the most

powerful and robust algorithms for classification and

regression in the most diverse fields of application. The

SVM works by finding the best hyperplane between

different data types in a multidimensional space, capable

of best differentiating between features. The best hyper-

plane is the one that maximizes the margins separating

categories in a gap that is as wide as possible. The new

data are then classified based on which side of the gap

they are in the same space [29], [30].

3) Neural Network: Neural networks, as the name suggests,

are motivated by the learning process occurring in

human brains to process information. Neural networks

are organized on layers composed of interconnected

nodes, similar to neurons. Those nodes contain an

activation function that defines how the weighted sum

of the input is transformed into an output. Following

the schematic of a neural network, an input is fed

to the network through the input layer, which further

communicates it to one or more hidden layers, with

every output being the input for a future function. The

hidden layers perform all the processing and deliver the

result to the output layer.

4) Ensemble: Ensemble is a machine learning system that

combines a set of individual models working in parallel

whose outputs are merged to obtain a better predictive

performance. There are many types of ensembles. How-

ever, the main learning methods are bagging, stacking,

and boosting [31].

To estimate the performance of the classification algorithms,

the tenfold cross-validation method was used, where data are

split into ten equal parts. The model’s training is done in

nine parts, and one subset is saved for testing. The process

is repeated ten times, reserving a different tenth for testing

until all parts have been tested. Finally, the accuracy obtained

in all iterations is averaged to extract the model accuracy [32].

One advantage of this method is that it is not important how

the data are split. Every data point appears in a test set exactly

once and in a training set nine times. After feeding the features

extracted to the machine learning algorithms, classification of

the movements is achieved.

Even though all features are essential for the correct clas-

sification of the exercises, the following features play a major

role in each exercise selection.

1) Jump Rope:

a) Repetition Frequency: Jump rope is the fastest

exercise among all exercises, with approximately

two repetitions per second in most datasets.

b) Maximum and Minimum Frequencies: Since the

movement is fast, the maximum and minimum

frequencies are always high.

2) Sit-Ups:

a) Range Variation: Since the sit-up movement

changes range over time, this feature helps differ-

entiate sit-ups from other movements.

b) Repetition Frequency: For most datasets, sit-ups

had the smallest repetition frequency among the

exercises since it takes more time to complete the

movement than squats and push-ups.

3) Push-Ups:

a) Envelope: By analyzing the envelope, it is possible

to differentiate the mD signatures from this exer-

cise from sit-ups and squats.

b) Maximum and Minimum Frequencies: Since this

movement consists of bending half of the arm,

in most datasets, the maximum and minimum

frequencies were the smallest.

4) Squats:

a) Envelope: The envelope related to squats has strong

signatures from the bending knee, differentiating it

from other movements.

III. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed approach,

several experiments were conducted. The 1TX/3RX 60-GHz

FMCW radar model BGT60TR13C by Infineon was employed

during all the experiments. Although this radar system pos-

sesses one transmitting antenna and three receiving antennas,

the baseband data obtained from only one transmitting antenna

and one receiving antenna (one channel) were used in our

analysis. The maximum unambiguous range using this radar

is 15 m, and the maximum bandwidth is 5.5 GHz. The radar

was placed 0.5 m above the ground for all experiments. Table I

summarizes the information about all experiments done to

validate the proposed approach. In Table I, “Exercise 1”
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TABLE I

DETAILS OF THE EXPERIMENTAL SETUP AND DATASETS

TABLE II

FMCW RADAR PARAMETERS

column refers to the exercise performed by the person closer

to the radar, and “Distance 1” is the distance from the person

doing exercise 1 to the radar. “Exercise 2” is the exercise

performed by another person in front of the radar simultaneous

to exercise 1. “Distance 2” is the distance from the person

doing exercise 2 to the radar. In some of the tests, three

exercises were performed simultaneously in the radar’s field of

view. In those cases, “Exercise 3” column is the exercise done

by the following person, and “Distance 3” is the distance from

the person doing exercise 3 to the radar. Further information

about the configuration used in the experiments can be found

in Table II.

To validate the feasibility of the proposed solution in real

scenarios, additional stationary and/or moving clutters were

added to the analyzed scenarios. Large barrels were added

to the radar’s field of view to create stationary clutters to

simulate objects such as wall pillars and furniture that a

typical environment might have. For moving clutters, a human

subject walked behind the targets of interest (while they were

doing exercises) from two different initial points. In the first

moving clutter experiment (experiment number 3), the subject

walked from 10 to 5 m away from the radar. In Table I,

this interference is named “Subject walking behind 1.” In

the second moving clutter experiment, the subject was 5 m

away from the radar and walked at a trajectory similar to

the azimuth angle, having the radar as a reference (experi-

ment number 4). This interference is named “Subject walking

behind 2.” In those cases, the column “Additional interference”

reports the type of interference, which is moving or stationary

interferences.

The exercises were performed at different angles and ranges

in front of the radar. In that way, all the targets of interest

would always be illuminated by the radar’s signals. Since the

range resolution is 15 cm and the minimal distance between

exercises is 1 m, the mD signatures of the exercises can be

successfully retrieved. Table III illustrates the characteristics

of the human subjects that contributed to the experiments.

The volunteers were asked to perform exercises as they would

in an actual working out scenario at a predetermined range

and to perform the exercise at a predetermined time dura-

tion. Since the recording had a predetermined time, subjects

carried out a different number of repetitions depending on

their familiarity with the exercise. It is worth noting that

some of the volunteers were not used to exercising regularly.

To improve generalization even more, data from more human

subjects could be added since people exercise in diverse

ways.

In total, 20 types of tests were performed, 110 datasets were

collected, and since more than one exercise was performed

in each test, 260 exercises were recorded. Figs. 7–10 depict

examples of the experiments carried out and the mD signatures

of each exercise. Since people do exercises differently, some

characteristics, such as the repetition frequency and maximum

and minimum frequency, will vary depending on the subject

that performed the movement. For the classification, the exer-

cises were not divided by range or angle, so exercises like

push-ups, for example, were analyzed at 1, 2, 3, 4, and 5 m

away from the radar and at different angles. This makes the
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TABLE III

INFORMATION OF THE VOLUNTEERS

Fig. 7. Example of experiment number 15, and the mD signatures extracted.

Fig. 8. Example of experiment number 20, and the mD signatures extracted.

classification harder since, depending on the range and angle,

the exercise will occupy a different number of range bins and

have different RCS.

Fig. 11 shows the accuracy of the algorithms used. Some of

the SVM algorithms achieved the accuracy higher than 90%,

whereas the quadratic SVM achieved the best classification

results. Fig. 12 exhibits the confusion matrix of the quadratic

SVM classification with tenfold cross-validation. The image

also shows the true positive rate (TPR) of each exercise.

Fig. 9. Example of experiment number 3, and the mD signatures extracted.

Fig. 10. Example of experiments 17 and 1, respectively, and the mD
signatures extracted from experiment 17.

Fig. 11. Classification algorithms’ accuracy with tenfold cross-validation.

For the sake of comparison, Table IV shows the contrast

between this work with similar works that use FMCW radars

to classify human motion, and presents information about the

type of data used as input for classification, the maximum

number of targets for one dataset, the number of channels of
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TABLE IV

COMPARISON WITH SIMILAR WORKS

Fig. 12. Confusion matrix and TPR using quadratic SVM with tenfold cross-
validation.

the radar used in the experiments, classification accuracy, and

types of interferences.

IV. CONCLUSION

This article presented a novel multitarget exercise mon-

itoring processing technique that works in different types

of environments with moving and stationary clutter. The

technique does not require multiple antennas that generate

angular information, bringing a solution in a simple setup.

The experiments were held out in 20 different scenarios, with

more than one exercise being performed as the target of

interest using the 60-GHz FMCW radar model BGT60TR13C

by Infineon. The bandwidth used for the experiments was

1 GHz with a range resolution of 15 cm. The features from the

exercises were extracted using mD analysis and range–Doppler

frames and later used for classification. Four exercises were

studied, i.e., push-ups, sit-ups, squats, and jump rope. To mea-

sure performance, counting the number of repetitions of each

exercise is also possible using spectrogram analysis. After the

experiments and feature extraction, a classification accuracy

of 95% was achieved using quadratic SVM with tenfold

cross-validation. Future works will investigate the feasibility

of extracting mD information for multiple exercises performed

at the same range using beamforming. Also, features related

to the azimuth and elevation angles will be extracted and

analyzed.
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