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Abstract— This work proposes a radar-based physical activ-
ities monitoring solution capable of detecting, classifying, and
counting the number of repetitions of multiple human sub-
jects doing different exercises simultaneously in front of the
radar, using only one monostatic radar. Four exercises were
performed in the experiments: sit-ups, push-ups, squats, and
jump rope which are very common exercises performed in and
out of the gym without the need for expensive gym equipment.
A 60-GHz frequency-modulated continuous-wave (FMCW) radar
was used in the experiments. The extracted data from the
radar were processed using MATLAB R2021b, and the features
were extracted using range-Doppler frames and micro-Doppler
(mD) analysis generating a spectrogram. By combining these
two analyses, information about the range, time, Doppler, and
radar cross section (RCS) can be extracted for each individual.
To validate the feasibility and robustness of the work in realistic
scenarios, static and moving clutter were added to some of the
measurements.

Index Terms— Frequency-modulated continuous-wave
(FMCW) radar, machine learning, multiple target detection,
physical activities monitoring, range-Doppler, spectrogram,
time-Doppler.

I. INTRODUCTION

HYSICAL activities may enhance health, reduce excess

body fat, prevent many chronic diseases such as
type 2 diabetes and some cancers, and can reduce symp-
toms of depression [1]. Exercise monitoring is crucial for
high-performance athletes or people who frequently exercise
to accomplish their goals. With the growing interest in achiev-
ing better performance in physical activities over the years,
technologies have been developed to help monitor the move-
ments aiming for fewer injuries and better gains. Examples of
technologies applied to physical activities are accelerometers,
gyroscopes, and camera-based systems [2], [3], [4], [5], [6].
In addition to the technologies cited, radars are one of the
emerging solutions for human motion recognition. Portable
microwave/millimeter-wave (mmWave) radars are noncontact
devices that offer a noninvasive approach to human movement
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recognition while preventing privacy concerns associated with
cameras and operate under any lighting conditions, includ-
ing scenarios with abrupt changes in the illumination, and
the required computational load during signal processing is
considerably lower than the required by camera-based tech-
nologies. Vital signs detection, structural health monitoring,
and nondestructive testing are examples of continuous-wave
(CW) radar applications. By modulating the frequency of the
radar wave, it is possible to also extract range information
and enable a diverse range of new applications such as face
recognition classification, shooter detection, human-—vehicle
classification, hand gesture recognition, fall detection, inat-
tentive driving behavior detection, and vocal folds vibration
detection which are some of the examples that have been
widely studied [7], [8], [9], [10], [11], [12], [13], [14], [15].

Since frequency-modulated continuous-wave (FMCW)
radars can provide Doppler and range information, some
works with multiple targets have been proposed for vehicle
applications, where the radar is located inside the vehicle,
and several targets could be moving simultaneously. Efforts
were made to extract and identify the correct combination of
beat frequencies for multiple objects in the radar’s field of
view and distinguish ranges and velocities for each target with
wide relative velocity and range [16], [17], [18], [19]. On the
other hand, it is possible to extract 2-D position information
by taking the advantage of two receiving antennas. With this,
range and speed measurements of multiple targets moving in
a scenario can be retrieved [20]. More examples of multiple
target detection using beamforming are depicted in [15], where
vocal folds vibration detection in a multitarget scenario is
achieved using an FMCW with two TX and four RX antennas,
and in [21], where an FMCW with multiple receiving antennas
was used to detect the behavior of multiple patients in a hos-
pital scenario. The classification was performed using a deep
convolutional neural network (CNN), achieving an accuracy
of approximately 80%.

Another interesting and emerging application is to detect
human physical activities and classify the movements. For
instance, an accelerometer sensor can be attached to the
user’s body, and the signal extracted during the free weight
exercises can be utilized to collect classification features
using long short-term memory (LSTM) neural networks
from a single exercise [22]. Another example is to use the
channel state information (CSI) embedded in Wi-Fi signals
to retrieve information about exercises wirelessly, achieving
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a 93% classification accuracy using a deep neural network
(DNN) [23]. A similar approach to this work using an FMCW
radar is depicted using a multiple-channel system with two
transmit and four receiving antennas, where physical activities
were classified using CNNs [24]. However, for the past three
examples, only one exercise was analyzed at a time. To analyze
the robustness of physical activities data extraction using an
FMCW radar, an experiment is reproduced in a scenario where
one person was performing an exercise and was treated as the
target of interest, while another person was doing exercises
or moving behind the target, so interferences were added to
the baseband data. After processing, the signal of interest
was successfully recovered [25]. Another example of detecting
multiple targets is shown in [26], where two human subjects
performed exercises simultaneously in the radar’s field of
view. This time, two human subjects were treated as targets
of interest, and both micro-Doppler (mD) signatures were
recovered and analyzed. However, both studies were limited
to a scenario where only two exercises at fixed ranges were
performed in front of the radar, and the exercises carried out
were exclusively sit-ups and push-ups. Furthermore, a feature
extraction strategy for classifying the movements was not
proposed.

This work investigates four different types of exercises
performed in front of an mmWave radar in a scenario with
potential moving and/or stationary clutters. Moreover, up to
three exercises were carried out simultaneously as the targets
of interest. A total of 20 different experimental layouts were
recorded during data collection. In contrast to other works
that analyze multiple simultaneous targets using complex
multichannel systems [15], [20], [21], a strategy that uses only
one receiving and one transmitting antenna was employed to
reduce the signal complexity further. The exercises analyzed
are sit-ups, push-ups, squats, and jump rope. Furthermore,
a machine learning-based classification scheme is proposed
by extracting features from mD signatures and range—Doppler
frames.

For classification purposes, seven human subjects were
recorded by performing the proposed exercises since different
people perform exercises in different ways. The fixed-beam
radar illuminated all subjects and potentially moving, and
stationary clutters at all times. An approach to differentiate
between human subjects exercising from possible clutters
is presented. The features were fed into machine learning
algorithms using tenfold cross-validation, and classification
accuracy of 95% was achieved with the quadratic support
vector machine (SVM).

The remainder of this article is organized as follows.
Section II depicts the data processing and the theory behind
multiple target detection and feature extraction. Then, the
experiments performed are presented in Section III. Lastly,
this article is concluded in Section IV.

II. DATA PROCESSING AND THEORY
A. Overview

An example of a scenario for one of the experiments using
a 60-GHz FMCW radar is exhibited in Fig. 1. Multiple people
(targets of interest) doing physical activities are simultaneously
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Fig. 1.

Multitarget physical activities monitoring and classification scenario
using a 60-GHz FMCW radar.

illuminated by the electromagnetic waves (EMs) transmitted
by an mmWave FMCW radar. The human subjects performing
the exercises will send a limited amount of energy back to the
radar. The amount of energy reflected from the targets depends
on the radar cross section (RCS), which is influenced by the
size of the target relative to the wavelength of the signal, the
absolute size of the target, the angle of the subject relative to
the radar, the material of the target, and the polarization of the
transmitted and received signals relative to the orientation of
the target. Based on the received signal reflected from each
target, data containing information about the exercises can be
extracted and analyzed. On the other hand, Fig. 2 illustrates
the mD signatures in a single range bin and the range—time
profile extracted from all four exercises. Only one person
placed 2 m away in front of the radar did the exercises. The
radar system was positioned 0.5 m above the ground, and
no clutters were included in the analysis. Fig. 2(a) illustrates
the radar signatures associated with a person doing sit-ups.
In the experiments, the subjects performed the sit-ups with
their backs turned to the radar. The motion for this exercise
is similar to a sinusoid; since the back is moving back and
forth relative to the radar, the range with the maximum RCS
also changes. Fig. 2(b) depicts the radar signatures associated
with a person doing push-ups. The amplitude of the push-up
movement is small compared to other types of exercises
because it is made by bending half of the arm. Therefore,
if the human subject is familiar with the exercise, it can be
performed faster than sit-ups and squats; since the subject must
be laid down, signatures of the head and other body parts can
be seen in the range—time plot. Fig. 2(c) exhibits an example of
the range profile and the spectrogram recorded from a person
doing squats. This exercise has a similar signature compared to
push-ups because there is not much range migration associated
with them since the body moves mainly on the elevation angle.
However, the reflected signals from a person doing squats
also present strong mD signatures from the bending knee.
The point of maximum RCS changes its range minimally
for this exercise. Finally, Fig. 2(d) shows the signature of a
jump rope movement. Since the human subject must jump, the
range of maximum RCS might change over time depending
on the subject’s experience although it is supposed to be a
stationary movement. For this exercise, the frequency of the
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Fig. 2. Example of mD signatures and range—time analysis from one single exercise performed at 2 m away from the radar. Spectrogram and range—time of:
(a) six sit-ups performed with the back turned to the radar, where A is the lying down movement and B is the going up movement; (b) eight push-ups, where
A is the arm bending movement and B is the arm stretching movement; (c) six squats, where A is the sitting movement, B is the going up movement, and C

and D represent the knee signatures of the movement; and (d) 51 jump rope

repetitions, where A is the jump movement and B is the landing after a jump.
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Fig. 3. Block diagram of the feature extraction for multiple exercises using mD signatures and range—Doppler frames.

movement is much higher than in the other three exercises, and
the Doppler signatures are also high due to the jump motion
being much faster. Another important point is that depending
on the relative position between the radar and the illuminated
targets of interest, the corresponding range—Doppler signatures
and spectrograms will differ.

B. Data Processing

The block diagram of the feature extraction using a 60-GHz
FMCW radar is detailed in Fig. 3. First, the raw baseband
data extracted from the radar is divided into a matrix B(m, n),
where m = [1,2,3,..., M] corresponds to the number of
chirps and n = [1,2,3,..., N] is the number of samples
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per chirp. The total time duration is called slow time, and
the duration of each chirp is called fast time. To calculate
the range profile, a fast Fourier transform (FFT) is applied
to the fast-time dimension of the raw data matrix, generating
a new matrix R(m, r), where r contains the range bins. The
next step is to identify the range bins where each exercise
is being performed and separate them from each other and
from potentially stationary, and moving clutters since multiple
exercises are being analyzed simultaneously. To achieve that,
the standard deviation of the spectral power (SDSP) along the
slow-time dimension is extracted, as shown in the following
equation:

R (R, ) = ui ()
_ =

SDSP(or) (D
where r = [1,2,3,..., R] is the index corresponding to the
range bins, us is a vector with the mean of R(m, r) extracted
along the slow time, and N, is the number of chirps.

Since the movements of interest are being performed at a
stationary range or with a slight range variation in the case
of jump rope, the SDSP can easily differentiate the signatures
corresponding to exercises from static clutter. The reason for
that is because the exercises will have a high variation in
spectral power over time at the range of the movement, and
the static clutter will not have a considerable variation to be
selected as an exercise. Depending on how close and at which
angle relative to a static clutter the exercise is being performed,
a high SDSP value at the range of the clutter might appear
due to the movement of the exercise. However, the SDSP at
the range of the clutter is smaller than an actual exercise and
presents less range migration than the exercises. Given that the
movements will have a higher SDSP than static objects and
from moving clutters like a human subject walking behind the
experiment, since the range of the moving clutter will change
considerably over time, and the exercises are being performed
at the same group of range bins, the moving clutter will not
interfere in the SDSP enough to be considered as a new
exercise [26], [27].

Since each exercise motion occupies more than one range
bin, a group of range bins is selected for each target of
interest. The threshold used for selecting the correct range
bins for each exercise must be changed based on the distance
between the radar and the respective targets of interest. The
reason for that is because when an exercise is performed far
away from the radar, it has a smaller RCS compared to the
exercises performed close, as can be seen in the example in
Fig. 4. Threshold 1 select the ranges of the first two exercises
performed at 1 and 2 m away from the radar, respectively.
Threshold 2 determines the ranges for the third exercise
performed at 4 m away from the radar.

Finally, after choosing all range bins with a higher SDSP
than the calculated thresholds, the selected range bins are
divided into groups based on a range threshold. This range
threshold should be less than the minimum distance between
two exercises among all tests. If the distance between selected
range bins is higher than the range threshold, then both sets
of range bins are considered associated with different people
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Fig. 4. Example of SDSP for three people doing exercises in front of an

mmWave radar. Different thresholds for range selection are calculated when
the exercises are performed from a longer distance.

doing exercises. The goal is to divide the group of ranges into
the number of exercises performed. Finally, a matrix E(m, r,)
is created for each exercise, where r, is the range bins for a
single physical activity. Depending on how close the exercises
are being performed to each other, the range resolution can be
decreased by increasing the transmitted signal’s bandwidth.
As demonstrated in the following equation:

C
2x B &
where C is the speed of light and B is the bandwidth of the
transmitted signal.

Succeeding the selection of the range bins with higher
SDSP for each exercise, a short-time Fourier transform (STFT)
is applied to the range bin with the highest spectral power
among the ranges of each exercise. As shown in the following
equation:

Rres =

j2rmo

M—1
STFT(t, @) = »_ E(m,Mr,)w(m —t)e™ (3)

m=0

where t = [1,2,3,...,T] and w = [1,2,3,..., W] are the
spectrogram’s time and Doppler index, Mr, is the range bin
with maximum spectrum power for one exercise, and w(r) is
the chosen window function.

By doing that, it is possible to extract the mD signatures
among the selected ranges. With this, the spectrogram is
generated, thus producing essential features for classification.

C. Feature Extraction From mD Signatures

After the spectrogram generation, features for classification
are extracted as shown in Fig. 5 and depicted as follows.

1) Envelope: The envelope was divided into two parts,
the upper and lower envelope. The maximum power in
each range bin was extracted to obtain both envelopes.
In the analysis, frequencies extremely close to 0 Hz
were removed since it represents static objects, and
the analysis should focus on the movements. To avoid
situations where the RCS of the movement is close to
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Fig. 5. Features extracted from the spectrogram analysis. (In the example,
the mD signatures are from four sit-ups.)

zero and the maximum power point is outside the mD
signature of the movement, a threshold of minimum
power was established. If the value is smaller than the
threshold, it is considered zero. That way, the envelope
can be extracted.

2) Minimum and Maximum Frequency: It is the maxi-
mum and minimum frequency of the movements, which
depends on the speed of the exercise motion.

3) Repetitions Frequency: It is the frequency of repetitions
of the exercises. Since the exercises were recorded in
a predetermined time and more than one repetition
was performed in each data extraction, the repetition
frequency helps differentiate exercises that, although
they might have a high frequency in part of the motion,
require more or less time to complete.

4) Range: Based on the previous range selection, the dis-
tance from the movement to the radar is also used as a
feature. Since multiple experiments were performed, the
same exercise is carried out at different ranges.

Based on the spectrogram information, the number of rep-
etitions for each exercise can also be extracted. However, this
information is not used as a feature and is more relevant when
analyzing the user’s performance.

D. Feature Extraction From Range—Doppler Frames

To further improve the classification, range—Doppler frames
created by applying an FFT with a sliding window to the slow-
time direction of the matrix were also analyzed. To extract the
Doppler trajectory between frames for each separate move-
ment, the same range bins selected using the SDSP previously
are chosen. The matrix generated at each frame is sorted out
into those range bins, thus generating a new matrix according
to the number of exercises performed in the experiment. The
following equation shows how one range—Doppler frame is
created:

- .
Fa(forn) = D B, ra)e 5 @)

m=1

where F, corresponds to one frame, f corresponds to the
frequency index, and L is the length of the time window.
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After dividing the range—Doppler matrices into smaller
matrices for each exercise, the range—Doppler trajectory can
be extracted for each individual movement. To do that, subma-
trices are generated inside the F,(f, r,) matrix and summed.
The submatrix with the maximum power sum is selected in
each frame to create the trajectory points. The size of the
submatrices changes depending on how many range bins the
exercise occupies. The following equation shows the sum of
submatrices in one frame to extract the maximum power point:

s s s s
L1 = 2 , 2 Fngpyseooslnn = § . § Fugiisnis O

j=1i=l j=1i=I

where S is the size of the square submatrix S, (s, s) that
depends on the range occupied by the movement of the
exercise, if the movement occupies a large scope of range
bins, the submatrices are bigger. e¢;,; and e, , represent the first
and last elements of the generated matrix containing the sum
of submatrices that will be compared to select the trajectory
point, and F and R, are the sizes of the F,(f, r,) range—
Doppler matrix. The center of the submatrix with the highest
power sum is chosen as the trajectory point.

This approach of selecting the submatrix with maximum
power is used because depending on how close the people
doing exercises are to each other, signatures associated with
different exercises might appear in some of the range—Doppler
frames, and this submatrix acts as a filter, selecting the correct
point instead of possible interferences from a different exercise
or other artifacts. By following the point with the maximum
RCS at each frame for all exercises, information about the
range, Doppler, spectral power, and time can be extracted for
the maximum points in each frame. Since the spectrogram
can only provide information about one range bin at a time,
by analyzing the range-Doppler frames, it is possible to
include time information in the analysis and generate new
features such as range movement variation, which is the
measure of how the point of maximum RCS changed range
over the frames. An example of range movement variation of
a sit-up is depicted in Fig. 6. The range movement variation is
an important feature for classification because movements like
sit-ups change their maximum power range constantly due to
the motion of the exercise, and movements like squats and sit-
ups, for example, change the maximum RCS range. However,
the amplitude of range variation is much smaller.

Since the exercises are being performed at different ranges
and illumination angles, the RCS will vary depending on that.
Therefore, power-related features were not used because the
same exercise performed at a different range and perspective
relative to the radar will present a different value of RCS.
Hence, they are not considered solid features for classification.

E. Classification

After feature extraction, the features were fed into machine
learning classifiers from the classification learner tool in
MATLAB R2021b, aiming to achieve the highest classification
accuracy possible. There are plenty of classification algorithms
that can be used to predict categories. However, five algorithms
were studied in this work: decision trees, SVMs, neural
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Fig. 6. Example of range movement variation of a sit-up at 3 m away from
the radar (experiment number 8).

networks, naive Bayes, and ensemble. A brief introduction to
the algorithms is depicted as follows.

1) Decision Trees: Decision tree learning is one of the
most used predictive tools for decision-making. It can
be used in different fields, such as statistical procedures,
data mining, and machine learning. The decision tree
structure is organized similar to a flowchart comparable
to a tree, dividing the input into regions, where the top
of the tree is called the root node, and the condition for
decision-making is divided into branches that indicate a
possible outcome or action. Finally, the tree’s end, called
the leaf node, provides the final predicted label [28].

2) Support Vector Machine: SVMs are one of the most
powerful and robust algorithms for classification and
regression in the most diverse fields of application. The
SVM works by finding the best hyperplane between
different data types in a multidimensional space, capable
of best differentiating between features. The best hyper-
plane is the one that maximizes the margins separating
categories in a gap that is as wide as possible. The new
data are then classified based on which side of the gap
they are in the same space [29], [30].

3) Neural Network: Neural networks, as the name suggests,

are motivated by the learning process occurring in
human brains to process information. Neural networks
are organized on layers composed of interconnected
nodes, similar to neurons. Those nodes contain an
activation function that defines how the weighted sum
of the input is transformed into an output. Following
the schematic of a neural network, an input is fed
to the network through the input layer, which further
communicates it to one or more hidden layers, with
every output being the input for a future function. The
hidden layers perform all the processing and deliver the
result to the output layer.
Ensemble: Ensemble is a machine learning system that
combines a set of individual models working in parallel
whose outputs are merged to obtain a better predictive
performance. There are many types of ensembles. How-
ever, the main learning methods are bagging, stacking,
and boosting [31].

4

~
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To estimate the performance of the classification algorithms,
the tenfold cross-validation method was used, where data are
split into ten equal parts. The model’s training is done in
nine parts, and one subset is saved for testing. The process
is repeated ten times, reserving a different tenth for testing
until all parts have been tested. Finally, the accuracy obtained
in all iterations is averaged to extract the model accuracy [32].
One advantage of this method is that it is not important how
the data are split. Every data point appears in a test set exactly
once and in a training set nine times. After feeding the features
extracted to the machine learning algorithms, classification of
the movements is achieved.

Even though all features are essential for the correct clas-
sification of the exercises, the following features play a major
role in each exercise selection.

1) Jump Rope:

a) Repetition Frequency: Jump rope is the fastest
exercise among all exercises, with approximately
two repetitions per second in most datasets.

b) Maximum and Minimum Frequencies: Since the
movement is fast, the maximum and minimum
frequencies are always high.

2) Sit-Ups:

a) Range Variation: Since the sit-up movement
changes range over time, this feature helps differ-
entiate sit-ups from other movements.

Repetition Frequency: For most datasets, sit-ups
had the smallest repetition frequency among the
exercises since it takes more time to complete the
movement than squats and push-ups.

3) Push-Ups:

a) Envelope: By analyzing the envelope, it is possible
to differentiate the mD signatures from this exer-
cise from sit-ups and squats.

b) Maximum and Minimum Frequencies: Since this
movement consists of bending half of the arm,
in most datasets, the maximum and minimum
frequencies were the smallest.

4) Squats:

a) Envelope: The envelope related to squats has strong
signatures from the bending knee, differentiating it
from other movements.

b)

II1. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed approach,
several experiments were conducted. The 1TX/3RX 60-GHz
FMCW radar model BGT60TR13C by Infineon was employed
during all the experiments. Although this radar system pos-
sesses one transmitting antenna and three receiving antennas,
the baseband data obtained from only one transmitting antenna
and one receiving antenna (one channel) were used in our
analysis. The maximum unambiguous range using this radar
is 15 m, and the maximum bandwidth is 5.5 GHz. The radar
was placed 0.5 m above the ground for all experiments. Table I
summarizes the information about all experiments done to
validate the proposed approach. In Table I, “Exercise 17
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TABLE 1
DETAILS OF THE EXPERIMENTAL SETUP AND DATASETS
N Exercise 1 Distance 1 (m) | Exercise2 | Distance 2 (m) Exercise 3 Distance 3 (m) Additional interference Qty of datasets

1 Push-ups 1 Sit-ups 3 - - Clutter at 3.5 m 5
2 Push-ups 1 Sit-ups 3 - - Clutter at 4.5 m 5
3 Push-ups 1 Sit-ups 3 - - Subject walking behind 1 5
4 Push-ups 1 Sit-ups 3 - - Subject walking behind 2 5
5 Push-ups 1 Sit-ups 3 Push-ups 5 - 5
6 Sit-ups 1 Push-ups 2 - - - 5
7 Sit-ups 1 Push-ups 3 - - - 6
8 Push-ups 1 Sit-ups 3 - - - 5
9 Sit-ups 1 Jump rope 2 - - - 5
10 Sit-ups 1 Jump rope 2 Squats 3 - 5
11 Squats 1 Jump rope 2 - - - 11
12 Sit-ups 1 Push-ups 2 Squats 4 - 5
13 Sit-ups 1 Squats 2 Push-ups 4 - 5
14 Jump rope 1 Squats 2 - - - 8
15 Push-ups 1 Squats 2 Jump rope 4 - 5
16 Squats 1 Jump rope 2 - - Clutter at 3 m 5
17 Jump rope 1 Squats 2 - - Clutter at 3 m 5
18 Push-ups 1 Sit-ups 2 Jump rope 4 - 5
19 Squats 1 Sit-ups 2 Jump rope 4 - 5
20 Squats 1 Sit-ups 2 Push-ups 4 - 5

TABLE II this interference is named “Subject walking behind 1.” In

FMCW RADAR PARAMETERS the second moving clutter experiment, the subject was 5 m

away from the radar and walked at a trajectory similar to

Lower freq. (GHz) 60 the azimuth angle, having the radar as a reference (experi-

Upper freq. (GHz) 61 ment number 4). This interference is named “Subject walking

Bandwidth (GHz) 1 behind 2.” In those cases, the column “Additional interference”

Sample rate (kS/s) 2000 Feports the type of interference, which is moving or stationary

. interferences.
Range resolution (cm) 15 . .

Chiro f . 206 The exercises were performed at different angles and ranges

= requemyf 2) in front of the radar. In that way, all the targets of interest

Samples per chirp 128 would always be illuminated by the radar’s signals. Since the

Max. range (m) 9.6 range resolution is 15 cm and the minimal distance between

column refers to the exercise performed by the person closer
to the radar, and “Distance 1” is the distance from the person
doing exercise 1 to the radar. “Exercise 2” is the exercise
performed by another person in front of the radar simultaneous
to exercise 1. “Distance 2” is the distance from the person
doing exercise 2 to the radar. In some of the tests, three
exercises were performed simultaneously in the radar’s field of
view. In those cases, “Exercise 3” column is the exercise done
by the following person, and “Distance 3” is the distance from
the person doing exercise 3 to the radar. Further information
about the configuration used in the experiments can be found
in Table II.

To validate the feasibility of the proposed solution in real
scenarios, additional stationary and/or moving clutters were
added to the analyzed scenarios. Large barrels were added
to the radar’s field of view to create stationary clutters to
simulate objects such as wall pillars and furniture that a
typical environment might have. For moving clutters, a human
subject walked behind the targets of interest (while they were
doing exercises) from two different initial points. In the first
moving clutter experiment (experiment number 3), the subject
walked from 10 to 5 m away from the radar. In Table I,

exercises is 1 m, the mD signatures of the exercises can be
successfully retrieved. Table III illustrates the characteristics
of the human subjects that contributed to the experiments.
The volunteers were asked to perform exercises as they would
in an actual working out scenario at a predetermined range
and to perform the exercise at a predetermined time dura-
tion. Since the recording had a predetermined time, subjects
carried out a different number of repetitions depending on
their familiarity with the exercise. It is worth noting that
some of the volunteers were not used to exercising regularly.
To improve generalization even more, data from more human
subjects could be added since people exercise in diverse
ways.

In total, 20 types of tests were performed, 110 datasets were
collected, and since more than one exercise was performed
in each test, 260 exercises were recorded. Figs. 7-10 depict
examples of the experiments carried out and the mD signatures
of each exercise. Since people do exercises differently, some
characteristics, such as the repetition frequency and maximum
and minimum frequency, will vary depending on the subject
that performed the movement. For the classification, the exer-
cises were not divided by range or angle, so exercises like
push-ups, for example, were analyzed at 1, 2, 3, 4, and 5 m
away from the radar and at different angles. This makes the
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TABLE III
INFORMATION OF THE VOLUNTEERS

Subject number | Gender | Height (m) | Weight (kg)
1 Male 1.88 85
2 Male 1.81 65
3 Male 1.85 82
4 Male 1.87 100
5 Male 1.70 63
6 Female 1.56 55
7 Female 1.60 51

Frequency (Hz)

S 10 15 5 10 15
Time (s) Time (s)

Fig. 9. Example of experiment number 3, and the mD signatures extracted.

N
=4
=1

5 10 15 5 10 15 5 10 15
Time (s) Time (s) Time (s)

Fig. 7. Example of experiment number 15, and the mD signatures extracted.

Frequency (Hz)

5 10 15
Time (s) Time (s)

Fig. 10.  Example of experiments 17 and 1, respectively, and the mD
signatures extracted from experiment 17.

Algorithms accuracy (%)

95.0
B 92.7

-400 0 91.9
- 90.8 90.8 90.8 90.8
= 200 89.6
= -10 88.1 oo
RN = 86.5
£ 0 .
= *.
8 200 20 H H
=

400 510 15 510 15 s 10 15

Time (5) Time (s) Time (s) S oSS S&&HESS R
I T I A N
Fig. 8. Example of experiment number 20, and the mD signatures extracted. %&(b (o (b@% Q“ \(z} &fz} &q} ©§§0 Q'x% 0@ (b%%
o N SO M 2R
= & ¢ & & > D
. . . . > F LS ¢ F &S

classification harder since, depending on the range and angle, X K Q,@ F < &.&\\q;\
the exercise will occupy a different number of range bins and
have different RCS. Fig. 11. Classification algorithms’ accuracy with tenfold cross-validation.

Fig. 11 shows the accuracy of the algorithms used. Some of
the SVM algorithms achieved the accuracy higher than 90%, For the sake of comparison, Table IV shows the contrast

whereas the quadratic SVM achieved the best classification between this work with similar works that use FMCW radars
results. Fig. 12 exhibits the confusion matrix of the quadratic to classify human motion, and presents information about the
SVM classification with tenfold cross-validation. The image type of data used as input for classification, the maximum
also shows the true positive rate (TPR) of each exercise. number of targets for one dataset, the number of channels of
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TABLE IV
COMPARISON WITH SIMILAR WORKS
Max. . . Number
Reference Type of T.ype of simultaneous Qty. of Classification Type of Clutter Typ.e of of
sensor input channels accuracy experiment
targets volunteers
mD
FMCW signatures, Multiple —eno . Human behavior
(21] Radar angle Two channels ~80% Stationary detection 2
analysis
FMCW mD . o o . Human behavior
[39] Radar signatures One Single channel | 85% and 96% Stationary detection 99
Range
FMCW Doppler, . 94.8% and . Human behavior
[14] Radar mD One Single channel 93.3% Stationary detection 6
signatures
Range
Doppler .
FMCW g Multiple 93% and . . I
[24] Radar Range angle, One channels 99.85% Stationary Exercises monitoring 2
angle-
Doppler
Range
This work FMCW Doppler, Three Single channel 95% M0v¥ng and Exercises monitoring 7
Radar mD stationary
signatures

TPR (%)

Push-ups Jump rope Sit-ups Squats

Push-ups

Jump rope

True class

Sit-ups

Squats

Predicted class

Fig. 12. Confusion matrix and TPR using quadratic SVM with tenfold cross-
validation.

the radar used in the experiments, classification accuracy, and
types of interferences.

IV. CONCLUSION

This article presented a novel multitarget exercise mon-
itoring processing technique that works in different types
of environments with moving and stationary clutter. The
technique does not require multiple antennas that generate
angular information, bringing a solution in a simple setup.
The experiments were held out in 20 different scenarios, with
more than one exercise being performed as the target of
interest using the 60-GHz FMCW radar model BGT60TR13C
by Infineon. The bandwidth used for the experiments was
1 GHz with a range resolution of 15 cm. The features from the
exercises were extracted using mD analysis and range—Doppler
frames and later used for classification. Four exercises were
studied, i.e., push-ups, sit-ups, squats, and jump rope. To mea-
sure performance, counting the number of repetitions of each
exercise is also possible using spectrogram analysis. After the
experiments and feature extraction, a classification accuracy
of 95% was achieved using quadratic SVM with tenfold

cross-validation. Future works will investigate the feasibility
of extracting mD information for multiple exercises performed
at the same range using beamforming. Also, features related
to the azimuth and elevation angles will be extracted and
analyzed.
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