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Abstract

Recent research has shown that integrating do-
main knowledge into deep learning architectures
is effective – it helps reduce the amount of re-
quired data, improves the accuracy of the mod-
els’ decisions, and improves the interpretability
of models. However, the research community is
missing a convened benchmark for systematically
evaluating knowledge integration methods. In this
work, we create a benchmark that is a collection
of nine tasks in the domains of natural language
processing and computer vision. In all cases, we
model external knowledge as constraints, spec-
ify the sources of the constraints for each task,
and implement various models that use these con-
straints. We report the results of these models us-
ing a new set of extended evaluation criteria in ad-
dition to the task performances for a more in-depth
analysis. This effort provides a framework for a
more comprehensive and systematic comparison
of constraint integration techniques and for identi-
fying related research challenges. It will facilitate
further research for alleviating some problems of
state-of-the-art neural models.

1 Introduction

Deep Learning Shortcomings Recent advancements
in machine learning are proven very effective in solv-
ing real-world problems in various areas, such as vi-
sion and language. However, there are still remaining
challenges. First, machine learning models mostly fail
to perform well on complex tasks where reasoning
is crucial (Schubotz et al., 2018) while human per-
formance does not drop as much when more steps
of reasoning are required. Second, deep neural net-
works (DNNs) are known to be data-hungry, making
them struggle on tasks where the annotated data is
scarce (Li et al., 2020; Zoph et al., 2016). Third, mod-
els often provide results that are inconsistent (Li et al.,
2019; Gardner et al., 2020) even when they perform
well on the task. Prior research has shown that even
large pre-trained language models performing well on
a specific task may suffer from inconsistent decisions
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and indicate unreliability when attacked under adver-
sarial examples and specialized test sets that evaluate
their logical consistency (Gardner et al., 2020; Mirzaee
et al., 2021a). This is especially a major concern when
interpretability is required (Mathews, 2019), or there
are security concerns over applications relying on the
decisions of DNNs (Brundage et al., 2020).

Knowledge Integration Solution To address these
challenges, one direction that the prior research has
investigated is neuro-symbolic approaches as a way
to exploit both symbolic reasoning and sub-symbolic
learning. Here, we focus on a subset of these ap-
proaches for the integration of external knowledge in
deep learning. Knowledge can be represented through
various formalisms such as logic rules (Hu et al., 2016;
Nandwani et al., 2019), Knowledge graphs (Zheng and
Kordjamshidi, 2022), Context-free grammars (Deutsch
et al., 2019), Algebraic equations (Stewart and Er-
mon, 2017), or probabilistic relations (Constantinou
et al., 2016). A more detailed investigation of available
sources of knowledge and techniques to integrate them
with DNNs is surveyed in (von Rueden et al., 2019;
Dash et al., 2022). Although integrating knowledge
into DNNs is done in many different forms, we focus
on explicit knowledge about the latent and/or output
variables. More specifically, we consider the type of
knowledge that can be represented as declarative con-
straints imposed (in a soft or hard way) on the models’
predictions, during training or at inference time. The
term knowledge integration is used in the scope of this
assumption in the remainder of this paper.

Hurdle of Knowledge Integration Unfortunately,
most prior research on knowledge integration has only
focused on evaluating their proposed method com-
pared to baseline DNN architectures that ignore the
knowledge. Consequently, despite each method pro-
viding evidence of its effectiveness (Hu et al., 2016;
Nandwani et al., 2019), there is no comprehensive
analysis that can provide a better understanding of the
use cases, advantages, and disadvantages of methods,
especially when compared with each other. The lack
of such analysis has made it hard to apply these ap-
proaches to a more diverse set of tasks by a broader
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community and provide a clear comparison with exist-
ing methods. We mainly attribute this to three factors:
1) the lack of a standard benchmark with systematic
baselines, 2) the difficulty of finding appropriate tasks
where constraints are applicable, and 3) the lack of sup-
porting libraries for implementing various integration
techniques.

Due to these three factors, many research questions
are left open for the community, such as (1) The differ-
ence in the performance of models when knowledge
is integrated during inference vs. training or both, (2)
The comparison of the influence of integration meth-
ods when combined with simpler vs. more complex
baselines, (3) The effectiveness of training-time inte-
gration models on reducing the constraint violation,
(4) The impact of data size on the effectiveness of the
integration methods.
Common Ground for Comparison The contribution
of this paper is providing a common ground for com-
paring techniques for knowledge integration by collect-
ing a new benchmark to facilitate research in this area.
Our new benchmark, called GLUECons, contains a
collection of tasks suitable for constraint integration,
covering a spectrum of constraint complexity, from
basic linear constraints such as mutual exclusivity to
more complex constraints expressed in first-order logic
with quantifiers. We organize the tasks in a repository
with a unified structure where each task contains a
set of input examples, their output annotations, and
a set of constraints (written in first-order logic). We
limit the scope of knowledge in GLUECons to logical
constraints1.
Selected Tasks GLUECons contains tasks ranging
over five different types of problems categorized based
on the type of available knowledge. This includes 1)
Classification with label dependencies: Mutual exclu-
sivity in multiclass classification using MNIST (Le-
Cun et al., 1998) and Hierarchical image classifi-
cation using CIFAR 100 (Krizhevsky and Hinton,
2009), 2) Self-Consistency in decisions: What-If
Question Answering (Tandon et al., 2019), Natural
Language Inference (Bowman et al., 2015), Belief-
Bank (Kassner et al., 2021), 3) Consistency with exter-
nal knowledge: Entity and Relation Extraction using
CONLL2003 (Sang and De Meulder, 2003), 4) Struc-
tural Consistency: BIO Tagging, 5) Constraints in
(un/semi)supervised setting: MNIST Arithmetic and
Sudoku. These tasks either use existing datasets or are
extensions of existing tasks, reformulated so that the
usage of knowledge is applicable to them. We equip
these tasks with constraint specifications and baseline

1Throughout this paper, we use the terms constraint integration,
knowledge integration, or integration methods interchangeably to
refer to the process of integration of knowledge into the DNNs.

results.
Evaluation For a fair evaluation and to isolate the
effect of the integration technique, we provide a
repository of models and code for each task in
both PyTorch (Paszke and Gross, 2019) and Domi-
Knows (Faghihi et al., 2021) frameworks. Domi-
Knows is an easy-to-use tool for expressing constraints
in first-order logic with automatic conversion to lin-
ear constraints. It provides a modular interface for
modeling and applying constraints, making it easier to
consistently test different integration methods while
the rest of the configurations remain unchanged.

For a more comprehensive evaluation, we introduce
a set of new criteria in addition to the original task
performances to measure 1) the effectiveness of the
techniques in increasing the consistency with knowl-
edge 2) the execution run-time, 3) the effectiveness
of methods in the low-data regime, 4)the ability to
reduce the need for complex models, and 5) the ability
to express various forms of knowledge.
Baselines We analyze and evaluate a set of knowledge
integration methods to serve as baselines for GLUE-
Cons. Our baselines cover a set of fundamentally
different integration methods, where the integration is
addressed either during inference or training of DNNs.
GLUECons can be used as blueprints to highlight the
importance of integrating constraints with DNNs for
different types of tasks and provides inspiration for
building such constraints when working on new tasks.
In summary, the contributions of this paper are 1) We
propose the first extensive benchmark exclusively de-
signed for evaluating constraint integration methods
in deep learning (GLUECons), 2) We define new eval-
uation criteria in addition to the task performance for
a comprehensive analysis of the techniques, and 3)
We establish standard baselines for the tasks in this
benchmark based on multiple constraint integration
methods.

2 Constraint Integration in Prior Research

Knowledge integration, often, is considered a subset
of Neuro-symbolic (De Raedt et al., 2019; Amizadeh
et al., 2020; Huang et al., 2021) approaches that build
on the intersection of neural learning and symbolic
reasoning. von Rueden et al. surveyed prior research
on knowledge integration in three directions: knowl-
edge source, knowledge representation, and the stage
of knowledge integration. Dash et al. has also studied
existing methods where the integration can be done
through either transforming the input data, the loss
function, or the model architecture itself. Knowledge
integration has also been investigated in probabilistic
learning frameworks (De Raedt et al., 2007; Richard-



son and Domingos, 2006; Bach et al., 2017) and their
modern extensions which use neural learning (Man-
haeve et al., 2018; Huang et al., 2021; Winters et al.,
2021). Recent research has explored knowledge inte-
gration via bypassing the formal representations and
expressing knowledge in the form of natural language
as a part of the textual input (Saeed et al., 2021; Clark
et al., 2020). As of formal representations, knowledge
integration has been addressed at both inference (Lee
et al., 2019; Scholak et al., 2021; Dahlmeier and Ng,
2012) and training time (Hu et al., 2016; Nandwani
et al., 2019; Xu et al., 2018).
Inference-Time Integration:

The inference-based integration techniques opti-
mize over the output decisions of a DNN, where the
solution is restricted by a set of constraints express-
ing the knowledge (Roth and Yih, 2005; Chang et al.,
2012).

These methods aim at finding a valid set of decisions
given the constraints, while their objective is specified
by the output of the learning models. As a result of
this fixed objective and the fact that approximation
approaches are generally used to find the best solution,
we expect that the type of optimization technique will
not significantly affect the performance of inference-
time integration methods–we will see this later in our
results too.

Prior research has investigated such integration by
using variants of beam search (Hargreaves et al., 2021;
Borgeaud and Emerson, 2020; Dahlmeier and Ng,
2012), path search algorithm (Lu et al., 2021), lin-
ear programming (Roth and Yih, 2005; Roth and
Srikumar, 2017; Chang et al., 2012), finite-state/push-
down Automata (Deutsch et al., 2019), or apply-
ing gradient-based optimization at inference (Lee
et al., 2019, 2017). We use Integer Linear Program-
ming (ILP) (Roth and Yih, 2005; Roth and Srikumar,
2017) approach to evaluate the integration of the con-
straints at inference time. We choose ILP as the current
off-the-shelf tool performing a very efficient search
and offering a natural way to integrate constraints as
far as we can find a linear form for them (Faghihi et al.,
2021; Kordjamshidi et al., 2015).
Training-Time Integration: Several recent tech-
niques have been proposed for knowledge integration
at training time (Nandwani et al., 2019; Hu et al., 2016;
Xu et al., 2018). Using constraints during training usu-
ally requires finding a differentiable function express-
ing constraint violation. This will help to train the
model to minimize the violations as a part of the loss
function. Integrating knowledge in the training loop
of DNNs is a challenging task. However, it can be
more rewarding than the inference-based integration

methods as it reduces the computational overhead by
alleviating the need for using constraints during infer-
ence. Although such methods cannot guarantee that
the output decisions would follow the given constraints
without applying further operations at inference-time,
they can substantially improve the consistency with
the constraints (Li et al., 2019).

Prior research has investigated this through various
soft interpretations of logic rules (Nandwani et al.,
2019; Asai and Hajishirzi, 2020), rule-regularized
supervision (Hu et al., 2016; Guo et al., 2021), re-
enforcement learning (Yang et al., 2021), and black-
box semantic (Xu et al., 2018) or sampling (Ahmed
et al., 2022) loss functions, which directly train the
network parameters to output a solution that obeys the
constraints.

To cover a variety of techniques based on the previ-
ous research, we select Primal-Dual (PD) (Nandwani
et al., 2019) and Sampling-Loss (SampL) (Ahmed
et al., 2022) methods as baselines for our new bench-
mark. The PD approach relies on a soft logic interpre-
tation of constraints, while the SampL is a black-box
constraint integration. We discuss some of the existing
methods in more detail in Section ‘Baselines.’

2.1 Applications and Tasks

Constraint integration has been investigated for several
applications in prior research including SQL query
generation (Scholak et al., 2021), program synthe-
size (Austin et al., 2021; Ellis et al., 2021), semantic
parsing (Clarke et al., 2010; Lee et al., 2021), ques-
tion answering (Asai and Hajishirzi, 2020), entity and
relation extraction (Guo et al., 2021), sentiment analy-
sis (Hu et al., 2016), visual question answering (Huang
et al., 2021), image captioning (Anderson et al., 2017),
and even text generation (Lu et al., 2021).

3 Criteria of Evaluation

We extend the evaluation of the constraint integration
methods beyond measuring task performance. The list
of proposed evaluation criteria for such an extended
comparison is as follows.
Individual metrics of each task: The first criterion
to evaluate the methods is the conventional metric
of each task, such as accuracy or precision/recall/F1
measures.
Constraint Violation: Even when the integration
method cannot improve the model’s performance, im-
proving the consistency of its predictions will make
the neural models more reliable. A consistency mea-
sure quantifies the success of the integration method
in training a neural network to follow the given con-
straints. We measure consistency in terms of constraint



violation. We compute the ratio of violated constraints
over all predicted outputs. A smaller number indicates
fewer constraint violations and, consequently, a higher
consistency with the available knowledge.

Execution Run-Time: Another critical factor in com-
paring the constraint integration methods is the run-
time overhead. This factor becomes even more critical
when the integration happens during inference. This
criterion helps in analyzing the adequacy of each tech-
nique for each application based on the available re-
sources and the time sensitivity of the decision-making
for that application. We measure this evaluation cri-
teria by simply computing the execution time of each
integration method both during training and inference.
This metric can reflect the overhead of each integra-
tion method more accurately by taking into account
the new parameters that should be optimized and the
additional computations with respect to the complexity
of the constraints.

Low-data vs full-data performance: For many prob-
lems, there is no large data available either due to
the high cost or infeasibility of obtaining labeled
data. Integrating constraints with deep neural learning
has been most promising in such low-resource set-
tings (Nandwani et al., 2019; Guo et al., 2021). We
measure the improvement resulting from the integra-
tion methods on both low and full data. This evaluation
will help in choosing the most impactful integration
method based on the amount of available data when
trying to apply integration methods to a specific task.

Simple baseline vs Complex baseline: An expected
impact of constraint integration in DNNs is to alleviate
the need for a large set of parameters and achieve the
same performance using a smaller/simpler model. Ad-
ditionally, it is important to evaluate whether the inte-
gration method can only affect the smaller network or
the very large SOTA models can be improved too. This
will indicate whether large networks/pre-trained mod-
els can already capture the underlying knowledge from
the data or explicit constraint integration is needed to
inject such knowledge. In addition to the number of
parameters, this metric also explores whether knowl-
edge integration can reduce the need for pre-training.
This is especially important for the natural language
domain, where large pre-trained language models pre-
vail.

Constraint Complexity: This criterion evaluates the
limitations of each method for integrating different
types of knowledge. Some methods consider the con-
straints a black box with arbitrary complexity, while
others may only model a specific form of constraint.
This criterion specifies the form/complexity of the
constraints that are supported by each technique. To

evaluate this, we characterize a set of constraint com-
plexity levels and evaluate whether each technique can
model such constraints.

4 Selected Tasks

GLUECons aims to provide a basis for comparing con-
straint integration methods. We have selected/created
a collection of tasks where constraints can potentially
play an important role in solving them. We provide
five different problem categories containing a total
of nine tasks. More details of tasks’ constraints are
available in the Appendix. This collection includes
a spectrum of very classic tasks for structured output
prediction, such as multi-class classification to more
involved structures and knowledge, such as entity rela-
tion extraction and Sudoku.

4.1 Classification with Label Dependency
Simple Image Classification. In this task, we utilize
the classic MNIST (Deng, 2012) dataset and classify
images of handwritten digits in the range of 0 to 9. The
constraint used here is the mutual exclusivity of the
ten-digit classes. Each image can only have one valid
digit label as expressed in the following constraint,

IF digiti(x)⇒ ¬∨j∈[0−9]j=!i digitj(x),

where digiti(x) is 1 if the model has predicted x to be
an image representing the digit i. This task is used as
a basic validation of the constraint integration meth-
ods, though it is not very challenging and can also be
addressed by a “Softmax” function.
Hierarchical Image Classification. The hierarchi-
cal relationships between labels present a more com-
plex label dependency in multi-label and multi-class
tasks. We use the CIFAR-100 (Krizhevsky et al.,
2012), which includes 100 image classes, each be-
longing to 20 parent classes forming a hierarchical
structure. This dataset with 60k images is an extension
of the classic CIFAR-10 (Krizhevsky et al., 2012). To
create a smaller dataset, we select 10% of these 60k
images. For this task, the output is a set of labels for
each image, including one label for each level. The
constraints are defined as,

IF L1 ⊂ L2 : L1(x)⇒ L2(x),

where L1 and L2 are labels, L1(x) is True only if the
models assigns label L1 to x, and L1 ⊂ L2 indicates
that L1 is a subclass of L2.

4.2 Self Consistency in Decisions
DNNs are subject to inconsistency over multiple de-
cisions while being adept at answering specific ques-
tions (Camburu et al., 2019). Here, we choose three



tasks to evaluate whether constraints help ensure con-
sistency between decisions.
Causal Reasoning. WIQA (Tandon et al., 2019) is
a question-answering (QA) task that aims to find the
line of causal reasoning by tracking the causal rela-
tionships between cause and effect entities in a docu-
ment. The dataset includes 3993 questions. Following
the work by (Asai and Hajishirzi, 2020), we impose
symmetry and transitivity constraints on the sets of
related questions. For example, the symmetry con-
straint is defined as follows: symmetric(q,¬q) ⇒
F (q, C) ∧ ¬F (¬q, C) where q and ¬q represent the
question and its negated variation, C denotes the doc-
ument, and ¬F is the opposite of the answer F .
Natural Language Inference. Natural Language In-
ference (NLI) is the task of evaluating a hypothesis
given a premise, both expressed in natural language
text. Each example contains a premise (p), hypothesis
(h), and a label/output (l) which indicates whether h
is “entailed,” “contradicted”, or “neutral” by p.

Here, we evaluate whether NLI models benefit from
consistency rules based on logical dependencies. We
use the SNLI (Bowman et al., 2015) dataset, which
includes 500k examples for training and 10k for eval-
uation. Furthermore, we include AESIM1000 (Minervini
and Riedel, 2018a), which is an augmented set over
the original dataset containing more related hypothe-
ses and premise pairs to enforce the constraints. Four
consistency constraints (symmetric/inverse, transitive)
are defined based on the (Hypothesis, Premise) pairs.
An example constraint is as follows:

neutral (h, p)⇒ ¬ contradictory (p, h) ,

where neutral (h, p) is True if h is undetermined given
p. The complete constraints are described in (Min-
ervini and Riedel, 2018a).
Belief Network Consistency. The main goal of this
task is to impose global belief constraints to persuade
models to have consistent beliefs. As humans, when
we reason, we often rely upon our previous beliefs
about the world, whether true or false. We can always
change our minds about previous information based on
new information, but new beliefs should not contradict
previous ones. Here, entities and their properties are
used as facts. We form a global belief network that
must be consistent with those derived from a given
knowledge base. We use Belief Bank (Kassner et al.,
2021) dataset to evaluate the consistency perseverance
of various techniques. The dataset consists of 91 enti-
ties and 23k (2k train, 1k dev, 20k test) related facts
extracted from ConceptNet (Speer et al., 2016). There
are 4k positive and negative implications between the
facts in the form of a constraint graph. For example,

the fact “Is a bird” would imply “can fly,” and the
fact “can fly” refute the fact “Is a dog”. Formally, the
constraints are defined as follows:

∀F1, F2 ∈ Facts;

IF F1, F2 ∈ Pos Imp⇒ ¬F1(x) ∨ F2(x)

IF F1, F2 ∈ Neg Imp⇒ ¬F1(x) ∨ ¬F2(x),

“Pos Imp” means a positive implication.

4.3 Consistency with External Knowledge

This set of tasks evaluates the constraint integration
methods in applying external knowledge to the DNNs’
outputs.
Entity Mention and Relation Extraction (EMR).
This task is to extract entities and their relation-
ships from a document. Here, we focus on the
CoNLL2003 (Sang and De Meulder, 2003) dataset,
which contains about 1400 articles. There are two
types of constraints involved in this task: 1) mutual
exclusivity between entity/relationship labels and 2) a
restriction on the types of entities that may engage in
certain relationships. An example constraint between
entities and relationship types is as follows:

IFWork_for(x1, x2)⇒ Person(x1) ∧Org(x2),

where Predicate(x) is True if the network predicted
input x to be of type Predicate.

4.4 Structural Consistency

In this set of tasks, we evaluate the impact of con-
straint integration methods in incorporating structural
knowledge over the task’s outputs.
BIO Tagging. The BIO tagging task aims to identify
spans in sentences by tagging each token with one
of the “Begin,” “Inside,” and “Outside” labels. Each
tagging output belongs to a discrete set of BIO tags
T ∈ [‘O’, ‘I-*’, ‘B-*’], where ‘*’ can be any type
of entity. Words tagged with O are outside of named
entities, while the ‘B-*’ and ‘I-*’ tags are used as
an entity’s beginning and inside parts. We use the
CoNLL-2003 (Sang and De Meulder, 2003) bench-
mark to evaluate this task. This dataset includes 1393
articles and 22137 sentences. The constraints of the
BIO tagging task are valid BIO sequential transitions;
for example, the “before” constraint is defined as fol-
lows:

If I(xi + 1) −→ B(xi),

where ‘B-*’ tag should appear before ‘I-*’ tag. xi and
xi+1 are any two consecutive tokens.



4.5 Constraints in (Un/Semi) Supervised
Learning

We select a set of tasks for which the constraints can
alleviate the need for direct supervision and provide a
distant signal for training DNNs.
Arithmetic Operation as Supervision for Digit
Classification. We use the MNIST Arithmetic (Bloice
et al., 2020) dataset. The goal is to train the digit clas-
sifiers by receiving supervision, merely, from the sum
of digit pairs. For example, for image pairs of 5 and
3 in the training data, we only know their labels’ sum
is 8. This dataset is relatively large, containing 10k
image pairs for training and 5k for testing. This task’s
constraint forces the networks to produce predictions
for pairs of images where the summation matches the
ground-truth sum. The following logical expression is
an example constraint for this task:

S({img1, img2})⇒
M=min(S,9)∨

M=max(0,S−9)

M(img1) ∧ {S −M}(img2),

where S({img1, img2}) indicates that the given sum-
mation label is S and M(imgi) indicates that the ith
image has the label M .
Sudoku. This task evaluates whether constraint inte-
gration methods can help DNNs to solve a combinato-
rial search problem such as Sudoku. Here, integration
methods are used as an inference algorithm with the
objective of solving one Sudoku, while the only source
of supervision is the Sudoku constraints. As learning
cannot be generalized in this setting, it should be re-
peated for each input. The input is one Sudoku table
partially filled with numbers, and the task is to fill in
a number in each cell such that: "There should not
be two cells in each row/block/column, with the same
value" or formally defined as:

IF digiti(x)∧
(same_row(x, y) ∨ same_col(x, y) ∨ same_block(x, y))

⇒ ¬ digiti(y),

where x and y are variables regarding the cells of the
table, i ∈ [0, n] for a n ∗ n Sudoku, digiti(x) is True
only if the value of x is predicted to be i. For this task,
we use an incomplete 9 ∗ 9 Sudoku for the full-data
setting and a 6 ∗ 6 Sudoku representing the low-data
setting.

5 Baselines

For constraints during training, we use two ap-
proaches.

Primal-Dual (PD). This approach (Nandwani et al.,
2019) converts the constrained optimization problem
into a min-max optimization with Lagrangian multipli-
ers for each constraint and augments the original loss
of the neural models. This new loss value quantifies
the amount of violation according to each constraint
by means of a soft logic surrogate. During training,
they optimize the decision by minimizing the original
violation, given the labels, and maximizing the La-
grangian multipliers to enforce the constraints. It is
worth noting that all related work in which constraint
violation is incorporated as a regularization term in
the loss objective follows very similar variations of a
similar optimization formulation.
Sampling-Loss (SampL). This approach (Ahmed
et al., 2022) is an extension of the semantic loss (Xu
et al., 2018) where instead of searching over all the
possibilities in the output space to find satisfying cases,
it randomly generates a set of assignments for each
variable using the probability distribution of the neural
network’s output. The loss function is formed as:

LS(α, p) =

∑
xi∈X∧xi|=α p

(
xi | p

)∑
xi∈X p (x

i | p)
,

where X is the set of all possible assignments to all
output variables, and xi is one assignment. Here, α is
one of the constraints.

To utilize the constraints during prediction, we use
the following approaches.
Integer Linear Programming. (ILP) (Roth and Yih,
2005) is used to formulate an optimization objective
in which we want to find the most probable solution
for logF (θ)>y, subject to the constraints. Here, y is
the unknown variable in the optimization objective,
and F (θ) is the network’s output probabilities for each
variable in y. The constraints on y are formulated as
C (y) ≤ 0.
Search and Dynamic Programming. for some of
the proposed benchmarks, when applicable, we use
the A∗ search or Viterbi algorithm to choose the best
output at prediction time given the generated probabil-
ity distribution of the final trained network (Lu et al.,
2021).

6 Experiments and Discussion

This section highlights our experimental findings us-
ing proposed baselines, tasks, and evaluation crite-
ria. Details on experimental designs, training hyper-
parameters, codes, models, and results can be found
on our website2. The basic architectures for each task
are shown in Table 1.

2https://hlr.github.io/gluecons/

https://hlr.github.io/gluecons/


Task Strong Baseline Simple Baseline
Image Cls. CNN + MLP MLP
Hier. Image Cls. Resnet18 + MLP -
NLI RoBERTa + MLP -
Causal Rea. RoBERTa + MLP BERT + MLP
BIO Tagging BERT + MLP Bi-LSTM + MLP
NER W2V + BERT + MLP W2V + Bi-LSTM + MLP
Ari. Operation CNN + MLP -
BeliefNet Con. RoBERTa + MLP Word vectors + MLP

Sudoku (n ∗ n ∗ n) Vector
directly learns probabilities -

Table 1: Baselines for each task. The basic models we
used are RoBERTa (Liu et al., 2019), BERT (Devlin et al.,
2018), W2V (Mikolov et al., 2013), CNN (LeCun et al.,
1998), and MLP. The simple baseline means fewer parameters.
[KEYS: Cls.=classification, Hier.=Hierarchical, NLI= Natu-
ral Language Inference, Rea.=reasoning, Ari.=Arithmetic, Be-
liefNet=Belief Network, Con.=Consistency]. For the Sudoku,
the model is not a generalizable DNN and the method uses the
integration methods as an inference algorithm to solve one specific
table.

Mutual
Excl.

Seq.
structure

Lin.
Const

Log.
Const

Log Const
+ quantifier

Prog
Const

Softmax X 7 7 7 7 7
PD X X X NC NC 7
SampL X X X X X X
ILP X X X NC NC 7
A∗ Search X X NG NG NG 7

Table 2: The limitation of integration methods based
on different types of constraints. [KEYS: NC=Needs
Conversion, NG=No Generalization, Excl.= Exclu-
sivity, Seq.=Sequential, Lin.=Linear, Log.=Logical,
Const.=Constraint, Prog Const=Any Constraints en-
coded as a program.]

The results of the experiments are summarized in
Table 3. The columns represent evaluation criteria,
and the rows represent tasks and their baselines. Each
task’s model ‘row’ records the strong/simple baseline’s
performance without constraint integration, and below
that, the improvements or drops in performance after
adding constraints are reported. Here, we summarize
the findings of these experiments by answering the
following questions.
What are the key differences in the performance of
inference-time and training-time integration? No-
tably, using ILP only in inference time outperformed
other baselines in most of the tasks. However, it fails
to perform better than the training-time integration
methods when the base model is wildly inaccurate
in generating the probabilities for the final decisions.
This phenomenon happened in our experiments in the
semi-supervised setting and can be seen when com-
paring rows [#44, #45] to #46. In this case, inference
alone cannot help correct the model, and global con-
straints should be used as a source of supervision to
assist with the learning process.

ILP performs better than the training-time methods
when applied to simpler baselines (see column sim-
ple baseline performance). However, the amount of

improvement does not differ significantly when ap-
plying ILP to the simpler baselines compared to the
strong ones. Additionally, the training-time methods
perform relatively better on simpler baselines than the
strong ones (either the drop is less or the improvement
is higher) (compare columns ‘Strong Baseline‘ and
‘Simple Baseline‘ for ‘+PD‘ and ‘+SampL‘ rows.)

How does the size of data affect the performance
of the integration techniques? The integration meth-
ods are exceptionally effective in the low-data regime
when the constraints come from external knowledge
or structural information. This becomes evident when
we compare the results of ‘EMR’ and ‘BIO tagging’
with the ‘Self Consistency in Decision Dependency’
tasks in column ‘Low data/ Performance’. This is
because such constraints can inject additional infor-
mation into the models, compensating for the lack of
training data. However, when constraints are built over
the self-consistency of decisions, they are less helpful
in low-data regimes (rows #12 to #29), though a posi-
tive impact is still visible in many cases. This observa-
tion can be justified since there are fewer applicable
global constraints in-between examples in the low-data
regime. Typically, batches of the full data may contain
tens of relationships leading to consistency constraints
over their output, while batches of the low data may
contain fewer relationships. The same observation is
also seen as batch sizes for training are smaller.

Does constraint integration reduce the constraint
violation? Since our inference-time integration meth-
ods are searching for a solution consistent with the
constraints, they always have a constraint violation
rate of 0%. However, training-time integration meth-
ods cannot fully guarantee the consistency. However,
it is worth noting these methods have successfully re-
duced the constraint violation in our experiments even
when the performance of the models is not substan-
tially improved or is even slightly hurt (see rows #18
and #20, rows #24 and #26, and rows #30 to #32). In
general, SampL had a more significant impact than PD
on making models consistent with the available task
knowledge (compare rows with ‘+PD’ and ‘+SampL’
in column ‘Constraint Violation’).

How do the integration methods perform on sim-
pler baselines? According to our experiments, there
is a significant difference between the performance of
the integration methods applied to simple and strong
baselines when the source of constraint was external
(BIO tagging, EMR, Simple Image Cls, and Hierar-
chical Image Cls tasks). Moreover, we find that ILP
applied to a simple baseline can sometimes achieve a
better outcome than a strong model without constraints.
This is, in particular, seen in the two cases of EMR and



Tasks # Models
Strong Baseline

Performance
Simple Baseline

Performance
Low data Constraint

Violation*
Run-Timems

Size Performance Training Inference
C

la
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w
ith

L
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el
D

ep
en

de
nc

y

Simple
Img ClsF1

1 Model 94.23% 87.34%

5%

88.78% 7.17% 34 27.5
2 + PD ↑0.14% ↓1.14% ↑4.40% 8.32% 36.6 -
3 + SampL ↓1.17% ↑0.49% ↑3.19% 9.04% 39 -
4 + ILP ↑0.24% ↑1.60% ↑1.70% - - 31.5
5 + SampL + ILP ↓0.52% ↑2.02% ↑4.40% - - -
6 + PD + ILP ↑0.32% ↑0.39% ↑4.40% - - -

Hierarchical
Img ClsF1

7 Model 58.03% 52.54%

10%

31.33% 39.26% 55.3 48.43
8 + SampL ↑0.39% ↑0.54% ↑2.18% 36.57% - 55.2
9 + ILP ↑2.88% ↑3.18% ↑1.90% - - 55.2
10 + SampL + ILP ↑2.42% ↑3.52% ↑3.82% - - 55.2

Se
lf

C
on

si
st

en
cy

in
D

ec
is

io
n

D
ep

en
de

nc
y

CausalA

Reasoning

12 Model 74.77% 73.80%

30%

60.49% 8.60% 104 46.2
13 + PD ↑2.17% ↑1.98% ↑1.10% 11.36% 118.1 -
14 + SampL ↑2.54% ↑2.17% ↑1.63% 4.37% 119.4 -
15 + ILP ↑4.03% ↑4.51% ↑1.88% - - 59.2
16 + SampL + ILP ↑4.15% ↑4.25% ↑2.11% - - -
17 + PD + ILP ↑3.60% ↑4.30% ↑1.76% - - -

NLIA

18 Model 74.00% -

10%

68.65% 9.48% 29.2 10.7
19 + PD ↑0.25% - ↑3.25% 7.26% 31.7 -
20 + SampL ↑0.55% - ↑0.95% 5.00% 29.8 -
21 + ILP ↑8.90% - ↑7.75% - - 14.3
22 + SampL + ILP ↑8.20% - ↑7.05% - - -
23 + PD + ILP ↑8.75% - ↑10.1% - - -

BeliefF1

Network

24 Model 94.90% 84.46%

25%

94.36% 0.22% 8.3 7.57
25 + PD ↑0.94% ↑0.87% ↓0.49% 0.16% 23.59 -
26 + SampL ↓0.29% ↓0.95% ↓3.03% 0.01% 8.5 -
27 + ILP ↑0.21% ↓0.10% ↓0.97% - - 11
28 + SampL + ILP ↑1.10% ↓3.19% ↓2.31% - - -
29 + PD + ILP ↑2.68% ↑1.60% ↑0.51% - - -

C
on

si
st

en
c y

w
ith

E
K

EMRF1

30 Model 90.15% 85.22%

20%

82.00% 1.17% 210 200
31 + PD ↓1.00% ↓0.30% ↑2.42% 0.94% 245 -
32 + SampL ↓0.30% ↑0.50% ↑3.36% 0.98% 280 -
33 + ILP ↑3.02% ↑4.10% ↑8.86% - - 226
34 + SampL + ILP ↑2.40% - ↑7.83% - - -
35 + PD + ILP ↑1.64% - ↑8.15% - - -

St
ru

ct
ur

al
C

on
si

st
en

c y

BIOF1

Tagging

36 Model 89.56% 82.77%

30%

75.36% 2.19% 361.2 263.2
37 + PD ↑0.97% ↑0.04% ↑1.25% 0.99% 389.1 -
38 + SampL ↓0.17% ↑0.73% ↑2.62% 0.16% 429.8 -
39 + ILP ↑0.61% ↑2.96% ↑3.01% - - 312
40 + SampL + ILP ↑0.08% ↑2.43% ↑2.80% - - -
41 + PD + ILP ↑1.07% ↑1.83% ↑2.73% - - -
42 +A∗ search ↑0.59% ↑2.97% ↑3.03% - - -

C
on

st
ra

in
ts

in
(U

n/
Se

m
i)

Su
pe

rv
is

io
n

Arithmetic
Supervision for

Digit
ClassificationA

43 Model 9.01% -

5%

10.32% 96.92% 13.6 -
44 + PD ↑89.39% - ↑85.01% 3.18% 197 -
45 + SampL ↑89.55% - ↑85.60% 2.86% 90.2 -
46 + ILP ↓2.11% - 0.00% - - -
47 +Supervised ↑89.53% - ↑84.30% 2.86% 12.5 -

SudokuCS
48 PD 96.00% -

6 ∗ 6
Table

100% 3.7% - -
49 SampL 87.00% - 100% 18.88% - -
50 ILP 100% - 100% - - -

Table 3: Impact of constraint integration. F1, A, and CS are F1-measure, accuracy, and constraint satisfaction metrics to
evaluate models’ performance. The full data of the Sudoku task is a 9 ∗ 9 table. *: Constraint Violation is on the full
data with the strong baselines. ms: Run-Time is computed per example/batch and is reported in milliseconds. ↑ indicates
improvement over the initial Model performance. ↓ indicates a drop in the performance. Run times are recorded on a
machine with Intel Core i9-9820X (10 cores, 3.30 GHz) CPU and Titan RTX with NVLink as GPU.[KEYS: EK=external
knowledge]

Causal Reasoning, where the difference between the
simple and strong baselines is in using a pre-trained
model. Thus, explicitly integrating knowledge can
reduce the need for pre-training. In such settings, con-
straint integration compensates for pre-training a net-
work with vast amounts of data for injecting domain
knowledge for specific tasks. Additionally, the sub-
stantial influence of integration methods on simple
baselines compared to strong ones in these specific
tasks indicates that constraint integration is more ef-
fective when knowledge is not presumably learned (at
some level) by available patterns in historical data used
in the pre-raining of large language models.

How much time overhead is added through the

integration process? While the inference-time
method (ILP) has a computational overhead during
inference, we have shown that this overhead can be
minimized if a proper tool is used to solve the opti-
mization problem (here, we use Gurobi3. It should
be noted that training-time integration methods do not
introduce additional overhead during inference; how-
ever, they typically have a high computational cost
during training. In the case of our baselines, SampL
has shown to be relatively more expensive than PD.
This is because SampL has an additional cost for form-
ing samples and evaluating the satisfaction of each
sample.

3https://www.gurobi.com/

https://www.gurobi.com/


What is the effect of combining inference-time and
training-time integration methods? Our results
show that combining inference-time and training-time
methods mainly yields the highest performance on
multiple tasks. For example, the performance on the
NLI task on low-data can yield over 10% improve-
ment with the combination of PD and ILP, while ILP
on its own can only improve around 7%. The rationale
behind these observations needs to be further investi-
gated. However, this can be attributed to better local
predictions of the training-time integration methods
that make the inference-time prediction more accurate.
A more considerable improvement is achieved over
the initial models when these predictions are paired
with global constraints during ILP (see rows #16, #28,
#29, and #41).
What type of constraints can be integrated using
each method? Table 2 summarizes the limitations of
each constraint integration method to encode a spe-
cific type of knowledge. We have included “Softmax”
in this table since it can be used to support mutual
exclusivity directly in DNN. However, “Softmax” or
similar functions are not extendable to more general
forms of constraints. SampL is the most powerful
method that is capable of encoding any arbitrary pro-
gram as a constraint. This is because it only needs to
evaluate each constraint based on its satisfaction or
violation. A linear constraint can be directly imposed
by PD and ILP methods. However, first-order logic
constraints must be converted to linear constraints be-
fore they can be directly applied. Still, PD and ILP
methods fail to generalize to any arbitrary programs
as constraints. The A∗ search can generally be used
for mutual exclusivity and sequential constraints, but
it cannot provide a generic solution for complex con-
straints as it requires finding a corresponding heuristic.
(Chang et al., 2012) show A∗ with constraints can be
applied under certain conditions and when the feature
function is decomposable.

7 Conclusion and Future Work

This paper presented a new benchmark, GLUECons
for constraint integration with deep neural networks.
GLUECons contains nine different tasks supporting a
range of applications in natural language and computer
vision domains. Given this benchmark, we evaluated
the influence of the constraint integration methods
beyond the tasks’ performance by introducing new
evaluation criteria that can cover the broader aspects
of the effectiveness and efficiency of the knowledge in-
tegration. We investigated and compared methods for
integration during training and inference. Our results
indicate that, except in a few cases, inference-time inte-

gration outperforms the training-time integration tech-
niques, showing that training-time integration methods
have yet to be fully explored to achieve their full po-
tential in improving the DNNs. Our experiments show
different behaviors of evaluated methods across tasks,
which is one of the main contributions of our proposed
benchmark. This benchmark can serve the research
community around this area to evaluate their new tech-
niques against a set of tasks and configurations to ana-
lyze multiple aspects of new techniques. In the future,
we plan to extend the tasks of this benchmark to in-
clude more applications, such as spatial reasoning over
natural language (Mirzaee et al., 2021b), visual ques-
tion answering (Huang et al., 2021), procedural rea-
soning (Faghihi and Kordjamshidi, 2021; Dalvi et al.,
2019), and event-event relationship extraction (Wang
et al., 2020).
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A Appendix

Here, we describe experimental details with the se-
lected tasks and baselines. All the execution times are
recorded on a machine with Intel Core i9-9820X (10
cores, 3.30 GHz) CPU and Titan RTX with NVLink
as GPU.

A.1 Simple Image Classification

Task MNIST Binary is a simple and standard dataset
in which handwritten numbers from 0 to 9 appear in
the form of 28 ∗ 28 pixels of an image to be classi-
fied. However, a typical model used to solve it does
not predict each label independently. Designing our
model in a way that predicts each class individually
and independently, in combination with a low data
regime, will make this dataset somewhat challenging.

Experiments To solve MNIST classification, which
is the benchmark for our simple image classification,
we define one model per class. Each class has two
CNN layers with kernel sizes of 5, followed by a linear
layer. The images are normalized with the typical
values of 0.1307 and 0.3081. The model trains with
a batch size of 30 for three epochs with the Adam
optimizer and the learning rate of 2e−3. At the end of
the final evaluation, we show the averaged F1 measure
for all the classes. The results are shown in table 4.

Simple Baseline To create a simple baseline for
this task, we flatten the images to form a vector of size
1 ∗ 784 instead of a 28 ∗ 28 image. Then we input this
vector to a single-layer MLP. In this simple baseline,
spatial data will be lost, but due to the simplicity of
the dataset, the results are still near 90%.

A.2 Hierarchical Image Classification
Task The task here is to classify images of the size
32 ∗ 32 ∗ 3 into 100 child classes and 20 parent classes
to form a hierarchical structure. This dataset consists
of 50k train examples and 10k test examples. We
randomly select 10% of the data for the low data
regime.

Experiments The main architecture for this task
is ResNet50 with Two linear layers on top. We have
designed two separate models for super-classes and
sub-classes. We use the Adam optimizer with a learn-
ing rate of 0.001. We train the models for 20 epochs
for the baseline. For primal-dual and sampling loss, we
train 20 epochs after ten epochs of training normally.
As for the evaluation metric, we use the average of the
accuracy values of super-classes and sub-classes.

The simple Baseline for this task is ResNet18 which
provides a smaller model compared to ResNet50 and
leads to a drop in a few percentages of accuracy.

A.3 Causal Reasoning
Task We use WIQA benchmark (Tandon et al., 2019)
to evaluate the causal reasoning QA task. In partic-
ular, the WIQA benchmark contains 29808 training
samples, 6894 development samples, and 3993 test
data samples. Formally, the task of the WIQA is to
predict an answer a from a set of candidate answers
A ∈ [ more, less, no effect ] given question q and a
document C that contains sentences C = {c1, . . . , cn}.
Each data sample has a fixed triplet format (q, C, a).
We enforce the constraints of symmetry and transi-
tivity with the models for predicting consistent an-
swers to a set of triplets. For example, the symmetry
constraint is defined as follows: symmetric(x) ⇒
F (q, C) ∧ ¬F (¬q, C) where q and ¬q represent the
question and its antonym, C represents the same docu-
ment, and ¬F is the opposite of the answer F .

http://arxiv.org/abs/1612.03975
http://arxiv.org/abs/1612.03975
http://arxiv.org/abs/2010.06727
http://arxiv.org/abs/2010.06727


Data Scale Baseline Baseline+ILP SampleLoss SampleLoss+ILP primal-dual primal-dual+ILP
100% 94.23 94.47 93.06 93.71 94.37 94.55
5% 88.78 90.48 91.97 93.18 93.18 93.18

Table 4: MNIST Binary results in the form of macro F1 over all classes with various methods and limited training data.

Models in-para out-of-para no-effect Test Acc
Majority 45.46 49.47 55.0 30.66
Adaboost 49.41 36.61 48.42 43.93
Decomp-Attn 56.31 48.56 73.42 59.48
BERT (Tandon et al., 2019) 79.68 56.13 89.38 73.80
RoBERTa (Tandon et al., 2019) 74.55 61.29 89.47 74.77
Logic-Guided (Asai and Hajishirzi, 2020) - - - 78.50
RoBERTa + Sampling loss 77.19 63.28 90.25 77.65
RoBERTa + ILP 78.55 65.12 90.02 78.98
Human - - - 96.33

Table 5: Model Comparisons on WIQA benchmark. The evaluation metric of WIQA test data includes four categories:
in-paragraph, out-of-paragraph, no effect, and overall test accuracy.

NLI Consistency Rules
> ⇒ ent (h1, h1)
con (h1, h2)⇒ con (h2, h1)
ent (h1, h2)⇒ ¬ con (h2, h1)
neu (h1, h2)⇒ ¬ con (h2, h1)
ent (h1, h2) ∧ ent (h2, h3)⇒ ent (h1, h3)

Table 6: The constraints of the NLI task. con(X,Y ),
where X is the hypothesis and Y is the premise is True if
the X contradicts Y . ent and neu represent the entailment
and undetermined relationship respectively (Minervini and
Riedel, 2018a). ESIM (Minervini and Riedel, 2018b)

Experiments We use the large-scaled pre-trained lan-
guage model, RoBERTa, as the backbone architecture
that initially followed (Asai and Hajishirzi, 2020). Be-
sides, we use 2 linear layers of MLP to predict the
causal reasoning answer. We keep 128 tokens as the
max length for the question and 256 tokens as the max
length for the paragraph in each data sample. We set
the batch size of the data to 8 and train the model
using 10 epochs. The learning rate of our model is
1e − 2. The model is optimized by Adam optimizer.
Table 5 shows the model performance on the WIQA
benchmark compared to other strong baseline archi-
tectures. After integrating the constraints of symmetry
and transitivity, we observe that the RoBERTa archi-
tecture using sampling loss improves 2.88% over the
RoBERTa baseline model. Moreover, the RoBERTa
architecture, including ILP as inference, has a 4.21%
improvement.

A.4 Natural Language Inference

Task

Natural Language Inference (NLI) is the task of eval-
uating a hypothesis given a premise. The constraints
applicable to this task are summarized in Table 6.

Experiments

For this task, we use a pre-trained RoBERTa base
model with two layers of Multilayer perceptron(MLP)
to predict a hypothesis given a premise. To encode the
input pair of (Hypothesis, Premise), we concatenate
them together and use pre-trained RoBERTa. Here,
we use an AdamW optimizer with a 1e − 5 learning
rate along with cross-entropy loss and set the batch
size of the data to 16. The 10% and 100% of training
data from SNLI (Bowman et al., 2015) are used to
train the model and train each model for 5 epochs. We
use two benchmarks to evaluate the models, SNLI for
standard evaluation andAESIM1000 for constraint-focused
evaluation. The results from training are shown in ta-
ble 7. According to the table, our experiments show
no significant improvement from training using either
Primal-Dual (PD) or Sampling loss alone. However,
ILP as an inference-time integration significantly im-
proves the accuracy onAESIM1000 around 6−8% on both
Primal-Dual and Sampling-loss. We also observe the
same effectiveness for using ILP on the model trained
with only 10% of data. Furthermore, Primal-Dual and
Sampling-Loss do not help to reduce constrain viola-
tions due to the low violation rate on the baseline (5%
violations). Sampling Loss takes around 31.25ms for
each sample. Meanwhile, Primal-Dual takes up to
43.12ms more than baseline. ILP during inference



adds around 4ms for each sample in each training
method. The best method for this task is the combina-
tion of Sampling Loss + ILP.

A.5 Belief Network Consistency

Task In this task, each example has an entity and the
corresponding fact. We concatenate the entity with the
facts to form the input text for the models. Each fact
can be either True or False.

The Train set, of the size 1.8k, is small compared
to the test set, of size 20k, by design. Also, one-third
of the Train set is set aside as the dev set.

Experiments The model we use is RoBERTa-
base (Liu et al., 2019) topped with two linear layers.
In our model, all but the last two transformer layers
are frozen. The length of the transformer input is 64.
Since this dataset is easy to solve, we limit the trans-
former size to make the model less complex. The batch
size is 128 to incorporate as many constraints between
entities as possible. Here, we use the Adam optimizer
with a learning rate of 2e− 4 and train the models for
15,and 30 epochs for the data sizes 100%,and 25%, re-
spectively. The results for various methods are shown
in table 8, in which the primal-dual + ILP method
outperforms other methods.

Baseline Simple To create the simple baseline, we
use the Word2vec (Spacy small) to obtain the repre-
sentation for each sentence of size 96 and input it to a
single layer of MLP. The training parameters are the
same as the baseline model except for the learning rate,
which is changed to 2e− 3.

A.6 Named Entity and Relation Extraction

Task

The named entity and relation extraction task is de-
signed to evaluate the models’ performance in detect-
ing the entity types and their relationships in a doc-
ument. To simplify the task setting, we ignore the
span recognition task and consider phrases as given
inputs. We further limit the candidates for relationship
classification and only classify given pairs of entities
based on the relationship that exists between them.
Respectively, there is no ‘None’ class for the rela-
tionship classification task. The types of entities are
‘person’, ‘organization’, ‘location’, and ‘other’. The
possible types of relationships are ‘live-in’, ‘work-for’,
‘located-in’, ‘kill’, and ‘orgbase-on’. Table 10 sum-
marizes the existing relationship constraints between
relation types and entity types. Other constraints are
the mutual exclusivity between different named entity

types for each mention or formally defined as:

∀x ∈ entities

IF TypeA(x)⇒ ¬∨TypeB 6=Type1
TypeB∈entity_types TypeB(x),

where TypeA ∈ entity_types and TypeY(x) is True
if x is of type Y . A similar mutual exclusivity con-
straint is also defined over the relationship types for
each pair of entities.

Experiments
In the base model, we represent each token in the doc-
ument using a pre-trained BERT-base model (Devlin
et al., 2018)and a pre-trained Word2Vec model (Hon-
nibal and Montani, 2017). We concatenate these two
representations and take the mean over the tokens of
each span to represent it. Then we feed these vectors
to boolean classifiers for each entity class. To classify
the relationships, we concatenate the representations
of two entities and feed them to the boolean classi-
fiers for each relationship type. As the CONLL2003
dataset does not provide train/validation/test splits, we
randomly create those sets and further subsample the
training set with 20% of the data to generate a low-
resource setting. To create a simpler model as a base-
line, we remove the BERT-base representation and add
a Bi-LSTM layer after getting the representations from
the Word2Vec from Spacy. For all experiments, the
learning rate is set to 1e− 2, and they are reported on
the best performing model on the dev set (in terms of
macro-F1) as we trained the models for 200 epochs.
All models are optimized by Adam optimizer.
Baselines: Pre-trained Bert + Spacy W2V + 1 Layer
MLP Baseline Simple: Spacy W2V + LSTM + 1
Layer MLP

The detailed results of our baselines performance on
both entity and relationship detection tasks are listed
in Table 9. The results indicate the constraint inte-
gration methods are majorly biased toward a better
relationship extraction. This is perhaps due to the fact
that the relationship pairs have been limited to the set
of known pairs, and the base performance of the rela-
tionship classifier is higher than the entity recognizer.

A.7 BIO Tagging

Task
we select the CONLL-2003 Shared Task benchmark
to evaluate the BIO tagging task. The CONLL bench-
mark contains 14987 training samples, 3466 devel-
opment samples, and 3684 test samples, including 9
tagging labels. The evaluation metrics in this task in-
clude Precision, Recall, and F1. Formally, the process
of computing the score for a partial tagging sequence



Models SNIL SNIL AESIM1000 AESIM1000

small training large training small training large training
ESIM - 87.25 - 60.78
ESIMAR - 87.55 - 73.32
DomiKnowS without constraints 88.16 89.65 69.90 71.60
DomiKnowS with constraints + ILP 88.65 90.11 77.35 80.25
Primal-Dual 88.38 90.04 70.05 73.50
Primal-Dual + ILP 88.38 90.04 79.90 79.05
Sampling Loss 88.19 90.11 68.65 74.55
Sampling Loss + ILP 88.26 90.26 76.30 82.20

Table 7: NLI accuracy results with various methods and limited training data

Model 25% 100%

Base Domiknows 94.36 94.90
Base Domiknows + ILP 93.39 95.11
Sample Loss 91.33 94.61
Sample Loss + ILP 92.05 96.0
primal dual 93.87 95.84
primal dual + ILP 95.43 96.22

Table 8: BeliefBank F1-measure results with various meth-
ods and limited training data. Since the test data size is
large in this case, every small improvement is notable.

in the training time is calculated as follows:

f(y[1,...,T ],W ) =
T∑
i=1

logp(yi|W ),

where T is the sequence length, W is the learnable
weight. We use A∗ search over tag prefixes during
the inference time to integrate constraints in the BIO
tagging outputs. To integrate BIO constraints, Specif-
ically, we add the constraint function c ∈ C, where
C={‘B-*’ ≺ ‘I-*’, ‘O’ 6≺ ‘I-*’ } , ≺ represents the
‘before’ relation, and 6≺ represents the ‘not before’ re-
lation. Formally, the process of a constrained tagging
sequence in the inference time is computed as follows:

f(y[1,...,T ],W ) =

T∑
i=1

logp(yi|W )−
∑
c∈C

c(y[1,...,T ],W ),

where T is the sequence length and W is the learnable
weight.

Experiments
We separately apply BI-LSTM and BERT as backbone
following a 2-layers of MLP to predict the sequence
tagging for each sentence. We select the cross entropy
as the loss function to train the model. The model is
optimized by Adam optimizer while the learning rate
of our model is 1e−3. We set the batch size of the data

to 64 and train the model using 20 epochs. Moreover,
in the inference time, we use A∗ search and ILP over
tag prefixes to integrate constraints on the BIO tagging
outputs. We use both small data scales (30%, 60%)
and full data (100%) to train and evaluate the model
performance. The results are shown in Table 11. The
model takes 20 epochs after initializing the parame-
ters with the BIO model. In the inference time, the
model integrating A∗ decoding has a 2.25% improve-
ment on small data and 0.74% improvement on full
data compared to the baseline. Furthermore, including
ILP as inference on the top of the model improves
0.72% over the baseline model on full data. At the
same time, we evaluate the time complexity between
different models. The baseline model takes 1.01ms
for each sample. The model integrating A∗ constraints
takes 1.32ms, while the model integrating ILP con-
straints takes 1.34ms. It shows that the inference time
complexity has not increased significantly.

A.8 Arithmetic Operation with Supervision
Task
The goal of the MNIST Arithmetic task is to train an
MNIST digit classifier with the only supervision being
the sum of digit pairs. Constraints for such a task
would be to produce predictions whose sum matches
the given sum:

S({img1, img2})⇒
M=min(S,9)∨

M=max(0,S−9)

M(img1) ∧ {S −M}(img2),

Where S({img1, img2}) indicates that the given sum-
mation label is S and M(imgi) indicates that the ith
image has the label M .

Experiments
Constraint violation or satisfaction corresponds to the
rate at which the constraints for each sample are vi-
olated or satisfied, averaged across all samples. The



25% training data 100% training data
Entity F1 Relation F1 Overall F1 Entity F1 Relation F1 Overall F1

Base Model 79.86 83.68 82 88.91 91.14 90.15
Base Model + ILP 82.14 97.84 90.86 91.77 97.84 95.14
Base Model + PD 82.12 86.25 84.42 81.3 93.56 88.12

Base Model + Sampling 83.94 86.51 85.36 85.90 93 89.85

Table 9: The results of applying constraints on the CONLL dataset for the named entity and relationship extraction task.

Relation Type Argument 1 Argument 2
Live In Person Location

Org Base Org Location
Work For Person Org

Kill Person Person
Located In Location Location

Table 10: The domain knowledge about the relationship
between relation types and entity types in the CONLL
dataset.

Data Models Precision Recall F1
30% Bi-LSTM 78.86 76.34 77.58

Bi-LSTM+BIO+A∗ 81.75 78.01 79.84
Bi-LSTM+BIO+ILP 81.68 78.21 79.65
BERT 84.12 78.43 81.17
BERT+BIO+A∗ 81.87 86.50 84.12
BERT+BIO+ILP 81.76 86.68 84.15

60% Bi-LSTM 78.03 80.46 79.93
Bi-LSTM+BIO+A∗ 79.92 83.55 81.70
Bi-LSTM+BIO+ILP 79.83 83.55 81.65
BERT 87.80 87.76 87.78
BERT+BIO+A∗ 93.21 84.08 88.40
BERT+BIO+ILP 93.24 84.06 88.41

100% Bi-LSTM 86.25 84.68 85.46
Bi-LSTM+BIO+A∗ 87.26 85.17 86.20
Bi-LSTM+BIO+ILP 87.28 85.14 86.18
BERT 93.02 88.87 90.90
BERT+BIO+A∗ 93.64 89.77 91.66
BERT+BIO+ILP 93.59 89.87 91.70

Table 11: Model Comparisons on CONLL-2003 BIO-
tagging test benchmark. A∗ is A∗ decoding.

constraint satisfaction rate and accuracy rate are com-
parable between each setting, with a slight drop in
percentage points due to the fact that an image pair
may predict correctly 1 out of 2 digits but still not fully
satisfy the constraints.
The full results for accuracy and constraint violation
are in Table 12 and Table 13.

For the digit classifiers, we use a simple LeNet-
style CNN architecture (LeCun et al., 1998). The "ex-
plicit sum" model, in order to compute the summation
probability distribution P (S = s), sums the Softmax

Setting Small Data Large Data
Digit Labels 94.62 98.54
Primal-Dual 95.33 98.40
Sampling Loss 95.92 98.56
Semantic Loss 95.12 98.62
Explicit Sum 94.93 98.55
Explicit Sum + ILP 94.93 98.55
Baseline 10.32 9.01
Baseline + ILP 10.32 6.90

Table 12: Accuracy on various constraints/data settings for
the MNIST Arithmetic task.

Setting Small Data Large Data
Digit Labels 10.24 2.86
Primal-Dual 12.52 3.18
Sampling Loss 7.96 2.86
Semantic Loss 9.44 2.76
Explicit Sum 9.78 2.88
Baseline 94.50 96.92

Table 13: Constraint violation rate for the MNIST Arith-
metic task in the small and large data setting.

distributions of the two digits P (D1) and P (D2). i.e.

P (S = s) =

min(s,9)∑
k=max(0,s−9)

P (D1 = k)P (D2 = s− k)

We compare Primal-Dual and Sampling Loss with
three other methods: 1) A baseline model consisting
of a two-layer MLP on top of the digit classifier logits,
supervised on the summation values instead of using
constraints. 2) Training with digit labels directly (i.e.
regular digit classification). 3) Explicitly specifying
the summation constraints through the model archi-
tecture by directly computing the predicted summa-
tion value from the digit classifier logits (the "explicit
sum" model). On both the small and large data set-
tings, training with Primal-Dual, Sampling Loss, or
Semantic Loss using constraints as the only source of
supervision performs almost identically to both direct
supervision on digit labels and the explicit sum model.



On the other hand, training with neither direct supervi-
sion nor constraints performs around random guessing
in both the small and large training data cases. ILP
does not improve the "explicit sum" case as it already
achieves a high rate of constraint satisfaction, and it
hurts the baseline case slightly as the baseline model
probabilities are not informative. Similar results can be
seen when looking at constraint satisfaction scores in
the large data setting. In the small data setting, there’s
slightly more variability with Primal-Dual reaching a
12.52% constraint violation rate and Sampling Loss
having just a 7.96% rate of constraint violation.

A.9 Sudoku
Task
The task of Sudoku is to predict the missing numbers
from a n ∗ n Sudoku table such that the final table is
valid according to the following rule: "There should
not be two cells from each row/block/column, with the
same value" or formally defined as:

IF digit(x, i)∧
(same_row(x, y)∨
same_col(x, y)∨
same_block(x, y))

⇒ ¬ digit(y, i),

where x and y are variables regarding the cells of the
table, i ∈ [0, n] for a n∗n Sudoku, digit(x, i) is True
only if the value of x is predicted to be i.

For this task, we use an incomplete 9 ∗ 9 Sudoku
as the harder task (large-data) and 6 ∗ 6 Sudoku repre-
senting a simpler task (low-data).

Experiments
Here, we use a simple learnable vector of size n∗n∗n,
which stores the probability of each n assignments
given all the cells of the table, i.e. if 0.6 is present
in (1, 1, 2) index of the vector, the probability of row
1, column 1 being number 2 is predicted to be 60%.
We train this vector using two available sources of
supervision: 1) The input of the Sudoku through a
CrossEntropy loss function. 2) The indirect loss func-
tion based on constraints when the input is masked.
All models have been trained with a learning rate of
1e− 1 and use the SGD optimizer. Since the objective
is to complete the Sudoku with correct numbers, we
continue the training until the goal is accomplished or
the 250 epochs have passed.


