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Abstract—The increasing use of the DevOps paradigm in
software systems has substantially increased the frequency of
configuration parameter setting changes. Ensuring the correct-
ness of such settings is generally a very challenging problem
due to the complex interdependencies, and calls for an au-
tomated mechanism that can both run quickly and provide
accurate settings. In this paper, we propose an efficient discrete
combinatorial optimization technique that makes two unique
contributions: (a) an improved and extended metaheuristic that
exploits the application domain knowledge for fast convergence,
and (b) the development and quantification of a discrete version
of the classical tunneling mechanism to improve the accuracy of
the solution. Our extensive evaluation using available workload
traces that do include configuration information shows that
the proposed technique can provide a lower-cost solution (by
~60%) with faster convergence (by ~48%) as compared to the
traditional metaheuristic algorithms. Also, our solution succeeds
in finding a feasible solution in approximately 30% more cases
than the baseline algorithm.

Index Terms—Configuration Modeling, Resource Allocation,
Resource Provisioning, Machine Learning, metaheuristics, Sim-
ulated Annealing

I. INTRODUCTION

The DevOps transformation of IT services is fueling a
radical change in how cloud services are conceptualized, de-
signed, and implemented [2]. The service-oriented architecture
(SOA) and its manifestation in the emerging microservices
paradigm [3] attempt to reduce dependencies between services
to make their development and deployment more agile and
allow for easier maintenance and scalability. The motto of the
DevOps phenomenon is Continuous Integration and Develop-
ment (CI/CD) [4]; that is, the deployed services are constantly
being enhanced and tuned both with respect to their code and
run-time settings. Furthermore, the services are increasingly
being deployed in their own lightweight containers, allowing
even the hardware resources assigned to the service to be
fungible at run-time.

The run-time settings, popularly known as Configuration
Parameters (CPs), play a key role in the functioning of
most software systems and are easily misconfigured due to
a variety of reasons. This includes a lack of clear docu-
mentation/understanding of what they do, interdependencies
across them, and a lack of robust automated mechanisms to set
them. In traditional systems, incorrect setting of configuration
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parameters (or “misconfiguration”) are responsible for up to
80% of down-times [5] and up to 85% of the incidents [6],
with one week on average for root cause identification [5, 6].

The CI/CD process substantially increases this complexity
and the resultant potential for ill effects due to the need
to constantly tune the CPs as the service modules undergo
changes. In the current agile software systems, configuration
changes happen all the time, e.g., reported thousands of
times a day in Facebook [7]. Most of these are related to
“tuning” the CPs rather than drastic changes. Thus, an au-
tomated mechanism that can quickly define the configuration
settings (or verify proposed configuration settings) becomes a
crucial ingredient of the emerging DevOps driven software
development processes that continue to get adopted across
a large variety of application domains. This paper aims to
develop such a mechanism focused on the performance and
cost aspects.

Our Contributions: Owing to the complexity of perfor-
mance as a function of the configuration parameters, we
adopt a combinatorial optimization approach to determine the
optimal configuration. Our key contributions in this regard
are: (a) extending the metaheuristic for efficiently solving the
constrained optimization problem that exploits the application
domain knowledge in grouping and choosing the parameters
for perturbation and (b) developing the classical notion of
“tunneling” in the context of implicit, discrete performance
function, and (c) exploring how and when the tunneling
helps in an efficient solution. Our extensive evaluation using
available workloads shows that the proposed technique can
provide a lower-cost solution (by ~60%) with faster conver-
gence (by ~48%) as compared to the traditional metaheuristic
algorithms. Also, our solution succeeds in finding an average
of 30% more solutions than the baseline.

The rest of the paper is organized as follows. Section II
reviews the configuration selection techniques and challenges.
Section III provides an overview of our proposed method. In
section IV, we describe the approach for selecting configura-
tion. Section V addresses the issues in configuration modeling
and then in section VI, we present the experimental evaluation.
We conclude the paper in section VIII.



II. CURRENT ART ON CONFIGURATION SELECTION

Configuration issues are related to resource provisioning and
resource management [8, 9] techniques to optimize latency,
task completion time, data replication, and impact on cache
capacity, delay, and energy consumption. Our work addresses
recommending a suitable resource allocation (e.g., storage,
compute, bandwidth) to achieve the desired goal (e.g., work-
load performance, energy, cost, size, etc.). Ref. [10] addresses
the configuration problem by using a metaheuristics approach
to provision Cloud resources for satisfying Quality of Service
(QoS). Several studies have used Classification Regression
Trees (CART)-based model [11] and ML techniques to design
a Performance Influencing Model (PIM) [12]. In our study,
PIM is only the first step to build a surrogate function to solve
the combinatorial optimization problem. Our work focuses on
choosing a set of CPs that satisfy user workload/performance
demands under given constraints. Satyanarayanan in [13] use
an example of Cloudlet infrastructure to show that configura-
tions of Cloudlets are very challenging because of the many
unknowns pertaining to the software mechanisms and controls.

Challenges in Configuration and Resource Allocation: In
reviewing the importance of resource allocation mechanisms
within Cloud/Edge infrastructures, Soumplis in Ref. [8] em-
phasizes the algorithmic challenges that must be overcome
to utilize Cloud resources such as computing, storage, and
networking infrastructures efficiently to serve the workload
and data. Their study supports our problem statement in that
many Cloud resources make it difficult for users to allocate
resources to meet the QoS/Service Level Agreement (SLA)
requirements, e.g., performance, latency, and execution time,
while effectively keeping costs to a minimum. Also, support-
ing our problem complexity, Sfakianakis [14] states that given
the variety and dynamics of applications, it is difficult to
achieve optimal resource allocation.

We address the dynamic resource allocation problem capa-
ble of allocating multiple resources (such as CPU, memory,
network bandwidth, and storage (I/O) bandwidth, etc.) to
achieve the required QoS/SLA (e.g., throughput, latency, exe-
cution time) with minimal cost (e.g., deployment/maintenance
cost, energy, power, etc.). Instead of relying on simulation
tools, we demonstrate the effectiveness of our solution using
publicly available data-sets (see Table. III) from real-world en-
vironments like Cloud & Edge applications, HPC workloads,
application services, etc.

ITII. OVERVIEW OF PROPOSED METHOD

In this paper, we focus on the problem of determining
configuration parameters that minimize a cost function sub-
ject to some minimum performance requirements. Essentially
the same methods apply if, instead, we try to maximize
performance for a given cost constraint. In a virtualized
environment, the cost may refer to either the actual cost
charged by the provider (e.g., AWS) or costs that we assign
to various resources, including CPU cores, memory bandwidth
and size, I/O rate, storage space allocated, etc. The appropriate
configuration settings must often be determined quickly and

automatically to cater to the CI/CD needs. Our work addresses
some specific questions raised by the DevOps team and further,
supported in Ref. [9], wiz: (i) How to design the resource
allocation mechanism to provide dynamic scalability at CPU,
network, application-level, etc.?, & (ii) How to minimize the
cost and optimize the resource allocation simultaneously?

Regardless of whether the performance is used as an objec-
tive function or constraint, it is likely to be a complex function
of various configuration parameters; thus, an accurate analytic
or simulation model is usually difficult to construct and time-
consuming to run. Therefore, we turn to a machine learning
(ML) model that can generally be queried very fast. The main
drawback of an ML model is the need for substantial amounts
of data for training that mostly covers the parameter ranges
that are likely to be used in practice. A beneficial side-effect
of the configuration dynamism in DevOps environments is the
availability of data with many different configuration settings.
At the same time, the dynamism is likely to be limited to
sensible ranges for an operational system. Thus the ML model
for performance as a function of configuration parameters that
are routinely retrained can fulfill our needs well (commonly
referred to as PIM [12] and depicted as the “forward problem”
in Fig. 3a). Although the cost model could also use the same
approach, it is likely to be much simpler, and thus simple
analytic expressions for it are generally adequate. We assume
this to be the case in the rest of the paper.

A. Metaheuristics Based Modeling

We have demonstrated in [15] that it is difficult to build
an ML model directly to solve the “backward problem” in
Fig. 3a). Therefore, we devise a method that directly uses the
performance and cost models to estimate the optimal config-
uration parameter values. Because of the lack of convexity of
the performance function in general, a suitable approach is
to use a discrete combinatorial optimization using metaheuris-
tics [16]. There are numerous such algorithms, the best known
perhaps being the Genetic Algorithm (GA) and Simulated
Annealing (SA). It turns out that GA is almost universally
the slowest [35, 33, 23], whereas SA and a somewhat similar
algorithm called the Dynamically Dimensioned Search (DDS)
are among the best. In this paper, we develop an enhanced
version of SA and also show how the domain knowledge can
be used to search the state space more efficiently.

The goal of any metaheuristics is to explore the state space
efficiently while avoiding being trapped in local minima, of
which there could be many. Fig. 1 illustrates the search process
pictorially with the x-axis representing the iterations and the
y-axis the solution obtained in each iteration. The algorithm
will keep track of the minima obtained so far and may or may
not discover the global minima until the maximum iteration
count (a hyper-parameter of the algorithm) is reached. Using
public domain data from several Cloud environments, we
demonstrate the effectiveness of our solution with two distinct
yet equally important metrics: (i) the speed in searching the
huge configuration space and “quickly” selecting a suitable
solution, & (ii) ensure that the selected solution is a minimum



cost solution. We explain this further in the evaluation section
(Section VI-A).

Since our problem involves constrained optimization, we
also need to ensure that any accepted solution is feasible.
In such a setting, it is always helpful to avoid generating
infeasible solutions in the first place, but this is not always
possible. Regardless of the metaheuristics used, the stochastic
optimization techniques move from the current best solution
to the next solution that is both feasible (i.e., satisfies the
constraints) and are better. Ideally, we would like to choose
the next solution that is likely to have these characteristics
without considering solutions that are unlikely to be useful.
This is where domain knowledge is crucial. Often, domain
knowledge consists of an abstract relationship between CPs
or rules of thumb that can be evaluated quickly. However,
since they are fuzzy and not strictly required, they cannot be
used as formal constraints. Another kind of domain knowledge
concerns the varying influence of parameters that can guide
which parameters need to be perturbed and by how much to
get to the next proposed solution. Yet another aspect concerns
an estimate of the amount by which one needs to move to get
out of the region of local optimality to land in another region
that can possibly provide a lower local optimum.
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Fig. 1: Stochastic Tunneling.

B. Tunneling in Metaheuristics

A useful notion in stochastic optimization is tunneling [17],
illustrated in Fig. 1, where we want to “’tunnel” from one local
minima to a deeper local minima directly [18]. Traditional
tunneling works in the continuous parameter state space with
explicit objective function f(z) where z is the input vector
(i.e., configuration vector in our case). It also assumes that
f(z) has the first two derivatives. The method works in two
steps: (a) find the local minima, say x*, using the steepest
descent algorithm from the current point, (b) minimize the
modified function h(z) = [f(z) — f(z*)]/||lx — =*||* with
« > 1 to determine the next solution, say z’. It can be seen
that with larger «, nearby points are penalized. In general,
the choice of a can be problematic, and approaches for its
choice have been investigated [19]. Essentially, the use of h(x)
instead of f(x) forces us to choose the next point away from
2* and with a lower function value. It thus avoids being caught
in the local minima but with some risk that a deeper nearby
minima may be missed. Note that h(z) does not need to use
f(x) directly, instead, a tight envelope for f(z) from below

would suffice if it is simpler to characterize. Fig. 1 shows such
a h(x).

This mechanism cannot be applied directly to our problem
due to implicit f(x) and discrete parameter space; we show
that the concept can considerably improve the solution perfor-
mance.

IV. COMBINATORIAL OPTIMIZATION BASED
CONFIGURATION SELECTION

A general formulation of the configuration selection prob-
lem is as follows. Let C'P denote the configuration defined as
the vector of user-settable parameters Z and vendor-selected
(usually hidden) parameters %. These, along with the workload
parameters w, determine the desired objective function ¢
subject to some constraints. That is,

P = (2,4 1)
¢ = f(w,CP) )
g(@,CP)>0 i=1,2..K 3)
where f() could represent performance or cost, and g;() is
the ¢th constraint involving the workload and configuration
parameters. The functions f() and g;()’s are usually quite
complex and may not be expressible explicitly. Ref [20] makes
a similar point. It is also worth noticing that the configuration
space ) is often discrete, with intermediate values being
practically infeasible, even if they are conceptually meaning-
ful. For example, if the memory modules for the systems
at hand have a minimum granularity of 16GB, an installed
memory of 24GB is infeasible. Thus, defining continuous or
differentiable extensions of the functions f() and g() is neither
straightforward, nor meaningful. This rules out the direct use
of (continuous space) tunneling structures. Also, while one
could estimate the local gradient by evaluating the functions
at nearby feasible points, the value of the local search is less
clear.

A. Basic Approach

Fig. 3 shows the overall scheme explored in this paper.
Given a set of CPs, the first step is to define an oracle,”
or a model for the forward problem of performance pre-
diction based on the settings of CPs. As discussed in [21],
statistical ML techniques work quite well for this. Our earlier
study [15, 21] shows that typical machine learning methods
are not suitable for the backward problem of recommending
configurations that meet specific criteria (e.g., performance).
We explain this deficiency with the results obtained while
trying to predict the cache size of ES.

Fig. 2 shows the cache prediction efficiency for ES data-set
(explained in section V-A). In the figure, the primary (left
side) y-axis labels show the different sample sizes of train vs.
test, the X-axis indicates the different test cases, and their pre-
diction accuracy is shown on the secondary y-axis (right side).
The graph shows that the cache prediction accuracy is barely
75% for various test cases. The reason for the higher error is
self-explanatory by the nature of complex multi-label multi-
class parameter prediction with limited training data set [21].



In addition, it should be noted that the above results do
not include simultaneously predicting multiple inter-dependent
CPs or use of additional conditions such as optimizing the cost
of cache or performance constraints.
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Fig. 2: Efficiency Metrics for Configuration Prediction [21]

We overcome the aforementioned problem by utilizing
domain knowledge, which is vital to making reasonable con-
clusions from limited data. Despite the risks associated with
using domain knowledge, we reduce these risks by asking
domain experts only for the nature of the behavior rather than
its numerical parameters, which are still determined by the
limited available data. Principal Component Analysis (PCA)
or similar analysis techniques can be used as shown in Fig. 3b
to utilize the corresponding training data in order to determine
the relative importance of various parameters. It assists both
in confirming and applying the domain knowledge, such as
(i) various relationships, e.g., higher CPU speeds require
lower memory latencies, (ii) generic rules of thumb, e.g.,
an additional 64MB of memory per additional VDI client,
(iii) system-specific ones that have been observed or (iv)
can be deduced from the training data. It is important to
underscore the importance of domain knowledge here since a
blind application of these techniques is likely to yield incorrect
or misleading results.

The problem to be solved is now to select a configuration
073, i.e., £ a few user-settable configurations that provide
a performance p above the user desired lower bound per-
formance p, while minimizing the cost of the solution. The
choice of parameter values in Z can directly or indirectly affect
the objective function, i.e., w cost of the configuration. This
is shown as z() depicting the “Backward Problem” in Fig. 3a.

We now define the constraint as the desired performance

bu: pP=0>py )
where p is the expected performance from configuration 7.
The objective is to find such a configuration Z at a minimum

cost. min(g(7)) 5)
The “cost” of a configuration can represent a user’s desired
metric, such as the deployment cost, power consumption,
cooling requirements, etc. Data for cost function can be
derived from vendor specification for hardware server and
allocated resources (e.g., disk capacity) or other suitable
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function g(). For example, k*" configuration 7}, for some
choice of parameters such as number of CPU cores, core
speed, memory bandwidth, IO bandwidth, storage capacity,
etc. has a cost g(2%).

Given the non-convex and non-monotonic influences of
various parameters, the use of combinatorial optimization is
natural for solving the backward problem (shown as z() in
Fig. 3a). In general, this optimization could be either determin-
istic or stochastic, where the latter allows for uncertainty in the
objective function. Although our interest is in the deterministic
case, uncertainties arise naturally in real-world problems (e.g.,
the cost of the solution better described by a distribution rather
than a single value). In the stochastic case, the objective is
generally to use a statistical measure (e.g., expected value) so
that essentially the same methods apply in both cases.

All stochastic methods explore a sequence of next states
to find a better solution with different techniques to make a
trade-off between the expense of exploration (i.e., number of
iterations, cost of evaluation) and the quality of the solution.
For the latter, the algorithm must necessarily consider states
where the objective function is worse than the optimum found
so far, which means that a monotonic convergence is generally
impossible.

Because of their stochastic nature, these algorithms cannot
guarantee any measure of the quality of the solution, although
the solution quality should generally improve as the number
of iterations of the algorithm is increased. However, note that
again, as a result of the stochastic search, the entire state space
may not be searched even with an infinite number of iterations.
Furthermore, with the same number of iterations, each run
could potentially produce a different solution.

Many comparative studies have been put forward to demon-



strate the efficiency of a particular method [22]. Therefore,
the focus of our paper is not to compare algorithms; rather,
we show that embedding domain knowledge into stochastic
methods can help the algorithm to converge into a solution
faster than an uninformed algorithm. Our work focused on
studying algorithms for their convergence speed and their
capacity to find good objective function minima. On this front,
we adapted our solution to Simulated Annealing as shown in
Table. II, which we will explain next. We first discuss the
notion of tunneling as referred to in section III-B and then
explain the modifications to the SA algorithm.

B. Emulating Tunneling

To apply the Tunneling approach to our context, we first
seek the local minima (step 1), followed by an intelligent
perturbation based on the sensitivity to take us further away
from the current minima (step 2). To prepare for this, we
first determine the relative ranking of each CP in terms of
its influence on the objective function and the constraints. A
pure data-driven method for doing this is the standard PCA
and should work well, assuming a sufficiently large data-
set. Starting with the most dominant parameter, we form a
group by pulling in other parameters known to be related to
it based on domain knowledge. We then start with the next
most dominant parameter and form the next group until we
have covered all the parameters. Then the “smart” tunneling
can be described as follows:

1) We approach the local minima by considering the varia-
tion concerning the first group leader. The gradient needs
to be determined by taking a few samples.

2) The tunneling phase then perturbs each group leader in
proportion to the PCA metric and adjusts all others in the
group based on the known relationships.

A stochastic optimization process works by randomly jump-
ing from the current state x; to a new state x; 1 based on some
probability factor p, with an aim to find local minima z* that
minimizes the objective function f(x). We apply the above
approach with tunneling by enabling the stochastic algorithm
to circumvent the local minima points and rapidly move from
an area of shallow minima (point (a) in Fig. 1) to a region of
deeper minima (point (d) in the same figure), thereby allowing
for faster exploration of solution space and faster convergence
to a good solution. With a configuration problem at hand,
as our objective function cannot be characterized by a direct
analytical function, we use the performance prediction oracle
(a black box) function as an objective function.

We explore ways to tunnel through the shallow minima
(point (B) in the same figure) and avoid the slow dynamics of
the complex objective function. Such tunneling mechanisms
should invariably use the domain knowledge to intelligently
jump the local barriers and avoid uninteresting space (i.e.,
avoid points (D and E) in the same figure). We group
the design variables together as a discrete space tunneling
mechanism to aid the algorithm from being trapped at local
minima and jumping through or tunneling out of the minimum.

We present the details in the next sections in context to the
algorithm we explore.

C. Generic Design Approach Summarized

The approach described above can be generalized indepen-
dent of the data-set and domain as follows:

1) Run experiments to collect the data with relevant config-
urable parameters and observable outcomes.

2) In the absence of a clear analytical function to describe
the relationship between the configurable parameters to
the outcome use a suitable ML model to design an
“oracle” as a prediction engine (a.k.a PIM).

3) Use PCA metrics from the data to determine the rela-
tive importance of design variables and group attributes
based on domain knowledge to avoid exploring undesired
spaces.

4) Use the problem knowledge to define the objective func-
tion (e.g Eq. 5) and the required constraint function (e.g.
Eq. 4).

5) To explore new design states, use PCA metrics as prob-
ability factors and perturb the variables in groups.

6) Verify new state satisfies constrain using ML-based oracle
as a tool and accept/reject the current design state.

D. Modified Simulated Annealing (mSA)

SA is a general probabilistic local search algorithm gener-
ally used to solve difficult optimization problems. The pseu-
docode [23] for generic SA (gSA) is given in Algorithm 1. In
SA, a state refers to a set of design variables, and a neighboring
state refers to a set of values relatively closer to current design
variables. In SA, entropy is represented as the cost function
that has to be minimized. An acceptable state is a solution to
the problem at hand.

Algorithm 1: Pseudocode for SA [23]

1 initialize(temperature T, random starting point) ;
2 for ¢ inT do
3 p = select_point_from_neighborhood(i) W ;

4 currentCost = compute_currentCost_at(p) ;
5 0 = currentCost - previousCost ;

6 if 6 <0 then

7 ‘ accept_neighbor_point(p) ;

8 else

9

\ accept with probability exp(-0/T) ¢ ;
10 T=p*TH,

The SA method has been widely used since the cost function
can be easy to put into practice [23]. Our SA algorithm uses
design variables from the configuration (Z) to represent the
state. The entropy of the system is defined as the cost of
the current state (i.e., cost of the configuration g(Z)). The
gSA steps in Algorithm 1 can be summarized as follows: (i)
we first start with an initial annealing temperature (7p) and
a random design state (line 1), (ii) we search for the next
state depending on the annealing temperature 7} and a random



distribution (line 4), (iii) we compute the difference in entropy
(0) between the current state and the previous state (line 5),
and (iv) probabilistically accept the current state depending
on Boltzmann probability factor (line 6---9). In line 9, if the
current solution is accepted, we apply tunneling logic to search
for a better local minima. The annealing scheme is defined in
line 10. The algorithm stops after reaching a defined cooling
temperature (line 2).

Our solution is based on very fast simulated annealing
(VFSA) presented by Xu [24], which enhances both the
annealing temperature (line 10) and the perturbation model
(line 4). Lee [25] and others have discussed VFSA in detail
and show the advantages of VFSA over SA. To speed up the
convergence rate of SA, VFSA uses the Cauchy distribution
function as the perturbation [25]. This can realize a narrower
search as the iterative solution approaches an optimum so-
Iution, which accelerates the convergence speed [24]. Our
enhancements to the basic generic algorithm are illustrated in
Table. II.

TABLE I: Notations used in functions of gSA and mSA

Notation Description

k Current iteration

n Number of design variables

To Initial annealing temperature

«a Damping coefficient (0 < o < 1)

wand U Uniform random variables between 0 and 1
(Bj — A;) | Range of %7 design variable (1 < j < n)
T; Configuration (design variables) at it state
ci Configuration cost at ith state

i Predicted performance of configuration 2 at i¢"* state
Pu User given performance

TABLE II: Very Fast Simulated Annealing Functions

Entity gSA | mSA

ézlse%i;g To * exp(—a(k — 1)1/™)

N I o ()

pccepanee | 8 Goy | s < Do
0,otherwise 0 ,otherwise

Perturbation [2u=1]

Model ¢; Tk(u—0.5)[(1+ %k) - 1} (B; — A,)
Selecting .
neighboring {r;ndom_new_state()7 1ft hp r— i1

state (Si+1) 3 otherwise
Design .. . .

Variables Individually varied Varied as a group

We discuss the supporting functions of gSA and mSA in
Table II using the notations described in Table I. mSA uses the
annealing temperature 7}, and Cauchy distribution perturbation
model ¢ from VFSA (see Table II). For acceptance probability
p, mSA makes a slight modification to accommodate the case
where the next solution has the same performance but lower
cost. If the acceptance probability for the current state is 1,
a new random state is chosen to avoid getting stuck in local
minima; else, a new state in the neighborhood is chosen.

V. WORKLOADS FOR CONFIGURATION MODELING

We applied the above design to several publicly available
data-sets as shown in Table. III. As these are published data-
sets from various studies, we have no control over the data
collected; experiments run, CPs, variability, etc. We explain
these data-sets briefly in the following.

A. Cloud/Edge Storage Data-set

Edge computing [8] offers computation and storage close to
where data is produced. It has recently emerged as a way to
reduce latency and limit the load that is carried to higher layers
of the infrastructure hierarchy[8, 21]. The Edge Storage (ES) is
deployed at a branch office or remote location and has access
to a rather limited local compute/storage, and is connected
to a Cloud data center over the Internet. ES essentially uses
local storage as a cache for the remote Cloud storage to
bridge the gap between the demand for low-latency/high-
throughput local access and the connection to the Cloud that
may experience unpredictable bandwidth and latency [8, 21].
Resource allocation for the ES is challenging since it has
to dynamically adapt to the requirements of the end-users’
applications and end-devices (e.g., cars, drones), taking into
account the resources’ characteristics in terms of processing
latency, capacity, security, location, and cost.

We address the configuration selection problem in Edge
platforms using data published in Ref. [21]'. We examine the
performance of various configuration settings on the ES server
for different data-transfer request sizes, i.e., different work-
loads such as Health monitors, MRI/CT Scans, Mammography
images, etc. The observed performance of the ES, denoted
as ¢, is influenced by its CPs (& in Eq. 2) and the given
workload (w). A full description of the ES system, various
CPs influencing the behavior, workloads, etc., is given in
Ref. [21]. We represent the ES configuration as a combination
of required compute and storage resource - number of cores
ne, core speed cs, memory capacity mec, memory bandwidth
bw, and disk IO rate di. Workload can be defined by the
request arrival rate ar, request size rs, and the metadata size
ms. Now, in the context of an ES system being studied, we
can express Eq. 2 more clearly as: #= {nc, cs, me, bw, di} and
w = {ar, rs, ms}. The research question would then be to find
the suitable values for & for a given « that satisfies the given
constraint (Eq. 4) at a minimum cost (Eq. 5).

B. Configuration Modeling for BitBrains Data Center

The other publicly available data-set used in this research
is BitBrains? workload trace [26] containing the performance
logs of 1,750 VMs from a distributed data center from
BitBrains, which are collected over 5000 cores and 5 million
CPU hours accumulated over four months. This data-set (see
Table III) provides specialized interactive services and batch
processing workloads in a Cloud environment for managed

I[ES] https://www.kkant.net/config_traces/CHIproject
2[BB] http://gwa.ewi.tudelft.nl/datasets/gwa-t- 12-bitbrains (RND500)



TABLE III: CPs, Workload and Output of the Data-Sets.

Data-Set Domain CPs ¥ Workload Characteristics «J | Output ¢
ES [21] Cloud No. of Cores, Core Speed, Memory Capacity, Memory | Request Arrival Rate, Re- | Performance
Storage Bandwidth, Disk 10 Rate quest Size, Metadata Size
BB [26] Virtual No. of Cores, Core Speed, Memory Capacity, Network | Disk Read Throughput, Disk | CPU Usage (%)
Machines | Data Rcvd., Network Data Transmit Write Throughput
Apache [12] | Web Base, KeepAlive, Handle, HostnameLookups, Enable- | N/A Performance
Server Sendfile, FollowSymLinks, AccessLog, ExtendedSta-
tus, InMemor1
SQLLite SQL SetCacheSize, StandardCacheSize, LowerCacheSize, | N/A Performance
server [27] Server HigherCacheSize, LockingMode, ExclusiveLock, Nor-
malLockingMode, PageSize, StandardPageSize, Lower-
PageSize, HigherPageSize, HighestPageSize: - - - - -
Berkeley Embedded | havecrypto, havehash, havereplicatio0, haveverifl, | N/A Performance
DB C [28] database havesequence, havestatistics, diagnostic, pagesize,
pslk, psdk, ps8k,ps16k, ps32k, cachesize, cs32mb,
cs16mb,cs64mb, cs512mb
MIT [29] HPC Env. | CPU Frequency, Resident Memory Size, Virtual Mem- | Amount of Data ReadWrite | CPU Util. (%)
ory Size (MB)

hosting and business computation, including leading banks,
insurance companies, credit card operators, etc.

Workloads for Evaluating BB: losup and Et al. [26]
conduct a comprehensive characterization of both requested
and actually used resources, using data corresponding to CPU,
memory, disk, and network resources. The initial configuration
CP of each VM present in these traces is characterized by the
attributes shown in Table III. With limited knowledge of the
details of the data-set, we formulate the BB VM configuration
as a combination of required compute, storage, and network
resource - number of cores nc, memory capacity mc, network
receive bandwidth nwrd, and network transmit bandwidth
nwwr. We characterize the workload as the load on the storage
disks as read request rate dskrd and write request rate dskrd
and observed behavior (¢) as the CPU usage (%).

We can now represent the configuration problem as selecting
the right combination of configuration values (i.e. resources
Z = {nc,mc,nwrd, nwwr}) for a given workload (W =
{dskrd, dskwr}) to satisfy the user defined conditions (Eq. 4
and Eq. 5).

C. Configuration Modeling for Enterprise Data-set

We evaluate our work using three Cloud applications
(Apache, SQLLite, and Berkeley DB) from Ref. [12, 27, 28,
30], by commonly grouping them as Enterprise Data-sets®*
(EE). Apache HTTP Server is a highly popular web server. Xu
et al. [31] report that the Apache server has more than 550
parameters, and many of these parameters have dependencies
and correlations, which further complicates the configuration
problem we address here. Reference [12, 30] narrows the
CPs down to only nine CPs as given in Table. III. Berkeley
DB (C) [28] is an embedded key-value-based database library
that provides scalable high performance database management
services to applications. SQLLite [27] is the most popular
lightweight relational database management system used by

3[EE] https://github.com/ai-se/Reimplement/tree/cleaned_version/Data
4[EE] https://go0.gl/689Dve (RawData/PopulationArchives)

several browsers and operating systems as an embedded
database. In producing the data-set, Nair [30] stresses the
application to maximum workload and observes performance
data for various configurations. We use their data-set with
18 CPs for BDBC and 29 CPs for SQLLite data-sets to
evaluate our proposed solution. We demonstrate the efficacy
of our solution and its application in data-sets with large
configuration spaces {2.

D. Configuration Modeling for MIT Cloud Data Set

MIT published a rich data-set’ from their Supercloud petas-
cale cluster [29] running various HPC workloads. This huge
(2TB) data set contains time-series data of the scheduler, file
system, compute nodes, CPU, GPU, and sensor data from
physical monitoring of the facility housing the cluster itself.
We used the 2"¢ partition data-set with 480 CPU nodes (2x24-
core Intel Xeon Platinum 8260 processor), each with 192GB
of RAM and a Lustre high-performance parallel file system
running on a 3-petabyte Cray L300 parallel storage array
(See Table.IV Slurm Time Series Data). The data attributes in
this work comprise CPU frequency, residual memory, virtual
memory size, CPU utilization, disk IO, etc. We now propose
the resource allocation (configuration) question as: “finding
the design variables (node number, VM-Size, CPU Frequency,
RSS Memory Size) for HPC workload (given as ReadMB and
WriteMB) for a required CPU Utilization (Constraint).” We
demonstrate the efficacy of the proposed solution for large
data-sets.

We refer readers to the detailed literature at Ref. [12, 27,
28, 29, 30] for a full description of the data-set(s). With our
problem at hand, the problem (Eq. 2 and Eq. 3) reduces to
finding the best configuration (Z) for a given workload ()
and a user given performance (p,,) at minimum possible cost.

S[MIT] https://dcc.mit.edu



VI. EVALUATION
A. Metrics for Evaluation

Using the above data-sets, we evaluate the efficacy of
our solution in finding a satisfying solution with two key
metrics: (M1) the number of calls to the performance function
(a.k.a oracle), and (M2) the minimum cost of the selected
configuration (i.e., Eq. 5). Metric M1 is important as it relates
to how fast the algorithm can find an optimal set of parameters
from the vast configuration space ). Metric M2 may refer
to the monetary cost ($$) of the selected physical config-
uration, resource consumption of the selected configuration
in a virtualized environment, or some other attribute (e.g.,
energy consumption, provisioning difficulty, etc.). Naturally,
metric M2 is generally much more important than M1, but
two situations make M1 very important: (a) frequent changes
in configuration, which is quite common in current Clouds;
for example, Facebook [7] reports thousands of configuration
changes per day and (b) models (oracles) with long running
times.

We executed 100s of test cases across all the data-sets, each
test case 1; refers to a unique combination of w; and ¢ in
the data-set. We discuss the evaluation results using M1 and
M2 metrics w.r.t the three approaches discussed above, i.e. (a)
Generic Simulated Annealing (gSA), (b) Modified Simulated
Annealing (mSA), and (c) Modified Simulated Annealing with
Tunneling (mSA(T)).

B. Performance Oracle

The efficiency of ML algorithms depends on a variety of
factors, including the input attributes and hyper-parameters
(e.g., regularization parameters, learning rate, etc.), and it is
generally not possible to characterize which algorithm works
the best in a given situation [32]. Therefore, we tried several
models and ultimately settled on Logistic Regression, as it
consistently performed well and beat others in most workloads.
An extensive analysis (e.g., k-fold validation) of the model
ensured that it did not suffer from under-fit or over-fit.

C. Using Domain Knowledge to Group Attributes

We incorporate domain knowledge in the algorithm by
dividing the design variables into groups based on their level
of interdependencies. That is, the design variables within
a group show strong interdependence and thus should be
set collectively, but the settings across groups can be done
independently. In theory, such grouping can be done purely
in a data-driven manner (e.g., by using clustering techniques),
but this is likely to result in spurious groups unless we have
a large amount of data covering full ranges of various CPs
and the clustering algorithm does not result in anomalies. The
value of domain knowledge is to do a suitable grouping either
entirely manually or by coercing the clustering algorithm to
prefer certain groupings over others.

In any configuration context, we are likely to have several
generic and usage-specific insights into the system. For exam-
ple, in computing infrastructure, a faster CPU must be paired
with a faster DRAM; else, the CPU will simply stall, waiting

TABLE IV: Grouping Design Variables for Various Data-Sets
Data-Set | Group Design Attribute Pairs
Group G1 Number of Cores, Memory capacity
ES Group G2 Core speed, Memory bandwidth
Independently| Data cache, Disk IO rate
varied
BB Group G1 Number of Cores, Memory capacity
Independently| CPU capacity, Network data trans-
varied mit, Network data received
Apache Independently| All CPs
BDBC varied
SQLLite
Group Gl Virtual memory used by process,
MIT . ; .
Resident memory footprint set size
Independently| CPU clock frequency
varied
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for the memory. A faster disk is also important, but much
less so, since the IOs involve a context switch, whereas the
memory access does not. Similarly, more CPU cores doing
independent work will likely need more memory, and for
workloads involving remote 10, both network and IO speeds
must increase in tandem. Grouping of CPs based on such
insights avoids exploration of states that are unlikely to be
useful and thus is expected to both speed up the convergence
and lead to better solutions within a given number of iterations.
As shown in Table IV, ES, BB, and MIT data-sets are grouped
according to the interdependence between design variables.
Since the trace description doesn’t give much information
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about the configuration or workload, we have grouped the
other data-sets independently (Apache, BDBC, and SQLLite).

D. Efficacy of the algorithms (gSA, mSA and mSA(T))

We use the gSA algorithm as the baseline, as it presents the
naive (or uninformed) stochastic method of searching a wide
configuration space for a set of suitable CPs.

In our evaluation for metric M2, the minimum cost of the
solutions with mSA(T) was much less (hence better/desired)
than the solution found by mSA or gSA (shown in Fig 7).

Detailed results are shown in Fig. 4, 5, 6 for a few
data-sets (ES, MIT, and BB, respectively), where we plot
the improvement in the solution cost provided by our two
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algorithms (mSA and mSA(T)) over the baseline uninformed
algorithm gSA. Here the X-axis refers to the cost of mSA and
mSA(T) divided by the solution cost of gSA, and expressed
as a percentage. That is, the buckets for < 100% represent an
improvement over gSA, and > 100% represent a degradation.
The y-axis is the count of test cases whose solution cost
falls into that bucket — again, normalized so that it all adds
up to 100% of the test cases. These charts are produced by
considering 100s of test cases and thus represent an extensive
exploration of the configuration space.

Fig. 4 in ES results shows that in the 1st group (0-10%),
mSA achieved the solution with < 10% of the baseline cost
for 15% of test cases; and mSA(T) further improved this to
22% of test cases. The maximum improvement observed was
in a few cases where the cost of mSA(T) was only 2% of the
cost provided by gSA! Fig. 5 in MIT results also shows that
in the 2nd group, mSA achieved the solution with < 20% of
the baseline cost for 0% of test cases, but mSA(T) improved
on that to 4% of test cases.

Similarly, in Fig. 6 in BB results, in the 6th group (81 to
100%), mSA cost was about 61-80% of the cost of the baseline
in about 17% test-cases; and mSA(T) improved this in about
22% of test-cases. The final group (> 100) in all the sub-
graphs shows cases where gSA cost was better than mSA or
mSA(T); however, these cases were small in the case of an ES
and MIT. With BB, the evaluation showed that mSA(T) failed
to get minimum cost in about 30% of the cases (compared



to gSA). Note that no stochastic algorithm can provide a
universally better result in all cases because of the inherent
randomness in the way the states are explored.

Fig. 7 shows that both of our algorithms (mSA and mSA(T))
provide a lower-cost solution in comparison with gSA by
~50% and ~60%, respectively. The solution cost for the ES,
BB, Apache, SQLLite, BDBC, and MIT data-sets is improved
in range 25% — 77% by mSA, and in range 47% — 81% by
mSA(T).

Fig. 8 shows the improvement in the number of calls to the
performance Oracle. It is again seen that mSA/mSA(T) consult
the performance Oracle significantly fewer times, which can
be significant if running the performance model becomes
expensive.

Fig. 9 shows the run-time of the three algorithms (gSA,
mSA, and mSA(T)) for various test-cases. The figure shows
the execution time in millisec/test-case for various data-sets for
max 500 iterations. The results show that mSA and mSA(T)
beat gSA even here, although by rather small amounts of 12%
and 6% respectively. However, the more significant observa-
tion is that the run-times are fairly small in all cases, which is
essential for frequent configuration changes. Thus we expect
that even with much more complex situations, the mechanism
would be able to determine the suitable configuration rather
quickly, thereby satisfying the needs of DevOps-related auto-
configuration.

Finally, Fig. 10 compares the ability to find a solution
within a certain number of iterations. For this, we choose
250, 500, and 1000 as the limits on #iterations. The key
reason to consider three different values is to ascertain that
the results are not an artifact for a given iteration count.
For 1000 iterations, gSA is successful in only 75% of the
cases, but mSA/mSA(T) are successful in 98% and 97%
of the cases, respectively. Fewer iterations show an even
better improvement of mSA/mSA(T) over gSA, although the
absolute success rate will surely decrease with #iterations.
All in all, unlike gSA, mSA/mSA(T) succeed in finding the
solution in almost all cases, find solutions of significantly
lower cost (see Fig 7), and even run somewhat faster (see
Fig. 9).

VII. LESSONS LEARNT

During our research on tunneling to find a better local
minima, we discovered that computing the gradient from the
previous two data points and then sliding along that gradient
offered a better objective solution than other alternatives, such
as hill climbing and binary search.

One of the persistent issues in our configuration manage-
ment (CM) research has been the lack of workload traces with
carefully documented configuration information. With only a
few exceptions, publicly available workload traces fail to pro-
vide any configuration information and are thus useless for CM
research. We call upon the community to pay serious attention
to recording the configuration when generating traces, as this
would be crucial in tackling the crucial problem of proper
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configuration and detecting misconfigurations in large-scale
systems.

Owing to the complexity of performance as a function
of the CPs, we have used an ML model for the forward
problem. In general, a system may have numerous CPs, and
training a comprehensive ML model may need a lot of data
that may not be available or may not be of adequate quality.
Even more important is the pitfall of blind faith in data. We
have demonstrated that simply throwing in all the CPs in
the model hurts its accuracy rather than improving it. This
further emphasizes the importance of the “domain knowledge”
in pre-selecting the most relevant parameters for training the
forward model and intelligently searching the state space for
the backward problem.

VIII. CONCLUSIONS

In this paper, we presented an efficient methodology to
recommend optimal configurations for the emerging DevOps
environments with implicit performance function and cost
constraints. We proposed an improved metaheuristics-based
approach enhanced by both domain knowledge and smart
tunneling techniques. We applied the technique to several real-
world traces from various publicly available Cloud environ-
ments where the configuration information was included in
the data-set. The results show that the proposed mechanism
outperforms a standard uninformed approach by 44-81% (de-
pending on the domain and data-set) in terms of the cost of the
solution, converges faster by 28-65%, and still runs somewhat
faster.

The key reasons for such performance gains include the
following. First, we compute entropy as a quadratic function
to give us a wider choice of acceptance which is able to avoid
better getting stuck at local minima. Second, we intelligently
group the attributes, which avoids exploring unnecessary por-
tions of the search space. Third, by adding the tunneling
logic, the algorithm avoids jumping out of the local minima
too quickly; instead, it explores a few additional states closer
to current local minima. We also show that the proposed
approach can determine desired configuration very quickly,
which is essential in highly dynamic DevOps and microser-
vices environments.

Our future work will examine how domain knowledge may
be extracted semi-automatically from the best practice specifi-
cations or by using human-experts as a part of the interactive
optimization technique [36]. We will also explore how our
technique can be applied to more dynamic environments, such
as Kubernetes environments with rapidly changing container
placements, and possibly benefit from the additional data
collected from performance and systems logs.
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