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Abstract

Motivation: Computational methods for compound–protein affinity and contact (CPAC) prediction aim at facilitating
rational drug discovery by simultaneous prediction of the strength and the pattern of compound–protein interac-
tions. Although the desired outputs are highly structure-dependent, the lack of protein structures often makes
structure-free methods rely on protein sequence inputs alone. The scarcity of compound–protein pairs with affinity
and contact labels further limits the accuracy and the generalizability of CPAC models.

Results: To overcome the aforementioned challenges of structure naivety and labeled-data scarcity, we introduce
cross-modality and self-supervised learning, respectively, for structure-aware and task-relevant protein embedding.
Specifically, protein data are available in both modalities of 1D amino-acid sequences and predicted 2D contact
maps that are separately embedded with recurrent and graph neural networks, respectively, as well as jointly
embedded with two cross-modality schemes. Furthermore, both protein modalities are pre-trained under various
self-supervised learning strategies, by leveraging massive amount of unlabeled protein data. Our results indicate
that individual protein modalities differ in their strengths of predicting affinities or contacts. Proper cross-modality
protein embedding combined with self-supervised learning improves model generalizability when predicting both
affinities and contacts for unseen proteins.

Availability and implementation: Data and source codes are available at https://github.com/Shen-Lab/CPAC.

Contact: yshen@tamu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Most FDA-approved drug–target pairs are between small-molecule
compounds and proteins (Santos et al., 2017). Considering the enor-
mous chemical space that is estimated to contain 1060 ‘drug-like’
compounds (Bohacek et al., 1996), it is desirable to virtually screen
compounds with high throughput and high accuracy, based on their
computationally predicted properties as well as interactions with
proteins (off)targets. Thanks to quickly growing data, modeling
techniques and computing power, many machine-learning and deep-
learning methods emerge for predicting compound–protein interac-
tions, in particular, the structure-free ones addressing the often un-
availability of protein structures (Gao et al., 2018; Jiang et al.,
2020; Karimi et al., 2019, 2021; Li et al., 2020; Öztürk et al., 2018;
Tsubaki et al., 2019).

Recent progress in structure-free methods includes increasing
resolution of what they predict: from binary interactions (Gao et al.,
2018; Tsubaki et al., 2019) to continuous affinity or activity values
(Karimi et al., 2019; Öztürk et al., 2018). The progress also includes
increasing explainability about how they predict such interactions:
intermolecular atom–residue non-bonded contacts underlying com-
pound–protein affinities are additionally predicted, often by
introducing (Gao et al., 2018; Karimi et al., 2019), regularizing
(Karimi et al., 2021) and supervising (Karimi et al., 2021; Li et al.,
2020) various attention mechanisms. We refer to such an

explainable affinity prediction problem as compound–protein affin-
ity and contact (CPAC) prediction.

Despite the aforementioned progress, two challenges present
major barriers to the accuracy and the generalizability. (i) Lack of
structure awareness. While being generally applicable by assuming
no co-crystal, docked or even unbound structures as protein inputs,
structure-free methods rely on 1D amino-acid sequences (Li et al.,
2020; Öztürk et al., 2018) and sequence-predicted 1D structural
property sequences (Karimi et al., 2019), thus lack the awareness of
3D structures that are critical to what they predict (affinity and con-
tact labels). (ii) Scarcity of labeled data. Compared to the daunting
size of compound–protein pairs, only a tiny fraction are labeled with
affinity measurements and even less are labeled with non-bonded
atomic contacts from co-crystal structures. This challenge for super-
vised models is known as ‘supervision starvation’.

To address the aforementioned challenges, we make two major
contributions accordingly. First, to address structure naivety, with-
out demanding co-crystal, compound-docked or even unbound pro-
tein 3D structures, we consider protein data as available in both
modalities of 1D sequences and sequence-predicted 2D graphs
(contact maps). Recent revolution in protein structure prediction
(Baek et al., 2021; Jumper et al., 2021) is making the structure mo-
dality increasingly available. We introduce various neural network
architectures to separately or jointly embed protein modalities and
introduce cross-modality learning to inject structure-awareness into
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resulting protein embeddings. Two cross-modality strategies, con-
catenation and cross-interactions, are introduced to encode the
modalities independently and dependently. Second, to address
supervision starvation, without demanding more labeled data, we le-
verage massive unlabeled protein data and introduce various self-
supervised learning strategies to pre-train protein embedding.
Specifically, we use masked language models (Devlin et al., 2018)
for pre-training protein sequence embedding and graph completion
and graph contrastive learning (You et al., 2021) for pre-training
protein contact-map embeddings.

In cross-modality learning, we ask whether individual modalities
could excel in predicting either affinities or contacts as well as
whether and how their individual strengths could be combined for
better accuracy and generalizability. Our results indicate that the 1D
and 2D modalities of protein data do not dominate each other in
CPAC prediction for proteins seen in the training set; however, they
tend to generalize better for unseen proteins in affinity prediction
and contact prediction, respectively. We thus provide a conjecture
for such observations, which is verified numerically. To integrate
knowledge from 1D and 2D protein modalities, two cross-modality
schemes are proposed, with empirical demonstration that they
achieve the state-of-the-art (SOTA) performance.

In self-supervised learning, we ask how to design self-supervised
strategies, within and across individual protein modalities, in order
to improve model accuracy and generalizability. We leverage rich
unlabeled protein data and adopt self-supervised techniques for
sequences and graphs so as to pre-train protein embeddings.
Consistent with aforementioned results without pre-training, self-
supervised pre-trainings of individual protein modalities differ in
their strengths of predicting affinity or contacts. We further explore
self-supervision on top of cross-modality learning, ask which pre-
training scheme is beneficial in what circumstances of CPAC predic-
tion, and provide conjectures to underlying reasons.

The rest of the manuscript is organized as follows. In Section 2,
we will start with our curated, labeled and unlabeled data, to super-
vise model training and pre-train protein embedding, respectively.
After introducing a backbone model for CPAC prediction and our
modifications, we will introduce our methods of cross-modality
learning and multi-modal self-supervised learning. In Section 3, we
will first examine performances from single- and multi-modal learn-
ing without pre-training. We will then examine self-supervised pre-
training within and across modalities.

2 Materials and methods

2.1 Data
Labeled dataset. We evaluate CPAC prediction methods through
performing training and inference on a CPAC benchmark set
(Karimi et al., 2021; You and Shen, 2020) as follows.

(i) Data source: The diverse dataset contains 4446 pairs between
1287 proteins and 3672 compounds that are collected from
PDBbind (Liu et al., 2015) and BindingDB (Liu et al., 2007) together
with their affinity labels. In addition, their contact labels are gath-
ered from the corresponding co-crystal structures deposited in the
PDBsum database (Laskowski et al., 2018) using LigPlot.
Histograms of protein and compound lengths, measured in the num-
ber of protein residues and that of compound atoms, are shown in
Supplementary Appendix SA, Fig. S1.

(ii) Protein and compound graphs: No 3D structures of proteins
or compounds are used. Instead, RaptorX-Contact (Xu, 2019) is
used to predict contact maps of proteins from sequences, where evo-
lutionary information from multiple sequence alignment and struc-
tural information from its labels are additionally included. Only
binary contact maps are used without 3D structural information,
thus called 2D graphs. RDKit (Landrum et al., 2006) is used to con-
vert 1D SMILES into 2D chemical structures for compounds, after
sanitization.

(iii) Dataset split: The labeled dataset is split into subsets of vari-
ous challenging levels in generalizability: 795 pairs involving unseen
proteins (proteins not present in the training set), 521 pairs

involving unseen compounds, and 205 for unseen both; whereas the
rest is randomly split into training (2334) including validation and
the default test (591) sets (Karimi et al., 2021). Statistics of the data-
set split is presented in Table 1.

Unlabeled datasets. We pre-train protein embeddings using two
unlabeled datasets of different scales. Both are from Pfam-A, a data-
base of protein domain sequences (Mistry et al., 2021): (i) The
smaller set with ground-truth structure information consists of
60 137 sequences from Pfam-A with PDB entries (Berman et al.,
2000), from which we extract contact maps from their PDB struc-
tures (two residues are deemed in contact if their Cb, or Ca for gly-
cines, are within 8Å). (2) The larger set not necessarily with ground-
truth structure information is Pfam-A RP15 which consists of
12 798 671 sequences with 15% Representative Proteomes co-
membership (Chen et al., 2011) threshold applied. Histograms of
protein lengths are shown in Supplementary Appendix SA, Fig. S2.

2.2 Model backbone
The backbone of a CPAC prediction model is a system that is given
a compound–protein pair as inputs and simultaneously predicts
intermolecular affinity and atom–residue contacts as outputs. Here,
we adopt the SOTA CPAC model, DeepAffinityþ (Karimi et al.,
2021), as our models’ backbone.

Mathematically, given a compound–protein pair ðXcomp;XprotÞ 2
Xcomp � Xprot consisting of Ncomp atoms in each compound and
Nprot residues in each protein (padding is applied to ensure fixed
sizes for all compounds or proteins), a CPAC model fCPAC :
Xcomp � Xprot ! R�0 � ½0; 1�Ncomp�Nprot aims at predicting both the
compound–protein affinity zaff and the intermolecular atom–residue
contacts Zcont. It includes the following three major components as
shown in Figure 1.

1. Neural-network encoders: fcomp : Xcomp ! R
Ncomp�D and fprot :

Xprot ! R
Nprot�D that separately extract embeddings Hcomp for

the compound Xcomp and Hprot for the protein Xprot where D is

the hidden dimension. In DeepAffinityþ, the compounds are

available in 2D chemical graphs and proteins are only available

in 1D amino-acid sequences. Accordingly, DeepAffinityþ used

graph neural networks (GNNs) such as graph convolutional net-

work (GCN) and GIN (Kipf and Welling, 2016; Veli�ckovi�c

et al., 2017) to encode 2D chemical graphs of compounds and

hierarchical recurrent neural network (HRNN; El Hihi and

Bengio, 1996) to encode 1D amino-acid sequences of proteins.

2. Contact module: fcont : R
Ncomp�D � R

Nprot�D ! ½0;1�Ncomp�Nprot �
R

L�D takes molecular embeddings from the encoders Hcomp and

Hprot as inputs, employs a joint attention mechanism (Karimi

et al., 2019, 2021) to output the atom–residue interaction ma-

trix Zcont and jointly embeds the compound–protein pair into

Hcp, where L is the hidden length determined by Ncomp and

Nprot.

3. Affinity module: faff : R
L�D ! R predicts the affinity zaff given

the joint embedding Hcp. It consists of 1D convolutional, pool-

ing layers and multi-layer perceptron (MLP). Note that the

contact-predicting interaction module feeds the affinity module,

Table 1. Statistics of the dataset splits for affinity and contact

prediction

3672 compounds

3100 572

1287 proteins

1228 Training set: 2334 pairs

Seen both test set: 591 pairs

Unseen-compound

test set: 521 pairs

59 Unseen-protein

test set: 795 pairs

Unseen-both

test set: 205 pairs
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making affinity prediction intrinsically interpretable by the

underlying contacts.

After the CPAC model fCPAC forwardly generates the outputs
ðzaff ;ZcontÞ, true labels ðyaff ;YcontÞ are provided to calculate the loss,

lCPAC, which consists of affinity loss laff , intermolecular atom–resi-
due contact loss lcont and three structure-aware sparsity regulariza-
tion losses lgroup; lfused and lL1 as described in Karimi et al. (2021):

lCPAC ¼ laff þ kcontlcont þ kgrouplgroup þ kfusedlfused þ kL1lL1: (1)

The model is trained end to end while the training loss is minimized.
More details for the pipeline can be found in Karimi et al. (2021).

2.3 Single-modality protein embeddings
In the conventional structure-free CPAC pipeline, compounds are

represented as 2D chemical graphs since 1D SMILES strings have
limited descriptive power and known worse performance in many
tasks (Karimi et al., 2019, 2021; Li et al., 2020), whereas proteins

are usually represented as 1D amino-acid sequences without explor-
ation of other modalities. We delve into this under-explored area,
proposing to utilize multi-modality protein data for CPAC
prediction.

1D sequences. We follow DeepAffinityþ (Karimi et al., 2021) as
described in Section 2.2 and use HRNN to encode protein sequen-

ces. One change we made is replacing the hierarchical joint attention
with naı̈ve joint attention in the interaction module expressed as:

Zcont ¼ Z0
cont=sumðZ0

contÞ;

z0cont;i;j ¼ ðhcomp;iW comp;attnÞTðhprot;jWprot;attnÞ;
(2)

where zi;j ¼ Z½i; j�; hi ¼ H½i; :�; i ¼ 1; . . . ;Ncomp; j ¼ 1; . . . ;Nprot;
W comp;attn and Wprot;attn are two learnable attention matrices.

2D contact maps. We propose to adopt the 2D modality of pro-
teins as additional inputs and model them as graphs with the follow-
ing reasons. (i) Graphs are more structure-aware compared to 1D

sequences, potentially resulting in better generalizability. (ii) Graphs
are concise yet informative (focusing on pairwise residue interac-
tions) compared to the data structure of 3D coordinates (which are

also harder to predict than contact maps; Cao and Shen, 2020). (iii)
The recent surge of models for graph learning (Kipf and Welling,
2016; Veli�ckovi�c et al., 2017) provides advanced tools to facilitate
graph representation learning.

As unbound or ligand-bound structure data are not readily avail-
able for many proteins, we use sequence-predicted 2D contact maps

(Xu, 2019) and can also use AlphaFold2 (Jumper et al., 2021).
Thereby, we additionally represent a protein input Xprot as a graph
Gprot ¼ fVprot; Eprotg where vertices stand for residues and edges
exist between residues predicted to be in contact. The graphs are

associated with feature matrix Fprot 2 R
Nprot�D (embedded amino-

acid types of residues) and the adjacency matrix Aprot 2
f0;1gNprot�Nprot (binary contact map). We employ an expressive

GNN model, graph attention network (GAT; Veli�ckovi�c et al.,
2017) with K layers as the protein encoder fprot to extract graph
embeddings, with the formulation of each layer’s forward propaga-
tion as:

H
ðkÞ
prot ¼ MLPð~Sðk�1Þ

H
ðk�1Þ
prot Þ;

~S
ðk�1Þ ¼ ðDðk�1ÞÞ�1ðSðk�1Þ � AprotÞ;

Sðk�1Þ ¼ expðHðk�1Þ
prot W ðk�1ÞðHðk�1Þ

prot ÞTÞ;
(3)

where Hprot ¼ H
ðKÞ
prot; H

ð0Þ
prot ¼ Fprot, the normalization matrix

Dðk�1Þ ¼ diagððSðk�1Þ � AprotÞJNprot ;1
Þ; � is the element-wise multi-

plication, JNprot ;1
is an all-ones matrix with size Nprot � 1 and W ðk�1Þ

is a learnable weight matrix. Comparison with the simplest GNN
model, GCN is conducted in Supplementary Appendix SB to demon-
strate the necessity of adopting the more expressive GAT.

2.4 Cross-modality protein embeddings
To integrate the knowledge from both 1D and 2D protein modal-
ities, we introduce two cross-modality protein embedding schemes
as follows.

Cross-modality concatenation. A simple integration model is to
concatenate the extracted embeddings of the 1D and 2D modalities
encoded by HRNN and GAT, respectively, as shown in Figure 2a.
Indeed, concatenation is commonly used in previous work
(Hamilton et al., 2017; Xu et al., 2018) to preserve information
from different sources. The concatenated output is fed to an MLP
for the final protein embedding Hprot.

Cross-modality cross-interaction. Although the aforementioned
concatenation strategy preserves the information of individual
modalities, the encoding processes for the two modalities are iso-
lated. In other words, the two types of embeddings from different
modalities were independently encoded and then mixed through
concatenation. However, the different modalities of proteins are in-
trinsically correlated with each other and could be coupled in a
properly designed representation-learning process. Therefore, we
introduce a cross-interaction module to facilitate the encoder to
learn protein embeddings from correlated data (1D and 2D modal-
ities), as shown in Figure 2b. Specifically, given the outputs of
encoders H 0

prot;seq and H 0
prot;graph, we calculate sequence and graph

cross-modality outputs Hprot;seq and Hprot;graph, respectively:

hprot;seq;n ¼ ðsigmoidððh00prot;graph;nÞTh0prot;seq;nÞ þ 1Þh0prot;seq;n;

hprot;graph;n ¼ ðsigmoidððh00prot;seq;nÞTh0prot;graph;nÞ þ 1Þh0prot;seq;n;
(4)

where hn ¼ H½n; :�, H 0 0
prot;graph ¼ H 0

prot;graphW cross;graph; H 0 0
prot;seq ¼

H 0
prot;seqW cross;seq; W cross;seq and W cross;graph are learnable weights.

Instead of independently extracting knowledge from protein
modalities (1D sequences and 2D contact maps), the cross-
interaction module enforces a learned relationship between the
encoded embeddings of the two protein modalities, which is
expected to better capture the information from the correlated
modalities and to benefit the affinity and contact prediction. Again,
Hprot;seq and Hprot;graph (now with information from each other) are
concatenated and fed to an MLP for the final protein embedding
Hprot.

The idea of cross-interaction was previously introduced in Tan
and Bansal (2019) and modified here as follows. (i) We do not nor-
malize cross-interaction along residues (sequence length is 1000
here) since it would significantly change the scale of the residue
embeddings. (ii) We restrict the cross-interaction for each residue in
the range of [0, 1] with sigmoid function to represent the cross-
modality ‘interaction strength’.

2.5 Multi-modality self-supervised pre-training
On top of the aforementioned cross-modality learning models, we
further propose self-supervised pre-training for the following two
reasons. (i) The paired and labeled data curated for CPAC (Karimi
et al., 2021) are limited (4446 compound–protein pairs in total),
while there are more than billions of unpaired and unlabeled data
available (here we make use of protein domain sequences as
described in Section 2.1). Exploiting such abundant unlabeled data
would generate context-relevant embeddings for downstream, as
previously explored under unsupervised learning in CPAC

Neural networks Embeddings Outputs

Fig. 1. Illustration of the backbone model fCPAC for CPAC prediction
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prediction (Karimi et al., 2019). (ii) Compared to conventional un-
supervised learning, recently emerging self-supervised learning on
both sequences (Devlin et al., 2018) and graphs (You et al., 2020a,
b, 2021, 2022) further exploits the benefit from unlabeled data.

For reasons above, we introduce the following pre-training strat-
egies, as illustrated in Figure 3. In addition, graph contrastive learn-
ing GraphCL (You et al., 2021) is also applied.

Masked language modeling for sequences. We adopt masked lan-
guage modeling (MLM) for the 1D sequence encoder HRNN, which is
well-known as the dominant pre-training strategy in natural language
processing (Devlin et al., 2018). MLM takes the randomly masked
amino-acid sequences as inputs and tries to predict the masked residues
(we use residue types for a proper self-supervising ‘curriculum’) with
network outputs, as illustrated in Figure 3a. The mathematical formu-
lation of MLM optimization is expressed as:

minfHRNN; MLPg LCEðMLPðHRNNðFprotÞÞ;YmaskÞ;
s:t: Fprot;Ymask ¼ maskðFprotÞ;

(5)

where LCEð�Þ is cross-entropy loss, Fprot is the masked feature ma-
trix, Ymask is the masked residues and maskð�Þ is the masking
function.

MLM reconstructs and enforces the missing knowledge through
utilizing the sequential relation (where the information flow is speci-
fied by sequential inputs), which aligns with the 1D-modality model
exploiting protein sequence information. We thus hypothesize that
MLM pre-training provides performance gains in the tasks where
the 1D-modality model has performed well, i.e. affinity prediction,
which is supported by experimental results in Section 3.4.

Masked graph modeling (graph completion) for contact maps.
Self-supervision on graph-structured data recently raises great inter-
ests with numerous self-supervised tasks proposed (You et al.,
2020a, b, 2021). We choose a simple and effective scheme, graph
completion or GraphComp (You et al., 2020b), to pre-train the 2D
graph encoder GAT. GraphComp can be viewed as ‘the graph ver-
sion of MLM’: it takes graphs with randomly masked residues as in-
put and aims at making prediction for the masked tokens using the

structure-aware graph information, as illustrated in Figure 3b.
GraphComp optimization is mathematically formulated as:

minfGAT; MLPg LCEðMLPðGATðFprot;AprotÞÞ;YmaskÞ;
s:t: Fprot;Ymask ¼ maskðFprotÞ:

(6)

Joint self-supervised pre-training. Besides single-modality pre-train-
ing, we also propose joint pre-training for the cross-modality models
that simultaneously perform MLM and GraphComp for self-
supervision (since sequence and protein encoders share the amino-acid
embedding layer, we cannot individually pre-train them and then load
the checkpoints). Given benefits from single-modality pre-training, we
expect more benefits can be achieved from multi-modality pre-training
in both tasks of affinity prediction (where 1D modality models per-
formed well) and contact prediction (where 2D modality models per-
formed well). Results in Section 3.5 partly justified the added benefits.

Details about model training, including hyperparameters, are in
Supplementary Appendix SH.

3 Results and discussion

We organize results and discussion as follows. Experiments on
cross-modality protein embeddings are presented in Sections 3.1 and
3.2, with additional generalizability tests and case studies. Self-
supervised pre-training experiments on top of cross-modality models
are reported in Sections 3.4 and 3.5.

3.1 Individual modalities have strengths in

different tasks
Without pre-training, Table 2 reports various models’ performances
for affinity prediction and contact prediction for various test sets.
Figure 4 further splits unseen molecules into proteins and com-
pounds of different similarity bins compared to the training set.

In affinity prediction, 1D sequences or 2D graphs did not lead to sig-
nificant difference for seen proteins. However, speaking of unseen pro-
teins or even non-homologous proteins (sequence identity below 30%)
where model generalizability is required, 1D sequences dominated over
2D graphs as inputs for affinity prediction (0.1 lower in RMSE).

One conjecture is that the information in graphs might be more diffi-
cult to learn compared to sequences (the training RMSE losses are 0.71
and 0.99 for 1D and 2D modalities, respectively). Moreover, affinity pre-
diction for unseen-protein cases is not as challenging as intermolecular
contact prediction to show the benefit of the 2D modality (shown next),
as contact prediction often involves tens of thousands of values (rather
than a single value) to fit for each compound–protein pair.

In contact prediction, encoding proteins as 1D sequences again
performed better (þ3.22% at AUPRC and þ1.67% at AUROC) for
seen proteins (the proteins in the training set). However, encoding
2D contact maps (graphs) significantly outperformed doing 1D pro-
tein sequences (þ4.91% at AUPRC and þ2.24% at AUROC) for
unseen proteins (Table 2) and even more for non-homologous pro-
teins (Figure 4). Using ‘true’ contact maps from (unbound) protein
structures showed the same and improved AUROC.

We conjecture that sequential knowledge encoded in 1D amino-
acid sequences is well captured especially for seen proteins after

GAT

1D sequence

HRNN

Cat MLP

Cat Concatenation Residue-wise multiplication

Cross interaction connections

(a)

CI Cross interaction module

2D graph

K

Y

Q

L
...

GAT

1D sequence

HRNN

Cat MLP

2D graph

K

Y

Q

L
...

CI-Seq

CI-Graph

(b)

Fig. 2. Cross-modality encoders for proteins (fprot in Fig. 1) to capture and integrate knowledge across data modalities. (a) Naı̈ve concatenation preserves information from dif-

ferent sources and (b) cross-interaction additionally introduces information flows between modalities

Predict:
S?

1D sequence
Y

F

I

S,
masked

... HRNN MLP

2D graph

... GAT MLP
Predict:

S?Y

I

F

S,
masked

N

A

N

A

(a)

(b)

Fig. 3. Self-supervised tasks for pre-training cross-modality encoders (Fig. 2) in

CPAC. (a) MLM takes the randomly masked amino-acid sequences as inputs, pre-

dicting the masked residues with network outputs and (b) graph completion

(GraphComp) with inputting masked-residues contact maps, makes prediction for

the masked tokens
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training. The sequential dependency learned from the encoder could
be accurate toward intermolecular contact prediction for close or even
distant homologs of seen proteins. However, such dependency is less
generalizable to unseen or non-homologous proteins. In contrast, the
structural topology information encoded in protein 2D contact maps
is more difficult for GNNs to capture even for seen proteins, leading
to the worse contact predictions for seen proteins. But the information
can generalize to unseen proteins well toward contact prediction. In
particular, even when sequence similarity for non-homologous pro-
teins (to training ones) is too low to be detectable using RNNs,
binding-pocket (subgraph) similarity could still preserve and be
detected in 2D contact maps using GNNs thus eventually leads to
much better intermolecular contact prediction (Figure 4).

3.2 Cross-modality models combine the strengths
Fusing two modalities’ knowledge together, even by a simple concat-
enation strategy, could get the best of both modalities. Specifically,
the cross-modality model by concatenation had better contact pre-
diction than single-modality models (Table 2). It also had a boost in
affinity prediction (better than the 2D single-modality model and
slightly worse than the 1D single-modality model).

Enforcing a learned correlation between the 1D and 2D embed-
dings rather than independently learning two individual embed-
dings, the cross-modality model with cross-interaction further
improved affinity prediction and actually had the best affinity accur-
acy among all methods for unseen proteins or unseen both.
Moreover, it impressively achieved the best AUPRC for unseen pro-
teins and unseen both. These results re-enforce our rationale that the
learned correlation between embeddings from different modalities
can better capture the data and better perform CPAC predictions.

Our models compare favorably to the SOTA models. They used
similar backbone as DeepAffinityþ (Karimi et al., 2021) and revised
the joint attention mechanism as mentioned in Section 2.4; thus our
1D sequence-based single-modality model and DeepAffinityþ, both
using protein sequences, had similar performances in affinity prediction
but ours improved contact prediction. Our cross-modality models fur-
ther improved the performance compared with SOTAs including Gao
et al., (2018; after being converted from a binary predictor), MONN
(Li et al., 2020) and DeepAffinityþ (Karimi et al., 2021), especially for
unseen proteins (Table 2) and non-homologous proteins (Figure 4).

When the protein sequence encoder was changed from HRNN to a
pre-trained transformer, no improvement was found (Supplementary
Appendix SC).

Table 2 Comparison among competing methods and ours in compound–protein affinity prediction (measured by RMSE and Pearson’s cor-

relation coefficient r) and contact prediction (measured by AUPRC and AUROC)

Methods Seen-protein sets Unseen-protein sets

Seen-both Unseen-compound Unseen-protein Unseen-both

Affinity prediction in RMSE (Pearson’s r in parentheses)

Gao et al.* 1.87 (0.58) 1.75 (0.51) 1.72 (0.42) 1.79 (0.42)

MONN 1.44 (0.70) 1.28 (0.75) 1.67 (0.46) 1.75 (0.45)

DeepAffinityþ* 1.49 (0.70) 1.34 (0.71) 1.57 (0.47) 1.61 (0.52)

1D sequences 1.57 (0.67) 1.38 (0.73) 1.63 (0.44) 1.79 (0.40)

Pred. 2D graphs 1.49 (0.68) 1.37 (0.70) 1.75 (0.43) 1.93 (0.34)

True 2D graphs 1.69 (0.59) 1.62 (0.58) 1.88 (0.33) 1.99 (0.25)

Concatenation 1.47 (0.68) 1.37 (0.71) 1.78 (0.47) 1.91 (0.40)

Cross-interaction 1.55 (0.65) 1.43 (0.68) 1.56 (0.50) 1.62 (0.53)

Contact prediction in AUPRC (AUROC in parentheses, %)

Gao et al.* 0.60 (51.57) 0.57 (51.50) 0.48 (51.60) 0.48 (51.55)

MONN 0.98 (58.57) 0.99 (60.15) 0.99 (65.66) 0.98 (64.59)

DeepAffinityþ* 19.74 (73.78) 19.98 (73.80) 4.77 (60.01) 4.11 (59.09)

1D sequences 20.51 (79.01) 20.80 (80.00) 6.54 (73.03) 6.36 (73.41)

Pred. 2D graphs 17.29 (77.34) 17.46 (78.70) 8.78 (77.94) 7.05 (76.59)

True 2D graphs 21.41 (84.60) 21.33 (85.17) 10.52 (84.08) 9.40 (84.29)

Concatenation 23.85 (80.90) 23.52 (81.64) 7.74 (80.59) 7.29 (78.95)

Cross-interaction 23.49 (81.30) 23.29 (82.07) 12.43 (80.64) 9.60 (79.78)

*denotes the cited performances. Boldfaced numbers are the best performances for given test sets. We note that, as intermolecular contacts only represent a mi-

nority (around 0.4%) of all compound–protein atom-residue pairs, AUPRC is a much more relevant measure than AUROC for assessing contact prediction.

Fig. 4. Generalizability test on various methods for predicting affinity (measured in RMSE and r) and contact (measured in AUPRC and AUROC)
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3.3 Case studies for cross-modality models
All methods are compared in five case studies about compound–pro-
tein pairs (Karimi et al., 2021). With detailed results included in
Supplementary Appendix SD, we conclude that one or both cross-
modality models improved over DeepAffinityþ in AUPRC for four
of the five cases. They performed on par with DeepAffinityþ in the
precision of the predicted top-10 contacts. The case of LHL–LCK
presented the most improvement in the precision of top 10 predicted
contacts, from 0.4 to 0.6, as visualized in Figure 5.

3.4 Single-modality pre-training further enhances

individual modalities’ strengths
We proceed to pre-train our cross-modality model (cross-inter-
action) in a single-modality setting. In other words, we pre-train the
protein sequence and graph encoders using MLM and GraphComp,
respectively. The results are detailed in Table 3.

Different pre-training strategies showed different performances
relative to no pre-training, depending on the task (affinity or contact
prediction) and the test set (seen or unseen proteins/compounds).
Consistent with our earlier observation of single-modality models
without pre-training, pre-training the embedding of a single modal-
ity tended to enhance the strength of the corresponding modality.
Specifically, sequence pre-training with MLM, especially with the
smaller unlabeled protein dataset, improved upon what the 1D pro-
tein modality is good at—affinity prediction, for unseen proteins.
MLM over the larger unlabeled set of protein sequences did not
show much more benefits, possibly due to the fact that the smaller

unlabeled set and the labeled test sets are biased with protein of
structures. Meanwhile, graph pre-training with GraphComp, over
the smaller or the larger unlabeled protein dataset, improved upon
what the 2D protein modality is good at—contact prediction, main-
ly for unseen both. Replacing GraphComp (You et al., 2020b) with
contrastive learning (GraphCL; You et al., 2021) had similar per-
formances (Supplementary Appendix SE).

We observe some trade-off between affinity and contact predic-
tion while pre-training a single modality. Part of the reason could be
that the two tasks compete with each other while their weighted
losses are summed together. The question that remains is whether
and how the pre-training strategies for individual modalities can be
combined to further enhance model accuracy and generalizability,
which is addressed next.

3.5 Multi-modal joint pre-training could further

synergize 1D and 2D modalities
We further pre-train our cross-modality model in a multi-modal setting.
In other words, we jointly pre-train both the sequence and the graph
encoders that share layers. The results are reported in Table 3 as before.

We found that jointly pre-training sequence and graph embed-
dings with the smaller unlabeled dataset did not change affinity pre-
diction much for unseen proteins and improved contact prediction
for the most challenging case of unseen both (þ2.4% in AUPRC
compared to no pre-training). Interestingly, doing so with the larger
unlabeled dataset again improved contact prediction for the most
challenging case of unseen both (þ2.7% in AUPRC compared to no
pre-training) and additionally did so for the unseen proteins (þ2.1%

Table 3. Comparison among different pre-training settings (MLM and graph completion, with graph contrastive learning in Supplementary

Appendix SE) based upon the cross-interaction model in compound–protein affinity and contact prediction

Cross-interaction Seen-protein sets Unseen-protein sets

Seen-both Unseen-compound Unseen-protein Unseen-both

Affinity prediction in RMSE (Pearson’s r in parentheses)

Non pre-train 1.57 (0.66) 1.46 (0.68) 1.63 (0.49) 1.64 (0.54)

MLM-S 1.53 (0.64) 1.40 (0.68) 1.46 (0.56) 1.53 (0.58)

GraphComp-S 1.62 (0.59) 1.44 (0.66) 1.60 (0.43) 1.67 (0.47)

MLMþGraphComp-S 1.64 (0.58) 1.46 (0.65) 1.65 (0.39) 1.65 (0.50)

MLM-L 1.59 (0.62) 1.46 (0.65) 1.62 (0.47) 1.63 (0.57)

MLMþGraphComp-L 1.58 (0.62) 1.45 (0.66) 1.74 (0.33) 1.85 (0.32)

Contact prediction in AUPRC (AUROC in parentheses, %)

Non pre-train 23.91 (79.48) 23.06 (80.60) 11.40 (77.73) 8.41 (76.42)

MLM-S 23.78 (80.34) 23.33 (81.09) 7.73 (77.44) 6.44 (76.42)

GraphComp-S 23.63 (79.71) 23.41 (81.31) 11.36 (76.67) 9.36 (76.00)

MLMþGraphComp-S 24.13 (82.09) 23.65 (82.70) 11.38 (78.75) 10.83 (78.63)

MLM-L 23.30 (80.40) 23.05 (81.18) 11.35 (81.01) 9.40 (79.46)

MLMþGraphComp-L 23.71 (81.21) 23.22 (82.33) 13.47 (82.00) 11.17 (80.10)

Boldfaced numbers are the best performances.

Fig. 5. Visualizing top-10 atom–residue contacts predicted by single- and cross-modal learning for the compound–protein pair of LHL–LCK. Compounds are shown in sticks,

proteins in cartoons, and predicted contacts in dashed lines (darker/red for true positives and lighter/cyan for false positives) (A color version of this figure appears in the online

version of this article.)
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in AUPRC compared to no pre-training). Impressively, the joint pre-
training strategies with predicted protein contact maps even outper-
formed non-pre-training with actual protein contact maps. In the
end, the cross-modality model (cross-interaction) with joint
sequence–graph pre-training over the larger set achieved the best
contact prediction for both unseen proteins and unseen both. And
doing that over the smaller set achieved best-balanced improvement
in affinity and contact prediction, potentially suggesting the import-
ance of data quality over data quantity.

We also tested additional pre-training for embedding 2D com-
pound graphs on top of the cross-modality model with joint pre-
training of protein data. To do so, we leveraged unlabeled com-
pound data from STITCH. Further improvements, albeit moderate,
were observed (Supplementary Appendix SG).

4 Conclusion

In this paper, we address two major challenges to advance explainable
prediction of compound–protein affinity (or CPAC): the sequence-
dominant yet structure-naive models and the scarce labeled data. By
introducing multi-modal and self-supervised learning for the first time
to CPAC prediction, we address both challenges through fostering
context- and task-relevant protein embedding. Specifically, to over-
come structure naivety, we treat protein data as available in both
modalities of 1D sequences and 2D graphs (predicted) and introduce
cross-modality learning for sequence- and structure-aware protein
embeddings. Empirical results indicated that individual modalities
excel in different tasks and our approach of cross-modality learning
could bring out the best of both modalities. Additionally, to overcome
labeled-data scarcity, we design self-supervised learning strategies
within and across modalities to pre-train cross-modal protein embed-
ding. Empirical results indicated that cross-modal learning with joint
pre-training can further improve model generalizability for unseen
molecules and outperform the state-of-the-art. Meanwhile, there is
still much to do for improving the synergy between both tasks of affin-
ity and contact prediction.
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