21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41

50
51
52

Performance Health Index for Complex Cyber Infrastructures

SANJEEV SONDUR AND KRISHNA KANT", Temple University, USA

Most IT systems depend on a set of configuration variables (CVs), expressed as a name/value pair that collectively defines the resource
allocation for the system. While the ill effects of misconfiguration or improper resource allocation are well-known, there is no effective
a priori metrics to quantify the impact of the configuration on the desired system attributes such as performance, availability, etc. In
this paper, we propose a Configuration Health Index (CHI) framework specifically attuned to the performance attribute to capture the
influence of CVs on the performance aspects of the system. We show how CHI, which is defined as a configuration scoring system,
can take advantage of the domain knowledge and the available (but rather limited) performance data to produce important insights
into the configuration settings. We compare the CHI with both well-advertised segmented non-linear models and state-of-the-art
data-driven models, and show that the CHI not only consistently provides better results but also avoids the dangers of a pure data

drive approach which may predict incorrect behavior or eliminate some essential configuration variables from consideration.

ACM Reference Format:
Sanjeev Sondur and Krishna Kant. 2022. Performance Health Index for Complex Cyber Infrastructures. ACM Trans. Model. Perform.
Eval. Comput. Syst. 1, 1, Article 1 (January 2022), 30 pages. https://doi.org/10.1145/3538646

1 INTRODUCTION AND MOTIVATION
1.1 Problem of Configuration Management

As the data centers grow in complexity, sophistication, and size of the infrastructure and services supported, their proper
configuration is becoming a huge challenge. Most objects from services down to virtual and physical devices have many
configuration parameters (or variables), whose correct setting is crucial for proper functioning and good performance.
Many state of art literature [4, 53, 54] highlight that 70%-85% of all users’ configuration errors account for the high cost
of misconfiguration. Added to this is the poor understanding (and miscommunication) of configuration variables! (CVs)
on the “outcome” or behavior of the service/system, and hence results in the wrong setting or misconfigured options.

Poorly configured systems (or resource allocation) may fail to satisfy the performance, availability, security, and other
goals and result in avoidable operational costs and user dissatisfaction. Ill-effects related to system misconfiguration are
well documented [18, 43, 54], including their impact on the economy, security incidents [55], service recovery time, loss
of confidence, social impact, etc.

In large scale enterprise applications, configuring the right resources (e.g., storage system, virtual machines, etc.) is

becoming critical, both because of the complexity involved in allocating the right resources and understanding their

“Both authors contributed equally to this research.
This research was supported by NSF grant CNS-2011252.
!Most commonly referred to as features [13, 20]

Author’s address: Sanjeev Sondur and Krishna Kant, sanjeev.sondur@temple.edu, kkant@temple.edu, Temple University, 1801 N. Broad Street, Philadelphia,
PA, USA, 19122.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

78
79
80
81
82
83

84

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

2 Sanjeev Sondur and Krishna Kant

overall effect on the system (e.g. cost of resource provisioning, user experience, performance, energy consumption,
etc.) [24, 26, 29, 30]. Further, an application can have complex relations to the resources allocated, the input workload,
internal workflows, and the configuration. It is difficult to use straightforward methods to model such relations [2].
Resource provisioning for large scale applications involves several unique challenges, wherein an application instance is
characterized (and priced) based on resource “configuration” (i.e. CPU family/cores, memory, and disk capacity) [26, 49,
50, 56]. Real systems may have 10s to 1000s user-settable configuration variables (or CVs) [18, 22, 52]; in addition, there

could be a significant number of hidden or latent manufacturer provided parameters that are not well described.

1.2 Motivation for Our Work

Thus, we need a more compact way of understanding the contribution of the individual CVs on the overall system
performance in the context of other settings and to get important insights into the configuration settings. For example,
we need to know how much memory to put on a given web server or to understand: “What is the effect of swap
memory on increasing throughput?" [18]. It is helpful to know roughly at what point the diminishing returns? kick in
sufficiently strongly to make the additional memory of dubious value. For instance, a regression job on SparkML (with a
fixed number of CPU cores) sees a diminishing return of running time at 256GB RAM because the job does not benefit
from more RAM beyond what it needs. One could ask a similar question regarding the other configuration variables
(CVs) such as page size for a database, the local storage allocation, CPU usage in a Virtual Machine (VM), etc. Since
the main difficulty in evaluating configurations is the interaction among settings of different CVs [22, 47, 49, 52], we
need a way of capturing the interactions in a compact manner. Configuration settings representing physical resources
(e.g., computing cores, page-size) relate to the cost constraints as well if we open up the possibility of expanding the
existing systems; however, we do not address this aspect. In other words, there are predefined ranges for all CVs and
any selection must stay within those limits.

It is difficult to get accurate performance data on a large scale application because of various factors [15] like
black-box environment, resource contention, performance uncertainty, etc. Further, it is not possible to gather detailed
experimental data for all combinations of available configuration parameters. It is for this reason, a crude metric such
as Configuration Health Index (CHI) is valuable wherein, it is important to characterize the effects of a configuration
parameter on the observed output based on the limited information available. In theory, we could do an exhaustive
set of experiments and perhaps train a neural net for each configuration parameter, however, this is not a feasible
methodology due to the large number of configuration parameters involved. Further, we include the results of one such
model (§ 6) and show such a one-off consideration of the “individual” configuration parameters would lose insights into
the important factors affecting the configuration settings.

In assigning resources to an application, there are two distinct problems to solve: (a) deciding the amount of
resources that need to be allocated to achieve a satisfactory performance, and (b) allocating the required resource is the
responsibility of the provider. Let’s take an example, suppose that our analysis indicates that the application needs
N vCPUs in a Cloud environment to work well. It is the responsibility of the Cloud resource management module to
assign N vCPUs constantly without interference. If the Cloud cannot provide any assurance that the actual number
will be close to N, then the performance will surely vary, but that’s not a deficiency of the configuration determination
process. One could potentially bump up the estimation value by some amount to account for this variation, but even

such an estimate requires that there are defined limits to the fluctuation.

2The point beyond which, any additional resource allocation is detrimental to performance.

Manuscript submitted to ACM

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

152
153
154
155

156

Performance Health Index for Complex Cyber Infrastructures 3

The work reported here is motivated by our earlier work in CHeSS [43] (Configuration Health Scoring System),
which defined a scoring system to compute the CHI for compactly assessing the influence of CVs on various attributes
of a system (including performance, availability, security, etc.). We discuss the general CHI concept briefly in § 3.1.

The difference from our earlier work is that, in this paper, we focus entirely on the performance related CHI and
propose a way of exploiting the limited observational data and the domain expertise to robustly quantify the CHI scores.
We validated our approach with relevant data-center configuration experts, who acknowledged that a CHI based approach
to provide insights into the configuration settings is a concept way overdue and sorely needed by the industry.

The involvement of domain knowledge is crucial to make reasonable conclusions from limited data; the technique
cannot be purely statistical in this case. While there are risks in using domain knowledge, we mitigate this risk by only
expecting the nature of behavior from the domain experts, not its numerical parameters, which are still determined
from the limited available data. Using domain experts to reduce the problem space is referred to as "human-in-the-loop"
in [27], where the user’s prior experience is used to restrict the variables that do not have a major impact on the final
objective [18]. We show that such an approach is much less risky than a pure data driven approach as the latter could
easily lead to misleading conclusions. We are well aware of basic statistical methods of characterizing different factors
and their interactions, but generating statistically sound methods for computing confidence intervals or confidence
bands with adequate coverage is generally very difficult in such settings [16, 17].

To demonstrate the merits of our approach, we use real world configuration data sets (public domain) from a number
of very different systems [31, 39-41]. We show that with the limited amount of available data, our method can produce
significant insights into the configuration space and produce better results (e.g. health score of CVs, better prediction
accuracy, and low variance) since we use data to estimate some key parameters, rather than the actual behavior itself.

The main contributions of this paper are as follows:

o Define an a priori mechanism for evaluating the quality of configuration of service in form of a scoring system
for its performance.

e Demonstrate how the domain expertise can be exploited to yield more robust score quantification without
overburdening the experts.

e Demonstrate that such a scoring system produces important insights into the configuration settings and performs

better than the state of the art techniques for a variety of configuration data sets used.

2 CONFIGURATION HEALTH SCORING SYSTEM

We explain the basic concept behind CHeSS using Fig 1, where the configuration file is processed by the framework to
output a health index of the system. CHeSS framework (center box of the same figure) inherently depended on manual
input from domain experts to assign the health-scores. The "health" of the system can be characterized along several
dimensions (or attributes) such as security, availability, manageability, performance, etc., as illustrated on the right side
as a 3-D graph in the same figure. For each attribute, we need a measure that is generally considered indicative of that
attribute without necessarily having to define a very specific measure, since specificity, while desirable, narrows the
applicability of the health measure. The impact of configuration parameters on attributes like availability or security is
difficult to access since impact (i.e. behavior) is not readily observable. For example, even if we are allowed to change the
length of the security key for testing purposes, it is nearly impossible to determine its security impact experimentally
(we can still determine its performance impact). Thus, the motivation for using performance as a key observable metric.
In other words, CHI is data enhanced version of CHeSS.

Manuscript submitted to ACM

157
158
159
160
161
162

163

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

4 Sanjeev Sondur and Krishna Kant

2.1 Quantification of Health Score

The scoring system must provide a compact characterization of the influence of configuration variables (or CVs) on
various attributes of interest. A preliminary scoring system called CHeSS is presented in Ref. [43]. A score is a number
between some lower bound & upper bound (e.g. 0 - - - 2) where a mid-score (e.g. 1.0) corresponds to a nominal (or
"average") configuration, the upper bound corresponds to a highly optimized configuration, and the lower bound
corresponds to a very poor (but still operational) configuration. The purpose of a scoring system is to rate configurations
in terms of a normalized measure of each attribute in a simple way in order to assess the health of the system as a
function of the configuration parameters. The health index is not synonymous with very specific or detailed measures
that require a detailed quantitative model; instead, it is intended as a measure over the configuration space that provides
some indication of how good the configuration is. The distinction is subtle. On one hand, we do want the score to reflect
a suitable measure of the attribute (e.g., performance measured in terms of throughput, latency, and other important
aspects); on the other, reducing the score to be simply a scaled version of the throughput is of little value, since it too
will require detailed modeling. We want to avoid the need for detailed modeling in the context of configuration health
because not only does it require a very specific measure, but it also is generally intractable due to a large number of
configuration parameters, their interdependencies, and their complex influence on the chosen measure.

Because of how the scoring system is targeted, it necessarily carries some level of non-specificity both in the measures
and the values. In particular, with a mid-score (e.g. 1.0) considered as a nominal score, it is the significant deviation
from the mid-score that is important, not the precise value. The simplicity in defining and evaluating the score is crucial
for scalability in dealing with large configuration spaces. Such non-specificity is inherent to any scoring system, in
particular, the well-known Configuration Vulnerability Scoring System (CVSS) [10] that has been used by the security
community for quite some time and was the origination motivation for CHeSS. Note that CVSS scores are assigned
entirely manually based on the "domain knowledge" which consists of both observed and expected impact of a security
vulnerability.

The concept in CHI should not be regarded as yet another performance prediction model or competitor to existing
state of art methodologies as listed in § 7.1 . The main goal of the CHI is to generate important insights into the
relationship between the observed behavior (mostly performance in our paper) and configuration objects and express
such a score as a health index. As CHI is not a performance prediction model, and in absence of any direct literature, we
used the "prediction accuracy” of computing HI (hence, indirect observed behavior O) for an unseen set of configurations.

We provide such evaluations comparing CHI with other related art in the results section.

2.2 Configuration Specification

Configurations (left side of Fig. 1) are generally specified as name-value pairs defined in configuration files and stored in
service specific format (e.g. json, xml, text file or local/remote repository). Service functionality is an abstract term that
can take various forms based on users or context, either for processing data, securing services, energy consumed, etc.
An a priori scoring of the configuration, as envisioned by CHI, will aid the user-community (administrators, designers,
developers, end-users, etc.) to gain an insight into the strength or weakness of the configuration beforehand, and hence
minimize any costly after-facts.

A configuration file for the service includes a set of configuration "objects" and their settings. Configuration objects
are often organized as a hierarchy, with a top-level object representing a feature (QoS, VPN, or VLAN in a router) or

component (e.g., namenode & datanode in HDFS), with lower level objects breaking it into finer aspects.

Manuscript submitted to ACM

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

236
237
238
239
240
241
242
243
244
245
246

247

260

Performance Health Index for Complex Cyber Infrastructures 5

As an example, in CHeSS [43], we considered routers in a commercial data center with complex and elaborate
working configurations. The largest configuration file here had 22,000 lines and operated on an object hierarchy up to
7 levels deep. Thus the exercise provides a good insight into the usefulness of a scoring system for complex systems
where detailed observational data is often spotty or simply unavailable (e.g., the impact of key length on security)
and detailed quantitative modeling difficult. Given the intricacies of routing protocols and complex features involving
VLANS, authentication, etc., we believe that weights assigned by highly experienced administrators can be regarded as
good a depiction of "ground truth" as one might reasonably obtain in such an environment.

A configuration file ¢ of a service contains several CVs henceforth denoted as Py, 1 < m < M. Each CVis a
tuple representing the name and value pair (P : p). Depending on the name/value tuple, the configuration object can
contribute to one or more health attributes of the service. For example in Table 2, a configuration file ¢4 contains a
configuration object P; : {mem = 32}, which states that 32GB of memory is allocated. This statement can contribute
towards the performance attribute by factor p; and security attribute by factor s;. Similarly, another configuration
object Py : {cores = 4} may state CPU resource as 4 cores and contribute towards performance attribute as p and
availability attribute as az. Thus, each configuration object P influences the service behavior and contributes to one or
more attributes (denoted as E ={p,s,a---}). The goal of this research is to identify these unknowns (i.e. p1, p2, s1, az,
etc.) based on the observable behavior of the service with the configuration file (e.g. observed performance in Table 2,
01=112Kbps).

2.3 Challenges in Assigning Scores

The key problem in defining CHI is two fold: (a) estimation of scores (or CHI values) for leaf-level objects in the
configuration object hierarchy, and (b) composition of the scores along the hierarchy to determine a score of any
arbitrary object. Here (a) can range from a direct assignment of a score by a knowledgeable user/administrator up to an
entirely automated estimation. We discuss this aspect in some detail, starting with an entirely manual assignment. We

also discuss the composition method used in CHeSS and continue to use the same here as well.

2.4 How can CHI help? Some preliminary work

In CHeSS, we focus on CHI in general and evaluated a concrete example relative to three attributes, namely availability
(A), security (S), performance (P), for a large commercial routing network. Since the impact of configuration parameters
on attributes like availability or security is difficult to determine experimentally, the assignment of scores (or weights)
to the leaf-level objects was done by experienced router administrators and then aggregated to estimate the weight or
score of an object. This was done recursively from leaves to the root, the end result being the overall score for the router.
An example of such an aggregated result is shown as a red asterisk point in Fig. 1, to reflect the overall aggregated score
of the device. It is highly desired that such an aggregate score (the asterisk point) lie on the top right corner showing
highly desirable configuration, i.e high values of H. However, it is not just the overall score, but intermediate scores
that are also important in assessing the quality of the settings.

It is widely understood that the performance does not increase linearly with the resources thrown at the problem [2]
because of the various bottlenecks such as queuing, synchronization, and other delays. For example, if we increase CPU
speed, the performance does not increase proportionately due to limitations that may range from CPU microarchitecture
(e.g., load/store buffers, bubbles in the pipeline, etc.) to caching to memory bandwidth limitations, to IO bottlenecks,
etc. Hence, it is important to model the contribution of CVs w.r.t rate of increase plus a point of diminishing return,

Manuscript submitted to ACM

261
262
263
264
265
266
267
268
269

271
272

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312

6 Sanjeev Sondur and Krishna Kant

thus giving us a concave-convex relationship. All highly configurable systems exhibit a behavior that is non-linear,
multi-modal, and non-convex [18].

There is a fine distinction between the CHI approach and plain curve fitting to the data. Instead of simply observing
how the data looks like and fitting the best possible curve to it, we start from the domain knowledge end, which tells
us about the general nature of the behavior (e.g., monotonic increase with diminishing returns). Such characteristics
are well known to domain experts and can be readily specified by them. Since the domain knowledge cannot tell us
what the rate parameters should be in such a behavior, we determine those from the data. The key difference is that
we expect this behavior to hold substantially beyond the range for which the data is available. In contrast a purely
data-driven approach simply follows the data along with its extrapolation beyond the given data range and increasing
lack of confidence (i.e., widening confidence intervals).

The Health Index (HI) metric of the configuration file is expressed as a vector of impacted attributes such as: security

(S), availability (A), manageability (M), performance (P), and functionality (F). That is,
H={S,AMPF,--} (1)

Given the weight, we express the Health Index

(H) metric of a configuration as a vector of impacted o = Health |
attributes. As shown in Fig 1, the framework takes § f CHess Index e

the configuration file as input, analyses the con- % E :> Framework ':> -

figuration statements (CVs, aka configuration ob- E 2 .

jects) for their influence on different attributes, and °":’::n\sa P
quantifies the H metric at all levels of the object Availabi, 4" <

hierarchy. The right hand side of Fig 1 illustrates a
. . L Fig. 1. CHeSS Framework [43]

sample result pictorially depicting the health of the

configuration. Here the vector H consists of only three attributes P, A, S (performance, availability, security), for ease of
displaying in a 3D plot. Each axis shows the upper and lower bounds for the respective attributes P, A, S. Each blue
dot refers to the health index A, of a configuration object CV. A point closer to the upper bounds indicates a higher
health index, and hence a good configuration or highly desired configuration. In Fig. 1, different blue dots correspond
to different top level configuration objects. The figure clearly shows that some objects are quite poorly configured,
especially with respect to availability and security. The red asterisk mark (*) refers to the aggregated health index HI of
the configuration (aggregated as explained in § 2.5). Similar 3-D representations are used to map configuration space to

multi-objective performance [18]. Numerically, the health index (ﬁ) of the configuration in Fig 1 is depicted in Eq. 2.

H={P,AS}=1{1312009})
2.5 Aggregation of CHI Scores

For the rest of this paper, we will associate H witha single attribute representing performance P 3, and health index (Z)
of individual configuration object (P) is marked as a single metric h. The overall metric (or quality of each attribute
in H) is represented as the geometric mean of all the contributing attributes (weights) hi’s from all the configuration
objects P;. The aggregation was done using simple geometric means since the geometric mean preserves relative scaling
and is tolerant of occasional erroneous weight assignment in a large hierarchy. The geometric means provide a measure

of the configuration health index (CHI) at each level and ultimately for the top-level objects.

3Performance is shown as an important attribute by Westermann et al. [51]

Manuscript submitted to ACM

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

356
357
358
359
360
361
362
363

364

Performance Health Index for Complex Cyber Infrastructures 7

The dependencies are considered in the modeling indirectly because CHI estimates the HI parameters from the
observed behavior. However, the error in the overall estimate (following the geometric mean) is minimized in order
to determine the assumed behavioral parameters of all of the CVs (Eq. 3 & 9). This ensures that the dependencies are
automatically considered by the CHI estimation model. The H,, of the configuration file ¢, (and hence the service) is

then given as:

M
Hp = By (rln—:[l(hnm))

or alternatively,

1 M
log(Hn) =+ > log(hnm) (3)
m=1

2.6 Exploiting Domain Knowledge for Performance CHI

The key challenge in such an approach is to estimate the values of h;’s. With most attributes, including security,
availability, manageability, etc., it is generally infeasible to set the CVs to “all” desired values and experimentally
determine their impact. Instead, one must estimate the impact via some mathematical model calibrated based on some
limited/basic data that might be available. For example, availability (or reliability) modeling generally uses a simple
compositional model based on the availability of individual components. Similarly, we may have some quantification of
the attack probabilities, which along with suitable attack graph models can give us a quantification of the security of
the system. The performance attribute is unique in this respect in that it is possible (at least in theory) to set the CVs to
some values and measure the performance (or compute it based on a model calibrated from the observed behavior).
This brings in the possibility of at least a partially data-driven determination of the scores, and thereby reduces the
amount of manual effort required on part of the domain experts.

However, we cannot immediately swing to the other extreme and claim that there is no need for domain expertise,
and everything can be done in a purely data-driven manner. In fact, there are numerous hurdles in making a data-driven
approach work and we show in § 5 that it can often lead to misleading results; instead, an approach that judiciously
uses expert input can not only improve the quality of the results but also do this with much smaller amounts of data.

The key issue then is how can the domain knowledge be expressed and exploited? It is clear that the input provided
by the experts must remain rather small even for large problems. Also, we should not expect experts to provide numbers
(e.g., the "weights" as in CHeSS) since people tend to make mistakes in providing numbers, and the numbers provided
may depend on extraneous factors such as the mood of the person. Instead, we should largely expect experts to provide

their insights regarding the system. These insights can often be summarized in the following types of questions:

(1) Based on the knowledge about the system, which CVs are likely to be at least moderately important for deciding
the system outcome?

(2) Are certain CVs related by experience based rules of thumb, either precise ones (e.g., each web-server talking to
the database needs 10 more DB threads) or fuzzy ones (e.g., each CPU core would add 100-120 MB/s in disk IO
requirements)?

(3) Are certain CVs restricted to a certain small set of values (e.g., memory of 32GB, 48GB and 64GB only)?

Manuscript submitted to ACM

365
366
367
368
369

370

372
373

375
376

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

416

8 Sanjeev Sondur and Krishna Kant

(4) If the performance generally increases with respect to a CV (e.g., throughput vs. hardware resource amount), is
it likely to show a slow decline beyond some point* due to increasing overhead or resource contention (we are

not asking the expert what that point is)?

The list above is not intended to be comprehensive but will be used in this paper.

The domain knowledge and prior experience of experts is used to eliminate the CVs that do not contribute to the
required objective [18] (e.g. performance impact) or add constraints on CVs to further reduce the configuration space.
This interactive optimization technique [27] reduces the configuration space and facilitates learning with smaller sample
sizes. Similar to Ref. [27], we use this approach to bridge the gap between optimization methods & decision support
systems and consider the experts to actively participate in the optimization process. We explain this as an interactive
approach to recognize that any model can occasionally yield unreasonable values which need to be eliminated.

One concern that always comes up with respect to human involvement is what if the provided insights are incorrect?
This can be addressed to some extent by performing sanity checks based on the available data; for example, if we have
a decent amount of data, we could do the principal component analysis (PCA) to determine if the importance provided
by PCA generally jives with the one provided by the expert. However, we should not lose sight of the fact that a purely
data-driven approach is no panacea, and itself comes with many hazards such as spurious relationships, variations that
are opposite to the expected variations, elimination of important variables, overfitting, etc. We demonstrate in this
paper that by using the domain knowledge along with the data, we can get more robust results and avoid some of the

pitfalls of the pure data-driven approaches.

2.7 Limitations of Data-driven approach

The key hurdle in a data-driven approach that is often ignored is the difficulty in obtaining adequate quality and
quantity of data from a production system. Except in the case of inadvertent mistakes, the configurations that the
administrators are willing to use in a production system are extremely limited — ones that work well. Thus the available
data cannot even begin to cover the full range of feasible or even desirable settings. Thus even if we have a huge
amount of collected data, its diversity in terms of coverage of the configuration space is extremely limited. Although
most production systems do have a small test cluster where any configuration settings are possible, translating either
the configuration settings or the results from the test system to the production system (or vice versa) is often either
infeasible or involves guesswork (and hence significant errors in the data obtained). Thus the basic requirement of a
purely data-driven approach, namely, the ability to generate correct and diverse data covering significant portions of
the state space, is usually not met in practice. Unfortunately, the current enthusiasm for applying AI/ML techniques
often overshadows these considerations [49].

For system administrators, tail latencies are becoming increasingly important, but the CHI methodology can also
work with them; the key issue is the adequacy of data for a reliable estimate of the tail. It is well known that as the
desired latency percentile goes close to 100% a significantly larger amount of data is required for reliable estimation. As
for the curation of data or handling other aspects of data, we realize that it is an important aspect, but it is not the focus
of this study. Even if arbitrary data gathering is permitted (e.g., on a separate cluster), the effort and time required to
cover the configuration space make diverse data generation very difficult, as we experienced in our effort to generate
CSG data [41]. This is the main motivation for our performance CHI to be expressed as a scoring system, rather than an

exact performance characterization. It is also the motivation to exploit domain knowledge and use experimental data

4Point of diminishing return

Manuscript submitted to ACM

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

454

456
457
458
459
460
461
462
463
464
465
466
467

468

Performance Health Index for Complex Cyber Infrastructures 9

sparingly rather than following a purely data-driven approach which generally requires extensive amounts of data.
Being a coarse-granularity scoring system, the performance CHI is concerned with distinguishing, say, a well-performing
configuration from a poor one, as opposed to attempting to do a precise estimation of all relevant CVs for near-optimal
performance. Nevertheless, for convenience, we view the performance CHI as a continuous function of the parameter
values and evaluate it using both the available data and the domain knowledge. This allows us to substantially reduce
the data requirements and yet obtain much better results than a purely data-driven approach.

The key area of our research is to produce important insights of the various CVs (P’s) on the observed metric (O’s). As
CVs can span a wide-dimensional space, a detailed modeling of over 100s of CVs either using a mathematical, simulation,
or other technique is laborious (if not impossible) [24, 26, 31, 40, 54]. Further, such one-off models would suffer from
robustness and over-fit, i.e. we need to re-do the model for any change in the configuration space.

Authors in Ref [2] support our observation, wherein, the accurate modeling of application performance and building
a model that works for a variety of applications can be difficult because the knowledge of the internal structure of
specific applications is needed to make the model effective. Because of these difficulties, the goal of CHI is to simplify

such modeling and discover some important insights into the configuration settings.

2.8 Research Goal

The design goal of CHI is to produce a scoring system, that can give an insight into the configuration space. That is, CHI
should: (i) discover how a CV influences the behavior (i.e. outcome), (ii) give the rate of increase of such an influence,
(iii) show the cut-off point for diminishing returns (if any), and (iv) show the rate of decay beyond the cut-off point.
This effect® is shown as a convex-concave shaped graph in Fig. 3 below. Instead of building a detailed performance
model, the objective is to discover the influence of various CVs on the observable outcome.

With these goals, we formulate the following research questions.

(R1) Discover the influence of the CV P’s on the health index A’s, including the rate of influence, the point of
diminishing return or cut-off point (if any), and the rate of decay (beyond the cut-off point).

(R2) Correlate the H (computed from various h’s) of a configuration file to the observed operational metric O (e.g.
performance in our case).

(R3) Determine the H™" of a new (unseen data) configuration file such that the new H"¢" should reflect the “expected

» Onew

behavior of the new configuration file.

Note that while (R1) & (R2) are the primary goal of this work, (R3) is a natural extension & indirect benefit obtained
from discovering the CHI metrics. As CHI is 'not’ a performance prediction model, and in absence of any direct literature,
we used the "prediction accuracy” of computing HI in (R3) (hence, indirect observed behavior O) for an unseen set of
configurations. We compare such metrics with several available literatures and show that CHI succeeds in characterizing

configuration dependence while several of the well advertised methods do not.

3 SOLUTION DESIGN

The purpose of this research is to get an apriori metric to express the health of the configuration file relative to the

performance.

5The rate of increase plus the point of diminishing return

Manuscript submitted to ACM

486
487
488
489
490
491
492
493

494

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

10 Sanjeev Sondur and Krishna Kant
rrr—--"-"-"-"-"-"-""F"F"F"F"F"F"F"F"F"F"F"F"""""""F"”""”"”"”"” """ ""” """ """ A
IExperts — i e 1
I P » | More Metrics il
| 1 (e.g PCA) Ll
e I
| | Config. Object] . Hl

X . yooTo e ! Operational | {

| | Relationships ! | e } i
e L =S .
| | Computation Health Index | h,_, 2 - Datacenter |/ |
I Unit } Framework Metrics I
l 4 ,,I A fl H l
i B | HI 0 tl
I hgm i L Error « i, il
: """"" Function :
| [MSE |
: MIN(MSE) oo :
[earning Model_

(o __ = —

Fig. 2. CHI Framework
3.1 CHI Framework

The CHI framework to discover the health index (Hp’s) of the configuration files (c,’s) is shown in Fig. 2. The

configuration objects (Py,’s) in the configuration file are first pre-processed and normalized.

Table 1. Abstract Representation of Configuration Files with Geomean (Computed) and Operational Data (Observed)

Features (Parameter/Value Weights or Config. Objects) | GeoMean | Oper.Data
P1 P2 P3 P4 P5 P6 pP7 P.. P.. HI, On
g LA Pmn | P.. p.. p.. p.. Pmn | Pmn | Pmn | Pmn HI O
2 = |c2 | p. | Pmn| Pmn | Pmn | P | P. | P. | P. | Pmn HIp 0O,
g & [63 | Pmn | P.. Pmn | P.. Pmn | P.. Pmn | Pmn | P.. HI3 O3
2] g Cq cee HI4 04
O [¢s HIs Os

Table 1 shows an abstract representation of the sample configuration data, with rows illustrating the various
configuration files ¢, and columns showing the CVs of the configuration Py, with the respective observed metric O,.
Each cell ppm represent a name/value pair for the configuration files. Table 2 shows a randomly selected (real-world)
example of the CSG configuration file with the associated observed metric (i.e. performance in Bits/sec shown in the last
column as O;). Few attributes (storage IO, metadata size, cache space, metadata space, log space) are enumerated using
bucketization shown in Table 6. The normalized values of the configuration objects and corresponding normalized
operational metrics form the basic input to the framework. A sample of a normalized version of the input files is
illustrated in Table 3. Domain experts or service specifications define the boundaries of the configuration object, i.e
plmin) g p(max) Ag part of pre-processing and to keep the format of all input data uniform, it may sometimes be
necessary to fill in any undefined/missing values (shown as blank cells in Table 1). If necessary feature engineering
methods have to be incorporated to enrich or supplement an existing feature (i.e configuration object P,,) with a new
feature (i.e configuration object P},).

3.2 Estimating Health Index From Configuration Data
Our data D is a set of distinct N configuration files, or "rows", say cy, .., cy with configuration c,, n € 1..N and its

corresponding observed output O, (e.g., performance) (See sample in Table 1). A configuration is defined by a set
Manuscript submitted to ACM

521
522
523
524
525
526
527
528
529
530
531
532
533

534

536
537
538
539
540
541
542
543
544
545
546

547

560
561
562
563

564

566
567
568
569

570

572

Performance Health Index for Complex Cyber Infrastructures

Table 2. CSG Configuration File from Ref [41] with Operational Data (Observed)

11

of M CVs (or "columns"), denoted Py, .., Pys. That is, each configuration ¢y, is a vector of M ‘values’ for CVs Py, .., Py,

Table 4. Nomenclature used in the paper.

Features (Parameter/Value Weights or Config Objects) Oper.Data
Config | Cores| Core | Mem. | Mem. | Storage | No.of | File | Metadata] Cache| MetaDatd Log | Bits/sec.
File Speed| Size | BW. | IO Files | Size | Size Space | Space Space
cy4 4 1.8 32 1.60 | 3 10000 | 4KB | 2 1 1 2 112166
C16 4 1.8 32 160 | 3 10000 | 256KB| 2 5 3 3 6662268
c31 4 1.8 32 160 | 3 1000 | IMB | 1 5 3 3 54852372
€33 4 1.8 32 1.60 | 3 1000 | 10MB| 2 2 2 1 63372836
C62 8 2.1 32 210 |1 10000 | 256KB| 2 2 1 3 10091093
C69 8 21 32 210 |1 10000 | 1IMB | 1 3 2 1 48031772
c76 8 21 32 210 |1 10000 | 1MB | 2 2 1 3 36488192
c86 8 2.1 32 210 |1 1000 | 10MB| 1 5 3 3 261301724
C96 8 21 32 210 |1 200 1GB | 1 3 2 1 304349283
Table 3. CSG Configuration File with Normalized Data
Features (Parameter/Value Weights or Config Objects) - Normalized Oper.Data
Config | Cores| Core | Mem.| Mem. | Storage | No.of | File | Metadata] Cache| MetaData Log | Bits/sec.
File Speed| Size | BW. | IO Files | Size | Size Space | Space Space
cy4 0.07 | 030 | 0.33 | 0.20 | 0.60 0.80 | 0.36 | 0.40 0.00 | 0.02 0.04 | 0.50
C16 0.07 | 030 | 0.33 | 0.20 | 0.60 0.80 | 0.54 | 0.40 0.13 | 0.19 0.09 | 0.68
c31 0.07 | 0.30 | 0.33 | 0.20 | 0.60 0.60 | 0.70 | 0.20 0.13 | 0.19 0.09 | 0.77
c33 0.07 | 030 | 0.33 | 0.20 | 0.60 0.60 | 0.70 | 0.40 0.01 | 0.04 0.02 | 0.78
C62 0.20 | 045 | 033 | 045 | 0.20 0.80 | 0.54 | 0.40 0.01 | 0.02 0.09 | 0.70
C69 020 | 045 | 033 | 045 | 0.20 0.80 | 0.60 | 0.20 0.02 | 0.04 0.02 | 0.77
c76 0.20 | 045 | 033 | 0.45 | 0.20 0.80 | 0.60 | 0.40 0.01 | 0.02 0.09 | 0.76
c86 0.20 | 045 | 033 | 045 | 0.20 0.60 | 0.70 | 0.20 0.12 | 0.19 0.09 | 0.84
c96 0.20 | 045 | 0.33 | 0.45 | 0.20 0.46 | 0.90 | 0.20 0.02 | 0.04 0.02 | 0.85
M Number of CVs]
N Number of configuration files]
P,, m CVina configuration file (0 < m < M) :
Cn n'" configuration file (0 < n < N) E
Pnm name/value pair m of configuration file n '
hnm health index (aka weight) of p,,m, B]
H, Health Index of n'” configuration file = E
O, Observed Metric of n’”* configuration file !
Lsa Strong dependent CVs i
Lyya Weakly dependent CVs !
Lun Unimportant ones |
L=M-Lsg— Lyyg — Lun dominant CVs |
fmk () Relationship function between CVs p,,, & pi pimin} P pimode} pimax}
Snm Normalized value of p;,

Fig. 3. Sample CV Value vs. Health Index relationship

henceforth denoted as py1, .., pnar- We postulate the health index H, for each ¢, which itself is computed as a geometric

mean of H of individual CVs (Eq. 3). The H for an individual CV is denoted as hy;, m = 1..M, for each CV value pppm,.

Our goal is to estimate hpp,’s, and hence Hys, compatible with the observed outputs O,. We pose this as an optimization

problem. The assumptions and constraints are as follows.

Manuscript submitted to ACM

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

624

12 Sanjeev Sondur and Krishna Kant

(I1) Of the M CVs, Lyy < M CVs may be strongly dependent on others, and we assume that this relationship, denoted
as |=. Thus, if parm Py, |= Py, then p,,. is functionally determined by ppp, for all n, ie., pur = fiuk (Pnm) where
fmk is a known analytic function that transforms column m to column k (independent of the row index n).

(I2) In addition, another L,,; < M CVs may be weakly dependent on others, and we also assume that this relationship,
denoted as -, is given by the experts. Thus, if parm Pp, + Py, then the value py,, restricts the choice of values

for p,1 to a small range around some value, i.e.,

Pk = fnk (Pnm) (1 +71k), i € [-Re Ryl k € Lyyg 4)
where 7y represents the uncertainty as a fraction. Here Ry € 0..1is a small (known) fractional number representing
the boundaries of the uncertainty. For example, Ry = 0.1 means that the value of p,; can vary £10% around the
value determined by the function f,,1.

(I3) The relatively important CVs are usually known to the experts from experience [18] or could be obtained using a
statistical technique like principle component analysis (PCA). PCA assumes orthogonality and linear combination.
CHI uses interactive optimization technique [27] by injecting experts into the decision making process to eliminate
unwanted CVs. Experts can validate their domain knowledge opinion against the PCA results to separate the
unimportant parameters from the important parameters. Others CVs are better eliminated since marginally
important CVs only tend to increase the noise in the estimations [42]. We assume that of the M — Lyy — L,,g
primary CVs, L, are unimportant and hence eliminated. Thus, we are left with only L = M — Lyy — L,,q — Lun
CVs. The normal L... parameters introduced above represent the sizes of the sets £... (i.e. L... = [L...]).

(I4) Based on the last few points, we only need to consider L CVs in the formulation. For convenience, we denote the
corresponding set of variables of different types as L, i.e., Ly is set of strongly dependent CVs, L, is set of
weakly dependent variables, etc.

(I5) We postulate two different forms of functions hp;,s that we want to estimate — monotonic and unimodal. Of the
L CVs, we assume that L,;, is monotonic and Ly, is unimodal. As before, we represent the corresponding CV
sets as Lo and Ly, respectively. This behavior is shown as a “convex-concave” graph in Fig. 3, with monotonic

(mode) i area (B).

As explained earlier, we assume that the minimum and maximum values of the CV, denoted pﬁnmm) and pﬁnmax)
respectively are defined by experts or available from the experiments. We define pfnmm) as the value for which

behavior depicted in area (A) and unimodal behavior (diminishing returns) beyond point p

hnm = h,({,"ni”). Now we have two cases:
Monotonic: hy;, increases monotonically with ppp, for CV m and when py,, = p,(nmax), hnm = h;’,’,’lax). We
expect the relationship to be concave (i.e., follow the law of diminishing returns). We capture this using the

equation:

. P = poa™)
nm = pﬁnmax) —Pr(nmm)
1 — e ImSnm
hnm = W’ me Luma Snm, M E Lmo (6)

where 7, is a predefined positive parameter that controls the growth rate.
Unimodal: Here we assume the same equation as above, except that the maximum happens at the value
p,(ande) < p,(nmax). Beyond p,(ande), we can assume that hyy,, decreases linearly with maximum fractional

degradation of y,, < 1. (Generally, y, < 1)

Manuscript submitted to ACM

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

670

672
673
674
675

676

Performance Health Index for Complex Cyber Infrastructures 13

1-— e_nmsnm
hnm = ——, me¢ Lum, Snm < Pr(andE) (7)
1—eIm
ham = 1= ymSmn, m € Lym, Snm > Pr(nMOde) ®)
where d
s _ Pnm _p;nmo ¢
nm = p;nmax) _pﬁnmode)

Fig. 3 represents the relationship represented in Eq. 6, and Eq. 8 and depicts an example behavior of a CV. hyp,
for the CV will increase monotonically up to a limit p{"°9€) and then linearly decreases beyond p(’""de). We now
have to predict the hy,,, contribution of the CV p,, given these boundaries. The total number of unknowns is thus
2L + L,,q + Lum, and we expect that the number of rows N (i.e., configurations for which output is known) will be
significantly larger than the M.

Objective: The objective now is to determine the unknowns introduced above, i.e., ri, k € L,,4, and npm, m € Lo
and ym, m € Ly, to minimize the mean square error (MSE) between the estimated Hy,’s and observed output Op’s.
MSE is given as: LN

2
MSE = - ;(Hn —0p)
or alternatively,

N

We discover the individual health index (hy,’s) of the configuration objects Py,’s to minimize the error between
computed H’s and observed metric O’s (Eq. 9) and thereby determine the 5’s and y’s as defined in Eq. 6 and Eq. 8. An
optimal solution should minimize Mean Square Error (MSE, ideally zero), thereby relating the health index H’s as close
as possible to the observed metric O’s. We denote this estimation error (H — O) as a measure of how far our health
index H is from the true normalized performance O. In our results, we show the estimation error as the MSE, since it

takes into account both the bias and the variance of the estimator [48].

3.3 Computing CHI

Fig. 4 and Eqns.(10 - 13) illustrate the concept underlying the computation of CHIL With inputs about the CV boundaries
(p(min) g p(max)y and the pre-processed normalized configuration files, the CHI framework in Fig. 2 computes the
health index Ay, using a non-linear gradient descent regression model to achieve the desired objective (i.e. minimize
the MSE). The regression used by CHI is intended to estimate the parameters associated with the assumed forms of the
functions. MSE is hierarchically dependent on other variables as explained in § 3.2 (item (I1) to item (I5)). The gradient
of MSE (VMSE) w.r.t individual dependent variable kpp, is represented in Eq. 10, and split into three components: (i)
MSE is a function of H (hence, 9MSE/dH), (ii) H in turn, depends on individual Ay, (hence the second part: 0Hy, /9hnm),
and (iii) individual hp,, is a function of either np, or yn, (hence the final derivative). To minimize MSE, we employ
a gradient descent algorithm, with each iteration calculating a new state x computed as a function of « & VMSE as

shown in Eq. 12 (where a represents the learning rate).

OMSE OMSE oH,
= *

VMSE = *
aKnm aHn 3hnm

Ynm (10)

Manuscript submitted to ACM

678
679
680
681
682
683
634
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

714

716
717
718
719
720
721
722
723
724
725
726
727
728

14 Sanjeev Sondur and Krishna Kant

MNnm . (mode)
, ifspm <
where ¥, = Zan nm = Pm (11)
ay—Zﬁ otherwise
Knm < Knm — aVMSE (12)
. (mode)
if spm <
where kpm = m nm = Pm (13)

Ynm otherwise

The CHI computation unit in Fig. 4 represents the calculation of the H (Eq. 3). The unit regresses and computes H,
VMSE, & knm (as given above). An error function computes the difference between “computed” H, and observed
operational metric Op, and updates the VMSE & kpp, for the next states (Eq. 12). The algorithm terminates after it
reaches a predefined termination condition (either expressed as the number of iterations or on achieving the desired
MSE). At termination, the algorithm persists the ‘discovered’ relationships 1, s & ym’s of the configuration object Py,’s
in the local repository and achieves our research goals (R1) & (R2). Next, these relationships can be referred to in the
future to compute the H"¢" of a “new/unseen” configuration files, giving us results for the goal (R3). In the results
section, we show the effectiveness of the algorithm in discovering the influence of Pp,’s on Op’s and the computational
accuracy of health indices (i.e. hp,’s). We show that CHI (i) can discover the unknown’s given in Eq. 13 above to satisfy
the objective (minimize MSE) and, (ii) that they relate the contribution of various CVs P : p to the health index h of the
configuration object (and indirectly to the O’s).

3.4 CHI Compute Unit Design

The design in Fig. 4 represents the H computation in Eq. 3, with p’s representing the configuration object values (pnm)
and the weights (h’s) are the contributions of the p,;; on the health index hyy, as defined by Eq. 6, and Eq. 8. In the
traditional ML, a neuron computes an estimated output value § equal to the weighed (w) sum of the input features (x),

1L.e.y = —_1 (WX). FOLlOWINE similar concepts, we design tne computation unit to represent € geometric
ie.gj=1/MYM_(). Following simil pts, we design the CHI computati it to represent the geometri

mean H of the configuration objects in a configuration file, i.e. § = %/ (]_[%I:1 f (xm)), where f(x,) represents the
health index function of the individual CV (cy;) on the outcome. Thus, h;;,=f(x,) is the unknown and needs to be
learned.

CHI compute unit acts solely on the weights (h;,=f(xy;)) which in turn is a function of n,,’s & A,’s. With a CHI
design as above, the required solution is the estimation of the parameters 5, & ym, that contribute to the (weight) health
index h’s such that it minimizes the mean square error (Eq. 9). The transfer function g(z) represents the non-linearity
in the model, represented a: g(z) = max(e, z) where ¢ is a small value (1073) to ensure a small positive gradient. This

transfer function [6] ¢

ensures that hy, is always positive and allows the complex relationships in the data to be learned.
Our approach for computing Eq. 9 closely resembles Greedy Coordinate Descent (GCD), which usually delivers

better function values at each iteration in practice, though Eq. 9 comes at the expense of having to compute the full

gradient to select the gradient coordinate with the largest magnitude [21, 23]. Although the non-linear gradient descent

regression model can be further improved with robust loss function and optimization techniques, our approach did not

venture into this area.

SReferred in the ML literature as Leaky Rectified Linear Unit (Leaky ReLU)

Manuscript submitted to ACM

729
730
731
732
733
734
735
736
737
738
739
740

758
759
760
761
762
763
764
765
766
767
768

769

780

Performance Health Index for Complex Cyber Infrastructures 15

3.5 Identifying Unimportant CVs

It is well known that the configuration space is too huge to
explore and cover all known combinations of configuration
objects. It has been observed that the software performance

functions are usually very sparse i.e. only a small number of

configurations and their interactions have a significant impact

glz) />y

on system performance [14]. Various tools and techniques are
being explored to limit such configuration spaces [22, 36]. Most

literatures agree that domain expertise is often the best and

fastest way to eliminate unwanted features (configuration ob-

jects in the problem) [18, 22]. Instead of relying on a pure human

approach or trusting a generic algorithm to sort the important Fig. 4. Compute Unit
and unimportant CVs, our approach eliminates the unimportant CVs (L,,;) with Principal Component Analysis (PCA)
“assisted” domain expertise. PCA is a dimensionality reduction technique that projects the data from its original p-
dimensional space to a smaller k-dimensional subspace. By using PCA, domain experts can confirm their belief on
which CVs are of importance versus the unimportant CVs (Ly,). For example, using PCA software-analytics researchers

recursively divide data into smaller or as a preprocessor tool to reduce noise in software-related data sets [32, 41, 45].

3.6 CHI runtime & Retrain the Model

CHI run time complexity can be expressed as O(kNM) where k is number of iterations, N is number of samples and M
is the number of CVs. A coordinate descent method like CHI is of interest due to its simplicity, low cost per iteration,
and efficacy [21]. For example, the learning time for CHI ranged between 10 to 25 seconds (§ 4.2.3). As the production
system undergoes configuration changes and thereby generates additional data, it is possible to refine the training of
the CHI model.

4 EXPERIMENTS AND EMPIRICAL DATA

In this section, we present the data-set used and its characteristics followed by a detailed evaluation of results. All code

was developed in Python and all evaluations were run on a MacBook Pro 2.5 GHz x 2 core Intel i7 with 16 GB memory.

4.1 Data Sets and Hyperparameters

A detailed study of system configuration and performance needs a well-defined data-set that captures the resource
allocation (i.e. configuration settings) and observed behavior (e.g. performance) under various conditions (e.g. hardware
servers, workload, etc.). There are many publicly available data sets as described by Google [38], Alibaba [12], and
other traces [1] capture large time-series data for measures such as CPU utilization, IO rates, network traffic, etc.;
unfortunately, they are not useful for us since configuration information is invariably missing. In fact, for some of the
data-sets, the configuration continues to change dynamically, but there is no information about it.

We did locate some real world data sets in [31, 39] but the configuration information is not well described, especially
for [39]. We also use the CSG dataset that we have created ourselves [41]. Similar to concepts highlighted in CherryPick [2,
25] for configuration study, each of our CSG configurations is represented as the number of CPUs, CPU speed per core,
memory, disk speed, and network capacity. CSG data-set has several advantages over other data-sets including (most

Manuscript submitted to ACM

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

832

16 Sanjeev Sondur and Krishna Kant

of all) complete control over and knowledge of the configurations used, data collected, and difficulties encountered.
This makes the CSG data much cleaner and usable than others. We obtained the data with some variations in both the
hardware setup and the workloads. Note that the hardware setting variations are generally missing from other data sets.

We have used a mix of data-sets (See Table 5) with different characteristics including one Cloud dataset. The major
challenge in the analysis is that most dataset are published without adequate configuration information. For example,
we found several datasets [1, 12, 38], but these are missing the crucial configuration information. We have no control
over the used public data-sets w.r.t data collected, variability in the workload, range of experiments, configuration
space explored, etc. and we are limited by whatever data about the HW/SW configuration is included in the dataset.
In contrast, our CSG dataset has all of these details. In evaluating CHI, we used data-sets that gave us a variety of
metrics as observed behavior such as throughput, latency, exec-time, etc. (See Table 7). The baseline metric used during
evaluation is given in the results section.

The usable public data sets that we found for our configuration studies are listed in Table 5. We ran our CHI framework
on all of these to answer the research questions (R1) to (R3)) discussed above. Similar to Ref [2], we use cross-validation,
where subsets of the training data can be used to check if the model will generalize well. We followed well established
practice similar to an ML approach: the complete data D (c,’s & Op,’s) is first normalized and randomly split into two
groups - train (Dirqin) and test (Dyesr). We evaluate using two cases: (i) 50% Dirain & 50% Diesr and (ii) 80% Dirain &
20% Drest- The Dirqin is input to the CHI model to compute and discover the unknowns yu,’s, s & hnpm’s of various
Py,’s using the steps explained above. Validating the model against D;.s; demonstrates the efficacy of the CHI and
helps to evaluate how the model performs on new/unseen configurations (CVs, hardware, workload, etc.).

Hyper-parameters: To maintain uniformity across all studies and test cases, we maintained the iteration limit (i.e.
epochs) to 500 and learning rate « to 0.5 and observed that the CHI reaches a satisfactory mean square error (MSE) (i.e
min V MSE) during these epochs, and there is no significant improvement afterward. The resulting ‘learnt’ values of y’s
& n’s of various Pp,’s (from the training data Dy4in) is stored in a repository and used to calculate the new health
index H i’e“ of the unseen test configuration from Dy.s;. We compute the error rate as the difference between computed
health index H. lt et representing the “expected performance” and observed performance (O’s) (as given in Eq. 9). The
error rate (MSE and variance) of the newly predicted health index (H;’s vs. O;’s) is given in Table 5 for the two split
ratios of data-set. Our focus is on understanding the influence of CVs, rather than a performance prediction model,

hence we did not venture into detailed ML evaluation metrics such as k-Fold evaluation’, recall, precision, etc.

Table 5. Data-set used in the paper (and associated CHI results).

. #Attrs| Samples A (50/50 B (80/20
Code | System [Related Art] Domain M) (NI)) MSE (Variance MSE (Var)iance
CSG | Cloud Storage Gateway [41] | Cloud Storage 10 990 | 0.0121 | 0.0068 | 0.0098 | 0.0058
BB BitBrains Datacenter [16] Virtual Machines 7 500 0.0526 | 0.0256 | 0.0475 | 0.0236
SS2 SQL Lite [33] SQL server 29 2000 0.0620 | 0.0311 | 0.0583 | 0.0308
SS3 Berkeley DB C [32] Embedded database | 18 2000 | 0.0417 | 0.0219 | 0.0332 | 0.0177
SS8 Apache [40] Web Server 9 2000 0.0371 | 0.0212 0.0316 | 0.0167
SS10 Roll Sort [32] Sorting Tool 6 3840 0.1887 | 0.0944 | 0.1842 | 0.0932

Before outlining the evaluation (and for completeness), we briefly describe the real world data-set used.

"Though the above 80/20 test results can represent one of the k-Fold results (for k=5).

Manuscript submitted to ACM

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848

849

851
852
853
854
855

857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884

Performance Health Index for Complex Cyber Infrastructures 17

4.2 Data-set Characteristics

4.2.1 Cloud Storage Gateway (CSG) Data-set. CSG? is architecturally similar to Edge Computing, IoT Gateways,
etc. which are constrained by limited resource capacity and placed between the Edge/IoT/user applications and the
Cloud platform. Fig. 5 conceptually shows the CSG operation. A CSG is usually deployed at a branch office or remote
location and has access to a rather limited local compute/storage and is connected to a data center over the Internet. A
CSG essentially uses local storage as a cache for the remote storage to bridge the gap between the demand for low-
latency/high-throughput local access and the reality of high-latency connection to the data-center with unpredictable
and usually low throughput. A sample of the design variables in the CSG experiments is shown in Table 6 and the
complete details of experiments, hardware & configuration variation, workloads, and data-sets are given in Ref. [41].
Our study of CSG & the data-set generated is supported by Ref [2], wherein authors state that performance modeling is
complex since the running time (performance or throughput) is affected by the amount of resources in a non-linear

way and performance under a configuration is not deterministic.

A) B) © D No. of
A B c D Attribute o-° Example of Buckets
- Classes .
O™] CSG Server (Enumeration)
.’E ‘/j Jz Core Speed (GHz) 5 1.2,1.8,24---
Y e s ——— < é_ y . Memory Capacity (GB) | 5 16,32, 64 - - -
$ r | 2 2 Data cache size (GB) 7 25, 50, 100, 200, 500,
5 " dDaeaw =° 1000, > 1000
b Cloud Storage -
=] Metadata ‘ Metadata size (GB) 5 25, 50, 100, 200 & 500
ache— (Data Centers) . > =
)) Observed Performance | 10 Uniform distribution
e | ogical data path + === Physical data path
(100Kbps - - - 350Mbps)
Fig. 5. Edge Computing/ Cloud Storage Gateway Table 6. Sample of Design Variables for CSG data-set.

The observed performance of CSG denoted as O, is influenced by its configuration variables (CVs), denoted as P; for
ith CV. The CVs include compute resources (cores, cpu-speed, memory capacity, etc.), IO path (memory bandwidth,
disk IO bandwidth, etc), buffer space allocation (cache space, meta-data space), etc. We ran about 1000 experiments and
collected data on different configurations (denoted ¢, n = 1, 2, .., N). Each configuration ¢, involves the setting of M
different configuration variables (CVs). This data-set was further averaged and smoothed the outliners. Table 2 illustrates
the (randomly selected) configurations c;,’s and the corresponding outputs O,’s (known), and the H’s (unknown) for
such a configuration has to be estimated.

Our CSG configurations include CPU cores, DRAM bandwidth, memory capacity, and storage bandwidth during the
execution of workloads (inline with Ref. [24, 25, 48]), although the number of variations that we experimented with
had to be limited for practical reasons. Nevertheless, the availability of both hardware and software parameters in our
data helps us do a good evaluation and to better explain the results below.

The workload is an important component that defines the behavior of the system and the observable outcome (e.g.
performance) [35]. In CSG data-set D, the number of files, file size, and request metadata size refers to the user workload
(provided by the vendor). Applying the principles stated in § 3.2, we eliminated the least important CVs (i.e. L, above).
For example, using domain knowledge coupled with PCA and reasons explained in the CSG paper [41], we marked Log
Space Resource and Network Bandwidth as unwanted CVs (L,,;). The normalized data-set of the empirical data is shown
in Table 3. Based on the widespread of a few data-points (e.g. file size, and no. of files), we used Log normalization to

8[CSG] https://www.kkant.net/config_traces/CHIproject
Manuscript submitted to ACM

885
886
887
388
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

936

18 Sanjeev Sondur and Krishna Kant

re-engineer the configuration object values (pnm) to a new object (p},,,,)- The full data-set was normalized between a
small value (¢ = 1073) and 1.0. After such pre-processing, we use the data-set in the CHI to discover individual y’s & ’s
of various Py,’s. With this empirical data in hand, we applied the CHI to answer the research questions ((R1) to (R3))

raised above.

4.2.2 'BitBrains" Data-set. Next, we examine the application of CHI to the public domain data from TU Delft BitBrains’
data-trace [39]. This data-set contains the performance metrics of 1,750 Virtual Machines (VMs) from a distributed
data-center from BitBrains, which provides specialized services for managed hosting and business computation for
enterprises. This data-set includes some mixture of customer workload from major banks (e.g., ING), credit card operators
(e.g., ICS), insurers (e.g., Aegon), etc. During pre-processing, we noticed that the ’fastStorage-1250" data-set contained
huge records of zero values (e.g. zero disk IO or network activity) compared to the’Rnd-500" data-set. Therefore, we
used the latter, which has 500 VMs that are either connected to the fast SAN (storage area network) systems or to much
slower Network Attached Storage (NAS) systems. The data characteristic and usage is described in Table 7 and the
description of the CVs are taken from Ref [39].

4.2.3 "Enterprise" Data-set Characteristics. The last four data sets!0 (SS2, SS3, SS8, SSlO)11 in Table 5 & 7 have been
used in [31, 32, 40] for the performance model, which we compare against our approach. For simplicity, we label these
as "Enterprise Data-set". These data sets include traces from a web-server, key-value DBMS, relational DBMS, and a
sorting tool. Berkeley DB (C) (marked SS2) is an embedded key-value-based database library that provides scalable high
performance database management services to applications. SQLite (SS3) is the most popular lightweight relational
database management system used by several browsers and operating systems as an embedded database. Apache HTTP
Server (SS8) is a highly popular Web Server. Incidentally, the Apache server has about 550+ [52] CVs!Z but these were
cut-down to only nine CVs in [31, 40], but the rationale or the method for doing so is unclear. Roll Sort (SS10) is an
environment configuration where “rs” program is run by varying 6 features and the throughput is measured. The
characteristics of the Enterprise data-set!® is given in Table 7 and the description'* of the CVs are taken from Ref. [31].

We refer readers to the detailed literature at Ref. [31, 32, 40] for full systems description of the enterprise data sets.

5 DETAILED RESULTS
5.1 Discovering the Influence of configuration objects

Table 3 shows a small subset of the CSG data-set Dyes; with all configuration parameters normalized to a range 0 - - - 1.
Each row represents an input configuration file (c,’s) and the columns correspond to the configuration objects (Pp,’s).
CV names (P’s) are given in the header row and the last column refers to the observed output metric (O,’s, in this case,
performance expressed as bits/sec).

The results in Table 8 show the final ‘discovered’ health index hpp,’s in each cell {n, m} for various configuration
object values pnm (seen in Table 3) based on the above regression solution. CHI computes the y’s & n’s for each
configuration object Pp,’s to satisfy the objectives explained earlier and computes the overall health index of the
configuration file (H’s). The last two columns of Table 8 show that the computed H’s is closely related to the normalized
°[BB] http://gwa.ewi.tudelft.nl/datasets/gwa-t- 12-bitbrains (RND500)

10 [SS2,553,558,5510] https://github.com/ai-se/ActiveConfig_codebase/tree/master/RawData
111552,553,558,5S10] https://goo.gl/689Dve (RawData/PopulationArchives)
12 Apache doc. at: https://httpd.apache.org/docs/2.4/configuring html & https://httpd.apache.org/docs/2.4/mod/core. html

BData-set at: https://github.com/ai- se/Reimplement/tree/cleaned_version
14CV details: http://tiny.cc/3wpwly

Manuscript submitted to ACM

937
938
939
940
941
942
943
944

945

960
961
962
963
964
965
966
967
968

969

981

983
984
985
986
987

988

Performance Health Index for Complex Cyber Infrastructures

Table 7. Characteristics of Data-sets [16, 32, 33, 39, 41]

19

Code

System

Description of CVs

Observed
Behavior

CSG

Cloud Storage
Gateway

CSG config {No.of cores, Core speed, Memory Size, Memory bandwidth,
NW bandwidth, Storage IO, Data cache, Meta-data cache, Log space}
Workload char. {No.of files, File Size, Meta-data Size}

Completion
Time /
Performance

BB

TU Delft
BitBrains

VM Cont.Id, Timestamp, No.of cores, CPU capacity (MHz), CPU Usage
(MHz), Network Read Bandwidth (KB/s), Network Write Bandwidth
(KB/s), Memory Size (MB), Memory Usage (MB), Memory Usage(%), Disk
Read Throughput (KB/s), Disk Write Throughput (KB/s),

CPU
Usage(%)

SS2

SQL Lite server

OperatingSystemCharacteristics, SQLITESECUREDELETE, ChooseSQLITETEMP-
STORE, SQLITETEMPSTOREzero, SQLITETEMPSTOREone, SQLITETEMPSTOREtwo,
SQLITETEMPSTOREthree, EnableFeatures, SQOLITEENABLEATOMICWRITE, SQLI-
TEENABLESTAT?2, DisableFeatures, SOLITEDISABLELFS, SQLITEDISABLEDIRSYNC,
OmitFeatures, SQLITEOMITAUTOMATICINDEX, SQLITEOMITBETWEENOPTI-
MIZATIOO0, SQLITEOMITBTREECOUNT, SQLITEOMITLIKEOPTIMIZATIOO0, SQLI-
TEOMITLOOKASIDE, SQLITEOMITOROPTIMIZATIOO0, SQLITEOMITQUICKBAL-
ANCE, SQLITEOMITSHAREDCACHE, SQLITEOMITXFEROPT, Options,
*SetAutoVacuum, AutoVacuumOff, AutoVacuumOO0, SetCacheSize, StandardCache-
Size, LowerCacheSize, HigherCacheSize, LockingMode, ExclusiveLock, Normal-
LockingMode, PageSize, StandardPageSize, LowerPageSize, HigherPageSize, High-
estPageSize

Performance

SS3

Berkeley DB C

havecrypto, havehash, havereplicatio0, haveverifl, havesequence, haves-
tatistics, diagnostic, pagesize, ps1k, ps4k, ps8k,ps16k, ps32k, cachesize,
cs32mb, cs16mb,cs64mb, cs512mb

Performance

SS8

Apache Server

Base, HostnameLookups, KeepAlive,EnableSendfile, FollowSymLinks,
AccessLog,ExtendedStatus, InMemor1, Handle

Performance

SS10

Roll Sort

spouts, maxspout, sorters, emitfreq, chunksize, messagesize

Throughput

observed metric (last column O’s). During this discovery phase, the minimum MSE achieved was around 0.0128 after

500 iterations.

Table 8. Results: CSG Configuration Files with computed h;’s & HI metrics

Config | Cores| Core | Mem.| Mem. | Storage | No.of | File | Metadata| Cache| MetaData H O;
File Speed| Size | BW. | IO Files | Size | Size Space| Space geoMean

Cy4 0.22 | 0.71 0.75 0.56 | 0.91 0.97 | 0.78 | 0.94 0.35 0.31 0.58 0.50
c16 0.22 | 0.71 0.75 0.56 | 0.91 0.97 | 0.88 | 0.94 0.88 | 0.67 0.70 0.68
c31 0.22 | 071 | 0.75 | 0.56 | 0.91 0.91 | 0.96 | 0.96 0.88 | 0.67 0.70 0.77
c33 0.22 | 0.71 0.75 0.56 | 0.91 0.91 0.96 | 0.94 0.56 | 0.52 0.65 0.78
C36 0.22 | 0.71 0.75 0.56 | 0.91 0.91 0.96 | 0.94 0.88 | 0.67 0.70 0.77
C62 0.53 | 0.85 | 0.75 | 0.84 | 0.53 0.97 | 0.88 | 0.94 0.56 | 0.31 0.68 0.70
Co6 0.53 | 0.85 | 0.75 0.84 | 0.53 0.97 | 0.88 | 0.94 0.92 0.67 0.77 0.70
c76 0.53 | 0.85 | 0.75 0.84 | 0.53 0.97 | 091 0.94 0.56 | 0.31 0.68 0.76
86 0.53 | 0.85 | 0.75 | 0.84 | 0.53 0.91 | 0.96 | 0.96 0.88 | 0.67 0.77 0.84
C96 0.53 | 0.85 | 0.75 0.84 | 0.53 0.98 | 0.99 | 0.96 0.70 | 0.52 0.74 0.85

After regressing through the data-set to achieve the desired minimum MSE, CHI correlates the individual configuration

object values ppn,’s and their respective hyp,’s and determines the “influential behavior” of each of the CVs (Py,’s). With

the discovered y’s & n’s, CHI can build a picture of how each of these CVs affects the outcome Oj,. This relationship is

shown in Fig. 6. In this figure, the x-axis shows the normalized values of each CV (shown as the label above sub-graph)

and the y-axis is the normalized value of the respective health index (h; for P;), and the name of the CV given above

the sub-graphs. These figures demonstrate that CHI can discover the behavior with respect to each CV including the

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

1040

20 Sanjeev Sondur and Krishna Kant
strength of the influence, the cut-off point of diminishing return P,(ande), and rate of decay afterward. The graphical
results in Fig. 6 can be visualized by the user to understand how different CVs influence the configuration H (and in
turn the service behavior).

We examine these graphical results closely and show that the results are indeed supported by our in-depth study
of CSG domain [42]. For example, it is seen that the CSG performance is unimodal with respect to the Cache Space
and Meta-Data Space, wherein, there is a threshold beyond which any further increase is detrimental to the system
performance. This is supported by our earlier CSG research work [42] wherein we showed that allocating excessive
cache space (i.e., blindly throwing resources at the problem) does not help. The CSG needs to perform background tasks
such as garbage collection, data eviction to data-center, data-refresh, etc. Allocating excessive data cache buffer (see
sub-graph in Fig. 6) can hurt these background processes, taking additional time to examine the data in the cache and
reduce performance. Similar findings on meta-data space configuration is supported by our CSG work in that excessive
meta-data space allocation will trigger large metadata operations which in turn takes time, CPU, and memory resources

and reduces performance (also observed by Ref. [49]).

cores memory disklO FileSize Cache Space (Config)
1.0 1.0 1.0 - ® 10
o* %
[]
0.8 4 0.8 0.8 4 0.8 0.8 4 PY
([] []
0.6 0.6 0.6 0.6 0.6 []
° L4 °
0.4 4 0.4 0.4 4 0.4 0.4 4
([]

021@ 0.2 0.2 4 0.2 0.2 4
0.0 T 0.0 T 0.0 T 0.0 T 0.0 T

0.0 0.5 1.0 0.0 0.5 1.0 00 0.5 1.0 0.0 0.5 1.0 00 0.5 1.0

core speed mem bw No.of.Files Request MetaData Sz_Meta Data Space (Confic
1.0 1.0 1.0 1.0 1.0
[]
° []
0.8 0.8 ° 0.81 L 0.8 ° 08{ © @
0.6 4 b 0.6 0.6 4 0.6 0.6 4
[
[J

0.4 4 0.4 0.4 4 0.4 0.4 4
0.2 4 0.2 0.2 4 0.2 0.2 4 o
0.0 T 0.0 T 0.0 T 0.0 T 0.0 T

0.0 0.5 1.0 0.0 0.5 1.0 00 0.5 1.0 0.0 0.5 1.0 00 0.5 1.0

Fig. 6. Results: HI metrics for CSG

5.2 Behavior with "New" Configurations

We use the discovered values, i.e. outcome of the optimization objective (y;;’s & nm’s) to determine the H* " of a

set of a new (unseen) configuration file. We use the ond

The H™®" is computed using the validation model in the CHI framework (marked shaded in Fig. 2). Note that the

part of the split empirical data set Dy, to validate the CHL

computation of new H™¢" does not dependent on the compute unit or input from experts or regression logic, because
the characteristics of various Py,’s is already discovered and stored in the CHI repository. Table 8 shows the computed
hnm and H™®Y of the new (D;es; configuration files. The last two columns in Table 8 show that the newly computed

O"¢Vsg (i.e. the true value). This set of results demonstrates that CHI

H™" is closely related to the observed metric
can reasonably determine the probable behavior of the service (i.e observable metric O’s) of the new configuration

Manuscript submitted to ACM

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1092

Performance Health Index for Complex Cyber Infrastructures 21

files using the y’s & n’s discovered earlier. The MSE and variance (collectively called error rate) for different train/test
ratio data-set for various systems is given in Table 5. This also shows that CHI can help in evaluating the behavior on a

new/unseen configurations (CVs, hardware, workload, etc.).

5.3 CHI for "BitBrains" Data

In the absence of an explicit throughput measure, we quantify CPU utilization as an observable metric (O’s) and the
remaining attributes as CVs (P’s). The latter can be changed and allocated differently for the various VMs. In the absence
of any further information, we identify each VM as a unique configuration with its associated compute, memory, disk IO,
and network resources. We ignore other CVs marked using italicized font in row “BB” in Table 7, since these additional
CVs represent insignificant aspects of the system. A sample of raw data-set taken directly from Ref. [16] and used in
our studies is given in Table 9. Using this data, we restate the above research question as: Quantify the influence of
various CVs of the VM on the CPU utilization in Bitbrain data-center.

Since the detailed time-series for each VM setting is not of interest here, we first compute the average value of every
parameter for each VM. Given the long length of the trace, the averages should be quite reliable. The results indicate
that a few VMs are outliers, with either almost no resource usage in spite of significant resource allocation, or very
large resource usage of one type (e.g., VMs that only do very intensive 10). We filtered out all zero value records as this
would make the average resource usage so tiny that the entire exercise will be useless. After filtering, we normalized
the data-set and used it for input to the CHI model. The results are shown in Figs. 7, with each sub-graph showing the
influence of a CV on the observable metric. In all the graphs, the x-axis denotes the normalized values of each CV P;
(shown by a label above the graph) and the y-axis is the normalized value of the chosen output metric (O;), namely the
CPU utilization.

Note that in BitBrains data-center architecture, all VMs simply share the available SAN capacity (in terms of disk
space and IO throughput), and network capacity. Also, since multiple VMs share the same underlying physical resources,

a VM configuration can saturate quickly without yielding additional performance benefits, as the bottleneck can lie

elsewhere.
Table 9. Sample FastStorage (RND 500) Configuration File [16]

Identifier Configurable Variables (CVs) Neglect Workload Observed
Metric

Container CPU | CPU Memory NW NW CPU Memory | Disk Disk | CPU

ID cores | Capacity| Capacity Revd Trsmt | usage | usage read write | usage

[MHZ] | [KB] [KB/s] | [KB/s] | [MHZ] | [KB] [KB/s] [KB/s] | [%]

21.csv 8 23408.00 | 5111808.00 | 3.16 0.82 392.64 | 37282.67 93.28 106.89 | 1.68

108.csv | 4 11704.00 | 16703488.00| 175.85 | 6.97 788.56 | 494927.40 | 530.30 1331.83| 6.74

136.csv | 4 10400.00 | 1725502.76 | 29.53 1.68 341.47 | 1466226.55| 220.93 153.90 | 3.28

392.csv | 4 10640.11 | 16774687.20| 243.38 | 621.50 | 3507.89 | 5775129.23 | 153.33 2914.24) 32.97

495.csv | 8 20800.00 | 4173930.42 | 153.06 | 68.89 363.93 | 528867.27 | 53.81 74.82 | 1.75

With limited insight into this data-set, we can theorize that performance as a function of the four CVs shown (namely
number of CPU cores, memory size, CPU speed, and the disk IO rate) shows a familiar diminishing returns behavior
with saturation. This is exactly what we would expect from a basic domain knowledge of computer architecture and
10 modeling. For example, the overall CPI (cycles per instruction) for a workload depends on many factors, and thus
decreasing only one parameter (e.g., core CPI or access latency) will provide the kind of behavior we see in these graphs.

Manuscript submitted to ACM

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

1144

22 Sanjeev Sondur and Krishna Kant

CPU cores Memory capacity [KB] CPU capacity [MHZ] Disk read thro...[KB/s]
1.0 9 A 4 1.0 ° 1.0 T & ¥ 1.0 T gever v v w wwn
° ° e
0.8 1 0.8 0.8 - 0.8 - ’
[

0.6 0.6 - 0.6 - ° 061 @

[e ' °

[
0.4 4 041 @ 0.4 4 0.4 .
° o ° °

0.2 1 0.2 0.2 0.2 1
0.0 r T 0.0 T 0.0 ! T T o.o' r

0.00 025 050 075 1.00 0.00 025 050 075 1.0 0.00 025 050 075 1.00 0.00 025 050 075 1.0C

Fig. 7. Results: HI metrics for FastStorage (RND 500)
5.4 CHI for Enterprise data sets

The key results from the CHI model were summarized earlier in Table 5 (see rows for SS2,553,5S8,5510). With the
exception of Roll-Sort, which we discuss shortly, the MSE and its variance are quite low consistently, from about 1.7%
to 6.2%. Furthermore, the learning time for CHI ranged between 10 to 25 seconds for all these data sets. These results
substantially surpass the prediction results in the literature using these data sets both in terms of accuracy and time. For
example, Ref.[13] uses incremental random samples with steps equal to the number of configuration options (features)
of the system. They show rather unstable predictions with a mean prediction error of up to 22%, and a standard deviation
of up 46%. Ref. [40] discusses a technique that learn predictors for configurable systems with low mean errors, but the
variance in the predictions could be very large; in particular, in half of the results for the Apache Web server predictions,

standard deviation was up to 50%. Also, the learning time is reported to be 1-5 hrs depending on the data-set.

HigherCacheSiz SetCacheSize = LowerCacheSize LowerPageSize HighestPageSize
1.0 1.0

'1.0 ,
0.8 1 0.8
0.6 0.6
0.4 1 0.4 1
0.2 1 0.2 1
0.0 T

. T 0.0
0.5 1.0 0.0 0.5 1.0 0.0 0.5

Fig. 8. Results: HI metrics for SQL Lite Configuration
Before discussing the results in Fig. 8 for SQL Lite, we note an important point about its configuration settings. Like
most real-world databases, SQL Lite has a large number of configuration parameters, but many of them do not have
much influence on the performance. The model used in Ref. [31] had several unexplained options compared to SQL Lite
documentation '°. While we cannot speak directly about this data-set, it appears (based on our deep understanding of
how relational databases operate), that these additional parameters (which represent some minor options to be turned

15SQL Lite doc. at https://www.sqlite.org/c3ref/c_config_covering_index_scan.html & https://www.sqlite.org/c3ref/c_dbconfig_defensive html.
Manuscript submitted to ACM

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

1196

Performance Health Index for Complex Cyber Infrastructures 23

emit_freq_logN sorters_Norm chunk_size_logN message_size_logN
1.0 v v 1.0 ® 9 v w L0 ——w 1.0 —
° ® °
[]

0.8 1 0.8 0.8 0.8

0.6 0.6 ° 0.6 0.6 1

0.4 4 0.4 4 0.4 0.4

[
0.2 4 0.2 0.2 0.24
0.0 . T . . 0.0 T T T T 0.0 T T T T 0.0

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 0.0 dz d4 dﬁ d& 1.0

Fig. 9. Results: HI metrics for Roll-Sort Configuration

on/off) should not have a strong influence on SQL-Lite performance. We thus decided to exclude them in our CHI
modeling is shown in Fig. 8. The excluded CVs are marked as an italicized font in Table 7 and CVs considered by CHI is
marked as a normal font (after marker).

Finally, we show the CHI models for the Roll-Sort (S510) workload in Fig. 9. Unlike other workloads, which represent
complex applications, Roll-sort is merely a sorting algorithm and has only six CVs, but it is unclear what’s special about
and whether this is an external sort. The CHI model shows that the influence of several CVs saturates at certain values
and any further increase in the resource (e.g. No.of sorters, chunk size) does not result in better performance. However,
it appears that the data here is very noisy, perhaps influenced by the IO subsystem.

Ref. [31] mentions that for several software systems in their study, the configuration spaces are far more complicated
and hard to model. They color code these hard-to-model systems as yellow and red (Fig. 1 in Ref. [31]). Further, they
state that applying the state-of-the-art technique by Guo at al. [13] on these software systems showed the error rates of
the generated predictor up to 80%. Using the data-set for the same systems used by Ref. [13] (See Table II & III), CHI
showed a substantial improvement in error rate MSE and variance as shown in Table 10. With 50% D;rqin & 50% Dyest
for these data sets, CHI achieved an MSE for SQL Lite at 6.2%, for Berkeley DB C: 4.17%, and for Apache Server: 3.71%.
CHI can outperform in most cases since the objective is to discover the influence of individual CVs rather than focus
on building a detailed performance model (Table 10). Additionally, CHI does not depend on the sampling techniques

which are again data dependent.

6 DISCUSSION: SEGMENTED REGRESSION (MARS & LARS)

The influence of individual CVs on the health index can be complicated [58] and is generally not linear. Yet much

of the data-driven behavior, characterization attempts to fit linear or piece-wise linear segments to the observations.

In particular, if we have M predictor variables (X = {x;},i € 1---M) (CVs in our study) and observed output (Y)

(performance in our study), a typical assumption is a linear relationship along with a normally distributed error term ¢
with zero mean and variance o?:

Y = X + ¢, where ¢ = N(0, 0°) (14)

Linear Regressions — Ordinary Least Square (OLS), Ridge, Lasso: Such regression algorithms aim to estimate

B (the unknowns) such that some measure of overall error is minimized. For example, OLS regression minimizes the

sum of squares of residuals to achieve the unbiased estimate:

N
LOLS(ﬁ) = ;(yi - xif)?, and minimize (ﬂ) (15)

Other algorithms such as Ridge or Lasso regression try to reduce variance at the cost of introducing some bias. For
example, Lasso regression adds the constraint Z?’I: 1(Bjl < t) where t is a given threshold. Lasso has a parsimony

Manuscript submitted to ACM

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

1248

24

Sanjeev Sondur and Krishna Kant

property [7, 46]: for any given constraint value ¢ , only a subset of the predictor variables (i.e. x;’s) have nonzero values.

i.e. many predictor variables can have a zero thereby suppressing their contribution to the output Y. That is, in the

configuration problem at hand, these algorithms try to “suppress” the contribution of some CVs.

Further, Ref. [49] argues that machine

Table 10. Error Rates (MSE and Variance) of Enterprise Data-set

learning based analytical models, though | Code CHI Error Rate Error Rate [13] Error Rate [40]
have been shown to work very well in some | [SS2] 6.20% + 3.11% 7.2% + 4.2% N/A
specific scenarios, do not consider the domain | [S$3] 4.17% + 2.19% 6.4% + 5.7% 19% + 1%
specific practical factors such as non-linear [SS8] 3.71% + 2.1% 9.7% + 10.8% 27% + 46%

multi-threading overhead or JVM GC activi-
ties, which are very related to soft resource allocation and can significantly degrade server efficiency. Our evaluation
supports this statement with empirical results, as given in § 6.1.

Multivariate Adaptive Regression Spline (MARS): MARS [11, 28] is a technique for deriving simple multi-
segment models from the data. It can be viewed as an extension of a linear model that automatically models non-
linearities and interactions between variables by combining hinge functions of the form +max(0, x — K), (where K is a
constant). MARS builds a linear model of the form:

k

§=f(x) =) ciBi(x) (16)

i=1

where the predicted value () is a sum of coefficient (c;) and basis function (B;(x)). Our investigation revealed that a
greedy model like MARS uses brute force to derive the above parts of the model (c;’s & B;’s), and the hinge function cut-
off points (K). Though the MARS model can yield good results for predicting new outcomes, an uninformed model like
MARS for CHI has little regard for the physics of the problem and may behave in unexpected ways such as eliminating
certain important CVs or puttin in hinge points (i.e., change in slope) at unexpected places or increase/decrease slope in
unexpected ways. For example, instead of showing a steady diminishing-returns property that applies in almost any
situation with increasing resources, MARS may as well use a line segment with a larger slope on the higher end!

Least Angle Regression (LARS): LARS [7, 37, 44] produces a full piece-wise linear solution path to a non-linear
relationship between predictor variables x;’s and output y. LARS algorithm is similar to forward step-wise regression,
but instead of including variables at each step, the estimated parameters are increased in a direction equiangular to
each one’s correlations with the residual. In § 6.1, we show the limitations of LARS in discovering the influence of the
CVs on the performance, wherein the algorithm ignores important CVs though there is a wider variance of such data.

In designing a solution, the “goodness” is often defined in terms of prediction accuracy, but parsimony is another
important criterion since simpler models provide better insight into the X = Y relationship [7]. However, we believe
that this tradeoff (i.e., more segments implying better accuracy) is introduced somewhat artificially by restricting the
model to linear segments which ignore the physics of the problem. Instead, our approach is to find a nonlinear function
that shows the desired characteristics (e.g. smoothness, diminishing returns, complexity related loss in performance,
etc.) without splitting into more & more segments. We show that such an approach not only correctly captures the

expected behavior of the system, it is also less complex.

6.1 Results: Segmented Regression (MARS & LARS)

Earlier we argue that the brute force algorithms such as MARS & LARS often run counter to sensible behavior, such as
showing a higher slope with more resources (i.e., superlinear behavior) where generally domain experts would expect

Manuscript submitted to ACM

1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

1300

Performance Health Index for Complex Cyber Infrastructures 25

Table 11. Results from Segmented Regression (MARS & LARS) for 80% Dy rqin & 20% Dyest

Code CVs considered by MARS CVs ignored by MARS MARS MSE | LARS MSE
CSG FileSize, No.of Files, Cores Core Speed, Memory, Mem BW, Disk 0.0015 0.0054
10, Cache Space, Meta-Data Space,
Req.MetaData Size
BB NW transmitted, NW received, | CPU cores, CPU capacity, Disk 0.0253 0.0327
Memory, Disk Read Write,
SQL SetAutoVacuum, AutoVacuumO, Au- | StandardCacheSize, LowerCache- 0.0262 0.0260
Lite toVacuumOO0, SetCacheSize, Page- | Size, LockingMode, Normal-
Size, HigherCacheSize, Exclusive- | LockingMode, LowerPageSize,
Lock, StandardPageSize HigherPageSize, HighestPageSize
Berkeley | have crypto, diagnostic, ps1k, ps4k, | have hash, have replicatio0, have 0.0166 0.0170
DB C ps8k, ps16Kk, ps32k, cs16mb, cs512mb | verifl, have sequence, have statistics,
pagesize, cachesize, cs64mb
Apache | EnableSendle, KeepAlive, Handle, In- | Base, HostnameLookups, AccessLog, 0.0138 0.0147
Memorl1 ExtendedStatus, FollowSymLinks

diminishing returns and hence a flattening trend. Even worse, these algorithms may kick out the important CVs and
keep the irrelevant ones since they do not have any insight into the nature of individual predictors. Although the
segmented regression algorithms (MARS and LARS) can do a good job of fitting the data and thereby yield superior
prediction accuracy (See Table 11) within the range covered by the data, a blind faith in data is particularly troublesome
for physical systems where we do understand many things about reasonable vs. anomalous behavior.

For example, MARS uses a brute force algorithm to regress over a CV P; to reach the best possible MSE before
considering the next CV P;. This is evident from the results as shown in Table 11, wherein MARS ignores several CVs
for all the domains. In our work involving CSG, we (as experts who have significant experience with it) can confidently
say that the ignored CVs (CacheSpace, Meta-DataSpace, Req.MetaData Size, Memory, etc.) have a dominant bearing
on the performance of the system. As has been noted in our earlier work [41, 42], although File size and No. of Files
are prominent workload characteristics that do have a bearing on the performance, but they are not the primary
components that can be isolated from the rest. However, by applying a brute force approach, MARS considers literally
3 parameters (Row #1, Table 11) and ignores the remaining dominant CVs. Similar observations for BitBrains VM
components (Row #2, Table 11) show that MARS ignores most of the CVs and the performance prediction is solely
based on two components (Network & Disk). VM performance experts tend to argue that compute capacity (CPU cores,
CPU core speed) influences performance heavily [56].

We show the results from LARS in Fig. 10 for different domains, where the x-axis shows the normalized values of
the CV settings (p;’s) and the y-axis shows the normalized values of the performance of the system. Fig. 10(a) is the
LARS output for CSG illustrates that performance is heavily dependent on only three components (cores, core speed,
memory bandwidth). As systems people, we know that the performance is not dominated by one or two components,
but is dependent on a balance between compute, memory, disk IO & workload. Similar results are evident in Fig. 10(b),
where the VM performance is linearly dependent on two prime components (CPU cores & CPU capacity[MHz]), largely
ignoring the rest of the CVs. This is again in contrast with VM domain knowledge — as basic architecture knowledge
would indicate, the compute resource does not have a linear relationship with performance. Instead, the performance
depends on the overall CPI (cycles per instruction) which is impacted by cache and memory path latencies. Finally,
although MARS & LARS use a similar approach for segmented regression (i,e. converting a non-linear relationship into

Manuscript submitted to ACM

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352

26 Sanjeev Sondur and Krishna Kant
1.0
—— cores —— CPU cores
—— core speed 124 CPU capacity [MHZ]
= merpory, —— Memory capacity [KB]
081 — mem bw ! - —— Disk read thro...[KB/s]
—— disklo 10{ —— Disk write throu...[KB/s]
—— No.of.Files —— NW received thro...[KB/s]
—— FileSize —_— i
06) / s NW transmitted thro...[KB/s]
” —— Request MetaData Size " —==- CPU usage [%]
c ~——— Cache Space (Config) I I c [T 1
:E —— Meta Data Space (Config) H H 3 6 " H
% 0.4 === bps (LogN) % :
S T 1 T] 1
i i i
4
i b L1 i
024 | 1 AN i o i
1 [N} 1
: . 2
| o
PR i I —
0.0 —— of
1 | 1 (N} 1 1 1 1 m o 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
|coef| / max|coef| |coef| / max|coef|
(a) CSG (b) BB
—— Base ' 1 —— have crypto,
1 1
~—— HostnameLookups I I — — have hash B
44 KeepAlive | — | 41 — have replicatio0 |
H —— have verifl /—/
—— EnableSendle H h
. —— have sequence L1
—— FollowSymLinks I —— have statistics L
N AccessLog | 31— diagnostic
~—— ExtendedStatus | —— pagesize
~—— InMemorl —— pslk
@ 1
€ | —— Handle | [[£ | 7 sk
2 - rf led 1 | [[5] —— ps8k
£ 2 pert scale | 22— psiek
§ i § —_ ps}sk b
—— cachesize -
! i »,,/,—-
1 —— cs32mb J— L
N ! [N 1| — e16mb // S /J/
1 / —— cs64mb a _— 1
e P i — cs512mb — /ég/f‘z
0 |_~1 ! ~~- perf_scaled . S
Pl - A= L
> » T
. - ! ’,:::i:;;:fFfE , b/ ! _,,4:::::=,—-==‘: :;::::;;#_‘__J
1 I i i i
010 0:2 014 0:6 018 1:0 0.0 02 04 0.6 0.8 1.0
|coef| / max|coef| |coef| / max|coef|
(c) Apache (d) BDBC
—— SetAutoVacuum —— max_spout,] '
—— AutoVacuumo L —— sorters, 1 /
1757 autovacuumoo L 51 — emit freq ! !
—— SetCacheSize | chunk size i i
—— StandardCacheSize i
150 D chesive / W message_size_ |
—— HigherCacheSize === throughput_
1.25{ — LockingMode L i T
—— Exclusivelock L I H |
—— NormalLockingMode S 2]
1.001 — PageSize H k]
— StandardPageSize L 2
—— LowerPageSize - 173
0.751 — HigherPageSize L1 S 24 ! ' ! !
—— HighestPageSize g L1
050~ Perf_Scaled e l_—
-]
i
i 14
025 | P ! 1 1
. ! =
i > p//:’
000 ! : =0 0 —
| | |
0.0 02 0.4 0.6 0.8 10 0:0 0:2 O:4 0:6 0:8 1:0

coef| / max|coef|

() SOL Lite
Fig. 10. Results: LARS Coefficients (weights) for the above data sets

|coef| / max|coef|

(f) Roll Sort

a series of linear regions), we see that they yield drastically different results, which too is troubling and indicates a

dissociation from the physics of the problem.

This study validates our argument that a blind belief in data-driven models or direct application of a well-versed

algorithm is not only counterproductive but risks interpreting the results with no attention to the dynamics of the

system under study.

Manuscript submitted to ACM

1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404

Performance Health Index for Complex Cyber Infrastructures 27

To encourage future extensions to CHI and future study in configuration subject areas, we share the full data-set
used in Table 5, the python implementation of CHI, MARS & LARS, and the full set of results at https://www.kkant.net/
config_traces/CHIproject.

7 CURRENT STATE OF THE ART AND CHALLENGES
7.1 CHI vs. State of Art.

Many domain specific articles speak about challenges pertaining to the configuration (or resource allocation) of
networks [8, 9, 19], compute units or storage [3], operating systems [55], applications [40, 49], Cloud [26, 30], etc. A
prominent approach in the literature on configuration settings has been the performance influence model (PIM) that
captures the relationship between CVs and the performance [5, 31, 40]. PIM is almost entirely dependent on model
training using available performance data and does not reflect or exploit any domain knowledge concerning either
the relationships or the limitations that go beyond the range of training data [18]. PIM like approaches look at the
statistical influence of the configuration values and do not consider the design and architecture but are learned from
observations [57]. A pure statistical model simply fits the data to a model but does not provide any insights into
whether or why the real behavior is compatible with the statistical observations. In contrast, CHI aims at identifying
the dominant properties of the CVs and quantifying their parameters using the data.

Xu et al. [52] report that the Apache server has more than 550 parameters and many of these parameters have
dependencies and correlations, which further worsens the situation. Reference [31, 40] narrows this down to only
nine CVs configuration options!®, but no rationale is given. In particular, the thread-pool size of Apache Server is not
considered but is reported to be critical in Wang et al. [49]. We believe that such issues can substantially benefit by
exploiting the domain knowledge of the administrators [27] instead of simply depending on the data, which could be
misleading or inadequate.

Probability based approaches for finding optimum configurations such as ConEx [22] are a variation of the PIM
model that probabilistically sample the configuration space and then generate a machine learning (ML) model to predict
an outcome (usually performance). However, the contribution of individual configuration parameters on the outcome
is not modeled. Variability aware models proposed by Guo et al. [13] work on boolean CVs (being set true/false), but
it is well known that arbitrary Boolean functions of this form simply cannot be learned [57]. As discussed by Zhang
et al. [57], we show that performance functions are not arbitrary, but rather structured, and hence can be potentially
learned effectively.

In Ref. [2], authors build performance models for various applications to accurately distinguish the best or close-to-
the-best configuration from the rest with only a few test runs. Using FLASH [33], authors sort or rate the configurations
in order of the performance achieved. Ernest [48] designed a solution to predict the performance of applications under
various resource configurations to automatically choose the optimal configuration. In Ref. [25], the authors study
performance variability and answer how many repetitions of an experiment are likely to be needed to achieve high
confidence in the results within a sufficiently narrow confidence interval. It is true that the performance could vary
substantially due to variations in the workload; however, this is not a configuration issue. For our purposes, we are
interested in average performance supported by a configuration, and not instantaneous performance or performance
for specific workload inputs. The variability will make performance non-monotonic and multi-modal [18], which is

precisely the characteristics that CHI uses.

163ee http://tiny.cc/3wpwly
Manuscript submitted to ACM

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

1456

28 Sanjeev Sondur and Krishna Kant

Velez et al.[47] & Ha et al. [14] observed that the influence of configuration parameters on performance is highly
variable, i.e., some options are highly influential while others have little or no impact on the performance. Such
performance variations have made it very challenging to predict the performance of an application. CHI postulates the
influence of the CVs as a convex-concave [18] function (e.g., monotonic with diminishing returns) and thus quantifies
the behavior of the configuration more descriptively.

Xu et al.[53] in their study of various application configurations reveal that about 4.7%-38.6% of the critically
important CVs do not have any early checks and thereby cause a severe impact on the system’s behavior. Xu focuses
the study on CVs related to the system’s Reliability, Availability, and Serviceability (RAS). This concept is in line with
our approach in that CHI eliminates unimportant CVs (explained later as L,,;) and expresses the service behavior with
a measurable health index metric. This technique of including domain experts into the decision making process is often
used in Interactive Optimization Techniques [18]. Wang et al. [49] show that liberal allocation of a CV (i.e DB pool size)
can lead to performance degradation. Further, their study shows the importance of considering the practical factors
such as non-linear effect of resource allocation. CHI supports this observation and models the non-linearities in CVs as
given above.

Zaman et al. [56] show that VM provisioning depends heavily on resource allocation which in turn affects economics
and bidding process (e.g. VM; with 1x2-GHz CPU, 8GB memory, 1TB disk vs. VM, with 2x2-GHz CPU, 16GB memory,
2TB disk;). Zhu et al. [58] demonstrate the difficulty and infeasibility of the configuration tuning problem using common
machine learning model-based methods. Wei et al. [50] and Moradi et al. [30] highlight the complexity of allocating
multiple resource types in a study of heterogeneous resource allocation in the VMs. Using practical data from a wide
range of data-sets, we show that CHI can help understand the effect of resource allocation. By understanding how
multiple resource types (e.g., number of CPU cores, disk size, etc.) affect the performance/workload, CHI can aid users
in reducing the monetary costs by choosing the right heterogeneous and economical resource allocation, thus be also
cost-efficient.

It is also worth noting that although there are many Configuration Management Tools (e.g., CFEngine, Puppet,
Ansible, etc. [34]), their job is only the application of provided settings to multiple resources consistently and ensuring

that certain given relationships hold.

8 CONCLUSIONS

The behavior of all cyber systems depends on a set of configuration variables (CVs) which if set improperly could result in
a variety of problems including sub-optimal performance. In this paper, we present a performance related Configuration
Health Index (CHI) framework that can quantify the contribution of individual CVs towards the overall performance of
the service. We evaluate CHI using a model-driven approach that exploits both the domain knowledge and the available
data. We demonstrate the applicability of CHI using data sets from state-of-art systems. In all cases, we demonstrate
that CHI can learn the influence of CVs on service performance and accurately predict the behavior for new (yet unseen)
configuration settings. We show that our approach works better than a pure data-driven characterization and can
give a better a priori insight into the influence of the CVs on the system performance. We believe that CHI provides
a substantial improvement over the state of the art and can be broadly applicable to a wide range of configuration
management problems. We also demonstrate the dangers of the pure data driven models in that they might predict a
wrong trend or eliminate important configuration variables. An approach that uses data judiciously along with the

domain knowledge based constraints can address this problem.

Manuscript submitted to ACM

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

Performance Health Index for Complex Cyber Infrastructures 29

ACKNOWLEDGEMENTS

We appreciate the support and active participation of Girisha Shankar (Ph.D student) from Indian Institute of Science,

Bengaluru, India and Dr. Slobodan Vucetic of Temple University. The discussions with them were highly valuable in

devising the solution and added to the techniques presented in the paper. Finally, we thank the anonymous reviewers

for their thorough comments and helping us deliver a quality manuscript.

REFERENCES

[1] ALExANDER PucHER. Cloud Traces and Production Workloads for Your Research, 2020.

[2] Avripourrarp, O., Liu, H. H., CHEN,]., VENKATARAMAN, S., YU, M., AND ZHANG, M. Cherrypick: Adaptively unearthing the best cloud configurations
for big data analytics. In 14th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 17) (2017), pp. 469-482.

[3] ANDERsON, E., AND ET. AL. Hippodrome: Running circles around storage administration. In FAST (2002), vol. 2, pp. 175-188.

[4] BAUER, L., AND ET. AL. Detecting and resolving policy misconfigurations in access-control systems. ACM Trans. Inf. Syst. Secur. (June 2011).

[5] Carotoru, A., BECKINSALE, D., EARL, C. W., HOEFLER, T., KARLIN, I, ScHULZ, M., AND WOLF, F. Fast multi-parameter performance modeling. In 2016
IEEE International Conference on Cluster Computing (CLUSTER) (2016), pp. 172-181.

[6] DauBECHIEs, I, AND ET. AL. Nonlinear approximation and (deep) relu networks. arXiv preprint arXiv:1905.02199 (2019).

[7] Erron, B., HASTIE, T., JOHNSTONE, L, TIBSHIRANT, R., ET AL. Least angle regression. Annals of statistics 32, 2 (2004), 407-499.

[8] FERNANDES, G., RODRIGUES, J. J., CARVALHO, L. F., AL-MUHTADYI, J. F., AND PROENGA, M. L. A comprehensive survey on network anomaly detection.
Telecommunication Systems 70, 3 (2019), 447-489.

[9] FogEeL, A, FUNG, S., PEDROSA, L., WALRAED-SULLIVAN, M., GOVINDAN, R., MAHAJAN, R., AND MILLSTEIN, T. A general approach to network
configuration analysis. In 12th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 15) (2015), pp. 469-483.

[10] Forum OF INCIDENT RESPONSE AND SECURITY TEAMS. Common Vulnerability Scoring System. https://www.first.org/cvss/, 2017.

[11] FriepMmAN,]J. H. Multivariate adaptive regression splines. The annals of statistics (1991), 1-67.

[12] Guo,]., CHANG, Z., WANG, S., DING, H., FENG, Y., MAo, L., AND Bao, Y. Who limits the resource efficiency of my datacenter: An analysis of alibaba
datacenter traces. In 2019 IEEE/ACM 27th International Symposium on Quality of Service (IWQoS) (2019), IEEE, pp. 1-10.

[13] Guo, J., CzARNECKT, K., APEL, S., SIEGMUND, N., AND WAsowsKkI, A. Variability-aware performance prediction: A statistical learning approach. In
2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE) (2013), IEEE, pp. 301-311.

[14] Ha, H., AND ZHANG, H. Deepperf: performance prediction for configurable software with deep sparse neural network. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE) (2019), IEEE, pp. 1095-1106.

[15] HE, S., MANNs, G., SAUNDERS, J., WANG, W., POLLOCK, L., AND SOFFA, M. L. A statistics-based performance testing methodology for cloud applications.
In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (New York, NY, USA, 2019), ESEC/FSE 2019, Association for Computing Machinery, p. 188-199.

[16] Iosup, A., L1, H., JAN, M., ANOEP, S., DUMITREsCU, C., WOLTERS, L., AND EPEMA, D. H. The grid workloads archive. Future Generation Computer
Systems 24, 7 (2008), 672-686.

[17] Iosup, A., YiGITBASI, N., AND EPEMA, D. On the performance variability of production cloud services. In 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (2011), IEEE, pp. 104-113.

[18] IoBAL, M. S., KRISHNA, R., JavIDIAN, M. A, Ray, B., AND JaMsHIDL, P. Unicorn: Reasoning about Configurable System Performance through the lens
of Causality. In Proceedings of the Seventeenth European Conference on Computer Systems (2022), EuroSys *22, ACM.

[19] Kakarra, S. K. R., TANG, A., BECKETT, R., JAYARAMAN, K., MILLSTEIN, T., TAMIR, Y., AND VARGHESE, G. Finding network misconfigurations by
automatic template inference. In 17th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 20) (2020), pp. 999-1013.

[20] Kang, K. C., CoHEN, S. G., HEss, J. A., Novak, W. E., AND PETERSON, A. S. Feature-oriented domain analysis (foda) feasibility study. Tech. rep.,
Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, 1990.

[21] KARIMIREDDY, S. P., KoLoskova, A., STICH, S. U, AND JaGar, M. Efficient greedy coordinate descent for composite problems. In The 22nd International
Conference on Artificial Intelligence and Statistics (2019), PMLR, pp. 2887-2896.

[22] KrisHNA, R, TANG, C., SULLIVAN, K., AND Ray, B. Conex: Efficient exploration of big-data system configurations for better performance. [EEE Trans.
on Software Eng. (2020).

[23] Lu, H., FREUND, R., AND MIRROKNT, V. Accelerating greedy coordinate descent methods. In International Conference on Machine Learning (2018).

[24] MaxkraNt, H. M., AND ET. AL. Adaptive performance modeling of data-intensive workloads for resource provisioning in virtualized environment.
ACM Trans. Model. Perform. Eval. Comput. Syst. (Mar. 2021).

[25] MaricQ, A., DUPLYAKIN, D., JIMENEZ, I, MALTZAHN, C., STUTSMAN, R., AND Riccr, R. Taming performance variability. In 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18) (2018), pp. 409-425.

[26] MasANET, E., SHEHABL, A., LEL, N, SMITH, S., AND KOoOMEY, J. Recalibrating global data center energy-use estimates. Science 367, 6481 (2020), 984-986.

[27] MEIGNAN, D., KNUST, S., FRAYRET, J.-M., PESANT, G., AND GAUD, N. A review and taxonomy of interactive optimization methods in operations

research. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 3 (2015), 1-43.

Manuscript submitted to ACM

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527

1528

1530

1531

1533

1534

1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546

1547

30

(28]
[29]

[30]
[31]
[32]
[33]
[34]
[35]
[36]
(37]
[38]
(39]
[40]
[41]
[42]
[43]
[44]
[45]

[46]
[47]

(48]

[49]

[50]

[51]

(52]

(53]

(54]
[55]

[56]

(571

(58]

Sanjeev Sondur and Krishna Kant

MILBORROW, S., HASTIE, T., AND T1BSHIRANT, R. Earth: multivariate adaptive regression spline models, 2014.

Mouammab! KoUsHKI, N., SONDUR, S., AND KANT, K. Automated Configuration for Agile Software Environments. In 2022 IEEE 15th International
Conference on Cloud Computing (CLOUD) (2022).

Morapbl, H., WANG, W., AND ZHU, D. Online performance modeling and prediction for single-vm applications in multi-tenant clouds. IEEE
Transactions on Cloud Computing (2021).

NAIR, V., MENZIES, T., SIEGMUND, N., AND APEL, S. Using bad learners to find good configurations. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (2017), pp. 257-267.

NAIR, V., MENZIES, T., SIEGMUND, N., AND APEL, S. Faster discovery of faster system configurations with spectral learning. Automated Software
Engineering 25, 2 (2018), 247-277.

NAIR, V., Yu, Z., MENZIES, T., SIEGMUND, N., AND APEL, S. Finding faster configurations using flash. IEEE Transactions on Software Engineering (2018).
ONNBERG, F. Software Configuration Management: A comparison of Chef, CFEngine and Puppet, 2012.

ParADOPOULOS, A. V., ALI-ELDIN, A., ARZEN, K.-E., TORDSSON, J., AND ELMROTH, E. Peas: A performance evaluation framework for auto-scaling
strategies in cloud applications. ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS) 1, 4 (2016), 1-31.
PEREIRA, J. A., MARTIN, H., ACHER, M., JEZEQUEL, J.-M., BOTTERWECK, G., AND VENTRESQUE, A. Learning software configuration spaces: A systematic
literature review. arXiv preprint arXiv:1906.03018 (2019).

PLAN, Y., AND VERSHYNIN, R. The generalized lasso with non-linear observations. IEEE Transactions on Information Theory 62, 3 (2016), 1528-1537.
RE1ss, C., WILKES, J., AND HELLERSTEIN, J. L. Google cluster-usage traces: format+ schema. Google Inc., White Paper (2011), 1-14.

SHEN, S., VAN BEEK, V., AND losup, A. Statistical characterization of business-critical workloads hosted in cloud datacenters. In 2015 15th [EEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (2015), IEEE, pp. 465-474.

SIEGMUND, N., GREBHAHN, A., APEL, S., AND KASTNER, C. Performance-influence models for highly configurable systems. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering (2015), pp. 284-294.

SONDUR, S., AND KANT, K. Towards automated configuration of cloud storage gateways: A data driven approach. In International Conference on
Cloud Computing (CLOUD) (2019), Springer, pp. 192-207.

SONDUR, S., KANT, K., VUCETIC, S., AND BYERS, B. Storage on the edge: Evaluating cloud backed edge storage in cyberphysical systems. In 2019 IEEE
16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS) (2019), pp. 362-370.

SONDUR, S., SHANKAR, G., AND KANT, K. Chess: A configuration health scoring system and its application to network devices. In 2020 23rd Conference
on Innovation in Clouds, Internet and Networks and Workshops (ICIN) (2020), pp. 250-257.

TatelsHI, S., MaTsul, H., AND KonisHI, S. Nonlinear regression modeling via the lasso-type regularization. Journal of statistical planning and
inference 140, 5 (2010), 1125-1134.

THEISEN, C., HERzIG, K., MORRISON, P., MURPHY, B., AND WiLLIAMS, L. Approximating attack surfaces with stack traces. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering (2015), vol. 2, IEEE, pp. 199-208.

TiBSHIRANL R. ., ET AL. The lasso problem and uniqueness. Electronic Journal of statistics 7 (2013), 1456-1490.

VELEZ, M., JAMSHIDL, P., SATTLER, F., SIEGMUND, N., APEL, S., AND KASTNER, C. Configcrusher: towards white-box performance analysis for
configurable systems. Automated Software Engineering (2020), 1-36.

VENKATARAMAN, S., YANG, Z., FRANKLIN, M., RECHT, B., AND StoIca, I. Ernest: Efficient performance prediction for large-scale advanced analytics.
In 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16) (2016), pp. 363—-378.

WANG, Q., ZHANG, S., KANEMASA, Y., Pu, C., PALANISAMY, B., HARADA, L., AND KawaBA, M. Optimizing n-tier application scalability in the cloud: A
study of soft resource allocation. ACM Trans. Model. Perform. Eval. Comput. Syst. 4, 2 (June 2019).

WEL L., Fon, C. H,, HE, B., AND CaL, J. Towards efficient resource allocation for heterogeneous workloads in iaas clouds. IEEE Transactions on Cloud
Computing 6, 1 (2015), 264-275.

WESTERMANN, D., HAPPE, J., KREBs, R., AND FARAHBOD, R. Automated inference of goal-oriented performance prediction functions. In Proceedings
of the 27th IEEE/ACM International Conference on Automated Software Engineering (2012), pp. 190-199.

Xu, T, JiN, L, FaN, X,, ZHOU, Y., PASUPATHY, S., AND TALWADKER, R. Hey, you have given me too many knobs!: Understanding and dealing with
over-designed configuration in system software. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (2015).

Xu, T, JiN, X., Huang, P., Zuovu, Y., Lu, S, JIN, L., AND PasupaTHY, S. Early detection of configuration errors to reduce failure damage. In 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16) (2016), pp. 619-634.

Xu, T., AND ZHou, Y. Systems approaches to tackling configuration errors: A survey. ACM Computing Surveys (CSUR) 47, 4 (2015), 70.

YIN, Z., Ma, X., ZHENG,]., ZHOU, Y., BAIRAVASUNDARAM, L. N., AND PASUPATHY, S. An empirical study on configuration errors in commercial and
open source systems. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles (2011), SOSP "11.

ZAMAN, S., AND GRrosu, D. A combinatorial auction-based mechanism for dynamic vm provisioning and allocation in clouds. IEEE Transactions on
Cloud Computing 1, 2 (2013), 129-141.

ZHANG, Y., Guo,], BLaAIs, E., AND CZARNECKI, K. Performance prediction of configurable software systems by fourier learning (t). In 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE) (2015), IEEE, pp. 365-373.

Zuvu, Y., L1, J., Guo, M., Bao, Y., MA, W,, L1u, Z., SoNG, K., AND YANG, Y. Bestconfig: tapping the performance potential of systems via automatic
configuration tuning. In Proceedings of the 2017 Symposium on Cloud Computing (2017), pp. 338-350.

Manuscript submitted to ACM

