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Abstract—A key step in learning the violin is mastering
control over various bowing techniques since the drawing
of the violin bow directly influences the sound quality pro-
duced. As it is important for violinists to receive frequent
feedback on their bowing motions, there is a need for digital
means of providing automated feedback to musicians. This
study uses a 60-GHz frequency-modulated-continuous-wave
(FMCW) radar to gather data on the violinist’s bowing arm
for a total of seven bowing gestures: détaché up, détaché
down, spiccato up, spiccato down, staccato up, staccato
down, and tremolo. A total of 1200 bowing gestures for three
different violinists are recorded using radar. The raw signal
data from the radar is processed to generate time-Doppler
spectrograms of the gestures. Features are extracted from
the time-Doppler data using two different methods and fed
into machine-learning models for the automated classifica-
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tion of bowing gestures. The first method involves manually engineering features to be extracted from the signal data
matrix. The second method leverages the power of convolutional neural networks (CNNs) to automatically extract
features from images of the time-Doppler spectrograms. Comparing model performances reveals that fine-tuning a
pretrained SqueezeNet CNN model yields the highest classification accuracy (95.00%). This study also analyzes the
influence of fluctuations in the overall user-to-radar range on the time-Doppler spectrograms produced.

Index Terms— Bowing gestures, feature extraction, frequency-modulated-continuous-wave (FMCW) radar, machine

learning, time-Doppler, violin.

[. INTRODUCTION

EARNING the violin is a complicated task requiring
L thousands of hours of practice, especially given the diffi-
culty of drawing out a pleasant sound from the instrument [1].
Since the violin bow’s interaction with the strings directly
influences the sound produced, gaining control of different
bowing motions is the first key step in learning the instrument.
By altering the amount of pressure exerted on the bow, the
bow speed, and the positioning of the bow on the strings,
one can directly alter the quality of the tone produced [2].
Thus, receiving feedback on bowing techniques is a priority
for beginner to intermediate violin students. Although music
teachers can provide such input, private instructors can be
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costly and may be unaffordable for individuals to pursue
long-term. Furthermore, even with an instructor, most of
the hours spent developing the necessary sensorimotor skills
occur outside of the lesson time [3]. During the time gaps,
feedback is necessary to help beginning students reinforce
the general bowing strokes introduced during lessons and to
identify the consistency with which their stroke matches that
marked in the music. Because of the necessity for affordable
and continuous performance feedback, technology is being
increasingly exploited for the automated analysis of bowing
techniques.

Beyond the purpose of providing direct feedback to the user,
however, technology-aided analysis of violin bowing tech-
niques has other pedagogical applications such as enhancing
interactive music training interfaces. For instance, technology-
based recognition of bowing gestures in real-time is necessary
for music-training software to automatically mark up scores
while the user is performing or to track the violinist’s location
in the music when using play-along tools [4].

The task of detecting and/or recognizing bowing motions
can be approached in several different ways. For example,
a popular method in previous studies is attaching electronics
to different parts of the instrument to gather information about
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the bow’s acceleration, position, speed, strain, and so on.
Such information can then be used to differentiate bowing
techniques and evaluate their accuracy. Sensors such as strain
gauges, accelerometers, and electromagnetic field sensors are
used in new violin interfaces like the Hyperbow [5], [6] and
other “augmented instruments” [7]. Some studies make use of
vision systems for automated violin bowing feedback, employ-
ing depth cameras and video streams to capture general limb
motions of the user, which is often used in conjunction with
sensors to capture more subtle movements [8], [9], [10]. Others
analyze audio signals to identify various bowing characteristics
and predict the bowing technique being performed [11], [12].
Several studies use wearable devices to track the motion of
the violinist’s body parts rather than the instrument itself.
Dalmazzo and Ramirez [13] equip violinists with bracelets
around the forearm to track electrical muscle activity while
Linden et al. [14] position sensors on the users’ arms and torso.

However, each of these approaches to automating musical
instrument instruction has limitations. Sensor attachments and
wearable devices can feel uncomfortable and invasive for
users. These electronics also add considerable bulk to the
instrument, making it difficult for the musician to maneuver
the violin bow normally and with flexibility [15]. Vision
systems may infringe on privacy and are sensitive to lighting
conditions as well as clothing that conceals precise limb
movements. Finally, audio signal analysis is sensitive to the
unique properties of different violins and bows as well as
noise in the sound frequency; furthermore, audio signals do
not directly provide any information on the hand and arm
movements of the user.

A radar system is a non-contact method of sensing that
preserves user privacy and can sense through clothing to
capture subtle limb movements. Radars show great promise
for motion detection in a wide range of applications. Oyamada
et al. [16], Wang et al. [17], and Choi et al. [18] used radar
systems to track body displacement for vital signs monitoring.
Li et al. [19] analyzed radar micro-Doppler and range-Doppler
information for differentiating concealed rifle carrying from
other similar activities that may trigger a false alarm. Radars
also show the potential in recognizing different hand gestures
for human—computer interaction [20], [21].

In this study, a portable frequency-modulated continuous-
wave (FMCW) radar is used to detect different violin bow-
ing gestures. FMCW radars emit a continuous signal whose
frequency is gradually increased during each period of mea-
surement. By comparing the transmitted and received signals,
information about the target’s range and velocity can be deter-
mined. In a preliminary work, presented at the IEEE Topical
Conference on Wireless Sensors and Sensor Networks [22],
the time-Doppler spectrograms and range profiles for four
standard violin bowing techniques are visually analyzed and
compared to incorrect bowing techniques. This study builds
on the previous work by providing further analysis of the
time-Doppler spectrograms of the four bowing techniques and
employing machine learning for the automated recognition
of seven bowing gestures. Moreover, the impact of user-to-
radar range fluctuations on the reliability of radar-based violin
pedagogy is analyzed.

Fig. 1. Complete sensing system based on a 60-GHz Infineon FMCW
radar module and a laptop.
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Fig. 2. Flowchart showing signal processing steps from the raw data

matrix to the time-Doppler spectrogram.

Il. THEORY OF RADAR-BASED GESTURE RECOGNITION
Fig. 1 shows the sensing system employed in this study,
which is based on a 60-GHz Infineon radar module and
a laptop. The raw signal received by the radar’s receiver
is processed to generate time-Doppler spectrograms for the
following bowing techniques: détache, spiccato, staccato, and
tremolo. The bowing techniques are described in Table 1. Each
of the bowing techniques except for tremolo can be further
classified into an up-bow gesture (when the hand draws the
bow in an upward motion) and a down-bow gesture (when
the hand draws the bow in a downward motion), for a total
of seven bowing gestures to be classified. The tremolo bow
stroke rapidly oscillates between up and down motions and
should not be further classified into up-bow or down-bow
gestures. Time-Doppler information for each gesture is fed
into machine-learning models for automated classification.

A. Signal Processing

To collect data on the user’s performance, the FMCW
radar transmits a frequency-modulated signal, or chirp, which
reflects off the violinist’s arm and hand and is received by the
radar’s receiving antenna for processing. The signal processing
flowchart is shown in Fig. 2. The beat signal detected by
the mixer of the radar’s receiver chain is stored as voltage
readings in a matrix. Each row in the matrix represents a
single period of measurement that corresponds to a transmitted
linear frequency-modulated chirp. A time-range map can be
generated by performing a fast Fourier transform (FFT) along
the fast time of the data matrix, represented as [23]

Sp (f) = oTexp (]%) sinc (T (f — W))

)
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TABLE |
BOWING TECHNIQUE DESCRIPTIONS

Bowing Technique Description

Separate bow strokes played smoothly and without

Détaché
accent
Spiccato Light, bouncing bow strokes
Staccato Short, detached bow strokes played on the strings
Tiny and rapid up and down bow movement,
Tremolo

typically performed at the bow tip
Brief bowing technique descriptions from [19].

where Sp,(f) is the frequency domain representation of the
beat signal, o is the baseband signal amplitude, T is the
chirp duration, f. is the center frequency, 7 is slow time,
R(7) is the variation in the target’s range relative to the radar
board, and c is the speed of light. To extract the time-Doppler
spectrogram, the range-of-interest is isolated in the time-range
map, and a short-time Fourier transform (STFT) is applied
along the slow time.

B. Features Extracted From the Time-Doppler
Spectrograms

Selecting features to extract from the time-Doppler signa-
ture is an important step in training a machine-learning model
to accurately predict the bowing gesture being performed.
In this work, two different methods of feature extraction are
explored: 1) manual feature extraction and 2) automated fea-
ture extraction using a convolutional neural network (CNN).
One of the main benefits of CNN models is their ability
to automatically discern important features in the given data
without any human assistance. Although using CNNs to auto-
matically extract features is a very popular approach to image
classification tasks, manually selecting and extracting features
for more simple machine learning models can, in some cases,
yield similar or better results [24]. This section will describe
the manually selected features.

Features of the time-Doppler spectrograms that vary signif-
icantly between at least two types of gestures are selected,
as they are most useful for differentiating between the spec-
trograms of various gesture classes. The selected features
are extracted from the power matrices representing the time-
Doppler spectrograms. Each row of the matrix stores power
values (dB) for a particular Doppler frequency over time.
Positive Doppler frequency values correspond to movement
of the target away from the radar, typical of up-bow gestures
where the user draws the bow in toward the violin body;
conversely, negative Doppler frequency values correspond to
movement of the target toward the radar. Prior to extracting
the features, the baseband region (from —13 to +13 Hz) and
anything with normalized power below —35 dB is removed
(i.e., set to —1000 dB). Entries with low power values can
be considered noise as they are unlikely to be a meaningful
part of the signature for the bowing gesture being performed.
In this work, the following features are extracted from each
2-s window of time-Doppler signatures for a single bow stroke
(see Fig. 3).

1) Maximum Relevant Frequency (F_max): Call a particular

row of the normalized power matrix non-empty if its
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Fig. 3. lllustration of the maximum relevant frequency, minimum

relevant frequency, upper area, lower area, and time span features for
staccato up-bow.

maximum entry is not equal to —1000 dB (i.e., every
entry is at least —35 dB). F_max is found by starting
at +13 Hz and iterating through successively higher
frequencies, stopping when a frequency, f, meeting the
following criteria is reached: 1) the row of the matrix
corresponding to f is nonempty and 2) the difference
between f and last frequency with a nonempty row is
no more than 25 Hz. A margin of 25 Hz accounts for
possible gaps in the gesture’s signature created when
removing all entries with power under —35 dB.

2) Minimum Relevant Frequency (F_min): The algorithm
for this feature is the same as that of F_max except for
the iteration that starts at a frequency of —13 Hz and
moves through successively lower frequencies.

3) Upper Area (A_upper): This feature is calculated by
traversing through all rows representing frequencies
greater than +13 Hz and counting the number of entries
above —35 dB.

4) Lower Area (A_lower): The algorithm for this feature is
the same as that of A_upper except all rows representing
frequencies lower than —13 Hz are searched.

5) Upper Power (P_upper): This feature is calculated by
traversing through all rows representing frequencies
greater than +13 Hz and summing all entries above
—35 dB.

6) Lower Power (P_lower): The algorithm for this feature
is the same as that of P_upper except all rows repre-
senting frequencies below —13 Hz are searched.

7) Time Span (T_span): The feature represents the total
amount of time the signature spans. Call a particular
column, or time, of the power matrix non-empty if its
maximum entry is not equal to —1000 dB. The time
span is calculated by counting the number of non-empty
columns.

[1l. EXPERIMENTAL SETUP AND DATA COLLECTION

This study uses an Infineon 60-GHz FMCW radar with a
center frequency of 60.5 GHz, a bandwidth of 5 GHz, and a
sampling rate of 2 MHz to collect data on bowing motions.
The radar is used to collect data on the seven bowing gestures
from three different subjects. See Table II for basic subject
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Fig. 4. Experimental setup.

TABLE I
SUBJECT DESCRIPTIONS

Subject Gender Height (cm) Arm Length (cm) *
1 F 161 64
2 M 180 74
3 M 173 75

@ Arm length is defined as the distance from the shoulder to the furthest
fingertip.

descriptions. Each subject is seated on a chair 1 m from the
radar to minimize the amount of lower body movement picked
up by the radar. The violin is held parallel to the radar board
and the radar antenna’s height is adjusted to be level with the
violin. The configuration is shown in Fig. 4.

A total of 1200 time-Doppler data samples are collected
to train machine learning classifiers. Subjects are asked to
perform ten sets of each bowing technique on the A string
alongside a 60 beats/min metronome, with each set lasting
for 20 s. For détaché, spiccato, and staccato, each set consists
of five up-bows and five down-bows performed consecutively,
with each stroke falling on every other click of the metronome.
For all subjects combined, this yields a total of 150 data sam-
ples for each of the following bowing gesture classes: détaché
up-bow, détaché down-bow, spiccato up-bow, spiccato down-
bow, staccato up-bow, and staccato down-bow. For the tremolo
bowing technique, there is no distinct up- or down-bow stroke;
each set simply consists of ten tremolo oscillations. Among
the three subjects, this yields a total of 300 data samples for
the tremolo gesture class.

IV. VIOLIN BOWING GESTURE CLASSIFICATION

Two different approaches are used to classify the time-
Doppler spectrograms using machine learning. The first
approach trains models on the radar signal data, using the
manually extracted features described in Section II. The sec-
ond approach trains models on images of the time-Doppler
spectrograms, using the ability of a CNN to automatically
extract features. This second approach can be further divided
into two different sub-approaches: 1) performing both feature
extraction and fine-tuning on a pretrained CNN and 2) using
the initial feature-learning layers of the pretrained CNN as the
backbone and feeding the automatically learned features into
a separate non-CNN classifier.

The following types of machine learning classifiers are
used in this study: support vector machine (SVM), decision
tree, k-nearest neighbor (KNN), linear discriminant analysis
(LDA), multilayer perceptron (MLP), and (CNN). For all these

models, the bowing gesture data is split into training and
testing sets in a 70:30 ratio.

Support Vector Machine (SVM): This algorithm seeks the
hyperplane, or boundary, that fully separates the data points
into each of their classes and maximizes the distance between
the hyperplane and support vectors (the data points situated
closest to the hyperplane) [25]. This work uses the popular
Gaussian kernel function.

Decision Tree: This algorithm can be represented by a tree
structure where features are represented by nodes that branch
out into sub-nodes representing decisions [26]. Decision trees
classify inputs by starting at the root node and progressing
lower in the tree by taking decision paths down the decision
nodes until a leaf node is reached.

K-Nearest Neighbor (KNN): This algorithm assumes the
proximity of data points with similar features. For each
observation fed to the classifier, the class with the greatest
representation among the K-nearest data points is the output
label [27].

Linear Discriminant Analysis (LDA): This algorithm
projects data into a lower dimension with the goal of max-
imizing the distance between class means while minimizing
variance within classes. To make predictions, LDA uses Bayes’
Theorem to calculate the probability of a sample belonging to
each of the classes and outputs the highest probability class.

Multilayer Perceptron (MLP): MLP is a feedforward arti-
ficial neural network (ANN) composed of fully connected
layers [28].

Convolutional Neural Network (CNN): A CNN is a specific
type of neural network that contains at least one convolutional
layer [29]. These models are particularly useful for classifying
2-D image inputs and can automatically extract key features
without human assistance.

A. Using Manually Extracted Features

A popular method of classifying gestures from radar data is
training machine learning classifiers on features extracted from
the time-Doppler data matrix [30]. In this study, the manually
extracted features from the power data matrix are fed into
the following machine learning models: SVM, decision tree,
KNN, LDA, and MLP. The MLP has two fully connected
layers and uses a rectified linear unit (ReLU) activation
function for the first fully-connected layer and a SoftMax
function for the final layer.

B. Using Automatically Extracted Features

While manual feature extraction can provide greater inter-
pretability of model results, it requires a solid understanding
of the domain and the data to best capture patterns. Automatic
feature extraction, meanwhile, is an easier and more efficient
way to pick up patterns in the data [31]. This study exploits the
automatic feature extraction ability of CNNs to classify images
of the time-Doppler spectrograms of bowing gestures in two
ways: 1) using transfer learning and 2) using a CNN to extract
features for training another machine learning model. Both
methods make use of already-learned knowledge contained
in a pretrained CNN, making the process faster and less
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Fig. 5. Sketches of bowing techniques and their corresponding up-bow and down-bow time-Doppler spectrograms. Bowing technique sketches

are reused from [19].

computationally heavy than training a CNN from scratch.
This work uses the learned features from a SqueezeNet CNN
model from MATLAB’s Deep Learning Toolbox which was
pretrained on image data from ImageNet [32].

1) Transfer Learning: Transfer learning involves adjusting
a pretrained network for a new task by replacing the
final layers of the model and re-training the model to
update the weights. By setting the learning rate in the
new final convolutional layer to be greater than that in
the transferred layers, the model makes minimal changes
to the previously learned weights and instead performs
most of the updates in the final layers. This allows for
efficient training of a CNN with a relatively small dataset
for the new task. The fine-tuning of the SqueezeNet is
performed in MATLAB using a learning rate of 0.001,
a mini-batch size of 64, and a total of 16 epochs. A train-
validation-test split ratio of 70:20:10 is used in this
approach. In other words, 70%, 20%, and 10% of the
samples from each class are selected randomly to serve
as the training, validation, and testing sets, respectively,
without regard to the subject performing the gesture.

Backbone CNN for Feature Extraction: The pretrained
SqueezeNet model has already learned important image
features from the large ImageNet dataset and can serve
as a backbone for training non-CNN models. Features,
such as edges, learned in the earlier layers of the
backbone model are generally applicable to images in
a variety of other tasks; conversely, features learned
in layers closer to the output layer of the backbone
model are more specific to the task the model was
trained on. Features extracted from the backbone CNN

2)

model are applied to the time-Doppler images, and these
features are fed into the following machine-learning
models for classification: SVM, decision tree, KNN,
LDA, and MLP.

V. RESULTS

Fig. 5 shows 2-s time-Doppler spectrograms for down-bow
(top spectrogram) and up-bow (bottom spectrogram) motions
for the détaché, spiccato, staccato, and tremolo bowing tech-
niques. The sketches highlight the most energetic part of
typical spectrograms measured from these bowing techniques.
It can be observed that, in ideal cases, the signatures for all
the bowing techniques are easily distinguishable from one
another by analyzing the features described in Section II.
Down-bow and up-bow gestures can be distinguished through
the A_upper and A_lower features: if A_upper is signifi-
cantly greater than A_lower, an up-bow is being performed;
if A_upper is significantly less than A_lower, a down-bow
is being performed; if A_upper and A_lower are roughly
equal, then a tremolo, which has no distinct up- or down-
bow, is being performed. Similarly, P_upper and P_lower can
be used to help differentiate up-bow and down-bow gestures.
F_max and F_min for spiccato and tremolo are smaller in
magnitude compared to détaché and staccato. T_span is the
greatest for tremolo and détaché gestures as they span longer
periods of time than spiccato and staccato.

The bowing gesture prediction accuracy for all machine
learning classifiers is displayed in Table III. The accuracy is
calculated as the total number of correct predictions across
all classes divided by the total size of the dataset. Among all
the classifiers trained on the manually extracted features, the
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TABLE IlI
MACHINE LEARNING RESULTS

Feature-Extraction
Method

Machine Learning

Classifier Accuracy

SVM
Decision Tree
KNN
LDA
MLP
SVM

84.72%
79.44%
77.22%
75.56%
85.28%
85.28%
50.83%
70.83%
89.44%
82.78%
95.00%

Manual

Decision Tree
KNN
LDA
MLP
SqueezeNet CNN

Automated

True Class
IN
=
o

' -
1 2 3 4 5 6 7
Predicted Class
Fig. 6. Confusion matrix for the SqueezeNet CNN model. Numbers 1-7
represent the classes in the following order: détaché down, détaché up,

spiccato down, spiccato up, staccato down, staccato up, and tremolo.

MLP model achieves the highest accuracy of 85.28%, closely
followed by the SVM. Among the classifiers trained on fea-
tures automatically extracted by a SqueezeNet CNN, the best
performance (95.00% accuracy) is achieved by fine-tuning the
CNN model itself. Overall, the fine-tuned SqueezeNet CNN
achieves the highest accuracy across all models; however, it is
important to recognize the substantial increase in training time
required of this approach.

Fig. 6 displays the confusion matrix for the fine-tuned
SqueezeNet CNN model. The détaché up-bow, spiccato
up-bow, staccato up-bow, and tremolo gestures are consistently
classified correctly. The staccato up-bow gesture is the most
frequently misclassified.

Fig. 7 displays the prediction accuracies within each gesture
type for all machine learning classifiers. In general, models
are most successful in classifying tremolo and detaché up-
/down-bows. Models tend to struggle the most with classi-
fying spiccato and staccato up- and down-bows, likely due
to the very similar Doppler spectrograms produced by the
two gestures. The SqueezeNet CNN model outperforms all
other models in classifying each type of gesture except for
the detaché up-bow and staccato up-bow strokes. However,
the CNN model is not outperformed significantly in these
classes. The MLP (A) model’s accuracy exceeds that of the
CNN by 3% when classifying détache up-bows. The decision

TABLE IV
MODEL INFERENCE TIMES

Classification Method Average Single-Sample Inference

Time (x 10 s)
SVM (M) 111.9
Decision Tree (M) 10.7
KNN (M) 18.1
LDA (M) 16.9
MLP (M) 4.0
SVM (A) 190.1
Decision Tree (A) 142
KNN (A) 488.4
LDA (A) 118.8
MLP (A) 153
SqueezeNet CNN (A) 25800.0

tree (M) and MLP (M) models’ accuracies only exceed that
of the CNN by 2% when classifying staccato up-bows.
Although the fine-tuned CNN performs better than the
other models, it is important to consider the large increase
in computation time that comes with using complex neu-
ral networks. To gauge the difference in computation times
of various classification methods, the average single-sample
inference time is calculated for each model by averaging the
inference times across 100 passes through the testing dataset;
within a single pass, the inference time is taken as the mean of
the single-sample inference times across all samples. Table IV
displays the average single-sample inference times for dif-
ferent classification methods. Indeed, the SqueezeNet CNN
performs slower than the other classification methods, with
an average single-sample inference time of.0258 s. However,
this inference time is not necessarily a concern for real-time
applications of this technology, as violinists can realistically
only perform a few (i.e., no more than a dozen) gestures per
second; thus, the SqueezeNet CNN model will still be able to
provide feedback to the user at a reasonable rate.
Interestingly, all the non-CNN models require a shorter
inference time when using manual feature extraction
than when using automated feature extraction, yet neither
feature-extraction method yields consistently higher accuracies
across the non-CNN models. The difference in inference
times is likely due to the backbone CNN model extracting
many more features to describe the same few features that
are manually selected by the model engineer. In this study,
1000 automatically selected features from the backbone model
achieve comparable model accuracies as the seven manually
selected features. Manually extracted features have the advan-
tage of being chosen using the engineer’s expertise in the
application domain, making the features more meaningful than
the somewhat arbitrary features learned by the backbone CNN.

VI. RELIABILITY

To assess the robustness of radar-based feedback on violin
bowing gestures, it is important to analyze factors that may
impact the reliability of the collected gesture data. Here we
analyze the impact of variations in the user-to-radar distance
on the resulting time-Doppler data.

Practically, a violinist cannot situate themselves exactly 1 m
from the radar upon every setup; there will inevitably be
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Model Accuracies by Bowing Gesture
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Fig. 7. Machine learning model accuracies for each type of bowing gesture. “(M)” indicates that the model used manually extracted features and

“(A)” indicates that the model used automatically extracted features.
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Fig. 8. Time-Doppler spectrograms for détaché down-bow gesture for different user-to-radar ranges.

TABLE V
VARIATIONS ON USER-TO-RADAR RANGE

Minimum distance for a visible Minimum distance for a clear Maximum distance for a clear

Maximum distance for a visible

Stroke Doppler signature (cm) Doppler signature (cm) Doppler signature (cm) Doppler signature (cm)
Détaché 88 91 109 112
Spiccato 91 94 109 112
Staccato 82 85 109 112
Tremolo No minimum No minimum 109 112

variation in the user’s range between practices. Furthermore,
in violin performance, it is common for the musician’s body
to shift its location, making it difficult for them to remain
at precisely the same range from the radar throughout. These
full-body movements may be an unintentional consequence of
moving the bowing arm back and forth, or they may serve as
an intentional conveyance of musical emotions [33], [34].

To analyze the impact of these user-to-radar distance vari-
ations on the time-Doppler spectrograms for various bowing
motions, each of the down-bow strokes for each technique is
performed at various ranges. First, each stroke is performed
at the standard distance of 1 m from the radar; the vio-
linist’s distance for successive radar recordings is gradually
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decreased and increased in 3 cm intervals. Fig. 8 displays
the time-Doppler spectrograms for the down-bow détaché
gesture across different ranges. The minimum and maximum
distances for producing a clear Doppler signature as well as
the minimum and maximum distances for producing a visible
Doppler signature are recorded. These values are displayed in
Table V for all four bowing techniques.

Across all bowing techniques, the most conservative bounds
for producing clear time-Doppler signatures are a minimum
distance of 94 cm and a maximum distance of 109 cm. The
most conservative bounds for producing detectable Doppler
signatures are a minimum distance of 91 cm and a maximum
distance of 112 cm. Thus, for reasonable gesture recognition,
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Fig. 9. Confusion matrix for the SqueezeNet CNN model’s predictions
on gestures recorded at the minimum and maximum distances neces-
sary for a clear Doppler signature. Numbers 1-7 represent the classes in
the following order: détaché down, détaché up, spiccato down, spiccato
up, staccato down, staccato up, and tremolo.

the violinist has a 15 cm window of allowable ranges, which
gives room for a modest amount of body swaying.

The SqueezeNet CNN model is used to evaluate the effect
of spectrograms produced at different ranges on classification
accuracy. Using the methods described in Section III, a total
of 75 time-Doppler samples are recorded for all gestures
performed at the minimum and maximum distances necessary
for a clear Doppler signature (as reported in Table V). For
the tremolo bow stroke, a minimum bound is arbitrarily set at
a range of 31 cm, which provides more than sufficient room
for large swaying motions from the user. A confusion matrix
showing the SqueezeNet CNN model’s predictions on this data
can be found in Fig. 9. While some gestures, such as detaché
down-bow and staccato up-bow, do not experience a decline
in prediction accuracy at the minimum and maximum range
bounds, other gestures do. The detaché up-bow suffers the
most, dropping from an accuracy rate of 93%-50%, as the
SqueezeNet CNN has trouble distinguishing the gesture from
a staccato up-bow.

VII. DISCUSSION AND CONCLUSION

This study investigates the potential of using an FMCW
radar to recognize various violin-bowing gestures. Previous
studies have attempted to automate musical instrument feed-
back, but they relied on vision systems, sensor attachments
to the violinist or the instrument, and wearable devices; these
approaches pose problems such as privacy concerns, sensitivity
to lighting, discomfort during the performance, and more. This
work proposes the use of the radar, which does not suffer from
those problems, as a method of recognizing bowing gestures
by sensing the position and velocity of the bowing arm. Over a
thousand samples of violin bowing gestures performed on the
A string are collected from three subjects via radar. Through
observing the corresponding time-Doppler spectrograms, the
bowing gestures can be distinguished from one another due
to differences in certain features such as maximum/minimum
relevant frequency and time span. To automate bowing gesture
classification, time-Doppler information for gestures is fed
into machine learning classifiers. Both an automated and a
manual approach to extracting features for training from the

time-Doppler signature are explored. Ultimately, the fine-tuned
pretrained SqueezeNet CNN model performs the best, with
an accuracy of 95.00%. Although this model is outperformed
marginally by the MLP (A) in classifying the detaché up-bow
and the Decision Tree (M) and MLP (M) in classifying the
staccato up-bow gesture, the SqueezeNet CNN most accurately
predicts gestures across the board. An analysis of varying the
user-to-radar range reveals that clear and visible time-Doppler
spectrograms can be produced even in the presence of full-
body swaying. However, if the range fluctuations are appre-
ciable, the SqueezeNet CNN model struggles to accurately
predict certain bowing gestures. Given the sensitivity of the
machine learning model to significant range fluctuations, this
technology is not suited for evaluating stagy performances but
can reasonably be used for providing feedback in controlled
practice settings.

As this study focuses on recognizing gestures only on the
violin A string, future work should investigate the signatures
for gestures performed on other violin strings. Changing
between strings on the violin results in slight changes in
the angle of the stroke relative to the radar, yielding unique
signatures that must be learned by the classifiers. Furthermore,
it may be worth analyzing micro-Doppler signatures and
range profiles of bowing gestures to help isolate the desired
hand-arm movements from extraneous movements and body
swaying. Finally, as a pilot study for radar-based violin gesture
recognition, the goal of this work was to explore the potential
of radar and machine learning in differentiating the general
forms of various bowing techniques. However, the ultimate
goal of this technology is to not only identify the user’s bowing
gesture but also gauge how accurately the intended gesture was
performed. Future work could explore the potential of radar
and machine learning in providing a quantitative assessment
of the deviation in gesture performance from the standard.
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