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Automated Violin Bowing Gesture Recognition
Using FMCW-Radar and Machine Learning

Hannah Gao and Changzhi Li , Senior Member, IEEE

AbstractÐA key step in learning the violin is mastering
control over various bowing techniques since the drawing
of the violin bow directly influences the sound quality pro-
duced. As it is important for violinists to receive frequent
feedback on their bowing motions, there is a need for digital
means of providing automated feedback to musicians. This
study uses a 60-GHz frequency-modulated-continuous-wave
(FMCW) radar to gather data on the violinist’s bowing arm
for a total of seven bowing gestures: détaché up, détaché
down, spiccato up, spiccato down, staccato up, staccato
down, and tremolo. A total of 1200 bowing gestures for three
different violinists are recorded using radar. The raw signal
data from the radar is processed to generate time-Doppler
spectrograms of the gestures. Features are extracted from
the time-Doppler data using two different methods and fed
into machine-learning models for the automated classifica-
tion of bowing gestures. The first method involves manually engineering features to be extracted from the signal data
matrix. The second method leverages the power of convolutional neural networks (CNNs) to automatically extract
features from images of the time-Doppler spectrograms. Comparing model performances reveals that fine-tuning a
pretrained SqueezeNet CNN model yields the highest classification accuracy (95.00%). This study also analyzes the
influence of fluctuations in the overall user-to-radar range on the time-Doppler spectrograms produced.

Index TermsÐ Bowing gestures, feature extraction, frequency-modulated-continuous-wave (FMCW) radar, machine
learning, time-Doppler, violin.

I. INTRODUCTION

L
EARNING the violin is a complicated task requiring

thousands of hours of practice, especially given the diffi-

culty of drawing out a pleasant sound from the instrument [1].

Since the violin bow’s interaction with the strings directly

influences the sound produced, gaining control of different

bowing motions is the first key step in learning the instrument.

By altering the amount of pressure exerted on the bow, the

bow speed, and the positioning of the bow on the strings,

one can directly alter the quality of the tone produced [2].

Thus, receiving feedback on bowing techniques is a priority

for beginner to intermediate violin students. Although music

teachers can provide such input, private instructors can be
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costly and may be unaffordable for individuals to pursue

long-term. Furthermore, even with an instructor, most of

the hours spent developing the necessary sensorimotor skills

occur outside of the lesson time [3]. During the time gaps,

feedback is necessary to help beginning students reinforce

the general bowing strokes introduced during lessons and to

identify the consistency with which their stroke matches that

marked in the music. Because of the necessity for affordable

and continuous performance feedback, technology is being

increasingly exploited for the automated analysis of bowing

techniques.

Beyond the purpose of providing direct feedback to the user,

however, technology-aided analysis of violin bowing tech-

niques has other pedagogical applications such as enhancing

interactive music training interfaces. For instance, technology-

based recognition of bowing gestures in real-time is necessary

for music-training software to automatically mark up scores

while the user is performing or to track the violinist’s location

in the music when using play-along tools [4].

The task of detecting and/or recognizing bowing motions

can be approached in several different ways. For example,

a popular method in previous studies is attaching electronics

to different parts of the instrument to gather information about
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the bow’s acceleration, position, speed, strain, and so on.

Such information can then be used to differentiate bowing

techniques and evaluate their accuracy. Sensors such as strain

gauges, accelerometers, and electromagnetic field sensors are

used in new violin interfaces like the Hyperbow [5], [6] and

other ªaugmented instrumentsº [7]. Some studies make use of

vision systems for automated violin bowing feedback, employ-

ing depth cameras and video streams to capture general limb

motions of the user, which is often used in conjunction with

sensors to capture more subtle movements [8], [9], [10]. Others

analyze audio signals to identify various bowing characteristics

and predict the bowing technique being performed [11], [12].

Several studies use wearable devices to track the motion of

the violinist’s body parts rather than the instrument itself.

Dalmazzo and Ramírez [13] equip violinists with bracelets

around the forearm to track electrical muscle activity while

Linden et al. [14] position sensors on the users’ arms and torso.

However, each of these approaches to automating musical

instrument instruction has limitations. Sensor attachments and

wearable devices can feel uncomfortable and invasive for

users. These electronics also add considerable bulk to the

instrument, making it difficult for the musician to maneuver

the violin bow normally and with flexibility [15]. Vision

systems may infringe on privacy and are sensitive to lighting

conditions as well as clothing that conceals precise limb

movements. Finally, audio signal analysis is sensitive to the

unique properties of different violins and bows as well as

noise in the sound frequency; furthermore, audio signals do

not directly provide any information on the hand and arm

movements of the user.

A radar system is a non-contact method of sensing that

preserves user privacy and can sense through clothing to

capture subtle limb movements. Radars show great promise

for motion detection in a wide range of applications. Oyamada

et al. [16], Wang et al. [17], and Choi et al. [18] used radar

systems to track body displacement for vital signs monitoring.

Li et al. [19] analyzed radar micro-Doppler and range-Doppler

information for differentiating concealed rifle carrying from

other similar activities that may trigger a false alarm. Radars

also show the potential in recognizing different hand gestures

for human±computer interaction [20], [21].

In this study, a portable frequency-modulated continuous-

wave (FMCW) radar is used to detect different violin bow-

ing gestures. FMCW radars emit a continuous signal whose

frequency is gradually increased during each period of mea-

surement. By comparing the transmitted and received signals,

information about the target’s range and velocity can be deter-

mined. In a preliminary work, presented at the IEEE Topical

Conference on Wireless Sensors and Sensor Networks [22],

the time-Doppler spectrograms and range profiles for four

standard violin bowing techniques are visually analyzed and

compared to incorrect bowing techniques. This study builds

on the previous work by providing further analysis of the

time-Doppler spectrograms of the four bowing techniques and

employing machine learning for the automated recognition

of seven bowing gestures. Moreover, the impact of user-to-

radar range fluctuations on the reliability of radar-based violin

pedagogy is analyzed.

Fig. 1. Complete sensing system based on a 60-GHz Infineon FMCW
radar module and a laptop.

Fig. 2. Flowchart showing signal processing steps from the raw data
matrix to the time-Doppler spectrogram.

II. THEORY OF RADAR-BASED GESTURE RECOGNITION

Fig. 1 shows the sensing system employed in this study,

which is based on a 60-GHz Infineon radar module and

a laptop. The raw signal received by the radar’s receiver

is processed to generate time-Doppler spectrograms for the

following bowing techniques: détache, spiccato, staccato, and

tremolo. The bowing techniques are described in Table I. Each

of the bowing techniques except for tremolo can be further

classified into an up-bow gesture (when the hand draws the

bow in an upward motion) and a down-bow gesture (when

the hand draws the bow in a downward motion), for a total

of seven bowing gestures to be classified. The tremolo bow

stroke rapidly oscillates between up and down motions and

should not be further classified into up-bow or down-bow

gestures. Time-Doppler information for each gesture is fed

into machine-learning models for automated classification.

A. Signal Processing

To collect data on the user’s performance, the FMCW

radar transmits a frequency-modulated signal, or chirp, which

reflects off the violinist’s arm and hand and is received by the

radar’s receiving antenna for processing. The signal processing

flowchart is shown in Fig. 2. The beat signal detected by

the mixer of the radar’s receiver chain is stored as voltage

readings in a matrix. Each row in the matrix represents a

single period of measurement that corresponds to a transmitted

linear frequency-modulated chirp. A time-range map can be

generated by performing a fast Fourier transform (FFT) along

the fast time of the data matrix, represented as [23]

Sb ( f ) = σTexp

(

j
4π fc R (τ )

c

)

sinc

(

T

(

f −
2γ R(τ )

c

))

(1)
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TABLE I

BOWING TECHNIQUE DESCRIPTIONS

where Sb( f ) is the frequency domain representation of the

beat signal, σ is the baseband signal amplitude, T is the

chirp duration, fc is the center frequency, τ is slow time,

R(τ ) is the variation in the target’s range relative to the radar

board, and c is the speed of light. To extract the time-Doppler

spectrogram, the range-of-interest is isolated in the time-range

map, and a short-time Fourier transform (STFT) is applied

along the slow time.

B. Features Extracted From the Time-Doppler

Spectrograms

Selecting features to extract from the time-Doppler signa-

ture is an important step in training a machine-learning model

to accurately predict the bowing gesture being performed.

In this work, two different methods of feature extraction are

explored: 1) manual feature extraction and 2) automated fea-

ture extraction using a convolutional neural network (CNN).

One of the main benefits of CNN models is their ability

to automatically discern important features in the given data

without any human assistance. Although using CNNs to auto-

matically extract features is a very popular approach to image

classification tasks, manually selecting and extracting features

for more simple machine learning models can, in some cases,

yield similar or better results [24]. This section will describe

the manually selected features.

Features of the time-Doppler spectrograms that vary signif-

icantly between at least two types of gestures are selected,

as they are most useful for differentiating between the spec-

trograms of various gesture classes. The selected features

are extracted from the power matrices representing the time-

Doppler spectrograms. Each row of the matrix stores power

values (dB) for a particular Doppler frequency over time.

Positive Doppler frequency values correspond to movement

of the target away from the radar, typical of up-bow gestures

where the user draws the bow in toward the violin body;

conversely, negative Doppler frequency values correspond to

movement of the target toward the radar. Prior to extracting

the features, the baseband region (from −13 to +13 Hz) and

anything with normalized power below −35 dB is removed

(i.e., set to −1000 dB). Entries with low power values can

be considered noise as they are unlikely to be a meaningful

part of the signature for the bowing gesture being performed.

In this work, the following features are extracted from each

2-s window of time-Doppler signatures for a single bow stroke

(see Fig. 3).

1) Maximum Relevant Frequency (F_max): Call a particular

row of the normalized power matrix non-empty if its

Fig. 3. Illustration of the maximum relevant frequency, minimum
relevant frequency, upper area, lower area, and time span features for
staccato up-bow.

maximum entry is not equal to −1000 dB (i.e., every

entry is at least −35 dB). F_max is found by starting

at +13 Hz and iterating through successively higher

frequencies, stopping when a frequency, f , meeting the

following criteria is reached: 1) the row of the matrix

corresponding to f is nonempty and 2) the difference

between f and last frequency with a nonempty row is

no more than 25 Hz. A margin of 25 Hz accounts for

possible gaps in the gesture’s signature created when

removing all entries with power under −35 dB.

2) Minimum Relevant Frequency (F_min): The algorithm

for this feature is the same as that of F_max except for

the iteration that starts at a frequency of −13 Hz and

moves through successively lower frequencies.

3) Upper Area (A_upper): This feature is calculated by

traversing through all rows representing frequencies

greater than +13 Hz and counting the number of entries

above −35 dB.

4) Lower Area (A_lower): The algorithm for this feature is

the same as that of A_upper except all rows representing

frequencies lower than −13 Hz are searched.

5) Upper Power (P_upper): This feature is calculated by

traversing through all rows representing frequencies

greater than +13 Hz and summing all entries above

−35 dB.

6) Lower Power (P_lower): The algorithm for this feature

is the same as that of P_upper except all rows repre-

senting frequencies below −13 Hz are searched.

7) Time Span (T_span): The feature represents the total

amount of time the signature spans. Call a particular

column, or time, of the power matrix non-empty if its

maximum entry is not equal to −1000 dB. The time

span is calculated by counting the number of non-empty

columns.

III. EXPERIMENTAL SETUP AND DATA COLLECTION

This study uses an Infineon 60-GHz FMCW radar with a

center frequency of 60.5 GHz, a bandwidth of 5 GHz, and a

sampling rate of 2 MHz to collect data on bowing motions.

The radar is used to collect data on the seven bowing gestures

from three different subjects. See Table II for basic subject
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Fig. 4. Experimental setup.

TABLE II

SUBJECT DESCRIPTIONS

descriptions. Each subject is seated on a chair 1 m from the

radar to minimize the amount of lower body movement picked

up by the radar. The violin is held parallel to the radar board

and the radar antenna’s height is adjusted to be level with the

violin. The configuration is shown in Fig. 4.

A total of 1200 time-Doppler data samples are collected

to train machine learning classifiers. Subjects are asked to

perform ten sets of each bowing technique on the A string

alongside a 60 beats/min metronome, with each set lasting

for 20 s. For détaché, spiccato, and staccato, each set consists

of five up-bows and five down-bows performed consecutively,

with each stroke falling on every other click of the metronome.

For all subjects combined, this yields a total of 150 data sam-

ples for each of the following bowing gesture classes: détaché

up-bow, détaché down-bow, spiccato up-bow, spiccato down-

bow, staccato up-bow, and staccato down-bow. For the tremolo

bowing technique, there is no distinct up- or down-bow stroke;

each set simply consists of ten tremolo oscillations. Among

the three subjects, this yields a total of 300 data samples for

the tremolo gesture class.

IV. VIOLIN BOWING GESTURE CLASSIFICATION

Two different approaches are used to classify the time-

Doppler spectrograms using machine learning. The first

approach trains models on the radar signal data, using the

manually extracted features described in Section II. The sec-

ond approach trains models on images of the time-Doppler

spectrograms, using the ability of a CNN to automatically

extract features. This second approach can be further divided

into two different sub-approaches: 1) performing both feature

extraction and fine-tuning on a pretrained CNN and 2) using

the initial feature-learning layers of the pretrained CNN as the

backbone and feeding the automatically learned features into

a separate non-CNN classifier.

The following types of machine learning classifiers are

used in this study: support vector machine (SVM), decision

tree, k-nearest neighbor (KNN), linear discriminant analysis

(LDA), multilayer perceptron (MLP), and (CNN). For all these

models, the bowing gesture data is split into training and

testing sets in a 70:30 ratio.

Support Vector Machine (SVM): This algorithm seeks the

hyperplane, or boundary, that fully separates the data points

into each of their classes and maximizes the distance between

the hyperplane and support vectors (the data points situated

closest to the hyperplane) [25]. This work uses the popular

Gaussian kernel function.

Decision Tree: This algorithm can be represented by a tree

structure where features are represented by nodes that branch

out into sub-nodes representing decisions [26]. Decision trees

classify inputs by starting at the root node and progressing

lower in the tree by taking decision paths down the decision

nodes until a leaf node is reached.

K-Nearest Neighbor (KNN): This algorithm assumes the

proximity of data points with similar features. For each

observation fed to the classifier, the class with the greatest

representation among the K -nearest data points is the output

label [27].

Linear Discriminant Analysis (LDA): This algorithm

projects data into a lower dimension with the goal of max-

imizing the distance between class means while minimizing

variance within classes. To make predictions, LDA uses Bayes’

Theorem to calculate the probability of a sample belonging to

each of the classes and outputs the highest probability class.

Multilayer Perceptron (MLP): MLP is a feedforward arti-

ficial neural network (ANN) composed of fully connected

layers [28].

Convolutional Neural Network (CNN): A CNN is a specific

type of neural network that contains at least one convolutional

layer [29]. These models are particularly useful for classifying

2-D image inputs and can automatically extract key features

without human assistance.

A. Using Manually Extracted Features

A popular method of classifying gestures from radar data is

training machine learning classifiers on features extracted from

the time-Doppler data matrix [30]. In this study, the manually

extracted features from the power data matrix are fed into

the following machine learning models: SVM, decision tree,

KNN, LDA, and MLP. The MLP has two fully connected

layers and uses a rectified linear unit (ReLU) activation

function for the first fully-connected layer and a SoftMax

function for the final layer.

B. Using Automatically Extracted Features

While manual feature extraction can provide greater inter-

pretability of model results, it requires a solid understanding

of the domain and the data to best capture patterns. Automatic

feature extraction, meanwhile, is an easier and more efficient

way to pick up patterns in the data [31]. This study exploits the

automatic feature extraction ability of CNNs to classify images

of the time-Doppler spectrograms of bowing gestures in two

ways: 1) using transfer learning and 2) using a CNN to extract

features for training another machine learning model. Both

methods make use of already-learned knowledge contained

in a pretrained CNN, making the process faster and less
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Fig. 5. Sketches of bowing techniques and their corresponding up-bow and down-bow time-Doppler spectrograms. Bowing technique sketches
are reused from [19].

computationally heavy than training a CNN from scratch.

This work uses the learned features from a SqueezeNet CNN

model from MATLAB’s Deep Learning Toolbox which was

pretrained on image data from ImageNet [32].

1) Transfer Learning: Transfer learning involves adjusting

a pretrained network for a new task by replacing the

final layers of the model and re-training the model to

update the weights. By setting the learning rate in the

new final convolutional layer to be greater than that in

the transferred layers, the model makes minimal changes

to the previously learned weights and instead performs

most of the updates in the final layers. This allows for

efficient training of a CNN with a relatively small dataset

for the new task. The fine-tuning of the SqueezeNet is

performed in MATLAB using a learning rate of 0.001,

a mini-batch size of 64, and a total of 16 epochs. A train-

validation-test split ratio of 70:20:10 is used in this

approach. In other words, 70%, 20%, and 10% of the

samples from each class are selected randomly to serve

as the training, validation, and testing sets, respectively,

without regard to the subject performing the gesture.

2) Backbone CNN for Feature Extraction: The pretrained

SqueezeNet model has already learned important image

features from the large ImageNet dataset and can serve

as a backbone for training non-CNN models. Features,

such as edges, learned in the earlier layers of the

backbone model are generally applicable to images in

a variety of other tasks; conversely, features learned

in layers closer to the output layer of the backbone

model are more specific to the task the model was

trained on. Features extracted from the backbone CNN

model are applied to the time-Doppler images, and these

features are fed into the following machine-learning

models for classification: SVM, decision tree, KNN,

LDA, and MLP.

V. RESULTS

Fig. 5 shows 2-s time-Doppler spectrograms for down-bow

(top spectrogram) and up-bow (bottom spectrogram) motions

for the détaché, spiccato, staccato, and tremolo bowing tech-

niques. The sketches highlight the most energetic part of

typical spectrograms measured from these bowing techniques.

It can be observed that, in ideal cases, the signatures for all

the bowing techniques are easily distinguishable from one

another by analyzing the features described in Section II.

Down-bow and up-bow gestures can be distinguished through

the A_upper and A_lower features: if A_upper is signifi-

cantly greater than A_lower, an up-bow is being performed;

if A_upper is significantly less than A_lower, a down-bow

is being performed; if A_upper and A_lower are roughly

equal, then a tremolo, which has no distinct up- or down-

bow, is being performed. Similarly, P_upper and P_lower can

be used to help differentiate up-bow and down-bow gestures.

F_max and F_min for spiccato and tremolo are smaller in

magnitude compared to détaché and staccato. T_span is the

greatest for tremolo and détaché gestures as they span longer

periods of time than spiccato and staccato.

The bowing gesture prediction accuracy for all machine

learning classifiers is displayed in Table III. The accuracy is

calculated as the total number of correct predictions across

all classes divided by the total size of the dataset. Among all

the classifiers trained on the manually extracted features, the
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TABLE III

MACHINE LEARNING RESULTS

Fig. 6. Confusion matrix for the SqueezeNet CNN model. Numbers 1±7
represent the classes in the following order: détaché down, détaché up,
spiccato down, spiccato up, staccato down, staccato up, and tremolo.

MLP model achieves the highest accuracy of 85.28%, closely

followed by the SVM. Among the classifiers trained on fea-

tures automatically extracted by a SqueezeNet CNN, the best

performance (95.00% accuracy) is achieved by fine-tuning the

CNN model itself. Overall, the fine-tuned SqueezeNet CNN

achieves the highest accuracy across all models; however, it is

important to recognize the substantial increase in training time

required of this approach.

Fig. 6 displays the confusion matrix for the fine-tuned

SqueezeNet CNN model. The détaché up-bow, spiccato

up-bow, staccato up-bow, and tremolo gestures are consistently

classified correctly. The staccato up-bow gesture is the most

frequently misclassified.

Fig. 7 displays the prediction accuracies within each gesture

type for all machine learning classifiers. In general, models

are most successful in classifying tremolo and detaché up-

/down-bows. Models tend to struggle the most with classi-

fying spiccato and staccato up- and down-bows, likely due

to the very similar Doppler spectrograms produced by the

two gestures. The SqueezeNet CNN model outperforms all

other models in classifying each type of gesture except for

the detaché up-bow and staccato up-bow strokes. However,

the CNN model is not outperformed significantly in these

classes. The MLP (A) model’s accuracy exceeds that of the

CNN by 3% when classifying détache up-bows. The decision

TABLE IV

MODEL INFERENCE TIMES

tree (M) and MLP (M) models’ accuracies only exceed that

of the CNN by 2% when classifying staccato up-bows.

Although the fine-tuned CNN performs better than the

other models, it is important to consider the large increase

in computation time that comes with using complex neu-

ral networks. To gauge the difference in computation times

of various classification methods, the average single-sample

inference time is calculated for each model by averaging the

inference times across 100 passes through the testing dataset;

within a single pass, the inference time is taken as the mean of

the single-sample inference times across all samples. Table IV

displays the average single-sample inference times for dif-

ferent classification methods. Indeed, the SqueezeNet CNN

performs slower than the other classification methods, with

an average single-sample inference time of.0258 s. However,

this inference time is not necessarily a concern for real-time

applications of this technology, as violinists can realistically

only perform a few (i.e., no more than a dozen) gestures per

second; thus, the SqueezeNet CNN model will still be able to

provide feedback to the user at a reasonable rate.

Interestingly, all the non-CNN models require a shorter

inference time when using manual feature extraction

than when using automated feature extraction, yet neither

feature-extraction method yields consistently higher accuracies

across the non-CNN models. The difference in inference

times is likely due to the backbone CNN model extracting

many more features to describe the same few features that

are manually selected by the model engineer. In this study,

1000 automatically selected features from the backbone model

achieve comparable model accuracies as the seven manually

selected features. Manually extracted features have the advan-

tage of being chosen using the engineer’s expertise in the

application domain, making the features more meaningful than

the somewhat arbitrary features learned by the backbone CNN.

VI. RELIABILITY

To assess the robustness of radar-based feedback on violin

bowing gestures, it is important to analyze factors that may

impact the reliability of the collected gesture data. Here we

analyze the impact of variations in the user-to-radar distance

on the resulting time-Doppler data.

Practically, a violinist cannot situate themselves exactly 1 m

from the radar upon every setup; there will inevitably be
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Fig. 7. Machine learning model accuracies for each type of bowing gesture. ª(M)º indicates that the model used manually extracted features and
ª(A)º indicates that the model used automatically extracted features.

Fig. 8. Time-Doppler spectrograms for détaché down-bow gesture for different user-to-radar ranges.

TABLE V

VARIATIONS ON USER-TO-RADAR RANGE

variation in the user’s range between practices. Furthermore,

in violin performance, it is common for the musician’s body

to shift its location, making it difficult for them to remain

at precisely the same range from the radar throughout. These

full-body movements may be an unintentional consequence of

moving the bowing arm back and forth, or they may serve as

an intentional conveyance of musical emotions [33], [34].

To analyze the impact of these user-to-radar distance vari-

ations on the time-Doppler spectrograms for various bowing

motions, each of the down-bow strokes for each technique is

performed at various ranges. First, each stroke is performed

at the standard distance of 1 m from the radar; the vio-

linist’s distance for successive radar recordings is gradually

decreased and increased in 3 cm intervals. Fig. 8 displays

the time-Doppler spectrograms for the down-bow détaché

gesture across different ranges. The minimum and maximum

distances for producing a clear Doppler signature as well as

the minimum and maximum distances for producing a visible

Doppler signature are recorded. These values are displayed in

Table V for all four bowing techniques.

Across all bowing techniques, the most conservative bounds

for producing clear time-Doppler signatures are a minimum

distance of 94 cm and a maximum distance of 109 cm. The

most conservative bounds for producing detectable Doppler

signatures are a minimum distance of 91 cm and a maximum

distance of 112 cm. Thus, for reasonable gesture recognition,
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Fig. 9. Confusion matrix for the SqueezeNet CNN model’s predictions
on gestures recorded at the minimum and maximum distances neces-
sary for a clear Doppler signature. Numbers 1±7 represent the classes in
the following order: détaché down, détaché up, spiccato down, spiccato
up, staccato down, staccato up, and tremolo.

the violinist has a 15 cm window of allowable ranges, which

gives room for a modest amount of body swaying.

The SqueezeNet CNN model is used to evaluate the effect

of spectrograms produced at different ranges on classification

accuracy. Using the methods described in Section III, a total

of 75 time-Doppler samples are recorded for all gestures

performed at the minimum and maximum distances necessary

for a clear Doppler signature (as reported in Table V). For

the tremolo bow stroke, a minimum bound is arbitrarily set at

a range of 31 cm, which provides more than sufficient room

for large swaying motions from the user. A confusion matrix

showing the SqueezeNet CNN model’s predictions on this data

can be found in Fig. 9. While some gestures, such as detaché

down-bow and staccato up-bow, do not experience a decline

in prediction accuracy at the minimum and maximum range

bounds, other gestures do. The detaché up-bow suffers the

most, dropping from an accuracy rate of 93%±50%, as the

SqueezeNet CNN has trouble distinguishing the gesture from

a staccato up-bow.

VII. DISCUSSION AND CONCLUSION

This study investigates the potential of using an FMCW

radar to recognize various violin-bowing gestures. Previous

studies have attempted to automate musical instrument feed-

back, but they relied on vision systems, sensor attachments

to the violinist or the instrument, and wearable devices; these

approaches pose problems such as privacy concerns, sensitivity

to lighting, discomfort during the performance, and more. This

work proposes the use of the radar, which does not suffer from

those problems, as a method of recognizing bowing gestures

by sensing the position and velocity of the bowing arm. Over a

thousand samples of violin bowing gestures performed on the

A string are collected from three subjects via radar. Through

observing the corresponding time-Doppler spectrograms, the

bowing gestures can be distinguished from one another due

to differences in certain features such as maximum/minimum

relevant frequency and time span. To automate bowing gesture

classification, time-Doppler information for gestures is fed

into machine learning classifiers. Both an automated and a

manual approach to extracting features for training from the

time-Doppler signature are explored. Ultimately, the fine-tuned

pretrained SqueezeNet CNN model performs the best, with

an accuracy of 95.00%. Although this model is outperformed

marginally by the MLP (A) in classifying the detaché up-bow

and the Decision Tree (M) and MLP (M) in classifying the

staccato up-bow gesture, the SqueezeNet CNN most accurately

predicts gestures across the board. An analysis of varying the

user-to-radar range reveals that clear and visible time-Doppler

spectrograms can be produced even in the presence of full-

body swaying. However, if the range fluctuations are appre-

ciable, the SqueezeNet CNN model struggles to accurately

predict certain bowing gestures. Given the sensitivity of the

machine learning model to significant range fluctuations, this

technology is not suited for evaluating stagy performances but

can reasonably be used for providing feedback in controlled

practice settings.

As this study focuses on recognizing gestures only on the

violin A string, future work should investigate the signatures

for gestures performed on other violin strings. Changing

between strings on the violin results in slight changes in

the angle of the stroke relative to the radar, yielding unique

signatures that must be learned by the classifiers. Furthermore,

it may be worth analyzing micro-Doppler signatures and

range profiles of bowing gestures to help isolate the desired

hand-arm movements from extraneous movements and body

swaying. Finally, as a pilot study for radar-based violin gesture

recognition, the goal of this work was to explore the potential

of radar and machine learning in differentiating the general

forms of various bowing techniques. However, the ultimate

goal of this technology is to not only identify the user’s bowing

gesture but also gauge how accurately the intended gesture was

performed. Future work could explore the potential of radar

and machine learning in providing a quantitative assessment

of the deviation in gesture performance from the standard.
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