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Flavors of magnetic noise in quantum materials
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The complexity of electronic band structures in quantum materials offers new charge-neutral degrees of
freedom stable for transport, a promising example being the valley (axial) degree of freedom in Weyl semimetals
(WSMs). A noninvasive probe of their transport properties is possible by exploiting the frequency dependence
of the magnetic noise generated in the vicinity of the material. In this Letter, we investigate the magnetic noise
generically associated with diffusive transport using a systematic Langevin approach. Taking a minimal model of
magnetic WSMs for demonstration, we show that thermal fluctuations of the charge current, the valley current,
and the magnetic order can give rise to magnetic noise with distinctively different spectral characters, which
provide a theoretical guidance to separate their contributions. Our approach is extendable to the study of magnetic
noise and its spectral features arising from other transport degrees of freedom in quantum materials.

DOI: 10.1103/PhysRevB.106.L.081122

Introduction. Many recently discovered novel quantum
materials are featured by the complexity of their electronic
band structures, as a result of spin-orbit coupling [1], magnetic
order [2], twist engineering [3], etc. These structures may ex-
hibit new degrees of freedom stable for transport, in addition
to charge and spin, due to the protection either by symmetry
or topology, which can be explored for the next-generation
information devices. One prominent example is the valley de-
gree of freedom present in some hexagonal two-dimensional
semiconductors or Weyl semimetals (WSMs), the possibility
of manipulating which gives rise to the field of valleytronics
[4].

Transport is generally noisy. As the Johnson-Nyquist noise
(thermally excited electric currents) is important in electronic
devices, understanding the generation of noise from these new
degrees of freedom is of practical relevance in spintronic or
valleytronic devices. At the same time, the electromagnetic
noise emitted by a material into its environment encodes
rich information about its intrinsic excitation dynamics and
transport properties. For example, the magnetic noise in the
vicinity of a conductor is directly related to its impedance
[5,6]. The recent development of magnetic-noise spectroscopy
using single qubits, especially the nitrogen-vacancy (NV)
centers in diamond [7], has provided a nanoscale probe to
access such information noninvasively, and with high fre-
quency resolution [8—10]. NVs have also turned out to be
useful in the study of magnetic insulators [11-14] by probing
the magnetic noise generated by spin excitations. While ther-
modynamic valley fluctuations have been accessed by optical
methods [15], the noise associated with valley transport in
low-frequency regimes is so far rarely explored.

In this Letter, we offer a qualitative perspective to the study
of the magnetic noise in quantum materials, which can be
flavorful due to the presence of various transport degrees of
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freedom, focusing on their generic diffusive aspect. To this
end, we take an example of a magnetic WSM, which naturally
involves three sources of noise, namely, charge, spin, and val-
ley. Intriguingly, each flavor can contribute a distinct spectral
character, as shown in Fig. 1. Our perspective can be extended
to consider other pseudospin degrees of freedom in general
and may inspire future experimental work in the NV probe
of quantum materials in light of its advantage in frequency
resolution in the GHz regime.

WSMs are a family of topological quantum materials
promising for valleytronic applications, because the band
crossing at Weyl points is topologically protected, and the
valley relaxation time can be very long in a clean system
[16]. Magnetic WSMs, such as those in magnetic Heusler
compounds [17-19], allow the existence of a single pair of
energy-degenerate Weyl valleys [20], and are thus ideal for
the study of valley transport. The interplay between charge,
valley, and spin [21,22] also makes them attractive for spin-
tronics. The detection of valley transport often relies on the
conversion from valley excitations to optic or electric signals,
for instance, with the help of the chiral anomaly effect in a
nonlocal geometry [23]. In magnetic WSMs, however, this is
not totally unambiguous due to the presence of spin excita-
tions, which usually have a long diffusion length as well. The
magnetic-noise spectroscopy can serve as a direct probe of
the intrinsic transport properties in the absence of external
perturbations and electric contacts. As we will show, it is
possible to distinguish the valley and spin contributions to the
magnetic noise based on their spectral characteristics.

Main concepts. We first briefly summarize our conceptual
understanding of why the three flavors contribute differently,
even all under a diffusive treatment. Focusing on the scenario
with a nonvanishing carrier density, where the electric charge
density fluctuations are screened by Coulomb interactions,
transverse fluctuations of the charge current dominate the
charge channel. In contrast, longitudinal fluctuations of the
valley current are important due to its charge neutrality and
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FIG. 1. An illustration of the three flavors of magnetic noise in a
magnetic WSM and their different spectral characters.

hence the absence of screening of the axial charge density.
In our model (see below), the Weyl nodes are induced by
the broken time-reversal symmetry associated with the mag-
netic order, which dictates the response of valley currents to
magnetic fields and thus the generation of magnetic noise
by valley fluctuations. Consequently, only the longitudinal
component of the valley current generates magnetic fields in
the environment: The valley current j” behaves as a magneti-
zation, and determines a “magnetic charge” distribution in the
bulk py o< —V - j¥, while that on the surface vanishes due to
the boundary condition oy o mn - j° = 0. In the spin channel,
however, the spin density (rather than the spin current) plays
such a role. See Fig. 1 for comparison.

Model. The following minimal model is considered for a
magnetic WSM with four bands [24],

H=vt,® (0 k) + At, +Jo-M, €))]

where o and 7 are vectors of the Pauli matrices in the spin
and valley spaces, respectively, v is the Fermi velocity, A is a
Dirac mass, and J is the magnetic exchange between the itin-
erant electrons and the magnetic order M. When |J/|M > |A|,
this model realizes a single pair of Weyl nodes with oppo-
site chiralities separated in the momentum space. Hereafter,
[JIM > |A| is assumed to approximately conserve the valley
index [22]. We also assume a small but finite Fermi surface,
and thus a finite carrier density at the valleys, i.e., a Weyl
metal.

Defining j©() as the number flux density operator of elec-
trons belonging to the valley with positive (negative) chirality,
the valley current becomes

i'=J"—J = ndH/h = ve, @)

at a single-particle level. The assumptions about the spin and
parity symmetries [22] in our model (1), therefore, establish
a proportionality between the valley current and the itinerant
spin density at the Fermi surface. Since a Zeeman term o - B
is allowed, the valley current can directly couple to magnetic
fields, with its fluctuations generating magnetic noise.

We employ a simple setup of magnetic-noise measurement
using an NV center placed at a nanoscale distance d from
a flat surface of the three-dimensional material, as shown in
Fig. 2. We choose the magnetic order M || Z and the surface
plane to be the xy plane. With this geometry, we focus on the
contributions from bulk transport, separated from the Fermi
arcs. The central object of our study is the magnetic-noise
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FIG. 2. Quantum-impurity relaxometry of a magnetic Weyl
semimetal. A three-dimensional sample of a magnetic WSM with
a band structure given by Eq. (1) has a magnetic order M in the z
direction and a surface lying in the xy plane. An NV center is placed
at distance d from the surface, with a tunable resonance frequency w.

tensor in the frequency domain at the position of the NV cen-
ter ryy, expressed in the symmetrized correlation functions of
the magnetic field operators,

1 .
Bii(w) = E/dt " ({Bi(rnv, 1), By (rny, 0)}).  (3)

Its components determine the NV relaxation rate depend-
ing on the NV orientation [11,25]. Keeping the typical GHz
frequency of NV centers in mind, we focus on the mag-
netostatic limit, where the wavelength A of the fluctuating
electromagnetic field and the skin depth A of the material are
both much larger than d. This frequency also puts us in the
classical limit (hw < kgT'), with the exception only for very
low temperatures. Accordingly, we develop a simplified but
systematic treatment of the magnetic-noise generation from
charge, valley, and spin degrees of freedom, which we now
turn to.

Charge. To introduce our approach, we first reproduce
the established results for the Johnson-Nyquist noise. The
Langevin dynamics [26,27] of the electron current (the num-
ber flux density) j¢ = —o V¢ + € is considered, where o is
the conductivity (neglecting the Hall effect [28]), u¢ is the
electrochemical potential, and € is a Gaussian white noise
with (ef(r,¢)) =0 and (e (r,t)es(r',t")) = 20kpT §;8(r —
r')8(t —t’). The coefficient in the correlation follows from
the equipartition theorem [29], and is consistent with the
fluctuation dissipation theorem [30]. This treatment assumes
the diffusive regime, focusing on dynamics on the length scale
much larger than the mean free path of the electrons, and at
frequencies much lower than the momentum relaxation rate.
Focusing on the transverse components of the charge current,
V - j¢ = 0, we have the following differential equation for the
electrochemical potential p¢:

oV =V - €. )
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The charge current does not flow across the surface
Ji(r,t)|.—0 = 0, giving the Neumann boundary condition
00, uc(r, )] =0 = €(r, 1)|;=0. Solving the differential equa-
tion yields

j”(l‘,t)=éc(r,t)+/d3r’6“(r/,t)~Vr/VrgL(r, r), &
Q

where G; (r, 1) is the Green’s function for the Laplacian com-
patible with the Neumann boundary condition [31].

The magnetic field generated by the charge current is given
by the Biot-Savart law,

B(r, 1) = —

e / P U R ST
Q

c r —r'|3

where c is the speed of light, and we have taken the charge
carriers to have charge —e. Inserting the magnetic field (6)
into the definition (3), we obtain the magnetic noise due to
charge fluctuations,

wetkgTo
BS(w) = —2" 7 Ay, 7
o) = = (7)

where A = diag(1/2,1/2,1). This reproduces exactly the
result from the formulation in terms of transmission and re-
flection of electromagnetic fields at a metal surface [33-35],
in the magnetostatic limit.

Valley. We next apply this approach to the valley degree of
freedom. Different from the charge current, the valley fluctu-
ations are neutral and thus compressible, which, as we have
pointed out, turns out to be crucial for generating magnetic
noise. The weak intervalley scattering allows us to consider
electron conservation in each valley separately: For the valley

p(p==),
0 p" +V-j» =0, (®)

where p? = (v/2)u? and j» = —(0/2)VuP + €”. The to-
tal density of states v at the Fermi surface includes both
valleys, consistent with the convention of the total charge
density p¢ = p* + p~ and the average electrochemical po-
tential u¢ = (u* + w™)/2. The Langevin noise here obeys
(el(r, t)ei’/’,(r’, 1)) = okgT 8,y 8i8(r —1x')8(r —1'), suppos-
ing fluctuations in the two valleys are uncorrelated. We
therefore arrive at the stochastic diffusion equation

2
du? — DV pP = —=v-e, )

where D = o /v is the diffusion coefficient, as given by the
Einstein relation. Under the boundary condition jZ(r, t)|.—o =
0, we solve for u” to obtain the currents

t
jh(r,1) = ep(r,t)—D/ d3r’/ dr'e’(r', 1))
Q —00

'VI'/VI‘gD(r’ r/;tvt/)5 (10)

where Gp(r,r’;t,t') is the Green’s function for the diffu-
sion equation satisfying the homogeneous boundary condition
[31].

Our model dictates that the valley current (2) generates
magnetic fields equivalently to a local magnetization, via the
demagnetization kernel,

v 1
Bv(r,n:w/d%/ SV Ve—— ) an
v Jo It —r'|

where g, is the effective g factor characterizing the coupling
of the valley degree of freedom to an external magnetic field,
and pp is the Bohr magneton. The valley contribution to the
magnetic noise can then be calculated, yielding

s\ 2 A ksT )
Byw) = (S22) T4, [ dsee e o, a2)

with dimensionless quantities & = Kd, ¢ = de/D, and a =
V—iw/DK* + 1 = \/—ic JE2 + 1,

l+aa* 1 1
ra L1 a3
a

v
I'é¢.0)=1+ ataer &
The integration is essentially taken over the magnitude of
the wave vector K = |K| in the xy plane, with £2¢=% as a
form factor. The anisotropy tensor A is the same as in B¢ (7).
The frequency dependence of the magnetic noise is contained
in 1Y, which scales as w® for @ — 0 and approaches 1 for
@ — 00,1 — I' ~ »~ /2, The magnetic noise vanishes at zero
frequency, consistent with our understanding that transverse
components of the valley current do not contribute, in contrast
to the charge current.

We estimate the magnitude of the valley contribution rela-
tive to the charge contribution,

g— ~&(9) (%) [asee e, as

where we have reduced the result to physical constants,
namely the fine-structure constant « and the Bohr radius ay.
The effective g factor g, can be greatly enhanced by the
strong spin-orbit coupling, especially in topological semimet-
als [36-38]. Taking g, ~ 100, the Fermi velocity v ~ 10° m/s
[39], the NV distance d ~ 100 nm, and evaluating the integral
numerically at ¢ = 5, we obtain B /B¢, ~ 0.2. Recalling that
B¢ (7) is spectrally flat, in our treatment, B can be easily
recognized, for example, by taking a frequency derivative of
the total measured noise 9,5, exploiting the high frequency
resolution [13] of NV probes. Moreover, this will not be
spoiled by the presence of a spin contribution, which will be
seen to have a distinct frequency dependence.

Spin. Fluctuations of the magnetic order, in the form
of thermal magnon excitations, constitute a third ingredient
of the magnetic noise in magnetic WSMs. Considering the
magnon gap in magnetic WSMs can be several meV [40,41],
we focus on the subgap magnetic noise generated by the
longitudinal (relative to the order parameter M) spin fluctua-
tions [25,42]. The Langevin dynamics of the longitudinal spin
density s, can be described by a stochastic diffusion equation,
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sometimes referred to as the Cahn-Hilliard model [26,43],
3s. — D'V?s, = €°, (15)

where D° is the spin diffusion constant. Here, the
Gaussian white noise €® has the correlation function
(e, e, 1)) = —20°kgTV?8(r — ' )8(t —t'),  where
the spin conductivity o° is related to the spin diffusion
constant D° =0"/xo by the static longitudinal spin
susceptibility xo. The corresponding boundary condition
Ji(r,t)|;=0 =0 is specified in terms of the spin current
j° = —D°Vs,. The solution is

t
&mnzfd%f ar'gy(x,v'st,t')e (', 1),  (16)
Q —00

where G, (r, r'; ¢, t') is simply the Green’s function of Eq. (10)
with D replaced by D°.
The spin density generates demagnetization fields, and
their the correlation function gives the magnetic noise
2 kBTX()
wd?

where g, is the g factor of localized spins, and

Bl (w) = (gs1p)* Air / deg%e (g, ), (17)

. Iy 1 1
”am_’b@+n mw+n} (18)
where b = /—in/E2 + 1, = Kd,and n = wd?/D*. Asw —
0, I* scales as w and B* converges to a finite value. For o —
00, I ~ 1/w, and B° vanishes asymptotically as 1/w?.

According to recent experiments around room temperature,
the resultant NV transition rate from charge fluctuations in a
good conductor [8] and that from longitudinal spin fluctua-
tions in a magnetic insulator [44] are both of ms~! order. In
magnetic WSMs with relatively low electrical conductivity,
spin fluctuations may dominate the magnetic noise at low
frequencies. However, the spin contribution quickly drops a
few orders of magnitude with increasing frequency. Conse-
quently, the total magnetic noise coming from the valley and
spin exhibits a “dip” feature in its frequency dependence, as
shown in Fig. 3, on top of the flat charge contribution. The
frequency wy;p at the bottom of the dip shifts lower at a larger
distance d. For the plot, we have assumed similar charge and
spin conductivities o ~ ¢* [45], and taken both electron and
magnon mean free paths ~30 nm, Fermi velocity ~10° m/s,
and magnon velocity ~10% m/s, yielding D ~ 107> m?/s and
D’ ~ 1075 m?/s.

Discussion. It should be remarked that the valley noise de-
rived here is based on a specific model (1), as a demonstration
of our formalism. The resulted prediction is not universal for
all WSMs. Different symmetry assumptions about spin and
parity in the band model can lead to a different coupling
scheme of the valley degree of freedom to magnetic fields. The
frequency and distance dependence of the magnetic noise can
therefore also reflect the applicability of the effective theories.
For specific materials, one may need to construct the coupling
scheme from first-principles calculations.

We have considered the magnetic noise primarily driven
by the diffusive transport, neglecting the valley and spin re-
laxation effects. This applies to NV distances much smaller
than the corresponding diffusion lengths (while larger than the
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| ! \\‘\\\H\ L1

0.5 1.0 50 100 50.0
w (GHz)

FIG. 3. The frequency-dependent magnetic noise generated by
valley (green) and spin (red) fluctuations in a linear (top) and a
log-log (bottom) plot. The total magnetic noise (black) exhibits a
“dip” feature at frequency wgip. TWo NV distances d = 100 nm (solid
lines) and d = 150 nm (dashed lines) are plotted. Inset: wgq;, as a
function of d. The vertical axis of the bottom plot spans three orders
of magnitude (in arbitrary units).

mean free paths), which is often the case in a clean material.
A finite valley relaxation time modifies the valley diffusion
equation, and in our Langevin approach, is accompanied by an
intervalley fluctuation of the axial charge density. Likewise,
spin density relaxation and fluctuation can be added to the
Cahn-Hilliard model. We refer to the discussion in the Sup-
plemental Material [31]. Furthermore, our treatment focuses
on the low-frequency regime, where dynamic effects of the
demagnetization fields, such as the Faraday induction, are
negligible.

The Fermi-arc states are universal in WSMs and are gen-
erally dissipative [46,47]. The magnetic noise they generate,
which is not detected in our choice of geometry, may also
be interesting to look into, by placing the NV near material
surfaces parallel to the magnetic order M. The Fermi-arc con-
tribution may be recognized by its distance dependence [48§],
which is different from the bulk one. For the spin channel,
the change in the surface orientation relative to the order
parameter would acquire a geometric factor [49]. It would
also be straightforward to account for an anisotropic electric
conductivity under our framework for practical application.

Going beyond the diffusive regime, a nanoscale probe
such as NV can also probe the ballistic and perhaps the
hydrodynamic transport of charge or spin, when the NV to
material distance is smaller than or comparable to the elec-
tron or magnon mean free paths [8,50]. The spectral analysis
of magnetic noise would also be particularly useful in the
nonequilibrium regime, for example, in the presence of a
steady spin or valley current, which may provide a cleaner
detection of the corresponding nonlinear responses.
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Supplemental Material for
“Flavors of Magnetic Noise in Quantum Materials”

Shu Zhang and Yaroslav Tserkovnyak
Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

In this document, we present the details on the generation of the magnetic noise by the fluctuations of the charge,
valley, and spin degrees of freedom in a magnetic Weyl semimetal, via different generating kernels. Specifically, we
look into the magnetic field B(rny,t) at the position of the NV center rnyy = (0,0,d) generated by the material
occupying the half space €2 with z < 0, assuming the material dimensions are much larger than d.

The following identity and its variants will be frequently used, which is convenient for the broken translational
invariance in the z direction,

]. d2K 2’/T K ’ ’
_ 27 K (R-R')~K|z—2'| S.1
r—1/] /(2@2 K° ’ (5-1)

where R = (z,y,0), and K = (k;, ky,0) denotes the wavevector in the z and y directions, K = |K]|.
I. Transport

A. Charge

We take a stochastic approach and study the response of the charge current to a Langevin noise, and verify that our
method reproduces the known result for the Johnson-Nyquist noise from the thermal fluctuations of electric charge
current in a metal. The charge transport obeys the continuity equation

Op°+V-j=0. (S.2)
In the low frequency limit, the charge density fluctuation is efficiently screened by Coulomb interactions. We thus
consider the transverse current fluctuations only, V - j¢ = 0, where j¢ = —oVu¢ + €. Here o is the conductivity,
u¢ is the chemical potential, and € is a Gaussian white noise satisfying (e§(r,t)) = 0 and (e5(r,¢)eS (v/,t)) =

20kpTd;i6(r —x')d(t — t'), as a result of the fluctuation dissipation theorem at high temperatures. We find the
response of the charge current j¢ to the thermal noise € by solving the following differential equation

oVt =V - €. (S.3)

In a free space, it is easy to show by the Fourier transform that ok?u¢ = k - € and j° = € — kk - €/k?, which gives
the familiar transverse current correlation functions (j¢(r,t)j§ (x',¢')) = (8 — kiki /k?) 20kpTS(xr — v')5(t — t').
Here, since the current does not flow out of the material, we solve Eq. (S.3) in the half space © with the Neumann

boundary condition Jaz,uc(r,t)’ = €5(r,t)| . The Green function for the Laplacian with the homogeneous
0 z=0

z
z=

Neumann boundary condition is [the time dependent factor is simply (¢ — ¢')]

1 1 1
Gr(r,r') = —— + . S.4
T [wxf)u(yy')mzzfv N O R VO LR CEaE oy
Therefore,
. eC(p! c /
peten) = [ Guea) T [ gy S0, (8.5)
Q g o0 g
and integrating by parts
) = (1) + / Pr' €(r 1) - Vi Vol (r, 7). (S.6)
Q

Using the Fourier transform of the Green function (S.4) in the z and y directions with R = (z, y,0),

gL(K,Z,Z/) _ _% (e—K|z—z’| + 6_K|Z+ZI‘) ’ (87)



we take the Fourier transfrom of j¢(r,¢) in the following form,

0
JS(K, 1) :/ dzeKZ/dQRe*iK'RjC(r,t)

— 00

0
:/ dz eKZ/d2Re*iK'R [€(r,t) — €S(r, 1)Z] (S.8)

—00

L ' dz' X7 /d2R’6_iK'R/eC(r’ t)- (Kﬁ*l - nnz’)
2K J_o ’ K ’
where kK = K + iK2z. The second term in the square brackets comes from the Dirac §-function in V.V, G(r,1’).
In the magnetostatic limit, where the wavelength of the electromagnetic field and the skin depth are both much

larger than the NV distance d, the Biot-Savart law gives the magnetic field generated by the electric charge current
distribution,

Bf(rnv,t) = —E/ d’r j°(r, ) X Vr¥
c Jo |rNV_r‘
e d’K 21 ey, .c
=—- [ —— ¢ ik) x j(K,t
c/(227r)2 K¢ R XKD (S.9)
. e d°K 27 _Kd |- c 1 S c
= E/W?e [zmxe(K,t)—i—K(ZXKk (K,t)- K|,

where €°(K,t) = f_ooo dzef* [ d®Re R e(r t). We have used k x k* = 2Kz x K and k x k£ = 0. This result
reproduces that in Ref. [35] derived from Maxwell equations with proper boundary conditions, and is consistent with
the approach of finding the Fresnel coefficients [33, 34]. Finally, we obtain the magnetic noise tensor contributed from
charge fluctuations, according to Eq. (3),

e\ 2 20kgT TR T i ot Ty . g
c _ 2 B —2Kd ijk ik * ijk i’ zk * ik izk x izk i’ zk
B (w) = (E) /d K 5703 e €77 Trjkl + —€ele ki Kk, — —€ €7k Kikp + 2% K, Ky

(2)2 / dKe 25990k T Ay

2
T
_me kg OAW’
c2d

(S.10)
where the tensor A = diag(1/2,1/2,1) and Einstein summation is taken over repeated indices.

B. Valley

Following the same approach, we next look into the contribution from the valley current. We first focus on the
particle conservation in a single valley p, assuming the interaction and scattering between the two Weyl nodes are
weak. We do not consider the chiral-anomaly related perturbations here.

Oip” + VP =0, (S.11)

where p? = (v/2)uP and j®» = —(0/2)VuP + €P. Here v refers to the total density of states at the Fermi surface,
including both valleys. Assuming no correlation between €t and €™, (€7 (r, t)el, (r',t')) = ckpTdpp 6;i0(r —1')5(t —1').
The differential equation to be solved is then

2
OppP — DV P = — =V - €P (S.12)
v

where the diffusion coefficient D = o /v, as is consistent with the Einstein relation and the Drude law. The boundary

condition j?(r,t) = 0 is similar to the case with charge. We use the Green function for the diffusion equation



satisfying the homogeneous Neumann boundary condition, and its Fourier transform

—_— / ’ ’ ’ ’ ’ ’ ’
o (e r/st,1) = Me—m—z P PADU) (o (AP | g e+ /4D
- S.13
Gp(K,z,2;w) = 1 (e_“K\Z—Z/\ + e_“K\ZJrZ’I) (519
) ) b 2DaK )

where ©(t — t) is the Heaviside step function. Here, the dimensionless parameter a = y/—iw/DK? + 1 carries the
frequency dependence in the following context, and is evaluated in the branch with Rea > 0. The current distribution
is therefore

¢
jP(r,t) = €°(r,t) — D/ d3r'/ dt' e’ (v’ t') - ViV Gp(r,v'st, 1), (S.14)
Q —o0
and
O . .
K, w) = / dzef* / d’R / dt e K Rp (r ¢)

O . .

:/ dz eKZ/d2R/dt e WITIKR [P (r 1) — €l(r, )2 (S.15)

J d2 , J VKR Kz’ eKz/ _eaKz’ *eaKz/
- R t iwt’ —1 t
QaKQ/ Z/ / € et ) a+1+ A T+ a+1]’

where x = K + iaKz, and ¥* = K — iaKz.
The valley current density behaves like a local magnetization in generating the magnetic field:

v 1 .
B’ (rny,w) = w/ﬁd?’r (_VrNVVrh‘NVr> jU(r,w)

v

K 2
s e [ (K, w) — (K]

v (2m)?2 K
fgv“B/ ’K 2m -Kd /0 dz/dzR/dtei“t*iK'Rm K2 — eamx et (r,t) — € (x,1)]
v (271_)2 K . a ’ 9 )
(S.16)

where g, is the effective g factor describing the coupling of the valley degrees of freedom to an external magnetic field
and v is the Fermi velocity. We have used k- % = —K?(a — 1) and & - x* = K?(a + 1). With the help of

0
</ dzeclz/dZR/dtefithriK-R Ef(l‘,t)/ / 02 z /d2R’/dt/ eiw/tlfiK/~R/€;;J/ (I‘/,t/)>
e (S.17)

O'kBT
- c1 + co* (27T>35pp’5ii’5(K — K/)(S(w _ OJ/)7

we obtain the magnetic noise tensor generated by valley fluctuations

By (w) = <B (rnv, w) B (rny, w)

2
( 5 ) / d21){2 (2m K) e 2Kk g Tkl |1+ (aljﬁ - ai —% (S.18)
NG e vy PR )
where
P =14 1o 11 (S.19)

(a+a*)aa* a* a

with dimensionless quantities ¢ = Kd, ( = wd?/D, and a = \/—i(/&2 + 1. The anisotropy tensor A is the same as in
Be.
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C. Spin

We invoke the Cahn-Hilliard model [43] to describe the Langevin dynamics of the longitudinal spin density s,
05, — D°V?s, = ¢°, (S.20)

where D?® is the spin diffusion constant and € is a scalar Gaussian white noise with the correlation function
(e*(r,t)es(x',t")) = —20°kpTV?26(r — 1')6(t — t'), containing the Laplacian operator. The spin conductivity o is
related to the spin diffusion constant D® = o°/x( by the static longitudinal spin susceptibility yo. The boundary

condition j:(r,t) = 0 is specified in terms of the spin current j°* = —D*Vs,. The solution is
0

z=

t
sz(r,t):/d3r’/ Gh(r,x'st, t") e (', t). (S.21)
Q —oo

The Green function G§,(r,r’;t,t') is simply Eq. (S.13) with D — D*,

("‘)(t — t/) 2 N2 El / N2 E] ’ 2 E] /
s Iy ) = —[(z=2")"+(y—y")71/4D* (t=1t") ( ,—(2—2")"/4D"°(t—t') —(2+2")7/4D* (t—t")
gD(I',I‘,t,t) [4’/TDS(t—t')}3/2e (6 +e )
| (S.22)
s /. _ —bK|z—2| —bK|z+z'\)
GH(K,z, 2" w) DV (e +e ,
where b = \/—iw/D*K? + 1. Taking the Fourier transform,
0
s, (K,w) :/ dzeKz/dQR/dt eWtmKR (rt)
3./ ! 1 iwt’ —iK-R’ 1 beKZ/ _ebKZ/ ’ogr <823)
=/ d dt'et 7 *(r't
fLw [ _ae DRE pr -1 ")
The spin density generates stray fields via the demagnetization kernel,
1
B’ (rnv,w) = gsuB/ d*r (—VTNVVr> -8, (r,w)z
“ ey = (S.24)
PK 21 _eq [ ¢ oy 1 befz — bK= '
= 9s o € dz [ R [ dte™" KR S(r,t).
9“3/(277)21(6 "/_OO Z/ /_Oo ¢ DK b= &
Using the correlation relation of the Gaussian noise, we obtain the magnetic noise tensor
, d’K (27)? o’kpT 1 1
B, _ < 2 —2Kd ; * _
i (@) = (g:18) / emz K © "D |bb+1) b0t +1) (5.25)
kT e '
= (gsin)’ %Aii’ dg €274 1° (€, ),
where g, is the g factor of localized spins, and
1 1
I =—i - S.26
(&m) =~ {b(b +1) b+ 1)} (8:26)

with ¢ = Kd, n = wd?/D?* and b= /—in/&2 + 1.
I1I. Relaxation
A. Spin

In the Langevin approach, the spin relaxation can be handled by replacing the correlation functions of the Gaussian
noise by (€%(r,t)e*(v/,t')) = 2kpTxo(1/7% — DSV?)§(r — 1/)§(t — ) in

(at + Tl) 5, — D°V?s, =&, (S.27)
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where 7° is the spin relaxation time. This is because the consideration of the spin relaxation has to be accompanied
by a spin density fluctuation, as dictated by the fluctuation-dissipation theorem. Here, the Green function and its
Fourier transform are, respectively,

fng(r, I‘/; t, t/) = [4 g((tt_ ttll))]g/z e—[($—x/)2+(y_y’)2]/4Ds(t—t/) (e_(z_zl)2/4Ds(t—t/) 4 e—(z+2/)2/4Ds(t—t/)) e—(t—t')/7—57
T DS(t —

~ 1 ~ ) N /

gSD(K, Z, Z’;w) = _ (e—bK|Z—z | + e—bK|z+z \) ’
2DsbK

(S.28)

where b = V/(=iw +1/7%)/DsK?2 + 1. The magnetic noise thus becomes

PK (21)2 g . 2ksTxo (1+0+0%)(b+1)(0* +1) + [2(b+ b* + 1) + bb* (b + b*)] /2K D* 1

gfi/ w) = s 2/ e K‘Z’K"’i’ — = =~ ~ =

(W) =lowmn)” [ Gz &3 Ds bb* (b + 1)2(b* + 1)2(b + b*)
245 24 b

e, _2F

b(b+1)2  b*(b* +1)2

2 kBT X0
Ds

= (gstiB) Ay | dKe 254

(5.29)
In the limit 1/7° — 0, Re [(2 +b)/b(b + 1)2] — Im [(2D*K? /w) /b(b + 1)], we arrive at the same result as in Eq. (S.25).
In the opposite limit 75 — 0, (2 + b)/b(b+ 1)2 ~ D*K27*, B, (w) = (gspn)’ kT xom* Aiir /2d3 is independent of
D?, as expected from the relaxation dominated equation of motion.

Alternatively, the noise can be computed from the dynamic spin susceptibility, with the help of the fluctuation
dissipation theorem. We derive dynamic spin susceptibility from the diffusion equation for the longitudinal spin
dynamics

D5, +V - j° = —%;ﬁ, (S.30)

where j* = —0®Vp® is the spin current, u® = s./xo — h is the spin chemical potential, and h is a force thermody-
namically conjugate to s, given by the external magnetic field. The spin distributionr relaxes towards yoh (u® =0
in equilibrium), characterized by the spin relaxation time 7°. The differential equation

1
(at + > ps — DV = —0,h. (S.31)
T
again has the boundary condition 0, u°(r,t) 0= 0. From the solution of p*(r,t), we have
- t ~
s.(r,1) = o / &’ / dt’ [6(1' )5t —t) — gf)(r,r’;t,t')ﬁt/} h(r', ), (S.32)
Q —o0

which defines the longitudinal susceptibility x(r,r’;¢,t'). The Fourier transform of the dynamic spin susceptibility is
therefore

x(z, 2", K,w) = xo [6(,2 -2+ 2DZL%K (e_EKlz_Z,l + e_ZKZ+Z/|)] . (S.33)

The spin induced magnetic noise is then

= d’K (2m)? 0 0 » 2kpT
B (w) = (g,uB)Q/(Q)Q(I?Q) efdekamf/njn;// dz/ dz' e +2) iImx(z,z/,K,r,u)
71' oo oo w
~ (S5.34)
= (gus)’ MA“, dK e 2KdRe f;b
Ds b(b+1)2|’

which reproduces the result (S.25) from the Langevin approach.
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B. Valley

In the same spirit, we consider the following diffusion and relaxation of the valley degree of freedom
1 v v ~v
(&—%ﬂ)p +V.j'=¢, (S.35)

where p¥ = (v/2)u?, v is the total density of states at the Fermi surface, u® = (u™ — p~)/2 is the valley chemical
potential, j* = —(0/2)Vu® + €”, and 7V is the valley relaxation time. The intravalley noise has the same correlation
as before (e} (r,t)e} (r',t')) = 20kpTd,#0(r — r')o(t — t'), and we also account for an intervalley fluctuation of the
axial charge density (€”(r,t)) = 0 and (¢“(r,t)e’(r',t")) = (v/7%)2kgTé(r — r')6(t — t'). The differential equation to
be solved is then

(at + Tl> p’ — DV Y = %(fv € +¢), (S.36)

with the Neumann boundary condition. The Green function in this case is

~ e(t—tl) e N2 N2 o o n2 L _ o L o .
gD(r’rI;tat/) = =, a5 € [((z=2")"+(y—y')"]/4D(i—t") (6 (z—2")7/4D(t t)+e (z+2")2/AD(t t))e (t—t") /7 ’
[4nD(t — )3/
~ 1 . , _ ,
Go(K, 2, /5) = 5 (71 4 K1)
2DaK
(.37)

where a = \/(—iw + 1/7%)/DK? + 1. Following Eqs. (S.14-S.18),

t
F(r.t) = €(r,t) - D / P’ / (@@ )+ @@t - Vi Vil (o, 01,1, (S.38)
Q —00

(K, w) :/ dzeKz/d2R/dtem_ZK'R [€°(r,t) — el(r,t)Z]
1 o KR o L eKE KA _gaky aKe
—W/_Oodz/dR/dte €' (x',t") - xxEH_l—kxx =7 +xxa (S.39)

: 0 Kz aKz' Kz aKz'
7 Lo ’ € — e ~4x € e
S / dZ/ / d2R/ / dt ezwt —K-R 'Evu(r/’ t/) 5 _ + %* ~+ ,
2aK? J_ a—1 a+1

where % = K+ iaKz and %" = K — iadKz.

U JuB ’K 27 —Kd v
B (rvy.w) = 220 [ £ e § (K.
. PK 2 0 ) ) 6Kz~ i aKz
=9 Z‘B / ok %e_Kd/_oo dz/d2R/dteWt_lK'Rn [(—eKzli-l- ea x) -€(r,t) + w,d E”(r’,t’)] .
(S.40)
The magnetic noise turns out to be
~ ) 2 2K (27)? a—1)(a*—-1)1+a+a* 1/DT°K?
le(w):<gzu3) /d (2) 2K ke T (@-V(@ -DA+a+a’)+1/Dr
v (2m)2 K (a+a*)aa* (S.41)
2 ~ .
— (M) (4mokpT) A / K2die 2K |1 - A0}
v 2aa*

which goes back to Eq. (S.18) in the limit 1/7¥ — 0. In the opposite limit 7% — 0, the equation for the chemical
potential is dominated by the intervalley fluctuation and relaxation, and essentially decouples from the intravalley
fluctuations and the valley current transport. The latter continues to contribute to the magnetic noise B}, (w) —

(gopp/v)(wokpT/d®) Ay
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ITI. Simple metal

For a paramagnetic metal, the spin fluctuations are associated with electrons on the Fermi surface and can be
compared with the charge fluctuations on an equal footing. The spin diffusion equation remains a valid description
in this scenario. We follow the discussion below Eq. (S.29), replacing D*® and by the charge diffusion constant D. For
a system with a long spin relaxation time, the magnetic noise induced by spin transport yields

S

B3, 2¢? o rs
R RS N ) (5.42)

For an estimation, we take xo to be the Pauli paramagnetic susceptibility x, ~ v the density of states at the Fermi
surface,

BS 2 2 2
s~ () (P [aseereor, (5.43)
zz mip

resulting in a ratio of 0.001 with g, ~ 2, v ~ 10° m/s, lmtp ~ 30 nm, D ~ vlye,/3 and ¢ ~ 0.5. The presence of
strong spin-orbit interactions may lead to an extremely short spin relaxation time, such as in Pt, and thus the spin
decay length can be even shorter than the electron mean free path [32]. For v7° ~ ¢, an estimation of

S
zz
~

B 202XOTS X0~V 3g§ (ca)Q uT?® (a())?

—=£ ~ — — S.44
Be, (9511) 2e20d? 8 v Cntp d ( )
is also typically much smaller than 1. Therefore, the charge fluctuations dominate the magnetic noise in most circum-

stances for simple metals. However, the spin susceptibility xo can be greatly enhanced near the Stoner instability,
leading to a larger contribution of the spin fluctuations to the magnetic noise.




