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Modern precipitation gradients across the Maya region in Central America result in a diverse vegetational mosaic
that varies from scrub forest to rainforest. In this region, evidence of past changes in the distribution of vegetation
indicates two main patterns: i) a Holocene long-term trend towards a more seasonal forest, and ii) sharp changes
in vegetation cover resulting from human occupation. The history of vegetation in moister areas of the Maya re-
gion, however, has been mostly extrapolated from studies carried out in the Yucatan Peninsula. We reconstructed
the paleoenvironmental and paleoecological dynamics of the last ~1300 years in the Lake Izabal Basin, one of the
wettest areas within the Maya region. Palynological and geochemical evidences indicate that from
~650-1150 CE, vegetation assemblages were dominated by disturbance taxa, under relatively low erosion in
the catchment area. This pattern probably resulted from anthropogenic activities during the Terminal Classic Pe-
riod (800-950 CE) combined with the dry and more seasonal conditions of the Medieval Climate Anomaly. The
record from 1150 to 1400 CE points to an increase in moisture availability with a change towards a forested land-
scape. From 1400 to 1950 CE, geochemical data indicate lower precipitation, while the vegetation appears less
fragmented and a mature forest developed. Such pattern probably emerged from lower evapotranspiration asso-
ciated with the Little Ice Age (1350-1850 CE) favoring vegetation recovery. During the last 1300 years, vegetation
change in the Lake Izabal Basin parallels that of the Yucatan Peninsula, with anthropogenic influences and mois-
ture availability exerting first- and second-order controls on vegetation turnover, respectively.

© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

In the Neotropics, the late Holocene has been characterized by forest
cover variability at millennial to centennial timescales caused by cli-
matic and/or anthropogenic changes (e.g. Leyden, 2002; Beach et al.,
2009; Correa-Metrio et al., 2012a,b, 2013, 2016; Caballero-Rodriguez
et al., 2017, 2018; Harvey et al., 2019; Bush et al., 2021). Regional cli-
matic changes have been associated with the dynamics of the Intertrop-
ical Convergence Zone (ITCZ), the El Nifio Southern Oscillation (ENSO)
system, the North Atlantic Oscillation (NAO), the structure of sea surface
temperatures (SST) in the Caribbean Sea, among others (e.g. Hodell
et al, 2005a; Mann et al, 2009; Correa-Metrio et al., 2014a;
Bhattacharya et al., 2017). The confluence of these different factors,
combined with anthropogenic disturbance, has resulted in changes in
vegetation composition and structure as plants are preferentially
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aligned according to their adaptability potential and/or tolerance to
environmental conditions (Correa-Metrio et al., 2013; Delcourt and
Delcourt, 1991).

The Yucatan Peninsula and adjacent mountain systems, hereafter re-
ferred to as the Maya Region (Fig. 1), are characterized by a high biodi-
versity that results from the conjunction of Neotropical and Nearctic
biotas interacting across steep environmental gradients (Graham,
2010a; Correa-Metrio et al.,, 2011). The distribution of vegetation
types across the region, which ranges from scrub forest in the north to
tropical rain forest in the south, is driven by the regional precipitation
gradient characterized by dry conditions in the northern areas and pre-
vailing wet conditions in the south along mountain ranges (Fig. 1C)
(White and Hood, 2004; Rzedowski, 2006). These ecosystems have
undergone diverse degrees of degradation in the past, because of either
climatic or human influence. Numerous palynological studies have re-
ported a temporal pattern of vegetation community change consisting
of a gradual increase in disturbance taxa throughout the Holocene
(e.g., Islebe et al., 1996; Leyden, 2002; Mueller et al., 2009), largely
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Fig. 1. A. Lake Izabal in the regional topographic context with the bathymetric outline of the lake; the red dot shows the location of the Punta Chapin sediment core (modified from Obrist-
Farner et al., 2022a). B. Location of Lake Izabal in the context of Central America (red rectangle), with the blue rectangle highlighting the area associated with the Maya Region. Numbers
1-3 showing location of Lago Verde, Oquevix and Aguada X'Caamal respectively. C. Mean annual precipitation across the Maya Region (blue rectangle in inset B between 14-22°N and
84-94°W) (precipitation data from USGS Google Earth Engine). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

attributed to the progressive southward migration of the ITCZ that has
resulted in drier conditions in the Northern Hemisphere (Curtis et al.,
1996; Beach et al., 2009; Caffrey et al., 2011; Nooren et al., 2018).
Superimposed on this long term trend is evidence of substantial
changes in forest cover during the late Holocene associated with
human activities and deforestation (Islebe et al., 1996; Brenner et al.,
2002, 2003; Beach et al., 2009; Franco-Gaviria et al., 2018b). While
disentangling anthropic and climatic signals is difficult, it is paramount
for a better understanding of the interaction between these two sources
of ecosystem variability, especially under the modern scenario of global
change and pervasive human occupation.

While vegetation turnover in the Yucatan Peninsula has been rather
well studied, relatively little is known about the evolutionary history of
ecosystems in the areas of higher precipitation within the Maya region,
such as the Lake Izabal Basin (LIB) in eastern Guatemala (Fig. 1C). The
LIB, located in the eastern part of the southern Maya lowlands, has a
mean annual precipitation between 3000 and 4000 mm/yr, which is sig-
nificantly higher when compared to other areas within the Maya Region
(Fig. 1C). The higher rainfall in the LIB results from orographic precipita-
tion of moisture carried from the Caribbean Sea by the regional trade
winds (Martinez et al., 2019). Changes in the oceanic and atmospheric
circulation patterns in the region have resulted in variability of the re-
gional climate (Duarte et al., 2021). Thus, factors such as the Caribbean
Low Level Jet and the Atlantic Warm Pool have played a role at modulat-
ing the history of the regional climate (Duarte et al., 2021) and the re-
gional ecosystems. Given the moister conditions in the LIB area, the
basin could have buffered adverse effects of extreme climatic conditions

in the regional ecosystems by providing ecological refugia, thus
supporting the resilience of regional forests (Correa-Metrio et al.,
2014a; Rull, 2009).

The Punta Chapin core, retrieved from Lake Izabal (Fig. 1), is a 1300-
year-long sedimentary record (Hernandez et al., 2020) that provides
the opportunity for palynological and geochemical analyses to study
the vegetation and environmental dynamics in the area. Qualitative
and quantitative analyses of palynomorphs (pollen, spores, algae) and
X-ray fluorescence (XRF) of elemental abundances have been under-
taken to reconstruct vegetation changes and environmental dynamics
through time. The record provides an opportunity to compare the envi-
ronmental dynamics of the LIB with other records from the Maya Region
in the context of the Medieval Warm Period and the Little Ice Age, the
most important climatic oscillations of the last two millennia (Mann
et al., 2009; McGregor et al., 2015; Anchukaitis and Smerdon, 2022.),
and the pervasive occupation and posterior disintegration of the Maya
civilization (Leyden, 2002). Using a high-resolution geochemical record
and a ~100-year-resolution pollen sequence, we offer an overview of
environmental and ecological dynamics in the LIB during the last
~1300 years. This reconstruction provides the means for evaluating
the role that the regionally disjointed climate might have played at
modulating vegetation dynamics during the last ~1300 years.

2. Study area

Lake Izabal is located in eastern Guatemala, in the Maya lowlands,
between latitudes 15° 24'N - 15° 38'N and longitudes 88° 58'W - 89°
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25'W along the Polochic-Motagua Fault System (Fig. 1; Bartole et al.,
2019; Obrist-Farner et al., 2020). The lake is shallow (zn.x = 15 m),
with the water surface at ~1.5 m above mean sea level (Hernandez
et al., 2020; Duarte et al., 2021). With a surface area of 672 km?, Lake
Izabal is the largest lake in Guatemala and the third largest in the north-
ern Neotropics (Brinson and Nordlie, 1975; Obrist-Farner et al., 2019).
Flanked by the Santa Cruz Mountain Range to the north and the Minas
Mountain Range to the south, the lake has a large catchment basin
that is fed predominantly by the Polochic River (Fig. 1). The Dulce
River, on the other hand, constitutes the main outflow channel that
drains into the Caribbean Sea (Brinson and Nordlie, 1975; Obrist-
Farner et al., 2019). Regional precipitation is seasonal, in tandem with
the intra-annual latitudinal migration of the Intertropical Convergence
Zone (ITCZ) (Duarte et al., 2021). The region has a high mean annual
precipitation (~3300 mm/year), which is about two times higher than
that of the Peten region and environs (~1800 mm/year) and other
places in the Maya region (Duarte et al., 2021). The rainy season lasts
from May to November, with a slight decrease in precipitation during
the mid-summer drought caused by strengthening of the Caribbean
Low-Level Jet (Magafia et al., 1999).

The regional geology is composed of metamorphosed serpentinite,
gneiss, and schist, and sedimentary sequences towards the Santa Cruz
Mountain Range in the NW and the Minas Mountain Range in the
south, (Wilson, 1974; Giunta et al., 2002). To the east, the Mico Moun-
tains (Fig. 1) are composed of Cretaceous metamorphic and Miocene
siliciclastic rocks (Vinson, 1962; Obrist-Farner et al., 2020).

Besides the abundant rainfall that typifies the LIB, the region is
warm, constituting a tropical lowland environment, characterized by
dense vegetation (Standley and Steyermark, 1945). Regional vegeta-
tion cover is part of the multifaceted and highly diversified flora of
Guatemala, which is the richest and most diversified in Central
America (Standley and Steyermark, 1945; Steyermark, 1950). Such
high biodiversity results from the convergence of species from the
Nearctic and Neotropical biogeographic realms interacting along
the steep environmental gradients that mostly result from regional
both climates and topography (Standley and Steyermark, 1945;
Steyermark, 1950; Graham, 2010b). The lowland areas with well-
drained soil are mostly occupied by tropical evergreen to semi-
evergreen closed canopy forests and dominated by taxa belonging to
families such as Fabaceae, Anarcadiaceae, Arecaceae, Sapindaceae,
Meliaceae, Betulaceae, Euphorbiaceae, Bignoniaceae, Malvaceae,
Pinaceae, as well as herbaceous families such as Poaceae, Asteraceae,
and Amaranthaceae (Standley and Steyermark, 1945; Steyermark,
1950; Islebe and Hooghiemstra, 1995; Islebe et al., 1996; Graham,
2010a). In the eastern lowlands, marshes and riparian mangroves

Table 1
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dominated by aquatic vegetation (e.g., Rhizophora spp.) are abundant,
especially along the shores and floodplains of the lake (Standley and
Steyermark, 1945; Steyermark, 1950).

3. Materials and methods

In 2017, a 455 cm-long core was collected under a water column of
5 m in Punta Chapin, southwestern side of Lake Izabal (Fig. 1). The up-
permost 55 cm were collected using a mud-water interface (MWI)
corer (Fisher et al,, 1992), extruded, sectioned at 3-cm intervals, packed
and stored in coolers. Consolidated sediment sections were collected
utilizing the modified Livingstone corer (Deevey, 1965) for a total
depth of 455 cm. The sections were kept inside polycarbonate core bar-
rels, sealed, labeled, and shipped to Missouri University of Science and
Technology for further analyses.

Eight samples of terrestrial organic matter (woody debris and char-
coal fragments) were collected from the consolidated core sections for
radiocarbon dating (See Table 1). The samples were washed with deion-
ized water on a 63-um sieve, dried, and submitted to the National Ocean
Sciences Accelerator Mass Spectrometer (NOSAMS) facility at Woods
Hole Oceanographic Institution for radiocarbon dating. A Bayesian
age-depth model was constructed using the rbacon package in R
(Blaauw and Christen, 2011; Fig. 2), which calibrates radiocarbon
dates using the IntCal20 curve (Reimer, 2020). The age-depth model
was further constrained using the date of core collection (i.e., 2017 CE).

Twelve samples spread throughout the core at 33 cm intervals
were processed for palynological analysis. Five grams of each sample
were processed at Global Geolab Limited in Alberta, Canada, using the
standard technique of digesting sediments in hydrochloric acids,
hydrofluoric acids, and acetolysis (Faegri et al., 1989) and strew mount-
ing the organic residues on permanent glass slides for analysis. Pollen
morphotypes were identified at the finest possible taxonomic level
using the palynological collection at the Smithsonian Tropical Research
Institute (STRI), Panama (Moreno et al., 2014), the literature (Roubik
and Moreno, 1991; Colinvaux et al., 1999; Jaramillo and Dilcher,
2001; Punt et al., 2007), and electronic resources (Bush and Weng,
2007; Jaramillo and Rueda, 2019; Tropicos of the Missouri Botanical
Garden, 2020). Pollen observations and counting were carried
out under a Nikon Eclipse 80i transmitted light microscope, and
photomicrographed at 400 x and 1000 x magnifications using a Nikon
Digital Camera DXM 1200f and NIS (Nikon Imaging Software) -
Elements D.5.11.00 64-bit. The identified pollen grains were categorized
according to ecological preferences into herbaceous, closed-canopy for-
ests, conifers and temperate taxa (Fig. 3; Supplementary Table 1). The
pollen sum (sampling effort) was set up at 300 pollen grains, excluding

AMS '“C dates from the Punta Chapin core, sample type used for '#C dating and its stratigraphic position along the core. Calibrated ages according to IntCal20 (Reimer, 2020), and modeled
ages according to the Bayesian age-depth model constructed using Bacon (Blaauw and Christen, 2011).

Depth (cm) Sample type 14C age =+ error Calibrated age (CE) Modeled date (CE) (95% ranges in parenthesis)
Probabilities in parenthesis
0 Date of core collection 2017 2017 (2014-2020)
1794-1950 (0.53)
58.5 Charcoal 150 + 60 1664-1785 (0.42) 1910 (1859-1950)
1906-1944 (0.19)
1833-1891 (0.27)
108 Wood fragment 145 + 20 1798-1821 (0.10) 1819 (1751-1873)
1720-1779 (0.24)
1671-1709 (0.15)
120.5 Charcoal 280 £+ 70 1424-1459 (0.95) 1796 (1724-1852)
1644-1667 (0.60);
214 Wood fragment 235 £ 15 1796-1782 (0.35) 1631 (1527-1665)
304 Wood fragment 450 + 15 1424-1459 (0.95) 1420 (1303-1457)
368 Wood fragment 815 + 15 1219-1265 (0.95) 1187 (1053-1257)
762-1019 (0.86);
404 Charcoal 1160 + 70 686-742 (0.09) 954 (855-1043)
445 Wood fragment 1230 4 15 786-877 (0.76); 729 (678-822)

706-738 (0.19)
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Fig. 2. Bayesian age-depth model based of eight calibrated dates (purple) (Blaauw and Christen, 2011) on organic fragments within the sediments from the Punta Chapin core. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Cyperaceae, Rhizophora, Quercus and conifers, which were nevertheless
counted (after Correa-Metrio et al., 2011). Abundances of all taxa were
transformed to percentages of the pollen sum in each sample.

For pollen identification, we followed the methods of Holst et al.
(2007) and Whitney et al. (2012) and assigned Poaceae pollen types
(monoporate) with sizes >80 um and smooth ornamentation to Zea
mays (domesticated maize) in comparison with the smaller-sized and
ornamented wild counterpart Zea sp. (teosinte). Amaranthus and
Chenopodium pollen types could not be distinguished because of their
close resemblance and similar morphological attributes. In addition,
Pinus and Podocarpus were grouped together as conifers because their
abundances and distribution patterns were similar. The pollen dataset
was summarized using a detrended correspondence analysis (DCA)
(Correa-Metrio et al.,, 2014b).

Density and magnetic susceptibility (MS) were measured on the
consolidated sediment cores before core splitting using a GeoTek
multi-sensor core logger at the University of Florida. The cores were
then sectioned lengthwise and imaged using a line-scan camera on
the GeoTek logger. X-ray Fluorescence (XRF) core scanning was carried
out at the Large Lakes Observatory, University of Minnesota-Duluth.
Core surfaces were cleaned, smoothed, and then scanned by the ITRAX
XRF core scanner using a Cr source tube at 30 kV and 55 mA, at 5-mm
resolution with a 15 s dwell time. The mud-water-interface (MWI)
samples were homogenized, placed in plastic containers, and scanned
at 1-mm resolution to obtain ~20 measurements per sample with a

15 s dwell time. The XRF comprised forty-two elements in total, but
only eight elements that showed significant variability were used for
the environmental interpretation. The geochemical dataset was stan-
dardized and analyzed using a principal components analysis (PCA) to
assess the temporal variability of the record and the relationships
among elements (Jolliffe, 1986).

The pollen diagram and all statistical analyses were performed in R
(R Core Team, 2021), using packages rioja (Juggins, 2017) and vegan
(Oksanen et al., 2020).

4. Results
4.1. Core description and chronology

The Punta Chapin core was characterized by homogeneous gray
mud, with sparse laminae and very thin beds of silt and sand. Organic
debris were minimal in the core. All radiocarbon dates were in strati-
graphic order and the resulting age-depth model suggests that the
core covers the last ~1300 years, with sedimentation rates increasing to-
wards the present (Fig. 2).

4.2. Palynology and geochemistry

Palynomorph recovery was high with well-preserved morphological
attributes throughout the Punta Chapin core. The palynomorphs were
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Fig. 3. Relative abundances of selected taxa of the Punta Chapin sedimentary record. Percentages were calculated based on the pollen sum of each sample.

classified into 67 pollen morphotypes, eight spore types, two
nonmarine algal types, and various types of fungal remains (Fig. 3, Sup-
plementary Table 1). Angiosperms dominated the pollen assemblage,
whereas only two taxa were identified among the abundant and over-
represented gymnosperms (Pinus and Podocarpus). Unidentified pollen
grains represented less than 10% of the total pollen count in each sample
(Supplementary Table 1). The general pattern of change was character-
ized by an increase of tropical forest taxa at ~1350 CE at the expense of
herbaceous and cultural taxa (Fig. 3).

In the DCA ordination, herbaceous pollen taxa probably associated
with disturbance (Ambrosia, Asteraceae, Amaranthus/Chenopodium,
Poaceae, Bambusa and Zea mays) (Marchant et al., 2002; Franco-
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Gaviria et al., 2018a) were ordinated towards the positive side of DCA
Axis 1, with scores ranging from 0.7 to 3.0 SD (standard deviations;
Fig. 4A). Pollen taxa representative of forest cover (e.g., Fabaceae,
Bignoniaceae, Malvaceae, Burseraceae, Arecaceae, Canabaceae) were,
on the other hand, mostly ordinated towards the negative end of DCA
Axis 1, with scores ranging from — 2.0 to 0.2 SD (Fig. 4A). Along DCA
Axis 2, evergreen forest taxa (e.g., Anacardiaceae, Bromeliaceae,
Chloranthaceae, and Araliaceae, affinities after Correa-Metrio et al.,
2011 and Marchant et al., 2002) mostly clustered towards the positive
side, with scores ranging from 0.1 to 2.5 SD, while deciduous forest
taxa (e.g., Pachira aquatica, Fabaceae, and Bignoniaceae, affinities after
Correa-Metrio et al., 2011 and Marchant et al., 2002) mostly cluster
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Fig. 4. Ordinations of the palynological and geochemical records of the Punta Chapin sedimentary record, lowland Guatemala. (A) DCA plot of palynological data showing selected pollen
taxa. (B) PCA plot of selected elements in the Punta Chapin core. The terrigenous elements plot on the positive end of Axis 1 in red, while Ca, which is authigenic, plots on the negative end
of Axis 1 or positive end of Axis 2 in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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towards the negative side, with scores ranging from —0.1 to —2.1
(Fig. 4A). Thus, whereas DCA Axis 1 provides a direct indication of the
dominance of open vegetation (i.e., positive scores reflect open vegeta-
tion, while negative scores represent closed canopy forest), DCA 2
shows a gradient from deciduous to evergreen forest elements.

The geochemical record was characterized by eight elements (Tita-
nium [Ti], Iron [Fe], Silicon [Si], Aluminum [Al], Rubidium [Rb], Potas-
sium [K], Zircon [Zr], and Calcium [Ca]) that were selected for analysis
because their abundances exhibited significant variability through
time (Fig. 5), and they have been commonly used for reconstructing en-
vironmental conditions in lake sediments (e.g., Meyers, 1997, 2003;
Boyle, 2002; Kylander et al., 2011; Franco-Gaviria et al., 2018b; Duarte
etal., 2021). Al Si, Ti, Rb, Fe, and K showed a similar trend of decreasing
abundances from the bottom of the record to ~1150 CE, an increase be-
tween 1150 and 1400 CE and then a decreasing trend from 1400 CE to
the present (Fig. 5). On the other hand, Zr showed variable abundances
with a marked trend towards higher values from 1750 CE to present,
while Ca abundance increased throughout the record (Fig. 5).

The first two principal components of the PCA performed on
the geochemical dataset accounted for 62% of the variability, with PC1
and PC2 comprising 46% and 16% of the total variance, respectively
(Fig. 4B). Terrigenic elements such as Ti, Al Si, Fe, K, Si, and Rb were
all positively correlated among them and aligned with PC1. Five of the
terrigenic elements (Ti, Al, Si, Fe and K) ordinated the highest scores
(~2.0) along PCA Axis 1, while Rb and Zr record + 1.5 and + 0.8, respec-
tively (Fig. 4B). Zr, with the lowest PCA Axis 1 score, had the lowest
association with the other terrigenic elements. Conversely, Ca was
ordinated towards the negative side of PC1 (—1.1) and a relatively
high score for PC2 (+ 1.2), showing negative correlations with the rest
of the dataset. The ordination of terrigenic elements to the positive
side of PC1 suggest increased runoff to the lake, likely indicating fluctu-
ations in terrigenous sediment input into the basin (Kylander et al.,
2011; Duarte et al., 2021). The association of negative scores with Ca
indicates this end of the axis reflects authigenic precipitation of carbon-
ates. This dichotomy probably reflects changes in the rainfall/evapora-
tion balance, which would translate into increased erosion during
times of higher rainfall and increased precipitation of carbonates during
times of higher evaporation (e.g., Mueller et al., 2009). Carbonate rocks
present in the northeastern part of the basin are probably an important
source of Ca into Lake Izabal as they could be drained by fluvial system
into the lake or as a result of marine incursions (Obrist-Farner et al.,
2022b). However, the coupling of the Ca/Ti ratio with the Ca abundance
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in the PC record (Fig. 5B) suggests that Ca input into the lake has been
dominated by authigenic sources within the studied time interval. On
the other hand, PC2 only displayed a clear association with Zr and Ca
and, given the little associated variance (16%), we did not make an ex-
plicit interpretation of the axis.

Based on the changes in relative pollen percentages, elemental geo-
chemistry data, and ordination scores (DCA and PCA), we subdivided
the core into three main zones that illustrate the evolution of vegetation
and environmental changes in the Lake Izabal region during the last
1300 cal yr BP (Fig. 3). Although we focused on the pollen data for anal-
ysis of vegetation dynamics of the region, the elemental geochemistry
data supported our interpretation. The distinction was not a formal
stratigraphic scheme, but rather was created to simplify the illustration
and interpretation of the paleoenvironmental and paleoecological his-
tory of the area. The resultant pollen diagram shows stratigraphic
changes in the respective vegetation groups, and the zones are
interpreted as vegetational changes through time based on the ob-
served pollen assemblages and their variations in time (Fig. 3; Supple-
mentary Table 1).

4.2.1. Pollen Zone I (455-370 cm; 650-1150 CE)

This zone was characterized by high relative abundances of
grass pollen (Poaceae) and pollen of Asteraceae, Amaranthaceae/
Chenopodiaceae, and Solanaceae, which are characteristic of vegetation
under intense disturbance regimes (Marchant et al., 2002; Franco-
Gaviria et al., 2018a). Zea mays was recorded in this zone at 433 cm
and 400 cm, corresponding to 722-894 and 875-1079 CE, respectively.
Pollen grains of Quercus and conifers displayed high percentages in this
zone, whereas taxa associated with closed-canopy forest and aquatic
vegetation, and fern spores were low and poorly represented (Fig. 3).
DCA Axes 1 and 2 sample scores were large and stable (Fig. 6 F and
G). The elemental geochemistry was characterized by a decreasing
trend in the abundances of Ti, Fe, Si, Al, Rb, K and Zr and a relative in-
crease in Ca from 650 to 1150 CE (Fig. 4). Accordingly, PC1 sample
scores were characterized by a decreasing trend along the zone
(Fig. 6H).

4.2.2. Pollen Zone Il (350-300 cm; 1150-1400 CE)

This zone was characterized by a decrease in pollen of herbaceous
taxa, while pollen of closed-canopy forest families increased (Fig. 3).
Pollen of herbaceous taxa/families, such as Bambusa, Asteraceae,
Ambrosia, Chenopodium and Iresine, decreased sharply compared with
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Fig. 5. Selected elements of the geochemical record of the Punta Chapin core.
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the gradual decrease of the pollen of Poaceae and Solanaceae. Pollen of
Arecaceae, Boraginaceae, Meliaceae, and Sapindaceae appeared for the
first time and gradually increased towards the upper part of the zone.
Pollen grains of conifers were abundant, while those of aquatics and
spores increased slightly. DCA Axis 1 sample scores showed a large
and rapid transition from positive to negative values, whereas DCA
Axis 2 scores were characterized by a large dip into negative scores
(Fig. 6F and G). The elemental geochemistry data equivalent to this
zone was characterized by an increasing abundance of Ti, Fe, Si, Al, Rb,
K and Zr and a relative decrease of Ca (Fig. 5) that reflected on higher
and relatively stable values of PC1 (Fig. 6H).

4.2.3. Pollen Zone III (300-66 cm; 1400-1950 CE)

Pollen grains of herbs all together made up to ~7% of the pollen sum.
While pollen grains of the Bromeliaceae and Anacardiaceae families ap-
peared in this zone for the first time, pollen grains belonging to various
closed-canopy forest taxa increased in relative abundance, reaching
~93%. The relative abundances of the aquatics and fern spores notably
increased in this zone (Fig. 3). Whereas DCA Axis 1 sample scores
were characterized by stable negative values, Axis 2 showed a trend to-
wards positive values (Figs. 5A, 6F and G). The geochemistry of the sed-
iments in this zone was characterized by gradually decreasing
abundances of Ti, Fe, Si, Al, Rb, K, and Zr, and increasing concentrations
of Ca (Fig. 5). These patterns of sediment composition were summa-
rized by a substantial trend towards more positive values for the terrig-
enous elements and negative value for Ca in PC1 time series plot
(Fig. 6H). From 1850 CE to present, disturbance taxa and conifers in-
creased their abundances, coinciding with a relative decrease in some
of the forest taxa, aquatics and fern spores (Figs. 3, 6A, B and C).

5. Discussion

The Punta Chapin core offers evidence into the evolution of the re-
gional vegetation during the last 1300 years. Overall, vegetation turn-
over has been characterized by a progressive replacement of open and
disturbed vegetation by closed canopy forests, which, according to the

geochemical record, have been closely associated with the erosive re-
gimes of the area. Whereas abundances of herbaceous taxa provide a di-
rect indication of the dominance of highly disturbed vegetation (either
by climatic or anthropic agents), abundances of forest taxa indicate
the development of a dense vegetation cover. Although conifers and
Quercus are important components of montane forests in the Nearctic-
Neotropical transition zone (Nixon, 2006; Richardson, 1998), in the
LIB, they are likely associated with disturbance since they behave as
opportunistic taxa under moist, warm conditions, (Correa-Metrio
et al.,, 2011; Franco-Gaviria et al., 2018a). Indeed, in the Punta Chapin
sediments core sediments, abundances of Quercus and conifers closely
correlate with those of disturbance taxa (Figs. 3 and 6). Aquatic taxa
(i.e. Cyperaceae, Rhizophora, and Polygonum) and fern spores in the PC
record, in contrast, represent marshlands and riparian mangroves that
develop along river floodplains (Standley and Steyermark, 1945). The
correlation of their abundances with forest expansion (Fig. 6D) is prob-
ably associated with anthropogenic disturbance patterns. During times
of pervasive human occupation, marshlands and riparian mangroves
were transformed into agricultural farmlands that recovered after
abandonment (Guderjan and Krause, 2011; Krause et al.,, 2021;
Leonard et al., 2019).

Pollen Zone I (650-1150 CE) was characterized by high percentages
of disturbance taxa (grasses and weeds; Figs. 3, 6B), including the pollen
of Zea mays encountered at 650-700 CE and 950-1000 CE, which reflect
on the high DCA Axis 1 scores (Fig. 5A, 6F). These findings indicate an-
thropogenic activities in close proximity to the lake, coinciding with
the Maya Terminal Classic Period (TCP, from ~800 to 950 CE), which
was a time interval characterized by large-scale deforestation linked
to agricultural practices in the Maya region (e.g., Leyden, 1987, 2002;
Islebe et al.,, 1996; Mueller et al., 2009, 2010; Turner and Sabloff, 2012;
Wahl et al, 2007a, 2007b, 2016) and generally dry conditions
(e.g., Hodell et al., 1995; Curtis et al., 1996; Medina-Elizalde et al.,
2010). The relatively high abundances of Quercus and conifers in this
zone (Figs. 3, 6C) as opposed to other forest taxa supports our interpre-
tation of intensified local disturbance in the area, although these could
also be indicating secondary forest regrowth at higher elevations
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(Franco-Gaviria et al., 2018b; Harvey et al., 2019). The bottom of this
zone was characterized by the high abundance of terrigenic elements
and lowest abundance of Ca, indicating high erosion probably caused
by the Maya land clearance. Erosion, however, decreased through the
zone as indicated by decreasing scores of PC1 time series plot through
Zone 1(Fig. 6H), reflecting a progressive reduction of precipitation
(Boyle, 2002; Kylander et al., 2011; Duarte et al., 2021) due to drier con-
ditions during the TCP and/or erosion control practices by the Maya that
were common across riparian floodplains (Krause et al,, 2021).

Although forest clearance and land disturbance can result in in-
creased erosion (Dull, 2007), our results suggest that precipitation was
the dominant factor influencing the mobilization of terrigenic elements
into the lake during Pollen Zone I. This pollen zone also partly overlaps
with the Medieval Climate Anomaly (MCA), which lasted from 950 to
1250 CE (Mann et al., 2009). The period prior to and during parts of
the MCA was the driest in the last 1000 years based on syntheses of
available regional proxy records across the northern Neotropics
(Bhattacharya et al., 2017). Thus, while anthropogenic activities may
have favored the prevalence of disturbance-associated vegetation at
the expense of forested areas, dry conditions during the MCA likely
undermined the proliferation of forest vegetation (Fig. 6).

Pollen Zone II, spanning from 1150 to 1400 CE, was characterized by
a systematic reduction in the abundance of disturbance taxa and a surge
in the abundance of forest and wetland taxa (Fig. 3). The abundances of
terrigenic elements indicate a change from decreasing to increasing ero-
sion, probably because of a moisture rebound. This process started
~200 years after the Mayan collapse in the Yucatan Peninsula, which
occurred around 950 CE (Hodell et al., 1995). Thus, it is possible that
increasing forest and swamp cover was associated with higher moisture
availability. Furthermore, slight decrease in the abundance of Ca during
this time (Fig. 5) signifies lower evaporation and increase precipitation
(E/P) values in response to surplus moisture budget in the area arising
from increased precipitation. PC1 scores slightly increased through the
zone on the time series plot (Fig. 6H), probably indicating a period of in-
creased catchment erosion caused by higher rainfall. Our inference of an
increase in precipitation is supported by pollen data, with DCA Axis 2
indicating a surge in the representation of deciduous forest taxa
(Figs. 5A, 6G), likely favored at the early successional stages of forest
recovery indicated by the pollen data.

Pollen Zone III, spanning from 1400 to 1950 CE, was marked by a
substantial increase in forest taxa and a decrease in disturbance taxa
(Fig. 3), indicating a substantial expansion of dense canopy forests in
the region. This pattern is summarized by the DCA ordination, with
Axis 1 time series plot showing low scores that represent closed canopy
forests, and Axis 2 displaying the largest scores throughout the record,
implying a dominance of evergreen vegetation elements (Figs. 5A, 6F
and G). This expansion correlates with a gradual reduction in the abun-
dance of terrigenic elements, suggesting a long-term reduction in ero-
sion. Similarly, increasing abundance of Ca (Fig. 4) points to long term
relatively higher E/P that correlates with the hemispheric trend towards
drier conditions (Haug et al., 2001). This reduction in precipitation is
also observed in a nearby speleothem record from southern Belize
(Kennett et al., 2012), suggesting decreased precipitation during forest
recovery. Forest recovery was probably a result of lower anthropic pres-
sure and that decreased erosion could have resulted from both decreas-
ing rainfall and increased forest cover in the catchment.

In the Yucatan Peninsula, the conditions during the Little Ice Age
(LIA, from 1300 to 1850 CE, Mann et al., 2009) have been reported as
drier (Hodell et al., 2005b) but precipitation trends across western Cen-
tral America during this time appear to have been variable (Steinman
et al.,, 2022). The conditions in the LIB and southern Belize appear to
have been wetter during the onset of the LIA, with preciptation progres-
sively decreasing from ~1400 CE to the present (Obrist-Farner et al.,
2022a). This is supported by our geochemical data and coincides with
the period of the onset of forest recovery during Pollen Zone II. From
~1400 CE to the present, lower evapotranspiration rates associated
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with the lower temperatures that characterized this climatic period
(Mann et al., 2009) probably compensated the decrease in moisture
availability in the LIB region. Thus, this relatively low moisture deficit
created favorable conditions for a closed-canopy forest in the Lake
Izabal region, similar to those reported for other locations in Central
America and Mexico (Leyden, 2002; Lozano-Garcia et al., 2007; Wahl
et al., 2007a; Correa-Metrio et al., 2016). The forest recovery might
have also contributed to the lower abundance of terrigenic elements be-
cause vegetation cover prevented erosion and mobilization of sedi-
ments into the lake. In addition, given the presently wetter conditions
of the LIB compared with other locations in the Maya region (blue rect-
angle, Fig. 1B), precipitation reduction was probably not as severe to the
vegetation relative to the other locations in Central America. Also, the
time span of maximum forest expansion in this zone overlaps with
the timing of the "Great Dying" that was characterized by large-scale de-
population which directly or indirectly favored forest expansion in the
Americas (Koch et al., 2019). At the top of zone 3 (~1850-1950 CE), dis-
turbance taxa increase at the expense of arboreal pollen, indicating
renewed human activity that likely resulted in forest clearance from
renewed farming, timbering, and other land use activities (Harvey
et al., 2019). These anthropogenic disturbances were likely associated
with land reclamation in the region after the independence of
Guatemala from Spain.

6. Conclusions

Qualitative and quantitative analyses of palynomorph and elemental
geochemistry data from the Punta Chapin core in Lake Izabal highlight
the variability in the vegetation and environmental dynamics of the re-
gion during the last ~1300 calibrated years BP. Whereas pollen data pro-
vide an overview of the regional vegetation turnover, elemental
geochemistry data offer information on soil erosion and moisture avail-
ability during the late Holocene. Under climate change scenarios, the
survival of plants depends on their ability to adjust or migrate and accli-
matize to new configurations of the bioclimatic space (Correa-Metrio
et al,, 2013). In the northern Neotropics, the last 1300 years have been
characterized by multiple climatic events, such as the LIA and MCA
with their associated changes in moisture availability, and the several
droughts that typified the Terminal Classic Period (Gill et al., 2007;
Kennett et al., 2012). The evidence from the Punta Chapin core indicates
that, in the region, the most important ecological change within the last
1300 years was probably produced by changes in disturbance regimes
that resulted from Maya presence and subsequent abandonment of
the area. However, changes in moisture availability appear to have
also played an important role in modulating vegetation composition
and structure. These two factors, are clearly reflected by our pollen
results. The celerity of vegetation turnover revealed by our record, to-
gether with the moister conditions that characterize LIB in the regional
context (Duarte et al.,, 2021), highlight the potential of the region as a
refugium for ecosystems in times of climatic turmoil. Our integrated
analyses suggest combined anthropogenic influences and climatic forc-
ing on the vegetational changes in the LIB during the Late Holocene.
Anthropogenic influences appear as first-order controls on the variabil-
ity of vegetation, whereas moisture availability and evaporation rates
appear to have acted on a second-order scale.
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